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NONEXISTENCE RESULTS FOR HESSIAN INEQUALITY∗

QIANZHONG OU†

Abstract. In this paper , the author proves a Liouville type theorem for some Hessian entire
inequality with sub-lower-critical exponent, via suitable choices of test functions and the argument
of integration by parts .
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1. Introduction. On a compact manifold with no boundary, one can integrates
by parts freely without any obstacle. When the manifold is not compact or has some
boundaries, the same argument can be done by using a suitable test function. Hence,
the argument of integration by parts has been used widely for a long time in the study
of partial differential equations and in differential geometry.

In this paper, via the argument of integration by parts, we first study the classical
k-Hessian inequality (1.1) with the equality as the special case. We will deduce the
Liouville type theorem of this inequality with sub-lower-critical exponent. Then we
extend the result to the general case of k-Hessian measure by approximation.

Consider the following differential inequality:

(1.1) σk(−D2u) ≥ uα in R
n

where σk(−D2u) are the k-Hessian of (−D2u) as usual (see (2.1)).
When k = 1 , then (1.1) coincides with the Laplacian inequality −△ u ≥ uα in

R
n, and some splendid results had been given by Gidas-Spruck [5] in case of equality.

Inequality (1.1) had also been studied by many works, such as Phuc-Verbitsky [9, 10]
and references there in.

When 2k < n, denote

k∗ :=
n(k + 1)

n − 2k
, k∗ :=

nk

n − 2k
.

Then k∗ is the critical exponent for Sobolev embedding in the sense of Wang [15],
and we call k∗ the lower critical exponent.

According to Caffarelli-Nirenberg-Spruck [1], we say u k-admissible (or k-convex)
with respect to σk(−D2u) if u ∈ Γk, where Γk is defined by

Γk = {u ∈ C2(Rn) : σs(−D2u) ≥ 0, s = 1, 2, · · · , k}.

Now we state our nonexistence result as follows:

Theorem 1.1. If 2k < n, then (1.1) has no positive solution in Γk for any
α ∈ (−∞, k∗].
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In fact, the result in Theorem 1.1 can be extended to general k-convex functions.
Let Ω be a domain in R

n, then an upper semi-continuous function u: Ω → [−∞,∞)
is called general k-convex in Ω if −q ∈ Γk for all quadratic polynomials q for which the
difference u−q has a finite local maximum in Ω (see [3] or [13]). Denote by Φk(Ω), the
class of general k-convex functions in Ω which do not assume the value −∞ identically
on any component of Ω. Associated to the functions in Φk(Ω), Trudinger-Wang [12, 13]
introduced a Borel measure, called k-Hessian measure. In [12, 13], they also deduced
some fundamental properties of the general k-convex functions and of the k-Hessian
measure, especially, the followings will be needed in this paper:

Proposition 1.2. A function u: Ω → [−∞,∞) is general k-convex in Ω if and
only if its restriction to any subdomain Ω′ ⊂⊂ Ω is the limit of a monotone decreasing
sequence in Φk(Ω′) ∩ C2(Ω′).

Proposition 1.3. For any u ∈ Φk(Ω), there exists a Borel measure µk[u] in Ω
such that

(a) µk[u] = σk(D2u) for u ∈ C2(Ω), and
(b) if {uj} is a sequence in Φk(Ω) converging locally in measure to a function

u ∈ Φk(Ω), the sequence of Borel measure {µk[uj]} converges weakly to µk[u].

Now consider (1.1) in the sense of k-Hessian measure. For the convenience, we
denote Φk = {u : −u ∈ Φk(Rn)}. Then clearly Γk = Φk ∩ C2(Rn). By employing
Proposition 1.2, 1.3 and the argument of approximation, we can extend Theorem 1.1
to the following:

Theorem 1.4. If 2k < n and α ∈ (−∞, k∗], then (1.1) has no positive solution
in Φk in the sense of k-Hessian measure.

