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SPECTRAL ANALYSIS OF BIRTH–AND–DEATH PROCESSES
WITH AND WITHOUT KILLING VIA PERTURBATION∗

MORITZ SIMON† AND GALLIANO VALENT‡

Abstract. A population process with constant birth rates λn ≡ λ and death rates µn ≡ µ is
supplied with strong linear killing rates γn = γn for n ∈ N0. The process is analyzed in view of its
spectral representation: The underlying orthogonal polynomials are seen to be Lommel polynomials
Rn,ν(x), considered as functions in their parameter ν. Regarding the Stieltjes transform of their
orthogonality measure, we recognize that it is purely discrete and given by the zeros of a Bessel
function Jν−1(x) in its order. Qualitative and quantitative results for the zeros are worked out via
methods from the theory of Bessel functions and from regular perturbation theory. The same ideas
are applied successfully to study the spectrum for associated Meixner polynomials, corresponding to
linear birth and death rates.
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1. Introduction: New killing structures. The study of birth–and–death
processes with killing was initiated by S. Karlin and S. Tavaré in [8]. A general
treatment of such structures from a spectral point-of-view has recently been worked
out by E. vanDoorn and A. Zeifman in [16]: Given birth rates λn, death rates µn and
killing rates γn at any state n ∈ N0, the transition probabilities of the process X after
time t ≥ 0 may be expressed as

P
(
X (t+ t0) = m

∣∣X (t0) = n
)
≡ Pnm(t) =

1

πn

∫ ∞

0

e−xtFn(x)Fm(x) dπ(x)

∀n,m ∈ N0. (1)

Here {Fn | n ∈ N0} is a set of orthogonal polynomials (OP) with a corresponding
probability measure π supported on [0,∞). They satisfy the recurrence relation

µn+1Fn+1(x) + λn−1Fn−1(x) = (λn + µn + γn − x)Fn(x) ∀n ∈ N0, (2)

initialized by F0 = 1 and F−1 = 0, while the coefficients πn are explicitly given as

πn =
∏n

k=1
λk−1

µk
for n ∈ N0. Despite this somewhat easy access, up to now there have

only been two (nontrivial) processes with killing whose spectral representation could
be obtained explicitly:

1. The linear process with killing, having rates λn = λ(n + b), µn = µn and
γn = γn for n ∈ N0, was solved in [8]; but its solution leads back to the
well-known Meixner polynomials.

2. The special quadratic process with rate structure λn = 2(n + 1)(2n + 1),
µn = 2n(2n+ 1) and γn = 2a(2n+ 1)2 was considered in [5]; it leads to new
OP of an elliptic-like character.
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An extension of the linear process towards associated Meixner polynomials —
actually just adding an emigration rate while the killing is dropped — will be con-
sidered towards the end of the article. We find it interesting to start from the pure
immigration–emigration process with constant rates λn ≡ λ and µn ≡ µ. Within
this framework, there are three different types of killing to study:

• One might consider weak killing, for instance with reciprocal rates γn = b
n+a

for n ∈ N0. Anyway, in the latter situation we are only led back to Pollaczek’s
OP.

• Another possibility would be a process with asymptotically constant killing,
for instance supplied with q-linear rates γn = c(1 − qn) where q ∈ (0, 1).
The polynomials arising here were thoroughly described by M.E.H. Ismail
and F.Mulla in [4].

• Finally, one could encounter strong killing — the easiest example consists
in linear rates γn = γn. Quadratic or higher powers of n could also be
considered, with increasing difficulty.

The primary aim of our article is the discussion of that third problem, where
we focus on linear killing. The main surprise is that the corresponding OP are the
Lommel polynomials Rn,ν(x), considered as OP in their parameter ν; their spectral
measure happens to be purely discrete, as was first recognized by D.Maki via chain
sequence methods in [11].

The paper is organized as follows: In Section 2 we detect the OP in the spectral
representation (1)(2) of the birth–and–death process with killing under the aforemen-
tioned rate structure

λn ≡ λ, µn ≡ µ and γn = γn ∀n ∈ N0. (3)

In Section 3 we introduce the Stieltjes transform of their orthogonality measure, which
appears to be purely discrete. In Section 4 we discuss results of J. Coulomb on the
location of the mass points, which we improve in several respects. Use of Kato-
Rellich theory allows to establish the uniform convergence of perturbation series in
Section 5, while detailed perturbative formulas are determined in Section 6. Sections
7 through 9 are devoted to the same problems for the discrete spectrum of associated
Meixner polynomials, for which little was known so far; the convergence results are
more limited here.

