EQUIVALENCE CLASSES OF MIXED INVARIANT SUBSPACES OVER THE BIDISK

KEI JI IZUCHI AND MASATOSHI NAITO

Abstract

A closed subspace N of the Hardy space H^{2} over the bidisk is said to be mixed invariant under T_{z} and T_{w}^{*} if $T_{z} N \subset N$ and $T_{w}^{*} N \subset N$. In this paper, we study unitary, similar and quasi-similar module maps for mixed invariant subspaces. We give some characterization of these maps. All unitary module maps are multiplication operators of unimodular functions. Under the condition $\operatorname{dim}(N \ominus z N)=1$, we can describe similar and quasi-similar module maps by outer functions.

1. Introduction

Let D^{2} be the bidisk and Γ^{2} be the distinguished boundary of D^{2}. We use z, w as variables over Γ^{2}. Let $L^{2}=L^{2}\left(\Gamma^{2}\right)$ and $H^{2}=H^{2}\left(\Gamma^{2}\right)$ be the usual Lebesgue and Hardy spaces over Γ^{2}. We denote by $H^{2}(z)$ and $H^{2}(w)$ the z and w variable Hardy spaces, respectively. For $\varphi \in L^{\infty}\left(\Gamma^{2}\right)$, we define the Toeplitz operator T_{φ} on H^{2} by $T_{\varphi} f=P_{H^{2}}(\varphi f)$, where $P_{H^{2}}$ is the orthgonal projection from L^{2} onto H^{2}.

A closed subspace M of H^{2} is called invariant if $T_{z} M \subset M$ and $T_{w} M \subset M$. In $[10,11]$, K. H. Izuchi and the first author studied M satisfying $\operatorname{rank}\left(R_{z} R_{w}^{*}-R_{w}^{*} R_{z}\right)=$ 1, where $R_{z}=\left.T_{z}\right|_{M}$ and $R_{w}=\left.T_{w}\right|_{M}$. It is still open to describe all M satisfying the above condition. Let $L=H^{2} \ominus M$. Then $T_{z}^{*} L \subset L$ and $T_{w}^{*} L \subset L$. The space L is called backward shift invariant. In [12], K. H. Izuchi and the first author showed that the form of L can be described under the condition $\operatorname{rank}\left(S_{z} S_{w}^{*}-S_{w}^{*} S_{z}\right)=1$, where $S_{z}=\left.P_{L} T_{z}\right|_{L}, S_{w}=\left.P_{L} T_{w}\right|_{L}$. From such a thing, the authors feel that some problems on L are easier than same type problems on M. To overcome this thing, in [13], K. H. Izuchi and the authors introduced the concept of "mixed invariant" for closed subspace on H^{2}.

A closed subspace N of H^{2} with $N \neq\{0\}$ and $N \neq H^{2}$ is called mixed invariant under T_{z} and T_{w}^{*} if $T_{z} N \subset N$ and $T_{w}^{*} N \subset N$. We define the operators V_{z} and V_{w} on N by $V_{z} f=T_{z} f \quad$ and $\quad V_{w} f=P_{N} T_{w} f$. In [13], K. H. Izuchi and the authors described the form of mixed invariant subspaces N under the condition $V_{z} V_{w}=V_{w} V_{z}$. This

[^0]is a similar result for invariant and backward shift invariant subspaces. Moreover, we showed that a wandering subspace $N \ominus V_{z} N$ has a deep connection with the de Branges-Rovnyak spaces studied by Sarason [15]. See [13] in detail.

It is well known result due to Beurling that for every invariant subspace M of the Hardy space over the unit circle, $M=\varphi H^{2}(\Gamma)$ for an inner function φ. But it is easy to see that Beurling-type characterization is not possible for invariant subspaces of $H^{2}\left(\Gamma^{2}\right)$ [14]. Hence this directs one's attention to investigate equivalence classes of invariant subspaces of $H^{2}\left(\Gamma^{2}\right)$, naturally. See $[1,3,4,5,6,9]$ for the related subjects. In [1], Agrawal, Clark and Douglas introduced the concept of unitary equivalence of invariant subspaces. They showed that two invariant subspaces of finite codimension are unitarily equivalent if and only if they are equal. In [9], the first author gave a complete characterization of pairs of invariant subspaces I and J of $H^{2}\left(\Gamma^{2}\right)$ such that $I=\varphi J$ for an inner function φ. This is a generalization of Agrawal, Clark and Douglas's results. In [5, 6], Guo studied unitary equivalence from a module theoretic viewpoint.

