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BESSEL POTENTIAL SPACES IN BEURLING’S
DISTRIBUTIONS

BYUNG KEUN SOHN

Abstract. We introduce the generalized Bessel potential spaces in the Beurling’s
distributions. We give the topological characterizations of the generalized Bessel
potential spaces and consider multiplication and convolution operations in the
generalized Bessel potential spaces.

1. Introduction

The Bessel potential spaces are of interest since they include the classical Sobolev

spaces and they have close relationships with many other spaces, for example,

Lorentz- Zygmund spaces [6], Orlicz spaces [5] and Besov spaces [9], etc. J. Barros-

Neto and B. E. Petersen considered many topological properties of the Bessel po-

tential spaces (Sobolev spaces) in the sense of Schwartz’s distributions in [1] and [7],

respectively.

In the mean time, A. Beurling presented the foundation of a more general theory

of distributions in [2] and G. Björck developed the Beurling’s generalized distribution

theories in [3].

The purpose of the present paper is to extend Bessel potential spaces in Schwartz’s

distributions to Bessel potential spaces in the Beurling’s tempered distributions.

We will investigate the characterizations of the generalized Bessel potential spaces

in the Beurling’s tempered distributions. Also, we will consider multiplication and

convolution operations in the generalized Bessel potential spaces in the Beurling’s

tempered distributions.

2. Beurling’s Distributions and Preliminaries

Fistly, we review the Beurling’s distribution spaces and related results which we

need in this paper. We denote MC the set of all real-valued functions ω on Rn
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satisfying the following conditions;

(α) 0 = ω(0) ≤ ω(ξ + η) ≤ ω(ξ) + ω(η), ξ, η ∈ Rn

(β) Jn(ω) =
∫

Rn

ω(ξ)

(1+|ξ|)n+1 dξ < ∞
(γ) ω(ξ) ≥ A + B log(1 + |ξ|) for some constants A and B > 0

(δ) ω(ξ) = σ(|ξ|) for an increasing continuous concave function σ on [0,∞).

For example, ω(ξ) = log(1 + |ξ|) and ω(ξ) = |ξ|
1
α , α > 1, satisfy all conditions.

Throughout this paper, ω represents an element in MC . Let Dω(U) be the set of

all φ in L1(Rn) such that φ has a compact support in an open set U and

‖φ‖(ω)
λ =

∫
Rn

|φ̂(ξ)|eλω(ξ) dξ < ∞,

for any λ > 0. The topology on this space is given by the inductive limit topology

of the Fréchet spaces Dω(K) = {φ ∈ Dω : supp φ ⊂ K} induced by the above

semi-norms where K is a compact set in U . From Proposition 1.3.6 in [3], if ω(ξ) =

log(1 + |ξ|), then Dω = C∞
c = D (in the notation of Schwartz), where C∞

c is the set

of all continuous functions with compact support in Rn.

Theorem 2.1. Let ω1, ω2 ∈ MC. If for some real A and positive C we have

ω2(ξ) ≤ A + Cω1(ξ), ξ ∈ Rn,

then Dω1 ⊂ Dω2 and Dω1(Ω) is dense in Dω2(Ω) for each Ω ⊂ Rn.

Proof. Theorem 1.3.18 in [3]. ¤

We denote by Eω(U) the set of all complex-valued functions ψ in U such that φψ

is in Dω(U) for any φ ∈ Dω(U). The topology in Eω(U) is given by the semi-norms

ψ → ‖φψ‖(ω)
λ for any λ > 0 and any φ ∈ Dω(U). The dual space of Dω(U) is

denoted by D′
ω(U) whose elements are called the Beurling’s distributions. Because

of Dω
′(U) ⊃ D′(U) by (γ), Beurling’s distributions are generalized distributions.

Dω
′(U) is equal to D′(U) when ω(ξ) = log(1 + |ξ|). The dual space E ′

ω(U) of Eω(U)

can be identified with the set of all elements of D′
ω(U) which has a compact support

in U . Eω(U) is related to the Gevrey class when ω(ξ) = |ξ|
1
d , d > 1.

Theorem 2.2. Let K be a compact convex set in Rn with support function H. The

Fourier-Lapalace transform of u ∈ E ′
ω(K) is an entire function U(ζ) in ζ = ξ + iη =

(ζ1, ζ2, ..., ζn) ∈ Cn if and only if for some real λ and all positive ε there exists a

constant Cλ,ε such that

|U(ξ + iη)| ≤ Cλ,εe
H(η)+ε|η|+λω(ξ).