Remark 1.5. Phuc-Verbitsky [9, 10] had proven Theorem 1.4 for α ∈ (k, k∗],
where they employed the potential theory developed by Trudinger-Wang [12, 13, 14]
and Labutin [7], and they also showed that the power α = k∗ is sharp. But our method
in this paper is different from theirs, since we only use the integration by parts via the
careful choices of the test functions and the argument of approximation.

The approach that we are going to describe is based on finding a priori sharp
integral estimate. Our strategy to prove the nonexistence results is as follows: first we
deduce some suitable local integral estimate, and then study the asymptotic behavior
of this estimate with respect to the relevant parameter of the problem. As it is well
known that this idea is widely used in partial differential equations, especially when no
information is known on the possible behavior of the solutions, either near a possible
singularity or at infinity. For the detail idea, history and its applications to parabolic
and hyperbolic equations of this strategy, please see Mitidieri-Pohozaev [8]. To carry
out our strategy, we will establish some iteration forms on the k-Hessian inequality
(1.1), a technique first appeared in Chang-Gursky-Yang [2] and González [6].

We will prove Theorem 1.1 in section 3, to do this, some preparations of algebraic
properties of σk are needed, which will be collected in section 2. In the last section,
we will show that the proof Theorem 1.4 is just that of Theorem 1.1 combining with
the argument of approximation.

Acknowledgment. The author would like to thank Professor Xi-Nan Ma for
constant encouragement and useful discussions. He would also like to thank the
referee for his (her) careful reading and good suggestions on this paper.
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2. Notations and Algebraic properties of σk. For a general n×n symmetric
matrix A, consider its eigenvalues λ = (λ1, · · · , λn) and the elementary symmetric
polynomial functions

(2.1) σk(λ) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik
.

We also write σk(λ) as σk(A) or simply as σk without confusion.
Denote

(2.2) T k = σkI − σk−1A + · · · + (−1)kAk = σkI − T k−1A

for k = 1, · · · , n. Here we take σ0 = 1 and T 0
ij = δij .

The following properties are well known(see for examples [4], [11] or [6]):

Proposition 2.1. For A and T k as above:
(a) (n − k)σk = trace(T k);
(b) (k + 1)σk+1 = trace(AT k);
(c) If σ1, · · · , σk > 0, then T s is positive definite for s = 1, · · · , k − 1, and hence
‖ Tij

s ‖≤ Cσs;
(d) If σ1, · · · , σk > 0, then σs ≤ C(σ1)

s, for s = 1, · · · , k,
where the constant C > 0 depends only on n and s.

Proposition 2.2. For A = (−D2u), the Hessian of a C2 function u, and T k as
in (2.2), we have the divergence formulas:
(a) ∂iTij

k = 0;
(b) σk+1 = 1

k+1∂j(uiT
k

ij).

Here and in the following, ∂i = ∂
∂xi

, ui = ∂iu and repeated indices are summed, as
usual.

3. Proof of Theorem 1.1. Assume u > 0 be a solution of (1.1) in Γk . In the
following, we write σk(−D2u) simply as σk.

Let η be a C2 cut-off function satisfying:

(3.1)



















η ≡ 1 in BR,

0 ≤ η ≤ 1 in B2R,

η ≡ 0 in R
n\B2R,

|∇η| . 1
R

in R
n,

where and throughout this paper, BR denotes a ball in R
n centered at the origin with

radius R ; and we use ”.” , ”⋍”, etc. to drop out some positive constants independent
of R and u.

Denote for s = 1, · · · , k :

bs = k+s
s!2s δ(δ + 1) · · · (δ + s − 1),

Bs =
∫

σk−s|∇u|2su−δ−sηθ,

Ms =
∫

Tij
k−suiuj |∇u|2(s−1)u−δ−sηθ,

Es =
∫

Tij
k−suiηj |∇u|2(s−1)u−δ−s+1ηθ−1.
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Here and in the rest of the paper, δ, θ are constants to be determined, and we always
dropout the domain in integration for the convenience unless otherwise stated , and
one can think that all the integrations are taken over a suitable domain such as suppη

with no confusion.
First, we have the following recursions:

Lemma 3.1. For s = 1, · · · , k − 1:

(3.2) msMs = ms+1Ms+1 + bsBs − cs+1Es+1

where mi = 2i
k+i

bi and ci = 2ibi

(δ+i−1)(k+i) θ for i = 1, · · · , k, and no summed with the

repeated indices s.