In this paper, we study unitary, similar, and quasi-similar module maps for mixed invariant subspaces. For mixed invariant subspaces N_{1} and N_{2} of H^{2} under T_{z} and T_{w}^{*}, we write $V_{z}^{(j)}=V_{z}$ and $V_{w}^{(j)}=V_{w}$ on N_{j}. Note that $V_{z}^{(j)}=\left.T_{z}\right|_{N_{j}}$ and $V_{w}^{(j) *}=\left.T_{w}^{*}\right|_{N_{j}}$. A bounded linear map $T: N_{1} \rightarrow N_{2}$ is called a module map with respect to $\left(V_{z}, V_{w}^{*}\right),\left(V_{z}, V_{w}\right),\left(V_{z}^{*}, V_{w}\right)$, and $\left(V_{z}^{*}, V_{w}^{*}\right)$ if

$$
\begin{gathered}
T V_{z}^{(1)}=V_{z}^{(2)} T \quad \text { and } \quad T V_{w}^{(1) *}=V_{w}^{(2) *} T, \\
T V_{z}^{(1)}=V_{z}^{(2)} T \quad \text { and } \quad T V_{w}^{(1)}=V_{w}^{(2)} T, \\
T V_{z}^{(1) *}=V_{z}^{(2) *} T \quad \text { and } \quad T V_{w}^{(1)}=V_{w}^{(2)} T, \\
T V_{z}^{(1) *}=V_{z}^{(2) *} T \quad \text { and } \quad T V_{w}^{(1) *}=V_{w}^{(2) *} T,
\end{gathered}
$$

respectively. We say that N_{1} and N_{2} are unitarily equivalent (similar) if there is a unitary (invertible) module map $T: N_{1} \rightarrow N_{2}$ for each respective type. We also say that N_{1} and N_{2} are quasi-similar if there are one to one module maps $T_{1}: N_{1} \rightarrow N_{2}$ and $T_{2}: N_{2} \rightarrow N_{1}$ with dense range for each respective type. For a fixed N_{1}, we denote by $\operatorname{orb}_{\left(u, V_{z}, V_{w}^{*}\right)}\left(N_{1}\right)$, orb $b_{\left(s, V_{z}, V_{w}^{*}\right)}\left(N_{1}\right)$, and $\operatorname{orb}_{\left(q s, V_{z}, V_{w}^{*}\right)}\left(N_{1}\right)$ the family of mixed invariant subspaces N which are unitarily equivalent, similar, and quasi-similar to N_{1} with respect to $\left(V_{z}, V_{w}^{*}\right)$, respectively. We may consider other types of orbits of N_{1}. We have a characterization of unitary equivalence by unimodular functions. In Corollary 2.2 , we shall prove that the followings are equivalent;
(i) $T: N_{1} \rightarrow N_{2}$ is a unitary module map with respect to $\left(V_{z}, V_{w}^{*}\right)$.
(ii) $T: N_{1} \rightarrow N_{2}$ is a unitary module map with respect to $\left(V_{z}, V_{w}\right)$.
(iii) $T: N_{1} \rightarrow N_{2}$ is a unitary module map with respect to $\left(V_{z}^{*}, V_{w}^{*}\right)$.
(iv) $T: N_{1} \rightarrow N_{2}$ is a unitary module map with respect to $\left(V_{z}^{*}, V_{w}\right)$.
(v) There is a unimodular function $\psi(z)$ satisfying $T h=\psi(z) h$ for $h \in N_{1}$.

Under the conditon $\operatorname{dim}(N \ominus z N)=1$, we can describe similar and quasi-similar module maps by outer functions.

2. Theorems

First, we prove the following theorem. The idea of the proof comes from Douglas and Foias [4].

Theorem 2.1. Let N_{1} and N_{2} be mixed invariant subspaces of H^{2} under T_{z} and T_{w}^{*}. Let $T: N_{1} \rightarrow N_{2}$ be a unitary map. Then the following conditions are equivalent.
(i) $T: N_{1} \rightarrow N_{2}$ is a unitary module map with respect to $\left(V_{z}, V_{w}^{*}\right)$.
(ii) $T: N_{1} \rightarrow N_{2}$ is a unitary module map with respect to $\left(V_{z}, V_{w}\right)$.
(iii) There is a unimodular function $\psi(z)$ satisfying $T h=\psi(z) h$ for every $h \in$ N_{1}.

Proof. (i) (or (ii)) \Rightarrow (iii): Suppose that $T: N_{1} \rightarrow N_{2}$ is a unitary module map with respect to $\left(V_{z}, V_{w}^{*}\right)$ (or $\left.\left(V_{z}, V_{w}\right)\right)$. Let \widetilde{N}_{j} be the closed linear span of $\left\{T_{w}^{n} N_{j}: n \geq\right.$ $0\}=\left\{w^{n} N_{j}: n \geq 0\right\}$. Then \widetilde{N}_{j} is a mixed invariant subspace under T_{z} and T_{w}^{*}, and $T_{w} \widetilde{N}_{j} \subset \widetilde{N}_{j}$. By [13, Corollary 2.5], there are inner functions $q_{1}(z)$ and $q_{2}(z)$ satisfying

$$
\begin{equation*}
\widetilde{N}_{1}=q_{1}(z) H^{2} \quad \text { and } \quad \widetilde{N}_{2}=q_{2}(z) H^{2} . \tag{2.1}
\end{equation*}
$$