2. Underlying Lommel polynomials. We consider the rates (3) under the
natural positivity constraints λ, µ, γ > 0. The notational change

Fn(x) ≡
(

λ
µ

)n
2 Fn(ν; ρ) ∀n ∈ N0 where ν :=

λ+ µ− x

γ
, ρ :=

√
λµ

γ
(4)

brings the three-term recurrence relation (2) for the OP to the more tractable form

(ν + n)Fn(ν; ρ) = ρ
[
Fn+1(ν; ρ) + Fn−1(ν; ρ)

]
∀n ∈ N,

F0(ν; ρ) = 1, F1(ν; ρ) =
ν

ρ
. (5)

Since γ → 0 for ̺ → ∞, i. e. the killing vanishes, we must recover Chebyshev
polynomials in that limit: Indeed the limiting relations are explicitly given by

lim
ρ→∞

Fn(ρx; ρ) = Tn(x) and lim
ρ→∞

Fn(2ρx; ρ) = Un(x) ∀n ∈ N0. (6)
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Thereby the polynomials Fn appear as generalizations of the Chebyshev polynomials
of first and second kind. Comparing (5) with (2) on p. 299 of [17], we then recognize
that the OP under consideration are nothing but Lommel polynomials — the
crucial relation

Fn(x) ≡
(

λ
µ

)n
2 Fn(ν; ρ) =

(
λ
µ

)n
2 Rn,ν(2ρ) ∀n ∈ N0

classifies the birth–death polynomials through the definitions in (4). There remains
the question about the orthogonality measure ψ of those polynomials. Anyway, for
the moment let us make some remarks on the nature of the Lommel polynomials
under consideration:

1. The functions Fn(ν; ρ) are in fact polynomials of degree n both in the variable
ν and in their inverse parameter ρ−1. This follows easily from

Fn(ν; ρ) = Rn,ν(2ρ) =

⌊n
2
⌋∑

k=0

(−1)k

(
n− k

k

)
ρ2k−n(ν + k)n−2k ∀n ∈ N0,

which is a direct consequence of relation (3) on p. 296 in [17].

2. The functions Rn,ν(x) satisfy a fourth-order ODE in their variable x ≡ 2ρ;
see p. 297 in [17].

3. The Lommel polynomials are of hypergeometric type, since they can also
be written as

Fn(ν; ρ) = Rn,ν(2ρ) =
(ν)n

ρn 2F3

(
−n

2 ,−n+1
2

ν,−n, 1 − n− ν

∣∣∣∣−4ρ2

)
∀n ∈ N0;

compare (5) on p. 297 of [17]. In a similar way, the relation

Gn(ν; ρ) =
(ν + 1)n

ρn 2F3

(
1−n

2 ,−n
2

ν + 1, 1 − n, 1 − n− ν

∣∣∣∣−4ρ2

)
∀n ∈ N0

expresses the “numerator polynomials” Gn(ν; ρ) := R∗
n,ν(2ρ) in hyperge-

ometric form.

4. With x ≡ 2ρ the three-term recurrence relation (5) may be rewritten as

Rn+1,ν(x) +Rn−1,ν(x) =
2(n+ ν)

x
Rn,ν(x) ∀n ∈ N,

which is nothing but recursion (2) on p. 299 of [17]. This relation demonstrates
a different manner of showing the polynomial character both in ν and in x−1.
The Lommel polynomials Rn,ν(x) are therefore not really polynomials in their
variable x, but only in its inverse x−1.

5. Due to (6) the Lommel polynomials generalize Chebyshev polynomials of first
and second kind in the following sense: Rn,ρx(2ρ) → Tn(x) and Rn,2ρx(2ρ) →
Un(x) as ρ→ ∞.

3. Asymptotics and Stieltjes transform. Hurwitz’ limit relation on p. 302
of [17] allows to derive the asymptotics

Fn(ν; ρ) ∼ Γ(n+ ν)

ρn+ν−1
Jν−1(2ρ), Gn(ν; ρ) ∼ Γ(n+ ν)

ρn+ν
Jν(2ρ) ∀ ν ∈ C \ R (7)
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as n → ∞ for the OP and their numerator polynomials. Now uniqueness of the
corresponding spectral measure ψ may be guaranteed as follows — other methods
also work.

Proposition 1. The Hamburger moment problem corresponding to the OP
Fn(ν; ρ) from (5) is determinate.

