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COMPLETENESS OF EIGENFUNCTIONS OF STURM–LIOUVILLE

PROBLEMS WITH TRANSMISSION CONDITIONS∗

AIPING WANG† , JIONG SUN§‡ , XIAOLING HAO§, AND SIQIN YAO§

Abstract. In this paper, we investigate a class of Sturm-Liouville problems with eigenparameter-
dependent boundary conditions and transmission conditions at an interior point. A self-adjoint linear
operator A is defined in a suitable Hilbert space H such that the eigenvalues of such a problem
coincide with those of A. We show that the operator A has only point spectrum, the eigenvalues of
the problem are algebraically simple, and the eigenfunctions of A are complete in H.
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Introduction. The Sturm-Liouville theory plays an important role in solving
many problems in mathematical physics. It is an active area of research in pure and
applied mathematics. In recent years, there has been a growing interest in Sturm-
Liouville problems (SLP’s) with eigenparameter-dependent boundary conditions, i.e.,
the eigenparameter appears not only in the differential equations of the SLP’s but also
in the boundary conditions of the problems [6, 10, 11, 16]. There is a vast amount of
literature on this subject (see [1, 2, 3, 4, 5, 8, 12, 14], etc.). Moreover, some boundary
value problems which may have discontinuities in the solution or its derivative at an
interior point c are also studied. Conditions are imposed on the interior point c and
such conditions involve left and right limits of solutions and their derivatives at c and
are often called “transmission conditions” or “interface conditions”. These problems
often arise in varied assortment of physical transfer problems.

In this paper, we consider a class of SLP’s with eigenparameter-dependent bound-
ary conditions and transmission conditions, i.e., study regular Sturm-Liouville equa-
tion

lu := −(a(x)u′(x))′ + q(x)u(x) = λu(x) on I, (0.1)

where I = [−1, 0)∪(0, 1], a(x) = a1
2 for x ∈ [−1, 0) and a(x) = a2

2 for x ∈ (0, 1], a1, a2

are nonzero real constants, q(x) ∈ L1(I, R), and λ ∈ C is the so-called eigenparameter;
with the boundary condition

l1u := α1u(−1) + α2u
′(−1) = 0, (0.2)

the eigenparameter-dependent boundary condition

l2u := λ(β′
1u(1) − β′

2u
′(1)) + β1u(1) − β2u

′(1) = 0, (0.3)
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and the transmission conditions

l3u := u(0+)− α3u(0−)− β3u
′(0−) = 0, (0.4)

l4u := u′(0+) − α4u(0−) − β4u
′(0−) = 0, (0.5)

where the coefficients αi, βi, β
′
j(i = 1, · · · , 4, j = 1, 2) are real numbers. Throughout

this paper, we assume that

θ =

∣∣∣∣
α3 β3

α4 β4

∣∣∣∣ > 0, ρ =

∣∣∣∣
β′

1 β1

β′
2 β2

∣∣∣∣ > 0,

and α2
1 + α2

2 6= 0.

Such research is motivated by the theory of heat and mass transfer, various physi-
cal transfer problems (see [10, 13]), vibrating string problems when the string is loaded
additionally with point masses(see[17]). Also, some problems with transmission con-
ditions arise in thermal conduction problems for a thin laminated plate (i.e., a plate
composed by materials with different characteristics piled in the thickness) [18]. In
this class of problems, transmission conditions across the interfaces should be added
since the plate is laminated. The study of the structure of the solution in the match-
ing region of the layer with the basis solution in the plate leads to consideration of an
eigenvalue problem for a second-order differential operator with piecewise continuous
coefficients and transmission conditions.

SLP’s with transmission conditions have been studied by many authors. In liter-
ature [1, 5, 14], Mukhtarov et al. gave asymptotic formulas for eigenvalues and the
corresponding eigenfunctions for these problems. In [9], the complete descriptions of
self-adjoint boundary conditions of the Schrödinger operator with δ(x) or δ′(x) in-
teraction are given. Adjoint and self-adjoint boundary value problems with interface
conditions have been studied by Zettl in [20]. Such problems with point interactions
are also studied in [7], etc. In this paper, we also deal with this class of problems by
means of that method used by Binding et al. in [2]. We consider a linear operator A,
which is defined in a suitable Hilbert space H such that the eigenvalues of such a prob-
lem coincide with those of A, and prove A is a self-adjoint operator. We get that the
operator A has only point spectrum, the eigenvalues of the problem are algebraically
simple, and the eigenfunctions of A are complete in H , i.e. the eigenfunctions form
an orthogonal basis. Note that each eigenfunction of A consists of an eigenfunction
of the problem and a real number.

In Section 1, a self-adjoint linear operator A is defined in a suitable Hilbert space
H such that the eigenvalues of the problem (0.1)–(0.5) coincide with those of A.
In Section 2, we prove that the eigenvalues of the problem are algebraically simple.
Finally, in Section 3, we prove that the operator A has only point spectrum, and the
eigenfunctions of A are complete in H , they form an orthogonal basis.

