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NON-GALOIS TRIPLE COVERING OF P2 BRANCHED
ALONG QUINTIC CURVES AND THEIR CUBIC

EQUATIONS

TADASUKE YASUMURA AND HIRO-O TOKUNAGA

Abstract. Let ϖ : S → P2 be a non-Galois triple covering given by the cubic
equation ζ3+3uζ+2v = 0, where u and v denote inhomogeneous coordinates
of P2. Let π̂ : X̂ → P2 be a D6-covering of P2 branched along a quintic.
There are two possibilities for the ramification types of π̂. One is that π̂ has
the ramification index 2 (resp. 3) along a conic (resp. a cubic), and the other
is that π̂ has the ramification index 2 (resp. 3) along a quartic (resp. a line).
There exist 18 types in the latter case ([8]). For each π̂ of the 18 types, there
exists a non-Galois triple covering π : X → P2 with the same branch locus
as π̂. In this article, we study rational maps Φ : P2 99K P2 such that the
pull-backs of ϖ by Φ give rise to π : X → P2.

1. Introduction

In this article, all varieties are defined over C, the field of complex numbers. Let
X and Y be normal projective varieties. We call X a finite covering of Y if there
exists a finite surjective morphism π : X → Y . Let C(X) and C(Y ) denote the
rational function fields of X and Y , respectively. It is known that C(X) is a finite
field extension of C(Y ) with [C(X) : C(Y )] = deg π. We say that a finite covering
X is Galois if C(X)/C(Y ) is Galois. For a Galois covering whose Galois group is
isomorphic to a finite group G, we call it a G-covering for simplicity. Note that, for
a G-covering X, G acts on X faithfully in such a way that Y = X/G.

A subset of Y consisting of points y ∈ Y such that π is not locally isomorphic
over y is called the branch locus of π and we denote it by ∆π or ∆(X/Y ). By the
purity of the branch locus ([10]), ∆π is an algebraic subset of codimension 1 if Y is
smooth.

We call π : X → Y a non-Galois triple covering if C(X)/C(Y ) is a non-Galois
cubic extension. For a non-Galois triple covering π : X → Y , C(X) = C(Y )(θ)
where θ is a solution of a certain cubic equation ζ3 + 3aζ + 2b = 0, a, b ∈ C(Y ).
Geometrically one can regard this in the following way:
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Let ϖ : S → P2 be a non-Galois triple covering given by the cubic equation

ζ3 + 3uζ + 2v = 0,

where we denote the inhomogeneous coordinates of P2 by (u, v). Let Φπ : Y 99K P2

be a rational map given by

Φπ : p 7→ (u, v) = (a(p), b(p)).

Then we obtain a commutative diagram as follows:

Xπ

X S

Yπ

Y P2.

��� HHjp p p p p p p p p p p p p p-
?

π
?

?
ϖ

��� HHj
νπp p p p p p p p p p p p p-

Φπ

Here, νπ : Yπ → P2 is the resolution of indeterminacy of Φπ and Xπ is the normal-
ization of the fiber product Yπ ×νπ S. Note that Xπ is birationally equivalent to X.
In other words, X is obtained as a “rational” pull-back of ϖ : S → P2. Note that
Φπ is not necessary dominant. In fact, there exist cases that Φπ is a non-dominant
rational map (see Section 6).

In this article, we are interested in the “pull-back” construction of a non-Galois
triple covering as above, that is, to describe a cubic equation geometrically corre-
sponding to a given non-Galois triple covering. This is a new approach in the study
of non-Galois triple covering, which is different from that in previous papers [6] and
[7].

As it is shown in [7], the study of non-Galois triple coverings is closely related to
that of D6-coverings, D6 being the dihedral group of order 6. In fact, for a smooth
projective variety Y , there exists a D6-covering of Y along B if and only if there
exists a non-Galois triple covering branched along B. In [8], such coverings (more
generallyD2p-coverings) of P2 whose branch loci are quintic curves are studied. More
precisely, it is as follows:

Let π̂ : X̂ → P2 be a D6-covering with deg∆π = 5. We first note that there are
two possibilities with respect to the ramification indexes as follows:

Type I: The branch curve with ramification index 2 is a conic, while that with
index 3 is a cubic.