Proof. Let us first observe that the polynomials Fn(ν; ρ) are orthonormal, which
follows from their recurrence (5). Theorem 2.9 in [13] then asserts that the diver-
gence of the series

∑∞
n=0 |Fn(ν; ρ)|2 for one complex ν ∈ C \ R is sufficient for the

determinacy of the Hamburger moment problem. Take ν = i: Coulomb’s results
from the next section show that Ji−1(2ρ) cannot vanish. By virtue of the polyno-
mial asymptotics (7), we thereby have |Fn(i; ρ)|2 ∼ const · ρ2(1−n)|Γ(n + i)|2 with
const ≡ |Ji−1(2ρ)|2 > 0, which in turn is readily seen to diverge as n → ∞ upon use
of Stirling’s formula.

As the moment problem is determinate, one may use (7) together with Markov’s
theorem [15] to get the Stieltjes transform of the probability measure ψ for the OP
Fn(ν; ρ), which is already known [17].

Proposition 2. The Stieltjes transform Ψ of the orthogonality measure ψ for
the OP Fn(ν; ρ) is given by

Ψ(ν) :=

∫

R

dψ(t)

ν − t

!
= lim

n→∞

Gn(ν; ρ)

Fn(ν; ρ)
=

ρ−νJν(2ρ)

ρ1−νJν−1(2ρ)
∀ ν ∈ C \ R,

which is a ratio of two entire (modified) Bessel functions. This special shape implies
that for arbitrary values ρ > 0 the spectrum supp(ψ) must be discrete, purely consisting
of isolated mass points.

It is interesting to note the following continued fraction expansion of the Stielt-
jes transform:

ρΨ(ν) =
Jν(2ρ)

Jν−1(2ρ)
≡ 1 / ν

ρ
− 1 / ν+1

ρ
− 1 / ν+2

ρ
− . . . (8)

The finite form of the continued fraction (8) is given on p. 153 of [17]; it provides yet
another interesting recursive property of Bessel functions, namely

Jν(2ρ)

Jν−1(2ρ)
≡ 1 / ν

ρ
− 1 / ν+1

ρ
− 1 / ν+2

ρ
− . . .− 1 / ν+m

ρ
− Jν+m+1(2ρ)

Jν+m(2ρ)
∀m ∈ N.

It has been noted in [11] that the above continued fraction was already illustrating
the orthogonality of the Lommel polynomials in the variable ν, being the order of the
associated Bessel functions. Therein D.Maki mainly utilized some general methods
to show that the spectrum in ν must be discrete, not paying attention to the fact
that it indeed consists of the zeros of an entire function, which immediately implies
his conclusion. We shall investigate this remarkable property more closely during the
following sections. Notice also that the Lommel polynomials Rn,ν(x) are orthogonal
in the inverse variable x−1, while the orthogonality measure is purely discrete and
given by the inverse zeros of the Bessel function Jν−1(x) in its variable; this was first
mentioned in the rather general setting of [3].
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4. General spectral results. Proposition 2 demonstrates that the mass points
x̃n in the spectrum supp(ψ) := {x̃n | n ∈ N0} of our population process correspond to
zeros νn of the Bessel function Jν−1(2ρ) for ρ > 0 via the relation x̃n = λ+ µ− γνn

for n ∈ N0. Their equation can be written as

ρ1−νJν−1(2ρ) ≡ Jν−1(r) =

∞∑

k=0

(−r)k

k! Γ(k + ν)
= 0 where r = ρ2. (9)

It shows that the true parameter of the problem is r = ρ2. Regarding the roots νn(r)
as functions of the positive variable r, the following results have been proved in [2]:

Theorem [Coulomb]. For every r > 0 the roots νn(r) of equation (9) are
real, simple and asymptotic to the negative integers −n as n → ∞. The functions
νn : (0,∞) → R are continuous and increasing.

Notice here that the entire functions J from (9) satisfy the symmetry relation
J−p(r) = (−1)pJp(r) for p ∈ N0 and r ∈ C. An easy consequence can be derived as
follows.

Proposition 3. Let us denote by rn for n ∈ N the well-known zeros of J1(r).
Then, given that r ∈ (rn, rn+1) for some n ∈ N, the order zeros ν0(r) > . . . > νn(r)
will be strictly positive, the rest being strictly negative.

Proof. In the limiting case r = 0, the zeros correspond to poles of the gamma
function Γ(ν), which are νn(0) = −n for n ∈ N0. From Coulomb’s results we now that
the νn(r) are continuously increasing with r > 0. So, when r starts increasing from
zero, the largest zero ν0(r) must always be strictly positive. Let us then consider
the second zero ν1(r): it starts from ν1(0) = −1 and increases. It will reach zero
when J−1 ≡ −J1 will vanish, that is for r = r1; so for r ∈ (0, r1) we will only
have one strictly positive mass, namely ν0(r). For r > r1 we will have two strictly
positive masses ν0(r) and ν1(r) up to r = r2, where a third positive mass ν2(r) must
accordingly appear. Recursively we get the stated criterion.

