REMARKS ON SOME ALMOST HERMITIAN STRUCTURE ON THE TANGENT BUNDLE

TAKUYA KOIKE, TAKASHI OGURO AND NORIO WATANABE

Dedicated to Professor Kouei Sekigawa on his retirement

Abstract

In [5], M. Tahara and Y. Watanabe constructed a family of almost Hermitian structures (J, G) on the tangent bundle $T M$ of a Riemannian manifold and constructed a family of Hermitian and Kähler structure on the tangent bundle on a space form. It is well-known that there are sixteen classes of almost Hermitian manifolds ([3]). In this paper, we give the conditions for (J, G) such that $T M$ belongs to each of these sixteen classes.

1. Canonical almost Kähler structure on $T M$

Let $M=(M, g)$ be an n-dimensional Riemannian manifold and $\pi: T M \rightarrow M$ the tangent bundle of M. It is well-known that $T M$ is a $2 n$-dimensional manifold. At each point $u \in T M$, the n-dimensional subspace

$$
V_{u}=\operatorname{ker}(d \pi)_{u}
$$

of $T_{u}(T M)$, the tangent space of $T M$ at u, is called the vertical subspace. If $\left(\tilde{x}^{i}\right)$ be a local coordinates about $\pi(u) \in M$, then $\left(x^{i}, \xi^{i}\right)=\left(\tilde{x}^{i} \circ \pi, d \tilde{x}^{i}\right)$ is a local coordinates about u and V_{u} is of the form

$$
V_{u}=\left\{\left.\sum_{i=1}^{n} A^{i} \frac{\partial}{\partial \xi^{i}} \right\rvert\, A^{i} \in \mathbb{R}\right\} .
$$

Thus, the vertical subspace V_{u} is naturally identified with $T_{\pi(u)} M$, the tangent space of M at $\pi(u)$, via

$$
\iota: V_{u} \rightarrow T_{\pi(u)} M ; \quad \iota\left(\sum_{i=1}^{n} A^{i} \frac{\partial}{\partial \xi^{i}}\right)=A^{i} \frac{\partial}{\partial \tilde{x}^{i}} .
$$

We denote by H_{u} the horizontal subspace of $T_{u}(T M)$ with respect to the Riemannian connection $\tilde{\nabla}$ of g. Then, we have a direct sum decomposition $T_{u}(T M)=H_{u} \oplus V_{u}$,

[^0]which defines smooth distributions on $T M$. With respect to the local coordinates $\left(x^{i}, \xi^{i}\right)$ about u, the horizontal subspace H_{u} is of the form
$$
H_{u}=\left\{\left.\sum_{i=1}^{n} A^{i}\left(\frac{\partial}{\partial \tilde{x}^{i}}-\sum_{j, k=1}^{n} \Gamma_{i j}^{k}(\pi(u)) \xi^{j}(u) \frac{\partial}{\partial \xi^{k}}\right) \right\rvert\, A^{i} \in \mathbb{R}\right\},
$$
where $\Gamma_{i j}^{k}$ is the connection coefficient of $\tilde{\nabla}$. For each $X \in T_{p}(M)$ and $u \in T M$ with $\pi(u)=p \in M$, there exists unique vector $X_{u}^{H} \in H_{u}$ (resp. $X_{u}^{V} \in V_{u}$), called the horizontal lift (resp. vertical lift) of X, such that $d \pi\left(X_{u}^{H}\right)=X\left(\right.$ resp. $\left.\iota\left(X_{u}^{V}\right)=X\right)$.

The connection map $K: T T M \rightarrow T M$ is defined by $K(A)=\iota\left(A^{V}\right)$, where A^{V} is the vertical component of A. The map K is a homomorphism of the two vector bundles $T T M \rightarrow T M$ (the tangent bundle of $T M$) and $d \pi: T T M \rightarrow T M$. Moreover, $\left.K\right|_{V_{u}}=\iota, H_{u}=\operatorname{ker}\left(\left.K\right|_{T_{u}(T M)}\right)$ and if we regard a vector field $X \in \mathfrak{X}(M)$ as a C^{∞}-map $X: M \rightarrow T M$, we have