For $F=\sum T_{w}^{n} h_{n}, h_{n} \in N_{1}$, we define $\widetilde{T} F=\sum T_{w}^{n} T h_{n}$. Since $T T_{w}^{*}=T_{w}^{*} T$ (or $\left.T V_{w}^{(1)}=V_{w}^{(2)} T\right)$ on N_{1} and $T: N_{1} \rightarrow N_{2}$ is unitary, we have

$$
\begin{aligned}
\|\widetilde{T} F\|^{2} & =\sum_{n, k}\left\langle T_{w}^{n} T h_{n}, T_{w}^{k} T h_{k}\right\rangle \\
& =\sum_{n \geq k}\left\langle T h_{n}, T_{w}^{*(n-k)} T h_{k}\right\rangle+\sum_{n<k}\left\langle T_{w}^{*(k-n)} T h_{n}, T h_{k}\right\rangle \\
(\text { or } & \left.=\sum_{n \geq k}\left\langle V_{w}^{(2) n-k} T h_{n}, T h_{k}\right\rangle+\sum_{n<k}\left\langle T h_{n}, V_{w}^{(2) k-n} T h_{k}\right\rangle\right) \\
& =\sum_{n \geq k}\left\langle T h_{n}, T T_{w}^{*(n-k)} h_{k}\right\rangle+\sum_{n<k}\left\langle T T_{w}^{*(k-n)} h_{n}, T h_{k}\right\rangle \\
(\text { or } & \left.=\sum_{n \geq k}\left\langle T V_{w}^{(1) n-k} h_{n}, T h_{k}\right\rangle+\sum_{n<k}\left\langle T h_{n}, T V_{w}^{(1) k-n} h_{k}\right\rangle\right) \\
& =\sum_{n \geq k}\left\langle h_{n}, T_{w}^{*(n-k)} h_{k}\right\rangle+\sum_{n<k}\left\langle T_{w}^{*(k-n)} h_{n}, h_{k}\right\rangle \\
(\text { or } & \left.=\sum_{n \geq k}\left\langle V_{w}^{(1) n-k} h_{n}, h_{k}\right\rangle+\sum_{n<k}\left\langle h_{n}, V_{w}^{(1) k-n} h_{k}\right\rangle\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n \geq k}\left\langle T_{w}^{n} h_{n}, T_{w}^{k} h_{k}\right\rangle+\sum_{n<k}\left\langle T_{w}^{n} h_{n}, T_{w}^{k} h_{k}\right\rangle \\
& =\left\|\sum T_{w}^{n} h_{n}\right\|^{2}=\|F\|^{2} .
\end{aligned}
$$

Hence $\widetilde{T}: \widetilde{N}_{1} \rightarrow \widetilde{N}_{2}$ is well defined and a unitary map.
We shall prove that

$$
\begin{equation*}
\widetilde{T} T_{w}=T_{w} \widetilde{T} \quad \text { and } \quad \widetilde{T} T_{z}=T_{z} \widetilde{T} \quad \text { on } \widetilde{N}_{1} \tag{2.2}
\end{equation*}
$$

Since $T T_{z}=T_{z} T$ on N_{1}, we have

$$
\widetilde{T} T_{z} F=\widetilde{T}\left(\sum T_{w}^{n} T_{z} h_{n}\right)=\sum T_{w}^{n} T T_{z} h_{n}=T_{z} \widetilde{T} F
$$

We also have

$$
\widetilde{T} T_{w} F=\widetilde{T}\left(\sum T_{w}^{n+1} h_{n}\right)=\sum T_{w}^{n+1} T h_{n}=T_{w} \widetilde{T} F
$$

Thus we get (2.2).
By (2.1), we can define the operator $\widetilde{\widetilde{T}}$ on H^{2} by

$$
\widetilde{\widetilde{T}}: H^{2}=\overline{q_{1}(z)} \widetilde{N}_{1} \ni \overline{q_{1}(z)} F \rightarrow \overline{q_{2}(z)} \widetilde{T} F \in H^{2}
$$

Since $\widetilde{T}: \widetilde{N}_{1} \rightarrow \widetilde{N}_{2}$ is unitary, $\widetilde{\widetilde{T}}: H^{2} \rightarrow H^{2}$ is unitary. By (2.2), it is easy to see that $\widetilde{\widetilde{T}} T_{z}=T_{z} \widetilde{\widetilde{T}}$ and $\widetilde{\widetilde{T}} T_{w}=T_{w} \widetilde{\widetilde{T}}$ on H^{2}. Hence we get $\widetilde{\widetilde{T}}=c I$ for some $c \in \mathbb{C}$ with $|c|=1$. Thus we get $\overline{q_{2}(z)} \widetilde{T} F=c \overline{q_{1}(z)} F$ for $F \in \widetilde{N}$. Therefore $\widetilde{T} F=c \overline{q_{1}(z)} q_{2}(z) F$ for every $F \in \widetilde{N}_{1}$. Since $\left.\widetilde{T}\right|_{N_{1}}=T, T h=c \overline{q_{1}(z)} q_{2}(z) h$ for every $h \in N_{1}$. Thus we get (iii).
(iii) \Rightarrow (i) and (ii): Suppose that $T h=\psi(z) h$ for $h \in N_{1}$, where $\psi(z)$ is a unimodular function. It is trivial that $T V_{z}^{(1)}=V_{z}^{(2)} T$. We have

$$
T V_{w}^{(1) *} h=\psi(z) T_{w}^{*} h=T_{w}^{*}(\psi(z) h)=V_{w}^{(2) *} T h
$$