Proof. Theorem 1.8.14 in [3]. ¤
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We denote by Sω the set of all functions φ ∈ L1(Rn) with the property that (φ

and φ̂ ∈ C∞ and) for each multi-index α and each non-negative number λ we have

pα,λ(φ) = sup
x∈Rn

eλω(x)|Dαφ(x)| < ∞

and

πα,λ(φ) = sup
ξ∈Rn

eλω(ξ)|Dαφ̂(ξ)| < ∞.

The topology of Sω is defined by the semi-norms pα,λ and πα,λ. Then it can be seen

that Dω ⊂ Sω ⊂ Eω.

Theorem 2.3. Dω is dense in Sω.

Proof. Theorem 1.8.7 in [3]. ¤

Theorem 2.4. The Fourier transform is a continuous automorphism of Sω.

Proof. Proposition 1.8.2 in [3]. ¤

Theorem 2.5. Sω is a topological algebra under point-wise miltiplication and also

under convolution.

Proof. Proposition 1.8.3 in [3]. ¤

A continuous linear form on Sω is called an Beurling’s tempered distribution.

The space of all Beurling’s tempered distributions is given the weak topology and

denoted by S ′
ω. Also, we can see that S ′

ω ⊂ D′
ω. If u ∈ S ′

ω and φ ∈ Sω, we define the

Fourier transform û by û(φ) = u(φ̂) and the convolution u ∗ φ as the function given

by (u ∗ φ)(x) = uy(φ(x − y)).

Theorem 2.6. The Fourier transform is a continuous automorphism of S ′
ω.

Proof. Remark of Definition 1.8.9 in [3]. ¤

Theorem 2.7. If u ∈ S ′
ω and φ ∈ Sω, then φ ∗ u ∈ S ′

ω and ˆφ ∗ u = φ̂ · û and

φ̂u(ξ) = (2π)−n(φ̂ ∗ û)(ξ).

Proof. Theorem 1.8.12 in [3]. ¤

For details about the Beurling’s distributions, we refer to [2] and [3].

3. Generalized Bessel Potential Spaces

We will extend Bessel potential spaces in the Schwartz’s distributions to Bessel po-

tential spaces in the Beurling’s distributions, and investigate the topological prop-

erties of the generalized Bessel potential spaces.
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The classical Bessel potential spaces in the Schwartz’s distributions, (or, Sobolev

spaces,) L2
s(R

n), is defined as

L2
s(R

n) =

{
u ∈ S ′ : ‖u‖L2

s
=

(∫
Rn

|û(ξ)|2(1 + |ξ|)2sdξ

) 1
2

< ∞

}
,

for s ∈ R.

In [8], Pahk and Kang defined Sobolev spaces in Beurling’s distributions, Hs
ω, as

follows;

Hs
ω(Rn) =

{
u ∈ S ′

ω : ‖u‖Hs
ω

=

(∫
Rn

|û(ξ)|2e2sω(ξ)dξ

) 1
2

< ∞

}
,

for s ∈ R.

We are ready to introduce the generalized Bessel potential spaces in the Beurling’s

distributions.

Definition 3.1. Given s ∈ R and 1 < p < ∞, we define by the generalized Bessel

potential spaces, Lp
s,ω(Rn), the set of all u ∈ S ′

ω such that

Lp
s,ω(Rn) =

{
u :

∫
Rn

|û(ξ)|pepsω(ξ)dξ < ∞
}

.

The norm in Lp
s,ω is given by

‖u‖Lp
s,ω

=

(∫
Rn

|û(ξ)|pepsω(ξ)dξ

) 1
p

. (3.1)

Among these spaces one has the classical Bessel potential spaces (or, Sobolev

spaces) L2
s(R

n) when ω(ξ) = log(1 + |ξ|), p = 2 and the Segal algebra S0(R
n) when

s = 0, ω = log(1+ |ξ) and p = 1. Only if p = 2, several results in this section reduce

to the results in [7].

In the mean time, Hörmander introduced the function spaces Bp,k in [4] as follow;

K is the set of all positive functions k in Rn with the following property. There

exist positive constants C and N such that k(ξ + η) ≤ (1 + C|ξ|)Nk(η) for all

ξ, η ∈ Rn.