$$
K(d X(u))=\tilde{\nabla}_{u} X
$$

for $u \in T M$.
Proposition 1.1. Let $X, Y \in \mathfrak{X}(M)$. For each $u \in T M$, we have

$$
\begin{gather*}
{\left[X^{V}, Y^{V}\right]_{u}=0,} \tag{1.1}\\
{\left[X^{H}, Y^{V}\right]_{u}=\left(\tilde{\nabla}_{X} Y\right)_{u}^{V},} \tag{1.2}\\
d \pi\left(\left[X^{H}, Y^{H}\right]_{u}\right)=[X, Y]_{\pi(u)}, \tag{1.3}\\
K\left(\left[X^{H}, Y^{H}\right]_{u}\right)=-R\left(X_{\pi(u)}, Y_{\pi(u)}\right) u, \tag{1.4}
\end{gather*}
$$

where R is the curvature tensor of M defined by $R(X, Y)=\left[\tilde{\nabla}_{X}, \tilde{\nabla}_{Y}\right]-\tilde{\nabla}_{[X, Y]}$.
The canonical symplectic structure ω_{0} on $T M$ is defined by

$$
\omega_{0}(A, B)=g(K(A), d \pi(B))-g(K(B), d \pi(A))
$$

for $A, B \in \mathfrak{X}(T M)$. With respect to the local coordinates $\left(x^{i}, \xi^{i}\right)$ of $T M, \omega_{0}$ is given by

$$
\omega_{0}=-\sum_{i, j=1}^{n} d x^{i} \wedge d\left(\left(g_{i j} \circ \pi\right) \xi^{j}\right) .
$$

By means of the metric g, we can identify $T M$ with the cotangent bundle $T^{*} M$ of M. Then, ω_{0} can be regarded as the canonical symplectic structure on $T^{*} M$.

The Sasaki-metric G_{0} is a Riemannian metric on $T M$ defined by

$$
G_{0}(A, B)=g(d \pi(A), d \pi(B))+g(K(A), K(B)),
$$

for $A, B \in \mathfrak{X}(T M)$, or equivalently,

$$
G_{0}\left(X_{u}^{H}, Y_{u}^{H}\right)=G_{0}\left(X_{u}^{V}, Y_{u}^{V}\right)=g\left(X_{\pi(u)}, Y_{\pi(u)}\right), \quad G_{0}\left(X_{u}^{H}, Y_{u}^{V}\right)=0,
$$

for $X, Y \in \mathfrak{X}(M)$ and $u \in T M$. Then $\pi:\left(T M, G_{0}\right) \rightarrow(M, g)$ is a Riemannian submersion. On one hand, the canonical almost complex structure J_{0} on $T M$ is defined by

$$
J_{0} X_{u}^{H}=X_{u}^{V}, \quad J_{0} X_{u}^{V}=-X_{u}^{H}
$$

for $X \in \mathfrak{X}(M)$ and $u \in T M$, which is characterised by

$$
d \pi\left(J_{0} A\right)=-K(A), \quad K\left(J_{0} A\right)=d \pi(A)
$$

for $A \in \mathfrak{X}(T M)$. The pair $\left(J_{0}, G_{0}\right)$ is an almost Hermitian structure on $T M$ and the corresponding Kähler form coincides with the canonical symplectic form ω_{0}. Therefore, $\left(T M, J_{0}, G_{0}\right)$ is an almost Kähler manifold.

Theorem 1.2 ([2]). An almost Kähler manifold $\left(T M, J_{0}, G_{0}\right)$ is integrable if and only if (M, g) is locally flat.

Proof. Let N be the Nijenhuis tensor of J_{0}. Then, for any $X, Y \in \mathfrak{X}(M)$ and $u \in$ $T M$, we have $N\left(X_{u}^{H}, Y_{u}^{H}\right)=-N\left(X_{u}^{V}, Y_{u}^{V}\right), N\left(X_{u}^{H}, Y_{u}^{V}\right)=J_{0} N\left(X_{u}^{V}, Y_{u}^{V}\right)$. Thus, it suffices to show that $N\left(X_{u}^{V}, Y_{u}^{V}\right)=0$ is equivalent to $R=0$. By Proposition 1.1, we have

$$
N\left(X_{u}^{V}, Y_{u}^{V}\right)=\left[X_{u}^{H}, Y_{u}^{H}\right]-\left(\tilde{\nabla}_{X} Y\right)_{u}^{H}+\left(\tilde{\nabla}_{Y} X\right)_{u}^{H}
$$

and thus $d \pi\left(N\left(X_{u}^{V}, Y_{u}^{V}\right)\right)=0, K\left(N\left(X_{u}^{V}, Y_{u}^{V}\right)\right)=-R(X, Y) u$, which completes the proof.