Type II: The branch curve with ramification index 2 is a quartic, while that with
index 3 is a line.
Here, a curve with ramification index n means that the ramification index along the
smooth part of the curve is n.

In [8], D6-coverings π̂ : X̂ → P2 of type II are studied and it is given that a list
of possible branch loci in terms of the configuration of singular points of the quintic
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and the relative position between the quintic and the line. Put ∆π = Q+ L, where
Q and L are a quartic and a line as above, respectively. The possible list of Q and a
configuration of Q+L is as Table 1. The second and fifth columns refer to the type

∆π Q Q ∩ L ∆π Q Q ∩ L

∆1 Q1 ∆10 Q5 (ii)
∆2 Q2 ∆11 Q6 (iii), a3
∆3 Q3 (i) ∆12 Q12

∆4 Q4 ∆13 Q7 (iii), a6
∆5 Q5 ∆14 Q8 (v), a4
∆6 Q9 ∆15 Q10 (iv), 2a3
∆7 Q1 ∆16 Q13

∆8 Q2 (ii) ∆17 Q11 (v), a7
∆9 Q4 ∆18 Q14 (v), ordinary 4-ple point

Table 1: Possible Q+ L

of Q (see the Table 2), the third and sixth refer to singular points of Q contained in
Q∩L and the relative position between Q and L, the number being one as follows:

(i) L is a bitangent line of Q at two smooth points.

(ii) L is a tangent line of Q at a smooth point with multiplicity 4.

(iii) L is tangent to Q at one smooth point and passes through one singular point
of Q.

(iv) L passes through two distinct singular points of Q.

(v) L meets Q at just one singular point.

For the types of singular points of curves, we use those in [1]. Note that we use
small letters.

It is known that all configurations as above occur (see [9], for example). Hence
it may be natural to rise a question as follows:

Question 1.1 Let π : X → P2 be a non-Galois triple covering corresponding to one
of the D6-coverings of type II as above 18 types. Find a rational map Φπ : P2 99K P2

so that X is birationally equivalent to P2×νπS. In other words, find a cubic equation
over C(P2) which gives X.

Our main purpose of this article is to find Φπ explicitly. In order to explain our
result, we need some more settings.
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Q Irreducible components Singular points

Q1 irreducible 2a2
Q2 irreducible a1 + 2a2
Q3 irreducible 3a2
Q4 irreducible a5
Q5 irreducible e6
Q6 irreducible a2 + a3
Q7 irreducible a6
Q8 irreducible a2 + a4
Q9 two conics a1 + a5
Q10 two conics 2a3
Q11 two conics a7
Q12 a cuspital cubic and a line a1 + a2 + a3
Q13 a conics and two lines 2a3 + a1
Q14 four lines ordinary 4-ple point

Table 2: The list of Q

Let Φ : P2 99K P2 be a rational map. We denote the resolution of indeterminacy
of Φ as follows:

P̂2

P2 P2,

�
�	
q

@
@R
νΦ

p p p p p p p p p p p p p-
Φ

(1.1)

where q is a succession of blowing-ups and νΦ is the induced morphism.

Let P̂2 ×νΦ S be the fiber product of P̂2 and S, and we denote the induced

projection by pr1 : P̂2×νΦ S → P̂2. If P̂2×νΦ S is irreducible, then the normalization

(P̂2 ×νΦ S)n of P̂2 ×νΦ S is a non-Galois triple covering of P̂2. Hence the Stein

factorization XΦ of (P̂2 ×νΦ S)n → P2 is a non-Galois triple covering of P2. We
denote its covering morphism by πΦ : XΦ → P2.