Bp,k(R
n) =

{
u ∈ D′ :

(
‖u‖p,k = (2π)−n

∫
Rn

|k(ξ)û(ξ)|pdξ

) 1
p

< ∞

}
,

for k ∈ K and 1 ≤ p ≤ ∞.

The spaces Bp,k were extended to Bω
p,k by Björck in [3] as follow;

Kω is the set of all positive functions k in Rn with the following property. There

exists positive constants λ such that k(ξ + η) ≤ eλω(−ξ)k(η) for all ξ, η ∈ Rn.

Bω
p,k(R

n) =

{
u ∈ Fω :

(
‖u‖p,k = (2π)−n

∫
Rn

|k(ξ)û(ξ)|pdξ

) 1
p

< ∞

}
,

— 76 —



for k ∈ K, 1 ≤ p ≤ ∞ and Fω in Definition 1.8.10 in [3].

Clearly, we know that when ω(ξ) = log(1 + |ξ|) and k(ξ) = (1 + |ξ|), Lp
1,ω(Rn) =

Bp,k(R
n) and when k(ξ) = eω(ξ), Lp

1,ω(Rn) = Bω
p,k(R

n) by the property of (δ) of ω.

In what follows, Lp
s,ω means Lp

s,ω(Rn).

Theorem 3.1. Lp
s,ω is a Banach space with the norm ‖ · ‖Lp

s,ω
in (3.1). We have

Sω ⊂ Lp
s,ω ⊂ S ′

ω

in the topological sense. Dω (hence Sω) is dence in Lp
s,ω.

Proof. Let Lp(epsω(ξ)dξ) be the Banach space of all measurable functions v with

norm ‖v‖e
p such that

‖v‖e
p =

(∫
|v(ξ)|pepsω(ξ)dξ

) 1
p

< ∞.

By the definition of Sω, Sω ⊂ Lp(epsω(ξ)dξ) in the topological sense. To prove that

Lp(epsω(ξ)dξ) ⊂ S ′
ω, we note that Hölder inequality gives∫

|ϕ(ξ)v(ξ)|dξ =
∫
|ϕ(ξ)|e−sω(ξ)|v(ξ)|esω(ξ)dξ

≤ ‖ϕe−sω(ξ)‖q · ‖v(ξ)esω(ξ)‖p,

where ϕ ∈ Sω and 1
p
+ 1

q
= 1. Since ‖ϕe−sω(ξ)‖q is a continuous semi-norm in Sω, we

have Lp(epsω(ξ)dξ) ⊂ S ′
ω, so

Sω ⊂ Lp(epsω(ξ)dξ) ⊂ S ′
ω. (3.2)

From Theorem 2.1 with ω1(ξ) = ω(ξ) and ω2(ξ) = log(1 + |ξ|), Dω is dense in

C∞
c . Then since C∞

c is dense in Lp(epsω(ξ)dξ), Dω is dense in Lp(epsω(ξ)dξ). From

Theorem 2.3 and (3.2), Dω (hence Sω) is dense in Lp(epsω(ξ)dξ). If we take the

Fourier transform in (3.2) and use Theorems 2.4 and 2.6, we have the results. ¤

Corollary 3.1. If s < t, then Lp
t,ω ⊂ Lp

s,ω and this inclusion is continuous.

Proof. If s < t, then epsω(ξ) ≤ eptω(ξ) and so Lp
t,ω ⊂ Lp

s,ω and ‖u‖Lp
s,ω

≤ ‖u‖Lp
t,ω

. ¤

Corollary 3.2. If P is a polynomial of degree m with constant coefficients, then

P (D) maps Lp
s,ω continuously into Lp

s−m,ω.

Proof. By the property (γ) of ω,

‖P (D)u‖p
Lp

s,ω
=

∫
|P̂ (D)u|pepsω(ξ)dξ

=
∫
|P (ξ)û|pepsω(ξ)dξ

≤ C1

∑
|α|≤m

∫
|û(ξ)|p|ξ|pmepsω(ξ)dξ

≤ C2

∫
|û(ξ)|pep(s+m)ω(ξ)dξ

= ‖u‖p
Lp

(s+m),ω
.

¤
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Theorem 3.2. If s1 < s < s2, ε > 0 and u ∈ Lp
s,ω, then

‖u‖p
Lp

s,ω
≤ 2pε‖u‖p

Lp
s2,ω

+ 2pε−m‖u‖p
Lp

s1,ω
,

where m = (s−s1)
(s2−s)

.