1. An operator formulation. The relation between a symmetric linear oper-
ator A defined in a suitable Hilbert space H and the problem (0.1)–(0.5) has been
introduced in [14]. Here, we repeat the definition and prove that the operator A is
self-adjoint, not only symmetric.

We define the inner product in L2(I) as

〈f, g〉1 =
1

a2
1

∫ 0

−1

f1g1 +
1

a2
2θ

∫ 1

0

f2g2, ∀f, g ∈ L2(I),
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where f1(x) = f(x)|[−1,0), f2(x) = f(x)|(0,1]. It is easy to verify that (L2(I), 〈·, ·〉1) is
a Hilbert space. For simplicity, it is denoted by H1.

The inner product in H := H1 ⊕ C is defined by

〈F, G〉 = 〈f, g〉1 +
1

ρθ
hk

for

F = (f(x), h), G = (g(x), k) ∈ H,

where f, g ∈ H1, h, k ∈ C.

We define the operator A in H as follows:

D(A) ={(f(x), h) ∈ H
∣∣f1, f

′
1 ∈ ACloc((−1, 0)), f2, f

′
2 ∈ ACloc((0, 1)),

lf ∈ H1, l1f = l3f = l4f = 0, h = β′
1f(1) − β′

2f
′(1)},

AF = (lf,−(β1f(1) − β2f
′(1))) for F = (f, β′

1f(1) − β′
2f

′(1)) ∈ D(A).

Note that by our assumption on q(x) and Theorem 3.2 in [19], for each (f, h) ∈ D(A),
f1, f ′

1 are continuous on [−1, 0], and f2, f ′
2 are continuous on [0, 1]. For simplicity, for

(f, h) ∈ D(A), denote

N(f) = β1f(1) − β2f
′(1), N ′(f) = β′

1f(1) − β′
2f

′(1).

So, we can study the problem (0.1)–(0.5) in H by considering the operator equation
AF = λF. Obviously, we have

Lemma 1.1. The eigenvalues of the boundary value problem (0.1)–(0.5) coincide

with those of A, and its eigenfunctions are the first components of the corresponding

eigenfunctions of A.

Lemma 1.2. The domain D(A) is dense in H.

Proof. Suppose that F ∈ H is orthogonal to all G ∈ D(A) with respect to the

inner product 〈·, ·〉, where F = (f(x), h), G = (g(x), k). Let C̃∞
0 denote the set of

functions

φ(x) =

{
ϕ1(x), x ∈ [−1, 0);
ϕ2(x), x ∈ (0, 1],

where ϕ1(x) ∈ C∞
0 [−1, 0) and ϕ2(x) ∈ C∞

0 (0, 1]. Since C̃∞
0 ⊕ 0 ⊂ D(A) (0 ∈ C), any

U = (u(x), 0) ∈ C̃∞
0 ⊕ 0 is orthogonal to F , namely,

〈F, U〉 =
1

a2
1

∫ 0

−1

f(x)u(x)dx +
1

a2
2θ

∫ 1

0

f(x)u(x)dx = 〈f, u〉1.

This implies that f(x) is orthogonal to C̃∞
0 in H1 and hence vanishes. So, 〈F, G〉 =

1
ρθ

hk̄ = 0. Thus h = 0 since k = N ′(g) can be chosen arbitrarily. So, F = (0, 0).

Hence, D(A) is dense in H .

Theorem 1.1. The linear operator A is self-adjoint in H.
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Proof. For all F, G ∈ D(A), (0.2) implies that f(−1)ḡ′(−1) − f ′(−1)ḡ(−1) = 0,
and direct calculations using (0.4) and (0.5) then yield that

〈AF, G〉 =〈F, AG〉 + W (f, ḡ; 0−) − W (f, ḡ;−1) +
1

θ
W (f, ḡ; 1) −

1

θ
W (f, ḡ; 0+)

−
1

ρ θ
(N(f)N ′(g) − N ′(f)N(g)) = 〈F, AG〉,

where W (f, g; x) denotes the Wronskians f(x)g′(x) − f ′(x)g(x). So, A is symmetric.
It remains to show that if 〈AF, W 〉 = 〈F, U〉 for all F = (f, N ′(f)) ∈ D(A),

then W ∈ D(A) and AW = U (where W = (w(x), h) and U = (u(x), k)), i.e., (i)
w1, w

′
1 ∈ ACloc((−1, 0)), w2, w

′
2 ∈ ACloc((0, 1)) and lw ∈ H1; (ii) h = N ′(w) =

β′
1w(1) − β′

2w
′(1); (iii)l1w = l3w = l4w = 0; (iv) u(x) = lw; (v) k = −N(w) =

−β1w(1) + β2w
′(1).

For all F ∈ C̃∞
0 ⊕ 0 ⊂ D(A), we obtain

1

a2
1

∫ 0

−1

(lf)w̄ dx +
1

a2
2θ

∫ 1

0

(lf)w̄ dx =
1

a2
1

∫ 0

−1

fūdx +
1

a2
2θ

∫ 1

0

fūdx,

namely, 〈lf, w〉1 = 〈f, u〉1. Hence, by standard Sturm–Liouville theory, (i) and (iv)
hold. By (iv), the equation 〈AF, W 〉 = 〈F, U〉, ∀F ∈ D(A), becomes

1

a2
1

∫ 0

−1

(lf)w̄ dx +
1

a2
2θ

∫ 1

0

(lf)w̄ dx +
−N(f)h̄

ρ θ

=
1

a2
1

∫ 0

−1

f(lw̄) dx +
1

a2
2θ

∫ 1

0

f(lw̄) dx +
N ′(f)k̄

ρ θ
.