2. A family of almost Hermitian structure on $T M$

In this section, we introduce a family of almost Hermitian structure (J, G) on $T M$ defined by M. Tahara and Y. Watanabe ([5]) and compute the covariant derivative, exterior derivative and coderivative of the Kähler form of (J, G).

Let (M, g) be a Riemannian manifold of dimension n. We define an almost complex structure $J=J(f, h)$ on the tangent bundle $T M$ of M by

$$
\begin{aligned}
J X_{u}^{H} & =f X_{u}^{V}+\frac{h-f}{t} g(X, u) u_{u}^{V}, \\
J X_{u}^{V} & =-\frac{1}{f} X_{u}^{H}+\frac{h-f}{t f h} g(X, u) u_{u}^{H}
\end{aligned}
$$

for $X, Y \in T_{\pi(u)}(M)$ and $u \in T M$, where $t=\|u\|^{2}$ and $f, h:[0, \infty) \rightarrow \mathbb{R}$ are positive C^{∞}-functions such that $(f(t)-h(t)) / t$ is C^{∞} at $t=0$. Moreover, we define
a Riemannian metric $G=G(\alpha, \beta, f, h)$ on $T M$ by

$$
\begin{aligned}
G\left(X_{u}^{H}, Y_{u}^{H}\right) & =\alpha g(X, Y)+\beta g(X, u) g(Y, u) \\
G\left(X_{u}^{V}, Y_{u}^{V}\right) & =\frac{\alpha}{f^{2}} g(X, Y)+\frac{\alpha\left(f^{2}-h^{2}\right)+t f^{2} \beta}{t f^{2} h^{2}} g(X, u) g(Y, u), \\
G\left(X_{u}^{H}, Y_{u}^{V}\right) & =0
\end{aligned}
$$

for $X, Y \in T_{\pi(u)}(M)$ and $u \in T M$, where C^{∞}-functions $\alpha, \beta:[0, \infty) \rightarrow \mathbb{R}$ satisfy $\alpha(t)>0$ and $\alpha(t)+t \beta(t)>0$. It is easy to verify that (J, G) is an almost Hermitian structure on $T M$. In particular, $(J(1,1), G(1,0,1,1))$ coincides with the almost Kähler structure $\left(J_{0}, G_{0}\right)$. Also, (J, G) includes the almost Hermitian structure constructed in [1] and [4], see [5] for more details.

We denote by ∇ and Ω the Riemannian connection of G and the Kähler form of (J, G), where $\Omega(\cdot, \cdot)=G(\cdot, J \cdot)$. Furthermore, we put

$$
\begin{aligned}
& \psi_{1}=2 h(\log \alpha)^{\prime}-\frac{f \beta}{\alpha} \\
& \psi_{2}=2 h(\log f)^{\prime}-\frac{h-f}{t} \\
& \psi_{3}=\psi_{1}-\psi_{2}=2 h\left(\log \frac{\alpha}{f}\right)^{\prime}-\frac{f \beta}{\alpha}+\frac{h-f}{t}
\end{aligned}
$$