Zeros of the Bessel function in its variable have already been determined to high
accuracy (see e. g. [17]); the numerical values of the first few rn are therefore given
by

r1 ≈ 3.67049, r2 ≈ 12.30461, r3 ≈ 25.87486, r4 ≈ 44.38019, r5 ≈ 67.82041.

Notice that only a finite number of positive zeros is possible from Proposition 3. This
agrees with Horn’s uniform asymptotic expansion from p. 225 of [17], explicitly

Jν(2ρ) = eν(1−log ν
ρ
)− 1

2
log ν

[
1√
2π

+ O
(
ν−1

)]
for ν ≫ ρ,

which also shows that Jν(2ρ) as a function of ν > 0 is eventually positive; apparently
the same holds for the shifted function Jν−1(2ρ). Let us next prove some bounds for
the spectrum.

Proposition 4. Given small r ∈ (0, r1), we have the uniform inclusion νn(r) ∈
(−n, 1 − n) for all n ∈ N0; here again r1 ≈ 3.67049 denotes the initial zero of our
deformed Bessel function J1.
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Proof. Remember that the functions νn(r) for n ∈ N0 are the zeros of

ρ1−νJν−1(2ρ) ≡ Jν−1(r) =
∑

k≥0

(−r)k

k! Γ(k + ν)
,

which is an entire function of ν ∈ C. Let us rather consider the function

H(ν; r) := Γ(ν)Jν−1(r) = 1 +

∞∑

k=1

(−r)k

k! (ν)k

. (10)

It is meromorphic with simple poles −n for n ∈ N0, induced by the Gamma function;
but since the Gamma function never vanishes, both functions H(ν; r) and Jν−1(r)
have exactly the same zeros. Let us now insert into (10) the partial fraction expansion

1

(ν)k

=

k∑

p=1

(−1)p−1

(p− 1)!(k − p)!

1

ν + p− 1
∀ k ∈ N,

and interchange the order of the summations to receive the new writing

H(ν; r) = 1 +

∞∑

p=1

(−1)p−1

(p− 1)!(ν + p− 1)

∞∑

k=p

(−r)k

k!(k − p)!
.

Using the notation defined in (9), due to symmetry we first have

H(ν; r) = 1 −
∞∑

p=1

Jp(r)

(p− 1)!(ν + p− 1)
;

the crucial Bessel-theoretic identity

∞∑

p=0

Jp(r)

p!
≡ 1 ∀ r ∈ C (11)

then allows us to express the function H in the uniform sum

H(ν; r) =

∞∑

p=0

Jp(r)

p!

ν − 1

ν + p− 1
.

Let us now take the variable ν to be real. The derivative of H off the poles is merely

H ′(ν; r) =

∞∑

p=1

Jp(r)

(p− 1)!

1

(ν + p− 1)2
, (12)

and for r ∈ (0, r1) all Bessel terms Jp(r) for p ∈ N are strictly positive; hence the
derivative is strictly positive and H(ν; r) is strictly increasing on any open interval
of its real definition range. For any fixed r ∈ (0, r1) this implies (intermediate value
theorem!) that there is a respective unique zero νn(r) in each interval (−n, 1 − n)
for n ∈ N, while the largest zero satisfies ν0(r) ∈ (0, 1) according to the mentioned
identity (11), which after all necessitates the evaluation H(1; r) = 1.
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5. Convergent perturbation theory: Kato–Rellich. Before we delve into
perturbative computations, let us first see under which condition on r = ρ2 absolute
convergence of the “Rayleigh–Schrödinger series” νn ≡ νn(r) is assured. Denote
by {en | n ∈ N0} the canonical basis of the Hilbert space ℓ2(N0). Then the recurrence
(5) of the OP Fn(ν; ρ) corresponds to a self-adjoint Jacobi operator H ≡ H(ρ),
working in ℓ2(N0) through its action on the basis

Hen = ρen+1 − nen + ρen−1 ∀n ∈ N0,

while we interpret e−1 ≡ 0. Apparently, H can be understood as a combination
H(ρ) ≡ H0 + ρV of the two operators

H0en := −nen and V en := en+1 + en−1 ∀n ∈ N0. (13)