So,

〈lf, w〉1 = 〈f, lw〉1 +
N ′(f)k̄

ρ θ
+

N(f)h̄

ρ θ
.

However,

〈lf, w〉1 =
1

a2
1

∫ 0

−1

(−a2
1f

′′ + q(x)f)w̄ dx +
1

a2
2θ

∫ 1

0

(−a2
2f

′′ + q(x)f)w̄ dx

=
1

a2
1

∫ 0

−1

f(lw̄) dx +
1

a2
2θ

∫ 1

0

f(lw̄) dx + W (f, w̄; 0−) − W (f, w̄;−1)+

1

θ
W (f, w̄; 1) −

1

θ
W (f, w̄; 0+)

=〈f, lw〉1 + W (f, w̄; 0−)− W (f, w̄;−1) +
1

θ
W (f, w̄; 1) −

1

θ
W (f, w̄; 0+).

Hence,

N ′(f)k̄

ρ θ
+

N(f)h̄

ρ θ
=W (f, w̄; 0−)− W (f, w̄;−1) +

1

θ
W (f, w̄; 1) −

1

θ
W (f, w̄; 0+)

=(f(0−)w̄′(0−) − f ′(0−)w̄(0−)) − (f(−1)w̄′(−1) − f ′(−1)w̄(−1))

+
1

θ
(f(1)w̄′(1) − f ′(1)w̄(1)) −

1

θ
(f(0+)w̄′(0+) − f ′(0+)w̄(0+)).

(1.6)
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By Naimark’s Patching Lemma [15], there is an F ∈ D(A) such that f(−1) =
f ′(−1) = f(0−) = f ′(0−) = f(0+) = f ′(0+) = 0, f(1) = β′

2 and f ′(1) = β′
1.

For such an F , N ′(f) = 0. Thus, from (1.6) we obtain h = β′
1w(1)−β′

2w
′(1). Namely,

(ii) holds. Similarly, one proves (v).
It remains to show that (iii) holds. Choose F ∈ D(A) so that f(1) = f ′(1) =

f(0−) = f ′(0−) = 0, f(−1) = α2 and f ′(−1) = −α1. Then N ′(f) = N(f) = 0.
From (1.6), we get α1w(−1) + α2w

′(−1) = 0. Let F ∈ D(A) satisfies f(1) = f ′(1) =
f(−1) = f ′(−1) = f(0+) = 0, f(0−) = −β3, f ′(0−) = α3 and f ′(0+) = θ. Then
N(f) = N ′(f) = 0. By (1.6), we have w(0+) = α3w(0−) + β3w

′(0−). Finally, choose
F ∈ D(A) so that f(1) = f ′(1) = f(−1) = f ′(−1) = f ′(0+) = 0, f(0−) = β4,

f ′(0−) = −α4 and f(0+) = θ. Then N(f) = N ′(f) = 0. From (1.6), we obtain
w′(0+) = α4w(0−) + β4w

′(0−).

Corollary 1.1. The eigenvalues of (0.1)–(0.5) are real, and if λ1 and λ2 are

two different eigenvalues of (0.1)–(0.5), then the corresponding eigenfunctions f(x)
and g(x) are orthogonal in the sense of

1

a2
1

∫ 0

−1

fg +
1

a2
2θ

∫ 1

0

fg +
1

ρ θ
(β′

1f(1) − β′
2f

′(1))(β′
1g(1) − β′

2g
′(1)) = 0.

2. The simplicity of eigenvalues. We consider the initial-value problem
{

−a2
1u

′′(x) + q(x)u(x) = λu(x), x ∈ [−1, 0],
u(−1) = α2, u′(−1) = −α1.

(2.7)

In terms of existence and uniqueness in ordinary differential equation theory, the
initial-value problem has a unique solution ϕ1(x, λ) for every λ ∈ C.

Similarly, the initial-value problem





−a2
2u

′′(x) + q(x)u(x) = λu(x), x ∈ [0, 1],
u(0) = α3ϕ1(0, λ) + β3ϕ

′
1(0, λ),

u′(0) = α4ϕ1(0, λ) + β4ϕ
′
1(0, λ)

(2.8)

has a unique solution ϕ2(x, λ). For each given x ∈ [−1, 0], ϕ1(x, λ) is an entire
function of λ; for every x ∈ [0, 1], ϕ2(x, λ) is an entire function of λ. We define a
function φ(x, λ) on x ∈ [−1, 0) ∪ (0, 1] by

φ(x, λ) =

{
ϕ1(x, λ), x ∈ [−1, 0);
ϕ2(x, λ), x ∈ (0, 1].