Hence $T V_{w}^{(1) *}=V_{w}^{(2) *} T$.
We write $w h=h_{1} \oplus g_{1} \in N_{1} \oplus\left(H^{2} \ominus N_{1}\right)$. Since $\psi(z) N_{1}=N_{2} \subset H^{2}, \psi(z) g_{1} \in H^{2}$. Since $g_{1} \perp N_{1}$, we have $\psi(z) g_{1} \perp \psi(z) N_{1}=N_{2}$. Thus

$$
\psi(z) w h=\psi(z) h_{1} \oplus \psi(z) g_{1} \in N_{2} \oplus\left(H^{2} \ominus N_{2}\right)
$$

Hence $P_{N_{2}}(\psi(z) w h)=\psi(z) h_{1}$ and

$$
T V_{w}^{(1)} h=T h_{1}=\psi(z) h_{1}=P_{N_{2}}(\psi(z) w h)=V_{w}^{(2)} T h
$$

Therefore we get $T V_{w}^{(1)}=V_{w}^{(2)} T$.
Corollary 2.2. Let N_{1} and N_{2} be mixed invariant subspaces of H^{2} under T_{z} and T_{w}^{*}. Let $T: N_{1} \rightarrow N_{2}$ be a unitary map. Then the following conditions are equivalent.
(i) $T: N_{1} \rightarrow N_{2}$ is a unitary module map with respect to $\left(V_{z}, V_{w}^{*}\right)$.
(ii) $T: N_{1} \rightarrow N_{2}$ is a unitary module map with respect to $\left(V_{z}, V_{w}\right)$.
(iii) $T: N_{1} \rightarrow N_{2}$ is a unitary module map with respect to $\left(V_{z}^{*}, V_{w}^{*}\right)$.
(iv) $T: N_{1} \rightarrow N_{2}$ is a unitary module map with respect to $\left(V_{z}^{*}, V_{w}\right)$.
(v) There is a unimodular function $\psi(z)$ satisfying $T h=\psi(z) h$ for $h \in N_{1}$.

Proof. Conditions (iii) and (iv) are equivalent to that $T^{*}: N_{2} \rightarrow N_{1}$ are unitary module maps with respect to $\left(V_{z}, V_{w}\right)$ and $\left(V_{z}, V_{w}^{*}\right)$, respectively. By Theorem 2.1, (iii) and (iv) are equivalent, and also they are equivalent to that $T^{*} h=\varphi(z) h, h \in$ N_{2}, for a unimodular function $\varphi(z)$. Hence $T h_{1}=\overline{\varphi(z)} h_{1}$ for every $h_{1} \in N_{1}$.

Corollary 2.3. Let N_{1} be a mixed invariant subspace of H^{2} under T_{z} and T_{w}^{*}. Then

$$
\operatorname{orb}_{\left(u, V_{z}, V_{w}^{*}\right)}\left(N_{1}\right)=\operatorname{orb}_{\left(u, V_{z}, V_{w}\right)}\left(N_{1}\right)=\operatorname{orb}_{\left(u, V_{z}^{*}, V_{w}^{*}\right)}\left(N_{1}\right)=\operatorname{orb}_{\left(u, V_{z}^{*}, V_{w}\right)}\left(N_{1}\right)
$$

and this family consists of mixed invariant subspaces N of H^{2} such that $N=\psi(z) N_{1}$ for some unimodular function $\psi(z)$.

In the above argument, the condition of unitarity of the module map T is important. It seems difficult to describe similar-orbits of N_{1} generally, so we study for a special case of N_{1} with $\operatorname{dim}\left(N_{1} \ominus z N_{1}\right)=1$, which is studied in [13].

Let Φ be the family of pairs $(a(z), b(z))$ in $H^{\infty}(z)$ satisfying $|a(z)|<1$ a.e. on Γ and $|a(z)|^{2}+|b(z)|^{2}=1$ a.e. on Γ. For $(a(z), b(z)) \in \Phi$, we write

$$
N=N_{(a, b)}=G H^{2}(z), \quad \text { where } \quad G=\frac{b(z)}{1-w a(z)} .
$$

By [13, Theorems 2.4 and 3.2], N is a mixed invariant subspace of H^{2} under T_{z} and T_{w}^{*} with $N \ominus z N=\mathbb{C} \cdot G$, and $a(z)$ is constant if and only if $\left[V_{z}, V_{w}\right]=0$. We note that $\|G\|=1$,

$$
\begin{gather*}
\|\xi(z) G\|=\|\xi(z)\| \quad \text { and } \quad\langle\xi(z) G, \eta(z) G\rangle=\langle\xi(z), \eta(z)\rangle, \tag{2.3}\\
V_{w}^{*}(\xi(z) G)=a(z) \xi(z) G, \tag{2.4}
\end{gather*}
$$

and $V_{z}^{*}(\xi(z) G)=\left(T_{z}^{*} \xi(z)\right) G$ for every $\xi(z), \eta(z) \in H^{2}(z)$. Moreover by [13, Lemma 5.1] we have

$$
\begin{equation*}
V_{w}(\xi(z) G)=\left(T_{a}^{*} \xi(z)\right) G \tag{2.5}
\end{equation*}
$$