Proof. Using the above notations, by (2.2), Proposition 2.2(a) and integration by
parts we have

msMs =
2s

k + s
bs

∫

Tij
k−suiuj|∇u|2(s−1)u−δ−sηθ

=
2s

k + s
bs

∫

(σk−sδij + Til
k−s−1ulj)uiuj |∇u|2(s−1)u−δ−sηθ

=
2s

k + s
bsBs +

bs

k + s

∫

uiTil
k−s−1∂l(|∇u|2s)u−δ−sηθ

=
2s

k + s
bsBs −

bs

k + s

∫

uilTil
k−s−1|∇u|2su−δ−sηθ

+
bs(δ + s)

k + s

∫

uiujTij
k−s−1|∇u|2su−δ−s−1ηθ

−
bs

k + s
θ

∫

uiηjTij
k−s−1|∇u|2su−δ−sηθ−1

(3.3)

Then, by Proposition 2.1(b) we arrive at (3.1) as desired.

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Multiply both sides of (1.1) by ku−δηθ and integrate over
R

n we have

(3.4) k

∫

uα−δηθ ≤ k

∫

σku−δηθ.

Consider the integral on the right hand side of (3.4), integrate by parts once time
we get

(3.5)
k

∫

σku−δηθ =
∫

Tij
k−1(−uij)u

−δηθ

= −δ
∫

Tij
k−1uiuju

−δ−1ηθ + θ
∫

Tij
k−1uiηju

−δηθ−1

= −δM1 + θE1.

Iterating (3.2) into (3.5) step by step yields

(3.6) k

∫

σku−δηθ = −

k
∑

s=1

bsBs +

k
∑

s=1

csEs.
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Next we estimate the error terms ”Es”. By |∇η| . 1
R

and Proposition 2.1(c), we
have

|Es| .
1

R

∫

σk−s|∇u|2s−1u−δ−s+1ηθ−1.

Using Young’s inequality with exponent pair ( 2s
2s−1 , 2s) and ε > 0 small, the last

inequality turns into

(3.7) |Es| . ε

∫

σk−s|∇u|2su−δ−sηθ +
C(ε)

R2s

∫

σk−su
−δ+sηθ−2s.

For the last term of (3.7), we have

1

R2s

∫

σk−su
−δ+sηθ−2s

⋍ −
1

R2s

∫

Tij
k−s−1uiju

−δ+sηθ−2s

=
−δ + s

R2s

∫

Tij
k−s−1uiuju

−δ+s−1ηθ−2s +
θ − 2s

R2s

∫

Tij
k−s−1uiηju

−δ+sηθ−2s−1

.ε

∫

σk−s−1|∇u|2(s+1)u−δ−s−1ηθ +
C(ε)

R2(s+1)

∫

σk−s−1u
−δ+s+1ηθ−2(s+1).

(3.8)

Going through the same process again in (3.8) gives

(3.9)
1

R2s

∫

σk−su
−δ+sηθ−2s . ε

k
∑

i=s+1

Bi +
1

R2k

∫

u−δ+kηθ−2k.

Substituting (3.9) and (3.7) into (3.6) we reach

(3.10) k

∫

σku−δηθ +
k

∑

s=1

(bs − ε)Bs .
1

R2k

∫

u−δ+kηθ−2k.

Now, for α ∈ (−∞, k∗] we split into four cases with suitable choice of δ respec-
tively:

(i) Let δ = α for α = k;
(ii) Let δ > n−2k

2k
(k∗ − α) for α ∈ (−∞, k)

(iii) Let 0 < δ < n−2k
2k

(k∗ − α) for α ∈ (k, k∗)
(iv) Let δ = 0 first and then 0 < δ < 1 for α = k∗.
In all cases of (i)-(iii), we see that bs > 0 for s = 1, · · · , k.
For case (i), by Young’s inequality once again, (3.10) can be rewritten as

(3.11) k

∫

σku−δηθ +

k
∑

s=1

(bs − ε)Bs . ε

∫

ηθ + Rn−θ.
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Combining this with (3.4) we have

(3.12) k

∫

ηθ +
k

∑

s=1

(bs − ε)Bs . ε

∫

ηθ + Rn−θ.