Obviously, φ(x, λ) satisfies (0.1), (0.2), (0.4) and (0.5)
As same as above, we see that the initial-value problem

{
−a2

1u
′′(x) + q(x)u(x) = λu(x), x ∈ [0, 1],

u(1) = β2
′λ + β2, u′(1) = β1

′λ + β1.
(2.9)

has a unique solution χ2(x, λ) which is an entire function of the parameter λ for each
fixed x ∈ [0, 1]. And the initial-value problem





−a2
2u

′′(x) + q(x)u(x) = λu(x), x ∈ [−1, 0],
α3u(0) + β3u

′(0) = χ2(0, λ),
α4u(0) + β4u

′(0) = χ′
2(0, λ)

(2.10)
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has a unique solution χ1(x, λ) which is an entire function of the parameter λ for each
fixed x ∈ [−1, 0].

we define the function

χ(x, λ) =

{
χ1(x, λ), x ∈ [−1, 0);
χ2(x, λ), x ∈ (0, 1],

which satisfies (0.1), (0.3), (0.4) and (0.5).

The Wronskian W (ϕi(x, λ), χi(x, λ)) (i = 1, 2) are independent of the variable x.
Let wi(λ) = W (ϕi(x, λ), χi(x, λ)) and w(λ) = w1(λ), and then we obtain w2(λ) =
θw(λ).

Lemma 2.1. The eigenvalues of (0.1)–(0.5) coincide with the zeros of the entire

function w(λ).

Proof. Let w(λ0) = 0. Then W (ϕ1(x, λ0), χ1(x, λ0)) = 0 for all x ∈ [−1, 0].
Consequently, the functions ϕ1(x, λ0) and χ1(x, λ0) are linearly dependent; i.e.,

χ1(x, λ0) = k1ϕ1(x, λ0), x ∈ [−1, 0]

for some k1 6= 0. By(2.7), from this equality we have

α1χ(−1, λ0) + α2χ
′(−1, λ0) = α1χ1(−1, λ0) + α2χ

′
1(−1, λ0)

= k1(α1ϕ1(−1, λ0) + α2ϕ
′
1(−1, λ0))

= k1(α1α2 + α2(−α1)) = 0

and so χ(x, λ0) satisfies the first boundary condition. Recalling that the solution
χ(x, λ0) also satisfies the other boundary condition (0.3) and both transmission con-
ditions (0.4) and (0.5) we conclude the χ(x, λ0) is an eigenfunction of (0.1)-(0.5); i.e.,
λ0 is an eigenvalue. Thus, each zero of w(λ) is an eigenvalue.

Now let u0(x) be any eigenfunction corresponding to eigenvalue λ0, but w(λ0) 6= 0.
Then the function ϕ1, χ1 and ϕ2, χ2 would be linearly independent on [−1, 0] and
[0, 1], respectively. Therefore u0(x) might be represented in the form

u0(x) =

{
c1ϕ1(x, λ0) + c2χ1(x, λ0), x ∈ [−1, 0);
c3ϕ2(x, λ0) + c4χ2(x, λ0), x ∈ (0, 1],

where at least one of the constants c1, c2, c3, c4 where not zero.

Applying the transmission conditions (0.4) and (0.5) to this representation of
u0(x) and taking into account the initial conditions (2.8) and (2.10) for ϕ2(x, λ0), and
χ1(x, λ0) respectively, we have

{
(c1 − c3)ϕ1(0, λ0) + (c2 − c4)χ1(0, λ0) = 0,

(c1 − c3)ϕ
′
1(0, λ0) + (c2 − c4)χ

′
1(0, λ0) = 0.

Since

w(λ0) =

∣∣∣∣
ϕ1(0, λ0) χ1(0, λ0)
ϕ′

1(0, λ0) χ′
1(0, λ0)

∣∣∣∣ 6= 0,

we have c1 − c3 = 0, c2 − c4 = 0.
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Now, applying the boundary conditions (0.2) and (0.3) to this representation and
taking into account the initial conditions (2.7) and (2.9) for ϕ1(x, λ0) and χ2(x, λ0),
respectively, we have

l1(u0(x)) = c1l1(φ(x, λ0)) + c2l1(χ(x, λ0))

= c1(α1ϕ1(−1, λ0) + α2ϕ
′
1(−1, λ0)) + c2(α1χ1(−1, λ0) + α2χ

′
1(−1, λ0))

= c1(α1α2 + α2(−α1)) + c2(−ϕ′
1(−1, λ0)χ1(−1, λ0) + ϕ1(−1, λ0)χ

′
1(−1, λ0))

= c2w1(λ0) = 0.

and

l2(u0(x))

= (λ0β
′
1 + β1)(c3ϕ2(1, λ0) + c4χ2(1, λ0)) − (λ0β

′
2 + β2)(c3ϕ

′
2(1, λ0) + c4χ

′
2(1, λ0))

= 0

we have

c3[(λ0β
′
1 + β1)ϕ2(1, λ0) − (λ0β

′
2 + β2)ϕ

′
2(1, λ0)]

+ c4[(λ0β
′
1 + β1)χ2(1, λ0) − (λ0β

′
2 + β2)χ

′
2(1, λ0)]

= c3(χ
′
2(1, λ0)ϕ2(1, λ0) − χ2(1, λ0)ϕ

′
2(1, λ0))

+ c4[(λ0β
′
1 + β1)(λ0β

′
2 + β2) − (λ0β

′
2 + β2)(λ0β

′
1 + β1)]

= c3w2(λ0) = 0.