Lemma 2.4. Let

$$
N_{1}=N_{\left(a_{1}, b_{1}\right)}=G_{1} H^{2}(z), \quad G_{1}=\frac{b_{1}(z)}{1-w a_{1}(z)}
$$

for some $\left(a_{1}(z), b_{1}(z)\right) \in \Phi$ and N_{2} be a mixed invariant subspace of H^{2} under T_{z} and T_{w}^{*}. Let $T: N_{1} \rightarrow N_{2}$ be a one to one bounded linear map with dense range. If $T V_{z}^{(1)}=V_{z}^{(2)} T$, then

$$
N_{2}=N_{\left(a_{2}, b_{2}\right)}=G_{2} H^{2}(z), \quad G_{2}=\frac{b_{2}(z)}{1-w a_{2}(z)}
$$

for some $\left(a_{2}(z), b_{2}(z)\right) \in \Phi$ and there is an outer function $h(z)$ in $H^{\infty}(z)$ satisfying $T\left(\xi(z) G_{1}\right)=h(z) \xi(z) G_{2} \xi(z) \in H^{2}(z)$ and $T^{*}\left(\eta(z) G_{2}\right)=\left(T_{h}^{*} \eta(z)\right) G_{1}$ for every $\xi(z), \eta(z) \in H^{2}(z)$.

Proof. We have $T\left(z N_{1}\right)=z T N_{1} \subset z N_{2}$. Since $\mathbb{C} \cdot T G_{1}+z T N_{1}$ is dense in N_{2}, $\mathbb{C} \cdot T G_{1}+z N_{2}$ is dense in N_{2}. Hence $\operatorname{dim}\left(N_{2} \ominus z N_{2}\right)=1$. When $\left[V_{z}^{(2)}, V_{w}^{(2)}\right]=0$, by [13, Theorem 2.4] there exist an inner function $q(z)$ and $c \in D$ satisfying

$$
N_{2}=G_{2} H^{2}(z), \quad \text { where } \quad G_{2}=\frac{\sqrt{1-|c|^{2}} q(z)}{1-c w} .
$$

Here we used condition $\operatorname{dim}\left(N_{2} \ominus z N_{2}\right)=1$. Write $a_{2}(z)=c$ and $b_{2}(z)=$ $\sqrt{1-|c|^{2}} q(z)$. Then $\left(a_{2}(z), b_{2}(z)\right) \in \Phi$ and $N_{2}=N_{\left(a_{2}, b_{2}\right)}$.

Suppose that $\left[V_{z}^{(2)}, V_{w}^{(2)}\right] \neq 0$. By [13, Theorem 3.2], there exists $\left(a_{2}(z), b_{2}(z)\right) \in \Phi$ such that $a_{2}(z)$ is nonconstant and

$$
N_{2}=N_{\left(a_{2}, b_{2}\right)}=G_{2} H^{2}(z), \quad \text { where } \quad G_{2}=\frac{b_{2}(z)}{1-w a_{2}(z)} .
$$

Since $T G_{1} \in N_{2}$, there is $h(z) \in H^{2}(z)$ with $T G_{1}=h(z) G_{2}$. For $\xi(z) \in H^{2}(z)$, we have $T\left(\xi(z) G_{1}\right)=h(z) \xi(z) G_{2}$. By (2.3), it is not difficult to see that $h(z) H^{2}(z)$ is dense in $H^{2}(z)$, so $h(z)$ is an outer function in $H^{\infty}(z)$. For $\eta(z) \in H^{2}(z)$, we have

$$
\begin{aligned}
\left\langle T^{*}\left(\eta(z) G_{2}\right), \xi(z) G_{1}\right\rangle & =\left\langle\eta(z) G_{2}, h(z) \xi(z) G_{2}\right\rangle \\
& =\left\langle\overline{h(z)} \eta(z) G_{2}, \xi(z) G_{2}\right\rangle \\
& =\left\langle\left(T_{h}^{*} \eta(z)\right) G_{2}, \xi(z) G_{2}\right\rangle \quad \text { by }(2.5) .
\end{aligned}
$$

Thus we get $T^{*}\left(\eta(z) G_{2}\right)=\left(T_{h}^{*} \eta(z)\right) G_{2}$.
Theorem 2.5. Let

$$
N_{1}=N_{\left(a_{1}, b_{1}\right)}=G_{1} H^{2}(z), \quad G_{1}=\frac{b_{1}(z)}{1-w a_{1}(z)}
$$

for some $\left(a_{1}(z), b_{1}(z)\right) \in \Phi$ and N_{2} be a mixed invariant subspace of H^{2} under T_{z} and T_{w}^{*}. Let $T: N_{1} \rightarrow N_{2}$ be a one to one bounded linear map with dense range. If T is a module map with respect to $\left(V_{z}, V_{w}^{*}\right)$, then there exists $b_{2}(z) \in H^{\infty}(z)$ satisfying $\left(a_{1}(z), b_{2}(z)\right) \in \Phi$ and

$$
N_{2}=N_{\left(a_{1}, b_{2}\right)}=G_{2} H^{2}(z), \quad \text { where } \quad G_{2}=\frac{b_{2}(z)}{1-w a_{1}(z)}
$$