Let fΦ : Z → P2 be the stein factorization of νΦ : P̂2 → P2. Then we have

P̂2

Z

P2 P2,

�
�

�
�

��	

q

@
@R
µ

@
@R
fΦ

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p-Φ

where µ is a morphism with connected fibers and νΦ = fΦ ◦ µ.
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For our question, it turns out to be enough to consider the following four cases:

A. The degree of fΦ is 2 and ∆fΦ is a smooth conic.

B. The degree of fΦ is 2 and ∆fΦ is two distinct lines.

C. The morphism fΦ is an isomorphism, i.e., νΦ is birational.

D. The image of fΦ is a curve.

In this article, for a non-Galois triple covering π : X → Y , π is called totally
branched (resp. simply branched) at y ∈ ∆π if ♯π−1(y) = 1 (resp. ♯π−1(y) = 2).

We also note that, for the non-Galois triple covering ϖ : S → P2 as before, one
can easily see that

• ∆ϖ = C(ϖ) + L∞, where

C(ϖ) : U3 + V 2W = 0
L∞ : W = 0,

and

• [0 : 1 : 0] and [0 : 0 : 1] are the only total branched points,

where we choose a homogeneous coordinate [U : V : W ] of P2 in such a way that
u = U/W, v = V/W .

We are now in a position to state our result.

Theorem 1.1 For each ∆i in Table 1, the rational maps described below give rise
to a non-Galois triple covering corresponding to a D6-covering of type II with branch
locus of type ∆i.

∆π Type of Φ Relative position between ∆fΦ and ∆ϖ

∆1 (L1) and (C1)
∆2 (L1) and (C2)
∆3 A

(L1) and (C3)
∆4 (L1) and (C4)
∆5 (L1) and (C5)
∆6 (L1) and (C6)
∆7 (L2) and (C7)
∆8 B

(L2) and (C8)
∆9 (L2) and (C9)
∆10 (L2) and (C10)

(L1) Φ is of type A. ∆fΦ is tangent to L∞ at [0 : 1 : 0].
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(L2) Φ is of type B. L∞ is an irreducible component of ∆fΦ. We write ∆fΦ =
L∞ + Lo.

In the following, we use the following notation: For reduced curves D1 and D2

on P2, D1 · D2 =
∑s

i=1mipi means that D1 ∩ D2 = {p1, p2, · · · , ps} and the
intersection multiplicity at pi is mi.

(C1) Φ is of type A. ∆fΦ · C(ϖ) = 2[0 : 1 : 0] + p11 + p12 + p13 + p14.

(C2) Φ is of type A. ∆fΦ · C(ϖ) = 2[0 : 1 : 0] + 2p21 + p22 + p23.

(C3) Φ is of type A. ∆fΦ · C(ϖ) = 2[0 : 1 : 0] + 3p31 + p32.

(C4) Φ is of type A. ∆fΦ · C(ϖ) = 2[0 : 1 : 0] + 2[0 : 0 : 1] + p41 + p42.

(C5) Φ is of type A. ∆fΦ · C(ϖ) = 2[0 : 1 : 0] + 3[0 : 0 : 1] + p51.

(C6) Φ is of type A. ∆fΦ · C(ϖ) = 2[0 : 1 : 0] + 2[0 : 0 : 1] + 2p61.

(C7) Φ is of type B. Lo · C(ϖ) = p71 + p72 + p73.

(C8) Φ is of type B. Lo · C(ϖ) = 2p81 + p82.

(C9) Φ is of type B. Lo · C(ϖ) = 2[0 : 0 : 1] + p91.

(C10) Φ is of type B. Lo · C(ϖ) = 3[0 : 0 : 1].

Here, pij (i = 1, . . . , 9, j = 1, . . . , 4) are distinct smooth points of C(ϖ).

∆π Type of Φ ∆π Type of Φ

∆11 ∆15

∆12 C
∆16 D

∆13 ∆17

∆14 ∆18

For ∆i (11 ≤ i ≤ 18), the detailed description is given in Section 5 and Section 6

In Section 2, we prepare some result used in the proof of the main result and
notations used in this paper. In Section 3, 4, 5 and 6, we prove Theorem 1.1 for the
case A, B, C and D, respectively.
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2. Preliminaries

Let ϖ : S → P2 be the non-Galois triple covering as in Introduction. Let Ĉ(S)
be the Galois closure of C(S) over C(P2). Let Ŝ be the Ĉ(S)-normalization of P2.