Now choosing ε small, setting θ > n and let R → +∞ we get a contradiction in
(3.12).

For cases (ii)-(iii), we always have α−δ
−δ+k

> 1 and n − 2k × α−δ
α−k

< 0 . Using

Young’s inequality with exponent pair ( α−δ
−δ+k

, α−δ
α−k

) to the last term in (3.10) we get

(3.13) k

∫

σku−δηθ +
k

∑

s=1

(bs − ε)Bs . ε

∫

uα−δηθ + Rn−
2k(α−δ)

α−k .

Combining this with (3.4) we have

(3.14) k

∫

uα−δηθ +
k

∑

s=1

(bs − ε)Bs . ε

∫

uα−δηθ + Rn−
2k(α−δ)

α−k .

Again, we reach a contradiction if R → +∞ in (3.14).
For case (iv), we first choose δ = 0, then we see that all the bs(s = 1, · · · , k) are

zero, hence we must be careful to deal with the error terms ”Es”. In fact, this time
we will start at (3.5) which becomes

(3.15) k

∫

σku−δηθ = θE1.

First we have

|E1| .
1

R

∫

σk−1|∇u|ηθ−1

or that

(3.16)
R

n

α
δ|E1| . R

n

α
δ−1

∫

σk−1|∇u|ηθ−1

.
∫

σk−1|∇u|2u−δ−1ηθ + R
2n

α
δ−2

∫

σk−1u
δ+1ηθ−2

by Cauchy inequality, where 0 < δ < 1 is fixed.
To deal with the last term in (3.16), we denote:

Vs = R2s n

α
δ−2s

∫

σk−su
(2s−1)δ+sηθ−2s

and

Ws = R
n

α
δ−2s

∫

σk−su
sηθ−2s.

Then we can prove the following:
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Lemma 3.2.

(3.17) Vs . Bs+1 + Vs+1 + Ws+1

for s = 1, · · · , k − 1.

Proof. First we have, by integrating by parts:

Vs =R2s n

α
δ−2s

∫

σk−su
(2s−1)δ+sηθ−2s

⋍ − R2s n

α
δ−2s

∫

Tij
k−s−1uiju

(2s−1)δ+sηθ−2s

⋍R2s n

α
δ−2s

∫

Tij
k−s−1uiuju

(2s−1)δ+s−1ηθ−2s

+ R2s n

α
δ−2s

∫

Tij
k−s−1uiηju

(2s−1)δ+sηθ−2s−1

.R2s n

α
δ−2s

∫

σk−s−1|∇u|2u(2s−1)δ+s−1ηθ−2s

+ R2s n

α
δ−2s−1

∫

σk−s−1|∇u|u(2s−1)δ+sηθ−2s−1

.

∫

σk−s−1|∇u|2(s+1)u−δ−s−1ηθ

+ R2(s+1) n

α
δ−2(s+1)

∫

σk−s−1u
(2(s+1)−1)δ+s+1ηθ−2(s+1)

+ R2s
2(s+1)
2s+1

n

α
δ−2(s+1)

∫

σk−s−1u
(2s

2(s+1)
2s+1 −1)δ+s+1ηθ−2(s+1)

(3.18)

where in the last step we have used the Young’s inequality with exponent pairs (s +

1, s+1
s

) and (2(s + 1), 2(s+1)
2s+1 ) respectively.

For the last term in (3.18), we need the following Young’s inequality with exponent

pair
( (2s+1)2

(2s+1)2−2(s+1) ,
(2s+1)2

2(s+1)

)

:

R2s
2(s+1)
2s+1

n

α
δ−2(s+1)u(2s

2(s+1)
2s+1 −1)δ+s+1

=R2(s+1) n

α
δ−2(s+1)us+1

[

u(2s
2(s+1)
2s+1 −1)δ · R−

2(s+1)
2s+1

n

α
δ
]

.R2(s+1) n

α
δ−2(s+1)us+1

[

u(2(s+1)−1)δ + R−(2s+1) n

α
δ
]

=R2(s+1) n

α
δ−2(s+1)u(2(s+1)−1)δ+s+1 + R

n

α
δ−2(s+1)us+1.