By direct (and tiresome) calculation, we obtain the following three propositions.
Proposition 2.1. For $X, Y, Z \in T_{p}(M), u \in T M(\pi(u)=p)$, the covariant derivative $\nabla \Omega$ is given by

$$
\begin{align*}
\left(\nabla_{X_{u}^{H}} \Omega\right)\left(Y_{u}^{H}, Z_{u}^{H}\right)= & \frac{\alpha \psi_{1}}{2}\{g(X, Y) g(Z, u)-g(X, Z) g(Y, u)\} \tag{2.1}\\
& +\frac{\alpha}{2 f} g(R(Y, Z) X, u) \\
\left(\nabla_{X_{u}^{H}} \Omega\right)\left(Y_{u}^{V}, Z_{u}^{V}\right)= & -\frac{\alpha \psi_{1}}{2 f h}\{g(X, Y) g(Z, u)-g(X, Z) g(Y, u)\} \tag{2.2}\\
& +\frac{\alpha(h-f)}{2 t f^{3} h}\{g(R(X, u) Y, u) g(Z, u) \\
& \quad-g(R(X, u) Z, u) g(Y, u)\}-\frac{\alpha}{2 f^{3}} g(R(Y, Z) X, u), \\
\left(\nabla_{X_{u}^{V}} \Omega\right)\left(Y_{u}^{H}, Z_{u}^{V}\right)= & \frac{\alpha}{2 f h}\left(\psi_{1}-2 \psi_{2}\right) g(X, Y) g(Z, u) \tag{2.3}\\
& -\frac{\alpha}{2 f^{2}}\left(\psi_{1}-2 \psi_{2}\right) g(X, Z) g(Y, u) \\
& +\frac{\alpha(h-f)\left(\psi_{1}-2 \psi_{2}\right)}{2 t f^{2} h} g(X, u) g(Y, u) g(Z, u)
\end{align*}
$$

$$
\begin{align*}
& +\frac{\alpha(h-f)}{2 t f^{3} h} g(R(X, u) Y, u) g(Z, u) \\
& -\frac{\alpha}{2 f^{3}} g(R(Y, Z) X, u), \\
\left(\nabla_{X_{u}^{H}} \Omega\right)\left(Y_{u}^{H}, Z_{u}^{V}\right)= & \left(\nabla_{X_{u}^{V}} \Omega\right)\left(Y_{u}^{H}, Z_{u}^{H}\right)=\left(\nabla_{X_{u}^{V}} \Omega\right)\left(Y_{u}^{V}, Z_{u}^{V}\right)=0 . \tag{2.4}
\end{align*}
$$

In particular, if M is a space of constant curvature c, we have

$$
\begin{align*}
\left(\nabla_{X_{u}^{H}} \Omega\right)\left(Y_{u}^{H}, Z_{u}^{H}\right)= & \frac{\alpha}{2}\left(\psi_{1}-\frac{c}{f}\right)\{g(X, Y) g(Z, u)-g(X, Z) g(Y, u)\} \tag{2.5}\\
\left(\nabla_{X_{u}^{H}} \Omega\right)\left(Y_{u}^{V}, Z_{u}^{V}\right)= & -\frac{\alpha}{2 f h}\left(\psi_{1}-\frac{c}{f}\right)\{g(X, Y) g(Z, u)-g(X, Z) g(Y, u)\} \tag{2.6}\\
\left(\nabla_{X_{u}^{V}} \Omega\right)\left(Y_{u}^{H}, Z_{u}^{V}\right)= & \frac{\alpha}{2 f h}\left(\psi_{1}-2 \psi_{2}+\frac{c}{f}\right) g(X, Y) g(Z, u) \tag{2.7}\\
& -\frac{\alpha}{2 f^{2}}\left(\psi_{1}-2 \psi_{2}+\frac{c}{f}\right) g(X, Z) g(Y, u) \\
& +\frac{\alpha(h-f)}{2 t f^{2} h}\left(\psi_{1}-2 \psi_{2}+\frac{c}{f}\right) g(X, u) g(Y, u) g(Z, u)
\end{align*}
$$

Proposition 2.2. For $X, Y, Z \in T_{p}(M)$, $u \in T M(\pi(u)=p)$, the exterior derivative $d \Omega$ is given by

$$
\begin{align*}
& d \Omega\left(X_{u}^{H}, Y_{u}^{V}, Z_{u}^{V}\right)=-\frac{\alpha \psi_{3}}{f h}\{g(X, Y) g(Z, u)-g(X, Z) g(Y, u)\}, \tag{2.8}\\
& d \Omega\left(X_{u}^{H}, Y_{u}^{H}, Z_{u}^{H}\right)=d \Omega\left(X_{u}^{H}, Y_{u}^{H}, Z_{u}^{V}\right)=d \Omega\left(X_{u}^{V}, Y_{u}^{V}, Z_{u}^{V}\right)=0 . \tag{2.9}
\end{align*}
$$