Since Ĉ(S) is a D6-extension of C(P2), Ŝ is a D6-covering of P2. Also, Ŝ is a double

covering of S. We denote the induced covering morphisms by ϖ̂ : Ŝ → P2 and
α : Ŝ → S, respectively.

Let us start with the following lemma:

Lemma 2.1 Let Y be a normal projective variety and let f : Y → P2 be a morphism.
If f is either an isomorphism or a p-fold covering (p := 2 or odd) with ∆f ̸= ∆ϖ,

then Y ×f S is irreducible if and only if Y ×f Ŝ is irreducible.

Proof. Consider the following diagram:

Y ×f Ŝ Y ×f S Y

Ŝ S P2.

-

?

-pr1

?

pr2

?

f

-α -ϖ

If Y ×f Ŝ is irreducible, Y ×f S is irreducible as Y ×f Ŝ → Y ×f S is dominant.
Conversely suppose that Y ×f S is irreducible. We assume that f is either an

isomorphism or a p-fold covering (p = 2 or odd) with ∆f ̸= ∆ϖ. Put Fix(D6) :=∪
σ∈D6\{id}{ŝ ∈ Ŝ | σ(ŝ) = ŝ}. pr2(Y ×f S) = S ̸⊂ α(Fix(D6)). Since α is a double

covering, (Y ×f S)×pr2 Ŝ is irreducible ([5, Proposition 2.4]).

For all elements ((y, s), ŝ) in (Y ×f S)×pr2 Ŝ, α(ŝ) = pr2(y, s) = s. Consider the
following projection:

(Y ×f S)×pr2 Ŝ → Y ×f Ŝ

((y, α(ŝ)), ŝ) 7→ (y, ŝ).

Since this projection is surjective, Y ×f Ŝ is irreducible. �

We also use the fact below, which can be checked easily:

Fact 2.1 Let M be a smooth surface. Let B and C be a reduced curve on M .
Assume that B ∩C ̸= ϕ and that there exists a double covering g : X → M over M
with ∆g = B. Let p be a point in B ∩ C.

(i) Assume that both B and C are smooth at p.
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(i-1) If C is tangent to B at p with multiplicity 2, then the pull-back g∗C has
an a1 singular point q with g(q) = p.

(i-2) If C is tangent to B at p with multiplicity 3, then the pull-back g∗C has
an a2 singular point q with g(q) = p.

(ii) Assume that B is smooth at p and that C has an a2 singular point at p.

(ii-1) If B and C do not have the same tangent line at p, then the pull-back
g∗C has an a5 singular point q with g(q) = p.

(ii-2) If B and C have the same tangent line at p, then the pull-back g∗C has
an e6 singular point q with g(q) = p.

3. The cases when the rational maps Φ are of type A

Let f : Z → P2 be the double covering whose branch locus is an irreducible conic.
Note that Z ∼= P1 × P1. Let us start with the following lemma:

Lemma 3.1 Let C be the branch locus of f . Assume that C is tangent to L∞ at
[0 : 1 : 0]. Then we have the following:

• The pull-back f ∗L∞ is of the form L+ + L−, and L± define two rulings of
Z ∼= P1 × P1.

• Put p̃ = f−1([0 : 1 : 0]). The pull-back f ∗C(ϖ) has two local analytic branches
at p̃. If we denote them by C+

p̃ and C−
p̃ ,suitably. Then we may assume that

the local intersection numbers at p̃ satisfy

(C+
p̃ · L+)p̃ = (C−

p̃ · L−)p̃ = 2, (C+
p̃ · L−)p̃ = (C−

p̃ · L+)p̃ = 1.

Proof. Since both C(ϖ) and L∞ meet C at [0 : 1 : 0] with multiplicity 2, one
can easily see that both f ∗C(ϖ) and f ∗L∞ have two local analytic branches at
p̃. Since ♯(L∞ ∩ C) = 1, f ∗L∞ has two irreducible components L+ and L−. As
2 = (f ∗L)2 = (L+)2 + 2L+ · L− + (L−)2 = 2(L+)2 + 2L+ · L−, (L±)2 = 0, and
L± define two ruling of Z. For the local intersection number at p̃, it follows from
equality

6 = (f ∗C(ϖ) · f ∗L∞)p̃, (C+
p̃ · L+)p̃ = (C−

p̃ · L−)p̃, (C+
p̃ · L−)p̃ = (C−

p̃ · L+)p̃.