Proof. Let a, b > 0, 0 < t < 1 and define g(x) = tx1−ta+(1−t)x−tb. Then g takes its

minimum on (0,∞) at x = b
a
. Thus g(x) ≥ atb1−t. Taking a = es1ω(ξ) and b = es2ω(ξ)

and s = ts1 + (1 − t)s2 we obtain

esω(ξ) ≤ g(x) = tx1−tes1ω(ξ) + (1 − t)x−tes2ω(ξ),

which implies that for any x > 0 we have

‖u‖p
Lp

s,ω
≤ 2ptx1−t‖u‖p

Lp
s1,ω

+ 2p(1 − t)x−t‖u‖p
Lp

s2,ω

≤ 2px1−t‖u‖p
Lp

s1,ω
+ 2px−t‖u‖p

Lp
s2,ω

.

By setting x = ε−
1
t , we have the result. ¤

If u ∈ S ′
ω and φ ∈ Sω, we define

< u, φ >= u(φ). (3.3)

For u ∈ Lp
s,ω, the map v →

∫
v̂(ξ)û(ξ)dξ is a linear functional on Lq

−s,ω, where
1
p

+ 1
q

= 1. In fact,∫
v̂(ξ)û(ξ)dξ =

∫
v̂(ξ)e−sω(ξ)û(ξ)esω(ξ)dξ

≤
(∫

|û(ξ)|pepsω(ξ)dξ
) 1

p ·
(∫

|v̂(ξ)|qe−qsω(ξ)dξ
) 1

q

= ‖u‖Lp
s,ω
‖v‖Lq

−s,ω
.

(3.4)

Hence the conjugate linear functional < u, · > on Sω in (3.3) can be extended

uniquely to a conjugate linear functional on Lq
−s,ω such that

< v, u >=

∫
v̂(ξ)û(ξ)dξ, (3.5)

for u ∈ Lp
s,ω and v ∈ Lq

−s,ω. Hence < v, · > is a conjugate linear functional on Lp
s,ω.

Theorem 3.3. The pairing in (3.5) identifies Lq
−s,ω isometrically with the antidual

of Lp
s,ω. If u ∈ D′

ω, then u ∈ Lp
s,ω if and only if there is a constant C such that

| < u, φ > | ≤ C‖φ‖Lq
−s,ω

, for φ ∈ Dω and 1
p

+ 1
q

= 1. Moreover, the best value of C

is ‖u‖Lp
s,ω

, that is ‖u‖Lp
s,ω

≤ C.

Proof. If we let (Lp
s,ω)∗ be the antidual of Lp

s,ω, that is, the space of continuous

conjugate linear functionals on Lp
s,ω, we define G : Lq

−s,ω → (Lp
s,ω)∗ by

G(v)u =< v, u >=

∫
v̂(ξ)û(ξ)dξ.
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Firstly, we will show that G is an isometric isomorphism from Lq
−s,ω onto (Lp

s,ω)∗.

From (3.4), we have ‖G(v)‖(Lp
s,ω)∗ ≤ ‖v‖Lq

−s,ω
for all v ∈ Lq

−s,ω, which implies

‖G‖L((Lq
−s,ω)→(Lp

s,ω)) ≤ 1. To show the isometry, let v ∈ Lq
−s,ω and put u ∈ Lp

s,ω

such that

û(ξ) =
|v̂(ξ)|
v̂(ξ)

|v̂(ξ)|
q
p e−qsω(ξ) =

v̂(ξ)

|v̂(ξ)|
|v̂(ξ)|q−1e−qsω(ξ).

Since ‖u‖p
Lp

s,ω
= ‖v‖q

Lq
−s,ω

,

G(v)u =
∫
|v̂(ξ)|

q+p
p e−qsω(ξ)dξ

= ‖v‖q
Lq
−s,ω

= ‖v‖Lq
−s,ω

· ‖v‖
q
p

Lq
−s,ω

= ‖v‖Lq
−s,ω

· ‖u‖Lp
s,ω

.

Then ‖G(v)‖(Lp
s,ω)∗ ≥ ‖v‖Lq

−s,ω
, which implies ‖G‖L((Lq

−s,ω)→(Lp
s,ω)) ≥ 1. Hence

‖G‖L((Lq
−s,ω)→(Lp

s,ω)) = 1.