Proposition 2.3. For $X \in T_{p}(M), u \in T M(\pi(u)=p)$, the coderivative $\delta \Omega$ is given by

$$
\begin{align*}
& \delta \Omega\left(X_{u}^{H}\right)=-(n-1) \psi_{3} g(X, u) \tag{2.10}\\
& \delta \Omega\left(X_{u}^{V}\right)=0 \tag{2.11}
\end{align*}
$$

3. Conditions for each classes

First, we recall the sixteen classes of almost Hermitian manifolds established in [3]. Let $M=(M, J, g)$ be an almost Hermitian manifold and Ω the corresponding Kähler form. We denote by \mathscr{W} the set of all almost Hermitian manifolds of dimension $2 n$. Making use of the invariant subspaces $\mathscr{W}_{1}, \ldots, \mathscr{W}_{4}$ of the unitary representation, we can classify \mathscr{W} (dimension $2 n \geq 6$) into following sixteen classes.
(1) $\mathscr{K}=$ Kähler manifolds: $\nabla \Omega=0$.
(2) $\mathscr{W}_{1}=\mathscr{N} \mathscr{K}=$ nearly Kähler manifolds: $\left(\nabla_{X} \Omega\right)(X, Y)=0$.
(3) $\mathscr{W}_{2}=\mathscr{A} K$
(4) $\mathscr{W}_{3}=\mathscr{H} \cap \mathscr{S} \mathscr{K}=$ Hermitian semi-Kähler manifolds:

$$
\left(\nabla_{X} \Omega\right)(Y, Z)-\left(\nabla_{J X} \Omega\right)(J Y, Z)=\delta \Omega=0
$$

(5) $\mathscr{W}_{4}:$

$$
\begin{aligned}
\left(\nabla_{X} \Omega\right)(Y, Z)=-\frac{1}{2(n-1)} & \{g(X, Y) \delta \Omega(Z)-g(X, Z) \delta \Omega(Y) \\
& -g(X, J Y) \delta \Omega(J Z)+g(X, J Z) \delta \Omega(J Y)\}
\end{aligned}
$$

(6) $\mathscr{W}_{1} \cup \mathscr{W}_{2}=\mathscr{Q} \mathscr{K}=$ quasi-Kähler manifolds: $\left(\nabla_{X} \Omega\right)(Y, Z)+\left(\nabla_{J X} \Omega\right)(J Y, Z)=0$.
(7) $\mathscr{W}_{1} \cup \mathscr{W}_{3}:\left(\nabla_{X} \Omega\right)(X, Y)-\left(\nabla_{J X} \Omega\right)(J X, Y)=\delta \Omega=0$.
(8) $\mathscr{W}_{1} \cup \mathscr{W}_{4}$:

$$
\left(\nabla_{X} \Omega\right)(X, Y)=-\frac{1}{2(n-1)}\left\{\|X\|^{2} \delta \Omega(Y)-g(X, Y) \delta \Omega(X)-g(J X, Y) \delta \Omega(J X)\right\}
$$

(9) $\mathscr{W}_{2} \cup \mathscr{W}_{3}: \underset{X, Y, Z}{\mathfrak{G}}\left\{\left(\nabla_{X} \Omega\right)(Y, Z)-\left(\nabla_{J X} \Omega\right)(J Y, Z)\right\}=\delta \Omega=0$, where \mathfrak{S} denotes the cyclic sum.
(10) $\mathscr{W}_{2} \cup \mathscr{W}_{4}: \underset{X, Y, Z}{\mathfrak{G}}\left\{\left(\nabla_{X} \Omega\right)(Y, Z)-g(X, J Y) \delta \Omega(J Z) /(n-1)\right\}=0$.
(11) $\mathscr{W}_{3} \cup \mathscr{W}_{4}=\mathscr{H}=$ Hermitian manifolds:

$$
\left(\nabla_{X} \Omega\right)(Y, Z)-\left(\nabla_{J X} \Omega\right)(J Y, Z)=0
$$