and there exists an outer function $h(z) \in H^{\infty}(z)$ satisfying

$$
T\left(\xi(z) G_{1}\right)=h(z) \xi(z) G_{2}=\frac{h(z) b_{2}(z)}{b_{1}(z)} \xi(z) G_{1}
$$

for every $\xi(z) \in H^{2}(z)$.
Proof. By Lemma 2.4, we have

$$
N_{2}=N_{\left(a_{2}, b_{2}\right)}=G_{2} H^{2}(z), \quad G_{2}=\frac{b_{2}(z)}{1-w a_{2}(z)}
$$

for some $\left(a_{2}(z), b_{2}(z)\right) \in \Phi$, and there is an outer function $h(z) \in H^{\infty}(z)$ satisfying $T\left(\xi(z) G_{1}\right)=h(z) \xi(z) G_{2}$ for every $\xi(z) \in H^{2}(z)$. By (2.4),

$$
T V_{w}^{(1) *} G_{1}=T\left(a_{1}(z) G_{1}\right)=h(z) a_{1}(z) G_{2}
$$

Also we have

$$
V_{w}^{(2) *} T G_{1}=V_{w}^{(2) *}\left(h(z) G_{2}\right)=h(z) a_{2}(z) G_{2}
$$

Since $T V_{w}^{(1) *}=V_{w}^{(2) *} T$, we get $a_{1}(z)=a_{2}(z)$. Hence

$$
T\left(\xi(z) G_{1}\right)=h(z) \xi(z) \frac{b_{2}(z)}{1-w a_{2}(z)}=\frac{h(z) b_{2}(z)}{b_{1}(z)} \xi(z) G_{1} .
$$

Theorem 2.6. Let

$$
N_{1}=N_{\left(a_{1}, b_{1}\right)}=G_{1} H^{2}(z), \quad G_{1}=\frac{b_{1}(z)}{1-w a_{1}(z)}
$$

for some $\left(a_{1}(z), b_{1}(z)\right) \in \Phi$ and N_{2} be a mixed invariant subspace of H^{2} under T_{z} and T_{w}^{*}. Let $T: N_{1} \rightarrow N_{2}$ be a one to one bounded linear map with dense range. If T is a module map with respect to $\left(V_{z}, V_{w}\right)$, then there exists $b_{2}(z) \in H^{\infty}(z)$ satisfying $\left(a_{1}(z), b_{2}(z)\right) \in \Phi$ and

$$
N_{2}=N_{\left(a_{1}, b_{2}\right)}=G_{2} H^{2}(z), \quad \text { where } \quad G_{2}=\frac{b_{2}(z)}{1-w a_{1}(z)}
$$

and there exists an outer function $h(z) \in H^{\infty}(z)$ satisfying

$$
T\left(\xi(z) G_{1}\right)=h(z) \xi(z) G_{2}=\frac{h(z) b_{2}(z)}{b_{1}(z)} \xi(z) G_{1}
$$

for every $\xi(z) \in H^{2}(z)$. Moreover if $a_{1}(z)$ is nonconstant, then $h(z)$ is a nonzero constant function.

Proof. By Lemma 2.4,

$$
N_{2}=N_{\left(a_{2}, b_{2}\right)}=G_{2} H^{2}(z), \quad \text { where } \quad G_{2}=\frac{b_{2}(z)}{1-w a_{2}(z)}
$$

for some $\left(a_{2}(z), b_{2}(z)\right) \in \Phi$, and $T\left(\xi(z) G_{1}\right)=h(z) \xi(z) G_{2}, \xi(z) \in H^{2}(z)$ for an outer function $h(z) \in H^{\infty}(z)$. By (2.5), we have $T V_{w}^{(1)}\left(\xi(z) G_{1}\right)=h(z)\left(T_{a_{1}}^{*} \xi(z)\right) G_{2}$ and

$$
V_{w}^{(2)} T\left(\xi(z) G_{1}\right)=V_{w}^{(2)}\left(h(z) \xi(z) G_{2}\right)=\left(T_{a_{2}}^{*}(h(z) \xi(z))\right) G_{2}
$$

Since $T V_{w}^{(1)}=V_{w}^{(2)} T$, we have $h(z) T_{a_{1}}^{*} \xi(z)=T_{a_{2}}^{*}(h(z) \xi(z))$ for every $\xi(z) \in H^{2}(z)$. Hence $T_{h} T_{a_{1}}^{*}=T_{a_{2}}^{*} T_{h}$ on $H^{2}(z)$. Therefore $T_{h} T_{\overline{a_{1}}}=T_{\overline{a_{2}} h}$ on $H^{2}(z)$. By the BrownHalmos theorem (see [7]), either $\overline{h(z)} \in H^{\infty}(z)$ or $\overline{a_{1}(z)} \in H^{\infty}(z)$, so either $h(z)$ or $a_{1}(z)$ is constant.

If $h(z)=c$ for some $c \in \mathbb{C}$, since T has dense range, $c \neq 0$ and $T_{\overline{a_{1}}}=T_{c \overline{a_{2}}}$. Hence $a_{1}(z)=a_{2}(z)$.