(3.19)

Hence by using (3.19), (3.18) can be rewritten as:

Vs .

∫

σk−s−1|∇u|2(s+1)u−δ−s−1ηθ

+ R2(s+1) n

α
δ−2(s+1)

∫

σk−s−1u
(2(s+1)−1)δ+s+1ηθ−2(s+1)

+ R
n

α
δ−2(s+1)

∫

σk−s−1u
s+1ηθ−2(s+1)

=Bs+1 + Vs+1 + Ws+1.

(3.20)
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This is just (3.17) and lemma 3.2 is proved.

To go forward, similarly we have the following:

Lemma 3.3.

(3.21) Ws . Bs+1 + Vs+1 + Ws+1

for s = 1, · · · , k − 1.

Proof. Similar to (3.18) we compute:

Ws =R
n

α
δ−2s

∫

σk−su
sηθ−2s

⋍ − R
n

α
δ−2s

∫

Tij
k−s−1uiju

sηθ−2s

⋍R
n

α
δ−2s

∫

Tij
k−s−1uiuju

s−1ηθ−2s + R
n

α
δ−2s

∫

Tij
k−s−1uiηju

sηθ−2s−1

.R
n

α
δ−2s

∫

σk−s−1|∇u|2us−1ηθ−2s + R
n

α
δ−2s−1

∫

σk−s−1|∇u|usηθ−2s−1

.

∫

σk−s−1|∇u|2(s+1)u−δ−s−1ηθ + R
s+1

s

n

α
δ−2(s+1)

∫

σk−s−1u
1
s

δ+s+1ηθ−2(s+1)

+ R
2(s+1)
2s+1

n

α
δ−2(s+1)

∫

σk−s−1u
1

2s+1 δ+s+1ηθ−2(s+1).

(3.22)

The following two Yung’s inequalities are obvious:

R
s+1

s

n

α
δ−2(s+1)u

1
s
δ+s+1

=R2(s+1) n

α
δ−2(s+1)us+1

[

u
1
s
δ · R( s+1

s
−2(s+1)) n

α
δ
]

.R2(s+1) n

α
δ−2(s+1)us+1

[

u(2(s+1)−1)δ + R
s(2s+1)

s(2s+1)−1 ( s+1
s

−2(s+1)) n

α
δ
]

=R2(s+1) n

α
δ−2(s+1)u(2(s+1)−1)δ+s+1 + R

n

α
δ−2(s+1)us+1,

(3.23)

R
2(s+1)
2s+1

n

α
δ−2(s+1)u

1
2s+1 δ+s+1

=R2(s+1) n

α
δ−2(s+1)us+1

[

u
1

2s+1δ · R(
2(s+1)
2s+1 −2(s+1)) n

α
δ
]

.R2(s+1) n

α
δ−2(s+1)us+1

[

u(2(s+1)−1)δ + R−(2s+1) n

α
δ
]

=R2(s+1) n

α
δ−2(s+1)u(2(s+1)−1)δ+s+1 + R

n

α
δ−2(s+1)us+1.

(3.24)

Hence by using (3.23) and (3.24) to the last two terms of (3.22), we can deduce:

Ws .

∫

σk−s−1|∇u|2(s+1)u−δ−s−1ηθ

+ R2(s+1) n

α
δ−2(s+1)

∫

σk−s−1u
(2(s+1)−1)δ+s+1ηθ−2(s+1)

+ R
n

α
δ−2(s+1)

∫

σk−s−1u
s+1ηθ−2(s+1)

=Bs+1 + Vs+1 + Ws+1.

(3.25)



NONEXISTENCE RESULTS FOR HESSIAN INEQUALITY 221

This is just (3.21) and lemma 3.3 is proved.