Now, if G(v) = 0, then G(v)u =< v, u >=
∫

v̂(ξ)û(ξ)dξ = 0 for all u ∈ Sω. Hence

v = 0 in S ′
ω, i.e., v = 0 in Lq

−s,ω, which implies the injectivity of G. Next, we will

show the surjectivity of G. We note that (Lp
s,ω)∗ ⊂ (Sω)∗ by Theorem 3.1. We can

identify Lp
s,ω with the closed subspaces of Lp, {f ∈ Lp : V (u) = f, u ∈ Lp

s,ω}, by

the isometric isomorphic map V : u(x) → û(ξ)esω(ξ). Then, by Riesz representation

theorem for Lp, if F ∈ (Lp
s,ω)∗, there exist a u1 ∈ Lq such that

F (u) =

∫
û1(ξ)û(ξ)esω(ξ)dξ,

for all u ∈ Lp
s,ω. Since φ →

∫
û1(ξ)φ̂(ξ)esω(ξ)dξ is a continuous linear functional on

Sω, there is a distribution u2 ∈ Lq
−s,ω such that û2(ξ) = û1(ξ)e

sω(ξ) a.e. Then we

have
F (u) =

∫
û1(ξ)û(ξ)esω(ξ)dξ

=
∫

û2(ξ)e
−sω(ξ)û(ξ)esω(ξ)dξ

=< u2, u >= G(u2)(u),

for all u ∈ Lp
s,ω. Hence F = G(u2), which implies the surjectivity of G.

For the last statements, let u ∈ Lp
s,ω. Then,

‖u‖Lp
s,ω

= ‖G(u)‖ = sup

{
|u(φ)|

‖φ‖Lq
−s,ω

: φ ∈ Lq
−s,ω

}
≥ sup

{
|u(φ)|

‖φ‖Lq
−s,ω

: φ ∈ Dω

}
,

which implies | < u, φ > | ≤ C‖φ‖Lq
−s,ω

.

Finally, if u ∈ D′
ω and | < u, φ > | ≤ C‖φ‖Lq

−s,ω
for φ ∈ Dω, then the map

φ → u(φ) extends to an element of (Lq
−s,ω)∗ with norm ≤ C. Thus there exists
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a unique w ∈ Lp
s,ω such that G(w)(φ) =< u, φ > for each φ ∈ Dω. But, then

< w, φ >=< u, φ > for each φ ∈ Dω, i.e., u = w. ¤

Corollary 3.3. Let A : Dω → D′
ω be a linear map. Then A extends uniquely to a

continuous linear map A : Lp
s,ω → Lp

t,ω if and only if

| < Au, v > | ≤ C‖u‖Lp
s,ω
‖v‖Lq

−t,ω
,

for u, v ∈ Dω. Moreover, the best value of C is the norm ‖A‖s,t of the operator

A : Lp
s,ω → Lp

t,ω.

Proof. If u ∈ Dω and Au ∈ Lp
t,ω, we have

|(Au)(v)| = | < Au, v > | ≤ ‖Au‖Lp
t,ω
‖v‖Lq

−t,ω

= ‖A‖‖u‖Lp
s,ω
‖v‖Lq

−t,ω

= C‖u‖Lp
s,ω
‖v‖Lq

−t,ω
,

for v ∈ Dω from Theorem 3.3. The converse comes from Theorem 3.3. ¤

It is convenient to introduce the intersection and the union of the spaces Lp
s,ω. We

let

Lp
∞,ω = ∩s∈RLp

s,ω, Lp
−∞,ω = ∪s∈RLp

s,ω.

We provide Lp
∞,ω with the weakest topology so that the inclusion map Lp

∞,ω → Lp
s,ω

is continuous for each s (projective topology). We provide Lp
−∞,ω with the strongest

locally convex topology so that the inclusion map Lp
s,ω → Lp

−∞,ω is continuous for

each s (locally convex inductive topology).

From the definition of Eω by

Eω =

{
ψ : ‖φψ‖(ω)

λ =

∫
Rn

|φ̂ψ(ξ)|eλω(ξ)dξ < ∞
}

,

for all λ > 0, we can define Ek
ω, as follow:

We denote by Ek
ω(Ω) the vector space of all locally integrable functions u on Ω

such that ∫
|φ̂u(ξ)|ekω(ξ) < ∞,

for all φ ∈ Dω(Ω) and a non-negative integer k.