Consequently, c2 = 0 and c3 = 0, since w1(λ0) 6= 0 and w2(λ0) 6= 0 by assumption.
Thus we get he contradiction c1 = c2 = c3 = c4 = 0, which completes the proof.

Definition 2.1. The algebraic multiplicity of an eigenvalue λ of (0.1)–(0.5)
is the order of it as a root of the characteristic equation w(λ) = 0. The geometric

multiplicity of an eigenvalue λ is the dimension of its eigenspace, i.e., the number of

its linearly independent eigenfunctions.

For convenience, set φ = φ(x, λ), χ
1λ

=
∂χ

1

∂λ
, χ′

1λ
=

∂χ′

1

∂λ
, etc.

Theorem 2.1. The eigenvalues of (0.1)–(0.5) are algebraically simple.

Proof. Let λ = u + iv. We differentiate the equation lχ = λχ with respect to λ,
and have

lχ
λ

= λχ
λ

+ χ.

By integration by parts, we get

〈lχ
λ
, φ〉1 − 〈χ

λ
, lφ〉1 = (χ

1λ
ϕ̄′

1 − χ′
1λ

ϕ̄1)
∣∣0
−1

+
1

θ
(χ

2λ
ϕ̄′

2 − χ′
2λ

ϕ̄2)
∣∣1
0
. (2.11)

Substituting lχ
λ

= λχ
λ

+ χ and lφ = λφ into the left side of (2.11), we have

λ〈χ
λ
, φ〉1 + 〈χ, φ〉1 − 〈χ

λ
, λφ〉1 = 〈χ, φ〉1 + 2iv〈χ

λ
, φ〉1.
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Moreover,

(χ
1λ

ϕ̄′
1 − χ′

1λ
ϕ̄1)

∣∣0
−1

+
1

θ
(χ

2λ
ϕ̄′

2 − χ′
2λ

ϕ̄2)
∣∣1
0

=χ
1λ

(0, λ)ϕ̄′
1(0, λ) − χ′

1λ
(0, λ)ϕ̄1(0, λ) − χ

1λ
(−1, λ)ϕ̄′

1(−1, λ) + χ′
1λ

(−1, λ)ϕ̄1(−1, λ)

+
1

θ
(χ

2λ
(1, λ)ϕ̄′

2(1, λ) − χ′
2λ

(1, λ)ϕ̄2(1, λ)) −
1

θ
(χ

2λ
(0, λ)ϕ̄′

2(0, λ) − χ′
2λ

(0, λ)ϕ̄2(0, λ))

=α1χ1λ
(−1, λ) + α2χ

′
1λ

(−1, λ) + χ
1λ

(0, λ)ϕ̄′
1(0, λ) − χ′

1λ
(0, λ)ϕ̄1(0, λ)+

1

θ
(β′

2ϕ̄
′
2(1, λ) − β′

1ϕ̄2(1, λ)) −
1

θ
(χ

2λ
(0, λ)ϕ̄′

2(0, λ) − χ′
2λ

(0, λ)ϕ̄2(0, λ))

=α1χ1λ
(−1, λ) + α2χ

′
1λ

(−1, λ) +
1

θ
(β′

2ϕ̄
′
2(1, λ) − β′

1ϕ̄2(1, λ)).

Note that

w′(λ) = α2χ
′
1λ

(−1, λ) + α1χ1λ
(−1, λ).

So, (2.11) becomes

w′(λ) = 〈χ, φ〉1 + 2iv〈χ
λ
, φ〉1 −

1

θ
(β′

2ϕ̄
′
2(1, λ) − β′

1ϕ̄2(1, λ)). (2.12)

Now we consider the simplicity of the eigenvalues of (0.1)–(0.5). Let µ be arbitrary
zero of w(λ). By Corollary 1.1, µ is real. Since

w(µ) =

∣∣∣∣
ϕ1(x, µ) χ1(x, µ)
ϕ′

1(x, µ) χ′
1(x, µ)

∣∣∣∣ = 0,

we have ϕ1(x, µ) = c1χ1(x, µ) (c1 6= 0) and ϕ2(x, µ) = c2χ2(x, µ) (c2 6= 0), where
c1, c2 ∈ C. From

ϕ2(0, µ) = c1(α3χ1(0, µ) + β3χ
′
1(0, µ)) = c1χ2(0, µ),

ϕ′
2(0, µ) = c1(α4χ1(0, µ) + β4χ

′
1(0, µ)) = c1χ

′
2(0, µ),

we get c1 = c2 6= 0. Thus, simple calculations using (2.12) and the initial values of χ2

at x = 1 give

w′(µ) = c̄1(
1

a2
1

∫ 0

−1

∣∣χ1(x, µ)
∣∣2 dx +

1

a2
2θ

∫ 1

0

∣∣χ2(x, µ)
∣∣2 dx +

ρ

θ
).