�

We only prove Theorem 1.1 for the case of ∆1, as the remaining cases of type
A can be proved similarly. Let f : Z → P2 be a double covering whose branch
locus is a conic of type (C1) in Theorem 1.1 (see Figure 1). Let µ : Ẑ → Z be

the blowing-up at L+ ∩ L− (Figure 1). Let L
+
and L

−
be the strict transforms of
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L+ and L−, respectively, and let E be the exceptional curve of µ. Since both L
+

and L
−
are the exceptional curves of the first kind, we can blow them down and

the resulting surface is P2. We denote this construction by q1 : Ẑ → P2 (Figure
1). Put Φ := f ◦ µ ◦ q−1

1 . By Lemma 2.1, Z ×f S is irreducible. Following the

notation in Introduction, we have P̂2 = Ẑ, q = q1, µ = µ and fΦ = f . Hence we
have the induced non-Galois triple covering πΦ : XΦ → P2. By its construction,
Φ∗∆ϖ consists of a quartic Q of type Q1 and a bitangent line q(E). Since Q come
from C(ϖ) and q(E) is mapped to [0 : 1 : 0] by Φ, the branch locus of the induced
non-Galois triple covering πΦ : XΦ → P2 by Φ is a quintic of type ∆1 such that πΦ

is simply branched along Q, while it is totally branched along q(E).

P

PP 2

〈

P 2

µ

L -−

E

L+−

L∞

U=0
V=0

a2

a2

L+

L -

blowing up

a2

a2

smooth

smooth

q1

f

Z

PP2

C(ϖ)

∆ f

Figure 1: The case of C1

We end this section by giving explicit examples of Φ for each case.

Example 3.1 For each case, we have examples as in Table 3. In Table 3, we denote
inhomogeneous coordinates of the domain P2 of Φπ by (x, y).
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∆πΦ
Φ∗

πu Φ∗
πv

∆1 x (y − 1)(y − x)
∆2 4x− 4 4x2 + 28− 2y2

∆3 4x+ 36 x2 − 108 + 3y2

∆4 x y(y − x) + 2x
∆5 x y(y − x)
∆6 x y(y − x) + x

Table 3: Examples for type A

4. The cases when the rational maps Φ are of type B

We only prove Theorem 1.1 for the case of ∆7, as the remaining cases of type B can
be proved similarly. Note that Lo meets L∞ at just one point. Let ν : (P2)1 → P2

be the blowing-up at Lo ∩ L∞. We denote the exceptional curve by E1 and the
strict transforms of C(ϖ), Lo and L∞ by C(ϖ), Lo and L∞, respectively (see Figure
2). Let f : Z → P2 (resp. g : Σ2 → (P2)1) be a double covering branched along
Lo + L∞ (resp. Lo + L∞) (Figure 2). Then there exists a morphism ν ′ : Σ2 → Z
(see [2]). Since C(ϖ) is tangent to L∞ with multiplicity 3, by Fact 2.1, g∗C(ϖ) has
an a2 singular point p. Let µ : (Σ2)2 → Σ2 be the blowing-up at p. We denote the
exceptional curve by E2 and strict transforms of g∗Lo, g

∗L∞ and g∗E1, by Lo2, L∞2

and E1, respectively (Figure 2). Let q7 : (Σ2)2 → Σ be the blowing-down the curves
L∞2 and E12 in this order (Figure 2). Then Σ = P2. Put Φ := f ◦ ν ′ ◦ µ ◦ q7

−1.