(12) $\mathscr{W}_{1} \cup \mathscr{W}_{2} \cup \mathscr{W}_{3}=\mathscr{S} \mathscr{K}=$ semi-Kähler manifolds: $\delta \Omega=0$.
(13) $\mathscr{W}_{1} \cup \mathscr{W}_{2} \cup \mathscr{W}_{4}$:

$$
\begin{aligned}
\left(\nabla_{X} \Omega\right)(Y, Z) & +\left(\nabla_{J X} \Omega\right)(J Y, Z)=-\frac{1}{n-1}\{g(X, Y) \delta \Omega(Z) \\
& -g(X, Z) \delta \Omega(Y)-g(X, J Y) \delta \Omega(J Z)+g(X, J Z) \delta \Omega(J Y)\}
\end{aligned}
$$

(14) $\mathscr{W}_{1} \cup \mathscr{W}_{3} \cup \mathscr{W}_{4}:\left(\nabla_{X} \Omega\right)(X, Y)-\left(\nabla_{J X} \Omega\right)(J X, Y)=0$.
(15) $\mathscr{W}_{2} \cup \mathscr{W}_{3} \cup \mathscr{W}_{4}: \underset{X, Y, Z}{\mathfrak{G}}\left\{\left(\nabla_{X} \Omega\right)(Y, Z)-\left(\nabla_{J X} \Omega\right)(J Y, Z)\right\}=0$.
(16) $\mathscr{W}=$ almost Hermitian manifolds: No condition.

In case dimension $2 n=4, \mathscr{W}$ can be classified into following four classes.
(1) $\mathscr{K}=$ Kähler manifolds.
(2) $\mathscr{W}_{2}=\mathscr{A} \mathscr{K}=$ almost Kähler manifolds.
(3) $\mathscr{W}_{4}=\mathscr{H}=$ Hermitian manifolds.
(4) $\mathscr{W}=$ almost Hermitian manifolds.

Now, we return to our almost Hermitian manifold $T M=(T M, J, G)$ and examine the conditions for (J, G) such that $T M$ belongs to each of these classes. For a constant c, we may consider next four conditions:

$$
\left(C_{0}\right) \quad M=(M, g) \text { is a space of constant curvature } c,
$$

$$
\begin{aligned}
& \left(C_{1}\right) \quad 2 h(\log \alpha)^{\prime}-\frac{f \beta}{\alpha}-\frac{c}{f}=0 \quad\left(\Longleftrightarrow \psi_{1}=c / f\right) \\
& \left(C_{2}\right) \quad 2 h(\log f)^{\prime}-\frac{h-f}{t}-\frac{c}{f}=0 \quad\left(\Longleftrightarrow \psi_{2}=c / f\right), \\
& \left(C_{3}\right) \quad 2 h\left(\log \frac{\alpha}{f}\right)^{\prime}-\frac{f \beta}{\alpha}+\frac{h-f}{t}=0 \quad\left(\Longleftrightarrow \psi_{1}=\psi_{2}\right) .
\end{aligned}
$$