Note that ρ > 0 , θ > 0 and c̄1 6= 0, so w′(µ) 6= 0. Hence, the algebraic multiplicity of
µ is one. By Lemma 2.1, the proof is completed.

Corollary 2.1. All eigenvalues of (0.1)-(0.5) are also geometrically simple.

Proof. By Lemma 1.1 and Theorem 2.1, we know that the eigenvalues of A are
algebraically simple. For the eigenvalue λ, the problem (0.1)–(0.5) has unique solusion
by existence and uniqueness theory of ordinary differential equation. Therefore the
conclusion holds.
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3. Completeness of eigenfunctions.

Theorem 3.1. The operator A has only point-spectrum, i.e., σ(A) = σ
p
(A).

Proof. It suffices to prove that if γ is not an eigenvalue of A, then γ ∈ ρ(A). Since
A is self-adjoint, we only consider real γ. We investigate the equation (A − γ)Y =
F ∈ H, where F = (f, h).

Consider the following problem






ly − γy = f, x ∈ I,

α1y(−1) + α2y
′(−1) = 0;

y(0+) = α3y(0−) + β3y
′(0−);

y′(0+) = α4y(0−) + β4y
′(0−).

(3.13)

Let u(x) be the solution of the equation lu − γu = 0 satisfying

u(−1) = α2, u′(−1) = −α1;

u(0+) = α3u(0−) + β3u
′(0−);

u′(0+) = α4u(0−) + β4u
′(0−).

In fact

u(x) =

{
u1(x), x ∈ [−1, 0);
u2(x), x ∈ (0, 1],

where u1(x) is the unique solution of the initial-value problem

{
−a2

1u
′′ + q(x)u = γu, x ∈ [−1, 0];

u(−1) = α2, u′(−1) = −α1,
(3.14)

and u2(x) is the unique solution of the problem





−a2
2u

′′ + q(x)u = γu, x ∈ [0, 1];
u2(0) = α3u1(0) + β3u

′
1(0);

u′
2(0) = α4u1(0) + β4u

′
1(0).

Let

w(x) =

{
w1(x), x ∈ [−1, 0),
w2(x), x ∈ (0, 1]

be a solution of lw − γw = f satisfying

α1w(−1) + α2w
′(−1) = 0;

w(0+) = α3w(0−) + β3w
′(0−);

w′(0+) = α4w(0−) + β4w
′(0−).
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Then (3.13) has the general solution

y(x) =

{
du1 + w1, x ∈ [−1, 0);
du2 + w2, x ∈ (0, 1],

(3.15)

where d ∈ C.
By the fact that γ is not an eigenvalue of (0.1)–(0.5), we have

γ(β′
1u2(1) − β′

2u
′
2(1)) + (β1u2(1) − β2u

′
2(1)) 6= 0. (3.16)

The second component of (A − γ)Y = F involves the equation

−N(y) − γN ′(y) = h,

namely,

β2y
′(1) − β1y(1) − γ(β′

1y(1) − β′
2y

′(1)) = h. (3.17)

Substituting (3.15) into (3.17), we get

(β2u
′
2(1) − β1u2(1) + γβ′

2u
′
2(1) − γβ′

1u2(1))d

= h + β1w2(1) − β2w
′
2(1) + γβ′

1w2(1) − γβ′
2w

′
2(1).

In view of (3.16), we know that d is uniquely solvable. Hence, y is uniquely deter-
mined.

The above arguments show that (A − γI)−1 is defined on all of H . We obtain
that (A − γI)−1 is bounded by Theorem 1.1 and the closed graph theorem. Thus,
γ ∈ ρ(A). Hence, σ(A) = σp(A).

Using similar method of [1], we have the following Lemma:

Lemma 3.1. The eigenvalues of the boundary value problem (0.1)–(0.5) are

bounded below, and they are countably infinite and can cluster only at ∞.

Proof. Without loss generalization we assume β′
2 6= 0, and a(x) = 1. And

ϕ1(x, λ), ϕ2(x, λ), χ1(x, λ), χ2(x, λ) are defined in (2.7)-(2.10). First we prove the
following conclusion :

χ1(x, λ) = −s3β′
2

β3

ρ
sin s cos[s(−x)] + O(|s|2e|t|(−x)),

χ′
1(x, λ) = −s4β′

2
β3

ρ
sin s sin[s(−x)] + O(|s|3e|t|(−x)).

(3.18)

as |λ| → ∞, where λ = s2, s = σ + it, β′
2 6= 0. These asymptotic formulae uniformly

hold for x.
By the method of variation of parameters, we have χ2(x, λ) satisfies the following

integral equations

χ2(x, λ) =(β2 + s2β′
2) cos[s(1 − x)] +

1

s
(β1 + s2β′

1) sin[s(1 − x)] (3.19)

+
1

s

∫ 1

x

sin[s(y − x)]q(y)χ2(y, λ)dy.