If $a_{1}(z)=d, d \in \mathbb{C}$, then $T_{\bar{d} h}=T_{\overline{a_{2}} h}$. Moreover if $d=0$, then $a_{2}(z)=0$ and this is a contradiction. If $d \neq 0$, then $a_{2}(z)=d$, so $a_{1}(z)=a_{2}(z)$. Thus we get the assertion.

Theorem 2.7. Let

$$
N_{1}=N_{\left(a_{1}, b_{1}\right)}=G_{1} H^{2}(z), \quad G_{1}=\frac{b_{1}(z)}{1-w a_{1}(z)}
$$

for some $\left(a_{1}(z), b_{1}(z)\right) \in \Phi$ and N_{2} be a mixed invariant subspace of H^{2} under T_{z} and T_{w}^{*}. Let $T: N_{1} \rightarrow N_{2}$ be an invertible bounded linear map. If T is a module map with respect to $\left(V_{z}^{*}, V_{w}\right)$, then there exists $b_{2}(z) \in H^{\infty}(z)$ satisfying $\left(a_{1}(z), b_{2}(z)\right) \in \Phi$ and

$$
N_{2}=N_{\left(a_{1}, b_{2}\right)}=G_{2} H^{2}(z), \quad \text { where } \quad G_{2}=\frac{b_{2}(z)}{1-w a_{1}(z)},
$$

and there exists an invertible outer function $h(z) \in H^{\infty}(z)$ satisfying $T\left(\xi(z) G_{1}\right)=$ $\left(T_{h}^{*} \xi(z)\right) G_{2}$ for every $\xi(z) \in H^{2}(z)$.

Proof. Since $T V_{z}^{(1) *}=V_{z}^{(2) *} T$, we have $V_{z}^{(2) *} T G_{1}=0$, so $T G_{1} \in N_{2} \ominus z N_{2}$. Suppose that $N_{2} \ominus z N_{2} \neq \mathbb{C} \cdot T G_{1}$. Then there exists a nonzero $F_{2} \in N_{2} \ominus z N_{2}$ with $F_{2} \perp \mathbb{C} \cdot T G_{1}$. Since T is invertible, there is $F_{1} \in N_{1}$ with $T F_{1}=F_{2}$. Then $T V_{z}^{(1) *} F_{1}=V_{z}^{(2) *} T F_{1}=0$, so $V_{z}^{(1) *} F_{1}=0$. Thus we get $F_{1} \in N_{1} \ominus z N_{1}$. Since $N_{1} \ominus z N_{1}=\mathbb{C} \cdot G_{1}$, we have $F_{1}=c G_{1}$, and $F_{2}=T F_{1}=c T G_{1}$. But this is a contradiction. Thus $\operatorname{dim}\left(N_{2} \ominus z N_{2}\right)=1$. By [13, Theorems 2.4 and 3.2], there exists $\left(a_{2}(z), b_{2}(z)\right) \in \Phi$ satisfying

$$
N_{2}=N_{\left(a_{2}, b_{2}\right)}=G_{2} H^{2}(z), \quad \text { where } \quad G_{2}=\frac{b_{2}(z)}{1-w a_{2}(z)} .
$$

We have $V_{z}^{(1)} T^{*}=T^{*} V_{z}^{(2)}$ and $V_{w}^{(1) *} T^{*}=T^{*} V_{w}^{(2) *}$. By Theorem 2.5, we have $a_{1}(z)=a_{2}(z)$ and there is an outer function $h(z) \in H^{\infty}(z)$ satisfying

$$
T^{*}\left(\eta(z) G_{2}\right)=\frac{h(z) b_{1}(z)}{b_{2}(z)} \eta(z) G_{2}
$$

for every $\eta(z) \in H^{2}(z)$. Note that $\left|b_{1}(z)\right|=\left|b_{2}(z)\right|$ a.e. on Γ. For $\xi(z) \in H^{2}(z)$, we have

$$
\begin{aligned}
\left\langle T\left(\xi(z) G_{1}\right), \eta(z) G_{2}\right\rangle & =\left\langle\xi(z) G_{1}, T^{*}\left(\eta(z) G_{2}\right)\right\rangle \\
& =\left\langle\xi(z) G_{1}, \frac{h(z) b_{1}(z)}{b_{2}(z)} \eta(z) G_{2}\right\rangle \\
& =\left\langle\overline{h(z)} \xi(z) \frac{b_{2}(z)}{b_{1}(z)} G_{1}, \eta(z) G_{2}\right\rangle \\
& =\left\langle\overline{h(z)} \xi(z) G_{2}, \eta(z) G_{2}\right\rangle \\
& =\left\langle\left(T_{h}^{*} \xi(z)\right) G_{2}, \eta(z) G_{2}\right\rangle .
\end{aligned}
$$

Thus we get $T\left(\xi(z) G_{1}\right)=\left(T_{h}^{*} \xi(z)\right) G_{2}$. Since T is invertible, T_{h}^{*} is invertible on $H^{2}(z)$. By [7, p. 140], $h(z)$ is invertible in $H^{\infty}(z)$.