Following the notation in Introduction, we have P̂2 = (Σ2)2, q = q7, νΦ = µ ◦ ν ′ ◦ f
and fΦ = f . By Lemma 2.1, Z ×f S is irreducible. Hence we have the induced non-
Galois triple covering πΦ : XΦ → P2. By its construction, Φ∗∆ϖ consists of a quartic
Q of type Q1 and a line q(E2). Moreover q(E2) is tangent to Q with multiplicity 4.
Since Q come from C(ϖ) and q(E2) is mapped to [0 : 1 : 0] by Φ, the branch locus
of the induced non-Galois triple covering πΦ : XΦ → P2 by Φ is a quintic of type ∆7

such that πΦ is simply branched along Q, while it is totally branched along q(E2).
We end this section by giving explicit examples of Φ for each case.

Example 4.1 . For each case, we have example as Table 4. In Table 4, we use the
same notation as Example 3.1.

5. The cases when the rational maps Φ are of type C

We first introduce some notation. Let µ1 : (P2)1 → P2 be the blowing-up at [0 : 1 : 0].
We denote the strict transform of C(ϖ) and L∞ by C(ϖ) and L∞, respectively.
C(ϖ) is tangent to L∞ at a point p with µ1(p) = [0 : 1 : 0]. The exceptional curve
E1 of µ1 meets C(ϖ) at p. Let µ2 : (P2)2 → (P2)1 be the blowing-up at p. We
denote the exceptional curve of µ2 by E2 and the strict transform of E1, C(ϖ) and
L∞ by E12, C(ϖ)2 and L∞2, respectively.
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P

PP 2

〈

P 2

E12
−

smooth

q7

U=0
V=0

L∞

blowing up

L7

E2

−L∞2

µ

Z
g

f

a2

a2

smooth

ν′

ν

blowing up

−L∞

−L7

E1

g ∗ (E1)

g ∗ (L∞)

a2

a2

a2

Σ2

PP2 ( )1PP2

C(ϖ)

∆ f

Figure 2: The case of C7

∆πΦ
Φ∗

πu Φ∗
πv

∆7 x y2 − y
∆8 x y2 − 3x− 4
∆9 x y2 − x
∆10 x y2

Table 4: Examples for type B
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We prove Theorem 1.1 for ∆i (11 ≤ i ≤ 14).

The case of ∆11

Choose a general line L1 on P2 passing through [0 : 1 : 0] (see Figure 3). We denote
the strict transform of L1 by L12 with respect to µ1 ◦ µ2. Choose a general point
p∆11 in L12 \ C(ϖ)2. Let µ3 : (P2)3 → (P2)2 be the blowing-up at p∆11 . We denote
the exceptional curve by E3, and the strict transform of L12 by L13. For the strict
transforms of C(ϖ)2, L∞2, E12 and E2, we use the same notations as µ3 has nothing
to do with these curves. Let q11 : (P2)3 → Σ be the blowing-down the curves L∞2,
L13 and E12 in this order (Figure 3). Since Σ is a rational surface with Picard
number one, Σ ≃ P2. Define a birational map Φ : P2 99K P2 by µ1 ◦ µ2 ◦ µ3 ◦ q11−1.

Following the notation in Introduction, we have P̂2 = (P2)3, Z = P2, q = q11 and
µ = µ1◦µ2◦µ3. By Lemma 2.1 and [5, Proposition 2.4], Z×f S is irreducible. Hence
we have the induced non-Galois triple covering πΦ : XΦ → P2. By its construction,
Φ∗∆ϖ consists of an irreducible quartic Q of type Q6 and a line q(E2). Moreover
q(E2) is tangent to Q at a smooth point of Q and pass through an a3 singular point
of Q. Since Q comes from C(ϖ) and q(E2) is mapped to [0 : 1 : 0] by Φ, the branch
locus of the induced non-Galois triple covering πΦ : XΦ → P2 is a quintic of type ∆11

such that πΦ is simply branched along Q, while it is totally branched along q(E2).