Let χ2(x, λ) = |s|2e|t|(1−x)F2(x, λ), then

F2(x, λ) =[(β2 + s2β′
2) cos[s(1 − x)] +

1

s
(β1 + s2β′

1) sin[s(1 − x)]]|s|−2e−|t|(1−x)

+
1

s

∫ 1

x

sin[s(y − x)]e−|t|(y−x)q(y)F2(y, λ)dy.
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Denote µ2(λ) := max0≤x≤1|F2(x, λ)|, from the last equation we get that

µ2(λ) ≤ |β′
2| +

M2

|s|

for some M2 > 0. Consequently µ(λ) = O(1) as |λ| → ∞, we have

χ2(x, λ) = |s|2e|t|(1−x)F2(x, λ) = O(|s|2e|t|(1−x)). (3.20)

Substituting(3.20)in(3.19), we get

χ2(x, λ) = (β2 + s2β′
2) cos[s(1 − x)] +

1

s
(β1 + s2β′

1) sin[s(1 − x)]

+
1

s

∫ 1

x

sin[s(y − x)]q(y)O(|s|2e|t|(1−y))dy

= s2β′
2 cos[s(1 − x)] + O(|s|e|t|(1−x)).

So the asymptotic approximation of χ2(x, λ) is

χ2(x, λ) = s2β′
2 cos[s(1 − x)] + O(|s|e|t|(1−x)). (3.21)

We differentiate the equation (3.21) with respect to λ, and substituting(3.20), we have

χ′
2λ(x) = s(β2 + s2β′

2) sin[s(1 − x)] − (β1 + s2β′
1) cos[s(1 − x)]

−

∫ 1

x

cos[s(y − x)]q(y)O(|s|2e|t|(1−y))dy

= s3β′
2 sin[s(1 − x)] + O(|s|2e|t|(1−x)),

consequently we have

χ′
2λ = s3β′

2 sin[s(1 − x)] + O(|s|2e|t|(1−x)), (3.22)

Now we study asymptotic approximations of χ1(x, λ)and χ′
1(x, λ). By the method

of variation of parameters, we have χ1(x, λ) satisfies the following integral equation:

χ1(x, λ) =
1

θ
(β4χ2(0, λ) − β3χ

′
2(0, λ)) cos[s(−x)]

+
1

θs
(−α4χ2(0, λ) + α3χ

′
2(0, λ)) sin[s(−x)]

+
1

s

∫ 0

x

sin[s(y − x)]q(y)χ1λ(y)dy.

Substituting(3.21), (3.22) in above equation, then we get

χ1(x, λ) = − s3β′
2

β3

θ
sin s cos[s(−x)] (3.23)

+ s2β′
2(

β4

θ
cos s cos[s(−x)] +

α3

θ
sin s sin[s(−x)])

− sβ′
2

α4

θ
cos s sin[s(−x)]

+
1

s

∫ 0

x

sin[s(y − x)]q(y)χ1(y, λ)dy + O(|s|2e|t|).
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Let χ1(x, λ) = |s|3e|t|(−x)F1(x, λ), then

F1(x, λ) =[−s3β′
2

β3

θ
sin s cos[s(−x)]

+ s2β′
2(

β4

θ
cos s cos[s(0 − x)] +

α3

θ
sin s sin[s(−x)])

− sβ′
2

α4

θ
cos s sin[s(−x)]]|s|−3e−|t|(−x)

+
1

s

∫ 0

x

sin[s(y − x)]e−|t|(−x)q(y)F1(y, λ)dy + O(|s|−1e|t|).

Denote µ1(λ) = max−1≤x≤0|F1(x, λ)|, from the last equation we have that

µ1(λ) ≤ |β′
2

β3

θ
| +

M1

|s|

for some M1 > 0. Consequently µ1(λ) = O(1). So when |λ| → ∞, we have

χ1(x, λ) = O(|s|3e|t|(−x)). (3.24)

Substituting(3.24) in (3.23), we get

χ1(x, λ) = −s3β′
2

β3

θ
sin s cos[s(−x)]

+ s2β′
2(

β4

θ
cos s cos[s(−x)] +

α3

θ
sin s sin[s(−x)])

− sβ′
2

α4

θ
cos s sin[s(−x)]

+
1

s

∫ 0

x

sin[s(y − x)]q(y)O(|s|3e|t|(−y))dy + O(|s|2e|t|)

= −s3β′
2

β3

θ
sin s cos[s(−x)] + O(|s|2e|t|(−x)),

consequently we have

χ1(x, λ) = −s3β′
2

β3

θ
sin s cos[s(−x)] + O(|s|2e|t|(−x)). (3.25)

We differentiate the equation (3.25) with respect to λ, and substituting (3.24), we get

χ′
1(x, λ) = −s4β′

2

β3

θ
sin s sin[s(−x)] + O(|s|3e|t|(−x)).

By Lemma 2.1, we know the eigenvalues of (0.1)-(0.5)coincide with the zeros of the
following entire function

w(λ) =

∣∣∣∣
α2 χ1(−1, λ)
−α1 χ′

1(−1, λ)

∣∣∣∣

= −s4β′
2α2

β3

θ
sin s sin s + O(|s|3e|t|).