Using (3.17) and (3.21) alternatively we deduce immediately

(3.26) Vs .

k
∑

i=s+1

Bi + Wk

for s = 1, 2, · · · , k − 1. Especially, for s = 1 we have:

(3.27) R
2n

α
δ−2

∫

σk−1u
δ+1ηθ−2 = V1 .

k
∑

i=2

Bi + Wk.

Submitting this into (3.16) yields

(3.28) R
n

α
δ|E1| .

k
∑

i=1

Bi + Wk.

Now we choose δ ∈ (0, 1) , then (3.10) is still valid and bs > 0. Hence (3.28) and
(3.10) show that

(3.29) R
n

α
δ|E1| . Wk +

1

R2k

∫

u−δ+kηθ−2k,

i.e.

(3.30) |E1| . R−2k

∫

ukηθ−2k + R−n

α
δ−2k

∫

u−δ+kηθ−2k.

Next, by Hölder inequality we have

R−2k

∫

ukηθ−2k ≤R−2k
(

∫

uαηθ
)

k

α

(

∫

ηθ−2α
)

α−k

α

.R
α−k

α
(n− 2kα

α−k
)
(

∫

uαηθ
)

k

α

(3.31)

and

R−n

α
δ−2k

∫

u−δ+kηθ−2k ≤R− n

α
δ−2k

(

∫

uαηθ
)

k−δ

α
(

∫

ηθ−2k α

α−k+δ

)

α−k+δ

α

.R
α−k

α
(n− 2kα

α−k
)
(

∫

uαηθ
)

k−δ

α .

(3.32)

Since α = k∗, i.e. n− 2kα
α−k

= 0, inserting (3.31) and (3.32) into (3.30) we can see

(3.33) |E1| .
(

∫

uαηθ
)

k

α +
(

∫

uαηθ
)

k−δ

α .
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Recall the definition of ”Es”, all the integrations in (3.33) are taken over the
domain U := supp∇η = {R < |x| < 2R}. Hence combining (3.15) with (3.33) we can
get:

(3.34) k

∫

Rn

σkηθ .
(

∫

U

uαηθ
)

k

α +
(

∫

U

uαηθ
)

k−δ

α .

Combining this with (3.4) we have

(3.35)

∫

Rn

uαηθ .
(

∫

U

uαηθ
)

k

α +
(

∫

U

uαηθ
)

k−δ

α .

Since 0 < k
α
, k−δ

α
< 1, (3.35) shows that

(3.36)

∫

Rn

uαηθ ≤ constant < ∞.

This implies

(3.37)

∫

U

uαηθ → 0 as R → +∞.

Return to (3.35) again, we deduce

(3.38)

∫

Rn

uαηθ → 0 as R → +∞.

This is a contradiction, and hence the proof of Theorem 1.1 goes to the end.

4. Proof of Theorem 1.4. We can get Theorem 1.4 by the similar process
as in the proof of Theorem 1.1 in the last section combining with the argument of
approximation. In fact, let u > 0 be a solution of (1.1) in Φk. Then by Proposition 1.2,
we may assume {−uj} be a decreasing sequence of negative functions in Φk(B2R) ∩
C2(B2R), which converges to −u in B2R for any given R > 0. Then (3.10) will also
be valid for uj for all j, namely, we have

(4.1) k

∫

σk(−D2uj)u
−δ
j ηθ .

1

R2k

∫

u−δ+k
j ηθ−2k.

Now for case (i)-(iii), first we see that u−δ ≤ u−δ
j by our choices of δ, and hence

(4.2) k

∫

σk(−D2uj)u
−δηθ .

1

R2k

∫

u−δ+k
j ηθ−2k.

When j → ∞, (4.2) will converges to, by Proposition 1.2,1.3,

(4.3) k

∫

σk(−D2u)u−δηθ .
1

R2k

∫

u−δ+kηθ−2k.
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Then by the inequality (1.1) and the arbitrariness of R, we can get contradiction as
before.

For case (iv), we see that (3.34) is also valid for uj for all j. Then by a similar
argument we can get the result as desired, and hence the proof of Theorem 1.4 is
completed.
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