νΦ

Φ

E12
−

L∞2
−

a2

a3 Blowing up point

U=0
V=0

L∞

L1

C(ϖ)

E2

E3

L13
−

smooth

q11

PP

PP 2

〈

P 2 P 2

Figure 3: The case of ∆11
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The case of ∆12

Choose a general line L2 on P2 through [0 : 1 : 0] (Figure 4). We denote the strict
transform of L2 by L22 with respect to µ1 ◦µ2. Choose a point p∆12 in L22 ∩C(ϖ)2.
Let µ4 : (P2)4 → (P2)2 be the blowing-up at p∆12 . We denote the exceptional curve
by E4 and the strict transforms L22 and C(ϖ)2 by L24 and C(ϖ)4, respectively.
For the strict transforms of L∞2, E12 and E2, we use the same notations as µ4 has
nothing to do with these curves. Let q12 : (P2)4 → Σ be the blowing-down the
curves L∞2, L24 and E12 in this order (Figure 4). Likewise the previous case, since
Σ is a rational surface with Picard number one, Σ ≃ P2. Define a birational map
Φ : P2 99K P2 by µ1 ◦µ2 ◦µ4 ◦ q12−1. We have the induced non-Galois triple covering

πΦ : XΦ → P2. Following the notation in Introduction, we have P̂2 = (P2)4, Z = P2,
q = q12 and µ = µ1 ◦ µ2 ◦ µ4. Then Φ∗∆ϖ consists of a cuspital cubic C12, two
distinct line q(E2) and q(E4). q(E4) is tangent to C12 at a smooth point p. q(E2)
is tangent to C12 at a smooth point and pass through p. Since C12 ∪ q(E4) come
from C(ϖ) and q(E2) is mapped to [0 : 1 : 0] by Φ. Hence the branch locus of the
induced non-Galois triple covering πΦ : XΦ → P2 is a quintic of type ∆12 such that
πΦ is simply branched along C12 ∪ q(E4), while it is totally branched along q(E2).

PP

PP 2

〈

P 2 P 2

νΦ

Φ

E12

L∞2
−

a2

Blowing up point

U=0
V=0

L∞

L2

V2W+U3=0

E2

L24
−

E4

a3

smooth

q

a1

−

Figure 4: The case of ∆12
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The case of ∆13

Let L32 be the strict transform of U = 0 by µ1 ◦ µ2. Choose a general point p∆13 in
L32. Let µ5 : (P2)5 → (P2)2 be the blowing-up at p∆13 . We denote the exceptional
curve by E5 and the strict transform of L32 by L35. For the strict transforms of
L∞2, C(ϖ)2, E12 and E2, we use the same notations as µ5 has nothing to do with
these curves. Let q13 : (P2)5 → Σ be the blowing-down the curves L35, E12 and

L∞2 in this order (Figure 5). Again, Σ ≃ P2 and put P̂2 = (P2)5, Z = P2, q = q13,
µ = µ1 ◦ µ2 ◦ µ5 and Φ = µ ◦ q−1. We have the induced non-Galois triple covering
πΦ : XΦ → P2. Then Φ∗∆ϖ consists of an irreducible quartic Q of type Q7 and a
line q(E2) which is tangent to Q at a smooth point and pass through an a6 singular
point of Q. Since Q comes from C(ϖ) and q(E2) is mapped to [0 : 1 : 0] by Φ, the
branch locus of the induced non-Galois triple covering πΦ : XΦ → P2 is a quintic
of type ∆13 such that πΦ is simply branched along Q, while totally branched along
q(E2).

PP

PP 2

〈

P 2 P 2

νΦ

Φ

L∞2
−

Blowing up point

U=0
V=0

L∞

C(ϖ)

E2

L35
−

E5

smooth

a6

−E12

q13

Figure 5: The case of ∆13

The case of ∆14

Choose a general point p∆14 in E2 on (P2)2. Let µ6 : (P2)6 → (P2)2 be the blowing-up
at p∆14 . We denote the exceptional curve by E6 and the strict transform of E2 by
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E26. For the strict transforms of C(ϖ)2, L∞2, and E12, we use the same notations
as µ6 has nothing to do with these curves. Let q14 : (P2)6 → Σ be the blowing-
down the curves L∞2, E26 and E12 in this order (Figure 6). Again, Σ ≃ P2 and

put P̂2 := (P2)6, Z := P2, q := q14, µ := µ1 ◦ µ2 ◦ µ6 and Φ := µ ◦ q−1. We have
the induced non-Galois triple covering πΦ : XΦ → P2. By its construction, Φ∗∆ϖ

consists of an irreducible quartic Q of type Q8 and a line q(E6) which is tangent to Q
at an a4 singular point. Since Q comes from C(ϖ) and q(E6) is mapped to [0 : 1 : 0]
by Φ, the branch locus of the induced non-Galois triple covering πΦ : XΦ → P2 is
a quintic of type ∆14 such that πΦ is simply branched along Q, while it is totally
branched along q(E6).
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Φ