We note that ∩k>0Ek
ω(Ω) = Eω(Ω) and Ek

ω(Ω) ⊂ Ck(Ω), for any non-negative k, by

Proposition 3.1 in [8]. Now we are ready to give an imbedding theorem for Lp
s,ω.

Theorem 3.4. If s > (n
q
) + k, then Lp

s,ω ⊂ Ek
ω, where 1

p
+ 1

q
= 1.
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Proof. Let u ∈ Lp
s,ω and φ ∈ Dω. Then

∫
|φ̂u(ξ)|ekω(ξ)dξ =

∫
|φ̂u(ξ)|esω(ξ)e(k−s)ω(ξ)dξ

≤
(∫

|φ̂u(ξ)|pepsω(ξ)dξ
) 1

p ·
(∫

eq(k−s)ω(ξ)dξ
) 1

q

≤ C‖φu‖Lp
s,ω

,

for s > (n
q
) + k. Hence u ∈ Ek

ω. ¤

Theorem 3.5. Lp
∞,ω ⊂ Eω and E ′

ω ⊂ Lp
−∞,ω.

Proof. The first statement follows from Theorem 3.4. Let u ∈ E ′
ω. By Theorem 2.2,

there exist some constant λ > 0 and Cλ such that |û(ξ)| ≤ Cλe
λω(ξ). Then

∫
|û(ξ)|pepsω(ξ)dξ ≤ Cp

λ

∫
ep(s+λ)ω(ξ)dξ

≤ C
∫

(1 + |ξ|)p(s+λ)dξ

< ∞,

for p(s + λ) < −2n. Hence u ∈ Lp
(−λ−n

p
),ω, which implies u ∈ Lp

−∞,ω. ¤

4. Mutiplication and convolution operations in Lp
s,ω

Theorem 4.1. If φ ∈ Sω and u ∈ Lp
s,ω, then the product φu belongs to Lq

s,ω, where
1
p

+ 1
q

= 1. Furthermore, the bilinear map

Sω × Lp
s,ω 3 (φ, u) → φu ∈ Lq

s,ω

is separately continuous.

The proof of Theorem 4.1 is based upon the following Lemma.

Lemma 4.1. Let K(x, y) be a continuous function on Rn × Rn and suppose that

there is a constant C > 0 such that
∫

Rn |K(x, y)|dx ≤ C uniformly on Y and∫
Rn |K(x, y)|dy ≤ C uniformly on X. Then

AF (x) =

∫
Rn

K(x, y)f(y)dy

defines a continuous linear operator from Lp into Lq, where 1
p

+ 1
q

= 1.
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Proof. Let f ∈ Lp and g ∈ Lq. We have

| < Af, g > | =

∣∣∣∣∫
Rn

Af(x)g(x)dx

∣∣∣∣
=

∣∣∣∣∫
Rn

∫
Rn

K(x, y)f(y)g(x)dxdy

∣∣∣∣
≤

∫
Rn

∫
Rn

|K(x, y)|
1
p |f(y)||K(x, y)|

1
q |g(x)|dxdy

≤
(∫

Rn

∫
Rn

|K(x, y)||f(x)|pdxdy

) 1
p

·
(∫

Rn

∫
Rn

|K(x, y)||g(x)|qdxdy

) 1
q

≤ C‖f‖p · ‖g‖q, (4.1)

which implies that A : Lp → Lq is a continuous linear operator. ¤

Remark 4.1. It follows from (4.1) that the norm, ‖A‖, is at most equal to C.

Proof. (Proof of Theorem 4.1) 1. Let φ ∈ Sω and u ∈ Lp
s,ω. By Theorem 2.7, we

have

φ̂u(ξ) = (2π)−n(φ̂ ∗ û)(ξ) = (2π)−n

∫
Rn

φ̂(ξ − η)û(η)dη. (4.2)

In order to prove that φu ∈ Lq
s,ω, it suffices to show that φ̂u(ξ)esω(ξ) ∈ Lq.

By (4.2), we have

φ̂u(ξ)esω(ξ) = (2π)−n ∫
Rn φ̂(ξ − η)û(η)esω(ξ)dη.

= (2π)−n ∫
Rn φ̂(ξ − η)esω(ξ)e−sω(η)û(η)esω(η)dη.

Set

K(ξ, η) = φ̂(ξ − η)esω(ξ)e−sω(η).