Denote w∗(λ) = −s4β′
2α2

β3

θ
sin s sin s , α(λ) = O(|s|3e|t|) . Let the closed curve

Γn = Γ′
n ∪ Γ′′

n(n = 1, 2, · · · ) on plane of λ :

Γ′
n =

{
λ = s2 = (σ + it)2

∣∣ |σ| = (n + 1
2 )π, 0 ≤ t ≤ n

}
,
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Γ′′
n =

{
λ = s2 = (σ + it)2

∣∣ |σ| ≤ (n + 1
2 )π, t = n

}
.

On Γ′
n, we have

| sin s| =
1

2
|ie−t + iet| =

et

2
[1 + e−2t] >

e|t|

4
,

On Γ′′
n, we have

| sin s| =
1

2
|eiσe−n − eiσen|

=
en

2
|1 − e2iσe−2n] >

en

4
.

Consequently,

|w∗(λ)|Γn
= | − s4β′

2α2
β3

θ
sin s sin s|Γn

>
n

4
e|t||s3β′

2α2
β3

θ
sin s|.

So when n is big enough, we have

|w∗(λ)|Γn
> |α(λ)|Γn

.

By Rouche Theorem w(λ) and w∗(λ) have the same number of zeros interior of Γn.
Yet w∗(λ) have n + 1 zeros interior of Γn as

0, π2, (2π)2, · · · , (nπ)2.

Therefor w(λ) have and only have n + 1 zeros interior of Γn. On the other hand,
let s = it, viz.λ = −t2, then we can prove |w∗(λ)| > |α(λ)|, as |t| → ∞, as same as
above, it shows w(−t2) 6= 0 when t is big enough. Consequently, w(λ) only have finite
negative zeros.

When β′
2 = 0, or a(x) 6= 1, we have similar asymptotic formulae, the results hold.

By Theorem 1.1, Theorem 3.1, Lemma 3.1 and the spectral theorem for compact
operator, we obtain the following theorem.

Theorem 3.2. The all eigenfunctions of the problem (0.1)–(0.5), augmented

to eigenfunctions of A, form an orthonormal basis in H, i.e., the eigenfunctions of

A are complete in H. If let {Φn = (φn(x), N ′(φn)); n ∈ N} be all orthonormal

eigenfunctions of A, where {φn(x); n ∈ N} are eigenfunctions of (0.1)–(0.5), then for

all F ∈ H, F =
∑∞

n=1〈F, Φn〉Φn.

Proof. For every δ ∈ R\σp(A), we know that if λ be an eigenvalue of A− δI, and
V a corresponding eigenfunction, then 1

λ
is an eigenvalue of (A − δI)−1, and V is a

corresponding eigenfunction, the converse is also true. By Lemma 3.1 we may assume
that

|λ1 − δ| ≤ |λ2 − δ| ≤ · · · ≤ |λn − δ| ≤ · · · → ∞.

Let {µn; n ∈ N} be the sequence of eigenvalues of (A − δI)−1. Then, µn = 1
λn−δ

and

|µ1| ≥ |µ2| ≥ · · · ≥ |µn| ≥ · · · → 0.
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Note that, 0 is not an eigenvalue of (A − δI)−1, the dimension of the eigenspace is
finite, we obtain the operator A has compact resolvent, i.e., for each δ ∈ R \ σ(A) =
R \ σp(A), (A− δI)−1 is compact on H . By the spectral theory of compact operator,
the conclusion hold.

The authors thank referees for their very useful comments and suggestions.
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[11] R. Mennicken and M. Möller, Non-self-adjoint boundary eigenvalue problem, North-Holland
Mathematics Studies, 192, North-Hplland Publishing Co., Amsterdan, 2003.

[12] O. Sh. Mukhtarov, Discontinuous boundary-value problem with spectral parameter in bound-

ary conditions, Turkish Journal of Mathematics, 18 (1994), pp. 183–192.
[13] O. Sh. Mukhtarov and S. Yakubov, Problems for differential equations with transmission

conditions, Applicable Analysis, 81 (2002), pp. 1033–1064.
[14] O. Sh. Mukhtarov and M. Kadakal, Spectral properties of of one Sturm-Liouville type

problem with discoutinous weight, (Russian) Sibirsk. MAth. Zh., 46:4 (2005), pp. 860–785;
translation in Siberian Math. J., 46:4 (2005), pp. 681–694.

[15] M. A. Naimark, Linear differential operators, part II, Harrap, London, 1968.
[16] M. L. Rasulov, Matheds of contour integration. Series in Applied Mathematics and Mechanics,

Vol.3, North-Holland Publishing Co. Amsterdam; Interscience Publishers John Wiley &
Sons, Inc. New york 1967.

[17] A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Dover Publica-
tions, 1990.

[18] I. Titeux and Y. Yakubov, Completeness of root functions for thermal conduction in a

strip with piecewise continuous coefficients, Math. Models Methods Appl. Sc., 7:7 (1997),
pp. 1035–1050.

[19] J. Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Math. 1258,
Springer-Verlag, Berline, 1987.

[20] A. Zettl, Adjoint and self-adjoint boundary value problems with interface conditions, SIAM
J. Applied Math., 16 (1968), pp. 851–859.