Theorem 2.8. Let

$$
N_{1}=N_{\left(a_{1}, b_{1}\right)}=G_{1} H^{2}(z), \quad G_{1}=\frac{b_{1}(z)}{1-w a_{1}(z)}
$$

for some $\left(a_{1}(z), b_{1}(z)\right) \in \Phi$ and N_{2} be a mixed invariant subspace of H^{2} under T_{z} and T_{w}^{*}. Let $T: N_{1} \rightarrow N_{2}$ be an invertible bounded linear map. If T is a module map with respect to $\left(V_{z}^{*}, V_{w}^{*}\right)$, then there exists $b_{2}(z) \in H^{\infty}(z)$ satisfying $\left(a_{1}(z), b_{2}(z)\right) \in \Phi$ and

$$
N_{2}=N_{\left(a_{1}, b_{2}\right)}=G_{2} H^{2}(z), \quad \text { where } \quad G_{2}=\frac{b_{2}(z)}{1-w a_{1}(z)},
$$

and there exists an invertible outer function $h(z) \in H^{\infty}(z)$ satisfying $T\left(\xi(z) G_{1}\right)=$ $\left(T_{h}^{*} \xi(z)\right) G_{2}$ for every $\xi(z) \in H^{2}(z)$. Moreover if $a_{1}(z)$ is nonconstant, $h(z)$ is a nonzero constant function.

Proof. As the first paragraph of the proof of Theorem 2.7,

$$
N_{2}=N_{\left(a_{2}, b_{2}\right)}=G_{2} H^{2}(z), \quad \text { where } \quad G_{2}=\frac{b_{2}(z)}{1-w a_{2}(z)}
$$

By the assumption, $T^{*}: N_{2} \rightarrow N_{1}$ is an invertible bounded module map with respect to $\left(V_{z}, V_{w}\right)$. Then by Theorem 2.6, $a_{1}(z)=a_{2}(z)$ and there is an outer function $h(z) \in H^{\infty}(z)$ satisfying

$$
T^{*}\left(\eta(z) G_{2}\right)=\frac{h(z) b_{1}(z)}{b_{2}(z)} \eta(z) G_{2}
$$

for every $\eta(z) \in H^{2}(z)$. By the second paragraph of the proof of Theorem 2.7, we have $T\left(\xi(z) G_{1}\right)=\left(T_{h}^{*} \xi(z)\right) G_{2}$ for every $\xi(z) \in H^{2}(z)$.

References

[1] O. P. Agrawal, D. N. Clark, and R. G. Douglas, Invariant subspaces in the polydisk, Pacific J. Math. 121 (1986), 1-11.
[2] H. Bercovici, Operator Theory and Arithmetic in H^{∞}, Mathematical Surveys and Monogaraphs, Vol. 26, Amer. Math. Soc., Providence, R.I, 1988.
[3] X. Chen and K. Guo, Analytic Hilbert Modules, Chapman \& Hall/CRC, Boca Raton, FL, 2003.
[4] R. G. Douglas and C. Foias, Uniqueness of multi-variate canonical models, Acta Sci. Math. (Szeged), 57 (1993), 79-81.
[5] K. Guo, Equivalence of Hardy submodules generated by polynomials, J. Funct. Anal., 178 (2000), 343-371.
[6] K. Guo, Podal subspaces on the unit polydisk, Studia Math., 149 (2002), 109120.
[7] P. Halmos, A Hilbert Space Problem Book, D. Van Nostrand Company, Inc., Princeton, 1967.
[8] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, New Jersey, 1962.
[9] K. J. Izuchi, Unitary equivalence of invariant subspaces in the polydisk, Pacific J. Math., 130 (1987), 351-358.
[10] K. J. Izuchi and K. H. Izuchi, Rank-one commutators on invariant subspaces of the Hardy space on the bidisk, J. Math. Anal. Appl., 316 (2006), 1-8.
[11] K. J. Izuchi and K. H. Izuchi, Rank-one commutators on invariant subspaces of the Hardy space on the bidisk II, J. Operator Theory, 60 (2008), 101-113.
[12] K. J. Izuchi and K. H. Izuchi, Rank-one cross commutators on backward shift invariant subspaces on the bidisk, Acta Math. Sinica (Engl. Ser.), 25 (2009), 693-714.
[13] K. J. Izuchi, K. H. Izuchi and M. Naito, Mixed invariant subspaces over the bidisk, Complex Anal. Oper. Theory, published online. 03 November 2009.
[14] W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.
[15] D. Sarason, Sub-Hardy Hilbert Spaces in the Unit Disk, Univ. of Arkansas Lecture Notes in Math. Sci., A Wiley-Interscience Pub., 1994.
(Kei Ji Izuchi) Department of Mathematics, Faculty of Science, Niigata University, Niigata 9502181, Japan
E-mail address: izuchi@math.sc.niigata-u.ac.jp
(Masatoshi Naito) Graduate School of Science and Technology, Niigata University, Niigata 9502181, Japan
E-mail address: m-naito@m.sc.niigata-u.ac.jp

Received October 19, 2009
Revised November 10, 2009

[^0]: 2000 Mathematics Subject Classification. Primary 47A15, 32A35; Secondary 46H25.
 Key words and phrases. Invariant subspace, mixed invariant subspace, Hardy space, module map, unitary equivalence.