Since φ ∈ Sω, we have

|K(ξ, η)| = |φ̂(ξ − η)|esω(ξ)e−sω(η)

≤ |φ̂(ξ − η)|esω(ξ−η)

≤ |φ̂(ξ − η)|e(s+2n)ω(ξ−η)e−2nω(ξ−η)

≤ C1e
−2nω(ξ−η) ≤ C2(1 + |ξ − η|)−2n,

(4.3)

by the property (α) and (γ) of ω. Hence K(ξ, η) satisfies the assumption of Lemma 4.1.

Since u ∈ Lp
s,ω, we have û(η)esω(η) ∈ Lp. Thus φ̂u(ξ)esω(ξ) ∈ Lq by Lemma 4.1, which

implies φu ∈ Lq
s,ω.

2. We will mention the results on the convolution in [1, p.90]. Let r, s, and t be

real numbers such that 1 ≤ r, s, t ≤ ∞ and 1
t

= 1
r

+ 1
s
− 1. If f ∈ Lr and g ∈ Ls,

then f ∗ g ∈ Lt and

‖f ∗ g‖t = ‖f‖r · ‖g‖s.

— 82 —



Since φ ∈ Sω, we have φ̂(·)esω(·) ∈ Ll for any real number l ≥ 1. Hence, for
1
q

= 1
l
+ 1

p
− 1,

‖φu‖Lq
s,ω

=
(∫

Rn |φ̂u(ξ)|qeqsω(ξ)dξ
) 1

q

=
(∫

Rn

(
(2π)−n ∫

Rn φ̂(ξ − η)û(η)dη
)q

eqsω(ξ)dξ
) 1

q

=
(∫

Rn

(
(2π)−n ∫

Rn φ̂(ξ − η)esω(ξ−η)û(η)esω(η)dη
)q

dξ
) 1

q

≤ ‖φ̂esω ∗ ûesω‖q

≤ ‖φ̂esω‖l · ‖ûesω‖p

≤ C‖u‖Lp
s,ω

,

(4.4)

which implies the continuity of the map (φ, u) → φu with respect to u ∈ Lp
s,ω.

Now, suppose that φj → 0 in Sω and let Cj = supζ∈Rn |φj(ζ)|e(s+2n)ω(ζ) be the

corresponding constant in (4.3). By the remark followed the proof of Lemma 4.1

and (4.4), we have

‖φju‖Lq
s,ω

= ‖φ̂ju(ζ)esω(ζ)‖q ≤ CjC
′‖u‖Lp

s,ω
. (4.5)

Since φj → 0 in Sω, hence Cj → 0, the last inequality (4.5) implies the continuity

of the product φu with respect to φ ∈ Sω. ¤

Combined with Corollary 3.2, we have following useful result:

Corollary 4.1. Let P (x,D) =
∑

|α|≤m aα(x)Dα be a partial differential operator of

order ≤ m and aα(x) ∈ Sω. For every real number s, P (x,D) defines a continuous

linear map from Lp
s,ω into Lq

s−m,ω.

Theorem 4.2. If φ ∈ Sω and u ∈ Lp
s,ω, the convolution φ∗u ∈ Lp

s,ω and the bilinear

map

Sω × Lp
s,ω 3 (φ, u) → φ ∗ u ∈ Lp

s,ω,

is separately continuous. Furthermore, φ ∗ u ∈ Lp
∞,ω.

Proof. If φ ∈ Sω and u ∈ Lp
s,ω, then φ∗u ∈ S ′

ω by Theorem 2.7. Since û(ξ)esω(ξ) ∈ Lp

and φ̂(ξ) ∈ Sω, we have û(ξ)φ̂(ξ)esω(ξ) ∈ Lp by the property φ̂ ∗ u = φ̂ · û in

Theorem 2.7. Hence φ ∗ u ∈ Lp
s,ω

The inequality

‖φ ∗ u‖Lp
s,ω

=
(∫

Rn |û(ξ)|p|φ̂(ξ)|pepsω(ξ)dξ
) 1

p

≤ supξ∈Rn |φ̂(ξ)| · ‖u‖Lp
s,ω

.

implies the separate continuity of the convolution product φ ∗ u. Finally, if φ ∈ Sω,

for every real number k, φ̂(ξ)ekω(ξ) ∈ Sω. Hence

φ̂(ξ)û(ξ)e(k+s)ω(ξ) ∈ Lp,
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for every k, which implies that φ ∗ u ∈ Lp
∞,ω. ¤
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