L∞2
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Blowing up point

U=0
V=0
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C(ϖ)

E26
−

−E12
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q14

Figure 6: The case of ∆14

We end this section by giving explicit examples of Φ for each case.

Example 5.1 For each case, we have examples as in Table 5. In Table 5, we use
the same notation as Example 3.1.

6. The cases when the rational maps Φ are of type D

We consider four rational maps Φi : P2 99K P2 (i = 1. . . . , 4) as in Table 6. In Table
6, we denote homogeneous coordinates of the domain P2 of rational maps Φi by
[X : Y : Z].
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∆πΦ
Φ∗

πu Φ∗
πv

∆11 x y − xy
∆12 x− 1 1− xy
∆13 x 1− xy
∆14 x y − x2

Table 5: Examples for type C

Φ1 [−Z2 : XY : Z2]
Φ2 [−Z2 : Z2 −XY : Z2]
Φ3 [−Z2 : XZ − Y 2 : Z2]
Φ4 [−Z2 : Y (Y − 3Z) : Z2]

Table 6: The rational maps Φi

For each case, ImΦi = {[U : V : W ] | U = −W} and ∆ϖ ∩ ImΦi = {[−1 : 1 :
1], [−1 : −1 : 1], [0 : 1 : 0]}. Consider the diagram (1.1) in Introduction. Put Φ :=
Φi, C1 := νΦ

−1([−1 : 1 : 1]), C2 := νΦ
−1([−1 : −1 : 1]) and C∞ := νΦ

−1([0 : 1 : 0])
(Figure 7).

Im Φ

νΦ

C1

C2

C∞

Figure 7: A map νΦ : (P2)∗ → P2

We only prove Theorem 1.1 for the case ∆15, as the remaining cases of type D can
be proved similarly. Consider the rational map Φ1. The points of indeterminacy
of Φ1 are [0 : 1 : 0] and [1 : 0 : 0]. q consists of four blowing-ups. We denote
the exceptional curves by Ei, (i = 1, . . . , 4) (see Figure 8). In this case, C1 is an
irreducible curve, C2 is also an irreducible curve and C∞ consists of three irreducible
curves E1, E3 and C3 with E1 ∩ E3 = ϕ. Then q(C1 ∪ C2 ∪ C∞) consists of a line
q(C∞) and two irreducible conics q(C1) and q(C2). q(C1) is tangent to q(C2) at two
distinct points p and p′. The line q(C∞) pass through p and p′. So, q(C1∪C2∪C∞)
is a quintic of type ∆15 (Figure 8).

Consider a morphism νΦ : P̂2 ∋ a 7→ νΦ(a) ∈ ImΦ. Since νΦ is dominant and

the general fiber is connected, the induced field extension C(P̂2 ×P2 S)/C(ImΦ) by
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νΦ ◦ pr1 is a regular extension ([3, Lemma 9.3]). As P̂2 ×P2 S = P̂2 ×ImΦ ϖ−1(ImΦ),

P̂2 ×P2 S is irreducible.
Hence we have the induced non-Galois triple covering πΦ : XΦ1 → P2. By the

construction, ∆πΦ
is a quintic of type ∆15 such that πΦ is simply branched along

q(C1) ∪ q(C2), while it is totally branched along q(C∞).

E4

E3

C3

C2

C1

E2

E1

a3

a3

q

2PP2PP

〈

Figure 8: The case of Φ = Φ1

The remaining cases are as in Table 7.

Φi ∆πΦ

Φ2 ∆16

Φ3 ∆17

Φ4 ∆18

Table 7: The remaining cases of type D
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