From (2.8)-(2.11), (C_{3}) is equivalent to $d \Omega=0$ and $\delta \Omega=0$.
Theorem 3.1. For almost Hermitian manifold $T M=(T M, J(f, h), G(\alpha, \beta, f, h))$, we have the following:
(1) $T M \in \mathcal{K}$ if and only if $\left(C_{0}\right),\left(C_{1}\right),\left(C_{2}\right)$ and $\left(C_{3}\right)$.
(2) $T M \in \mathscr{W}_{1}=\mathscr{N} \mathscr{K}$ if and only if $\left(C_{0}\right),\left(C_{1}\right),\left(C_{2}\right)$ and $\left(C_{3}\right)$.
(3) $T M \in \mathscr{W}_{2}=\mathscr{A} \mathscr{K}$ if and only if $\left(C_{3}\right)$.
(4) $T M \in \mathscr{W}_{3}=\mathscr{H} \cap \mathscr{S} \mathscr{K}$ if and only if $\left(C_{0}\right),\left(C_{1}\right),\left(C_{2}\right)$ and $\left(C_{3}\right)$.
(5) $T M \in \mathscr{W}_{4}$ if and only if $\left(C_{0}\right)$ and $\left(C_{2}\right)$.
(6) $T M \in \mathscr{W}_{1} \cup \mathscr{W}_{2}=\mathscr{2} \mathscr{K}$ if and only if $\left(C_{3}\right)$.
(7) $T M \in \mathscr{W}_{1} \cup \mathscr{W}_{3}$ if and only if $\left(C_{0}\right),\left(C_{1}\right),\left(C_{2}\right)$ and $\left(C_{3}\right)$.
(8) $T M \in \mathscr{W}_{1} \cup \mathscr{W}_{4}$ if and only if $\left(C_{0}\right)$ and $\left(C_{2}\right)$.
(9) $T M \in \mathscr{W}_{2} \cup \mathscr{W}_{3}$ if and only if $\left(C_{3}\right)$.
(10) $T M \in \mathscr{W}_{2} \cup \mathscr{W}_{4}$ for any f, h, α, β.
(11) $T M \in \mathscr{W}_{3} \cup \mathscr{W}_{4}=\mathscr{H}$ if and only if $\left(C_{0}\right)$ and $\left(C_{2}\right)$.
(12) $T M \in \mathscr{W}_{1} \cup \mathscr{W}_{2} \cup \mathscr{W}_{3}=\mathscr{S} \mathscr{K}$ if and only if $\left(C_{3}\right)$.
(13) $T M \in \mathscr{W}_{1} \cup \mathscr{W}_{2} \cup \mathscr{W}_{4}$ for any f, h, α, β.
(14) $T M \in \mathscr{W}_{1} \cup \mathscr{W}_{3} \cup \mathscr{W}_{4}$ if and only if $\left(C_{0}\right)$ and $\left(C_{2}\right)$.
(15) $T M \in \mathscr{W}_{2} \cup \mathscr{W}_{3} \cup \mathscr{W}_{4}$ for any f, h, α, β.

Proof. (1): First, we consider the case $\operatorname{dim} T M \geq 6$ ($\operatorname{dim} M \geq 3$). Assume that M is not a space of constant curvature. Then, from (2.1), the condition $\nabla \Omega=0$ requires $\alpha=0$. Thus, M must have a constant curvature c. The, form (2.5)-(2.7), we observe that $\nabla \Omega=0$ if and only if $\psi_{1}-c / f=0$ and $\psi_{1}-2 \psi_{2}+c / f=0$, namely $\left(C_{1}\right),\left(C_{2}\right)$ and $\left(C_{3}\right)$. If $\operatorname{dim} T M=4(\operatorname{dim} M=2)$, the curvature tensor R is of the form

$$
g(R(X, Y) Z, W)=k(p)\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W)\},
$$

for $X, Y, Z, W \in T_{p}(M)$. Therefore, the equalities (2.5)-(2.7) are valid if we replace c with $k(p)$. Then, form (2.5), we may show that $k(p)$ must be constant. So, the argument comes down to the case of constant curvature. Hence, (1) follows.

Using (2.1)-(2.11) and making a similar argument as above if necessary, we can prove (2)-(15).

References

[1] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96 (1972), 413-443.
[2] P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962) 73-88.
[3] A. Gray and L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35-58.
[4] E. Musso and F. Tricerri, Riemannian metrics on tangent bundles, Ann. Mat. Pura Appl. 150 (1988), 1-19.
[5] M. Tahara and Y. Watanabe, Natural almost Hermitian, Hermitian and Kähler metrics on the tangent bundles, Math. J. Toyama Univ. 20 (1997), 149-160.
(Takuya Koike, Takashi Oguro and Norio Watanabe) Department of Mathematical Sciences, School of Science and Engineering, Tokyo Denki University, Saitama, 350-0394, Japan
E-mail address, Takashi Oguro: oguro@r.dendai.ac.jp

Received February 26, 2009
Revised June 1, 2009

[^0]: 2000 Mathematics Subject Classification. 53C15, 53C55, 53C56.
 Key words and phrases. Almost Hermitian manifold; Tangent bundle.