Here H0 is an unbounded diagonal operator with pure point spectrum νn(0) ≡ −n
for n ∈ N0, which is perturbed by the bounded operator V . In the terminology of
[12], the perturbation V is relatively compact, hence the perturbed operator H(ρ)
has compact resolvent for all ρ ∈ C. Since V is a bounded operator, the combination
H(ρ) = H0+ρV constitutes a so-called analytic operator family, being self-adjoint
for ρ ∈ R. Theorem 3.9 in Chapter 7 of [9] thereby implies that the spectrum of H(ρ)
is still a pure point spectrum, only consisting of analytic perturbations νn(ρ) of the
eigenvalues νn(0) = −n. The following question remains: When are the perturbed
eigenvalues νn(ρ), which are of course nothing but the zeros of Jν−1(2ρ), expressible in
terms of their perturbation series, which are nothing but the Rayleigh–Schrödinger
series from general perturbation theory? The upcoming auxiliary result is due to
T.Kato and F.Rellich; see e. g. Theorems XII.8/11 in [12].

Lemma [Kato–Rellich]. Let H0 and V be operators in some Hilbert space
with common domain D and assume ‖V φ‖ ≤ A‖H0φ‖ + B‖φ‖ holds for φ ∈ D,
where A,B ≥ 0 are suitable constants. Moreover suppose H0 be self-adjoint with
nondegenerate isolated eigenvalues νn(0) for n ∈ N0. Denote

δn := dist
(
νn(0), σ(H0)

)
and ρn :=

δn

2A(|νn(0)| + δn) + 2B
∀n ∈ N0.

Then the corresponding perturbed eigenvalues νn(ρ) of the analytic operator family
H(ρ) = H0 + ρV are analytic functions in the respective discs |ρ| < ρn for n ∈ N0,
where their Rayleigh–Schrödinger perturbation series (i. e. their Taylor–McLaurin
expansions!) converge absolutely.

In Chapter 5 of the PhD thesis [14], the above Kato–Rellich lemma has been
exploited to determine convergence ranges for killing-dominated birth–and–death
processes: there a diagonal killing operator is perturbed by a tridiagonal birth–
death operator. Especially, given polynomial rates as in our case, Theorem 5.5 of [14]
gives some applicable convergence criteria. In our situation (13) the killing polyno-
mial is linear, strictly dominating the constant birth and death rates. Since H0 is
diagonal here, the perturbation series for shifted operators H + a ≡ H0 + a + ρV

with arbitrary a ≥ 0 converge in identical ranges. This freedom in the choice of the
shift a can be utilized to prove that the perturbation series νn ≡ νn(r) constitute
entire functions in r = ρ2, since the diagonal domination is strict — being of higher
degree than the tridiagonal perturbation (see the proof of Theorem 5.5 in [14]).

Proposition 5. The Taylor–McLaurin expansions — i. e. Rayleigh–Schrödinger
perturbation series — of the zeros νn ≡ νn(r) converge absolutely for r ∈ C, which
makes the extended functions νn : C → C entire.
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6. Some perturbative computations. This section is devoted to perturbative
computations of the zeros νn = νn(r) for n ∈ N0. According to Proposition 5, the
convergence of the involved series expansions happens for any complex r = ρ2 ∈ C;
for values r ≡ λµ

γ2 > 0 the model corresponds to an immigration–emigration process

with linear killing under no further restrictions. In any case, the roots ν ≡ νn of (9)
are to be found.

In the marginal case r = 0, the order zeros of the Bessel function evidently
correspond to poles of the gamma function Γ(ν), which are given by νn(0) = −n for
n ∈ N0, as we have already noted. Formulas for the first few perturbative corrections
(compare Corollary 4.3 and Example 5.8 in [14]) motivate a certain structure for the
perturbation. The upcoming result coincides with Theorem 6.7 of [14], but we present
its formulation and proof in a slightly different manner, which seems more natural.

Proposition 6. For r ∈ C the roots ν = νn of (9) may be expanded as νn(r) =
−n+ rn+1

∑∞
j=0 Ej

n r
j , where the successive perturbative corrections Ej

n satisfy the
recursive relations

k∑

j=0

Ej
n

(n− k + j)!

(k − j)!
=

(−1)k

k!(n+ 1 + k)!
when k ≤ n. (14)

For k > n the complexity of those relations increases drastically, due to additional
perturbative terms.

Proof. Fix n ∈ N0 in what follows; then multiply (9) by Γ(n + ν + 1) and split
the sum into two separate parts. This leads to the following equivalent relation:

n∑

k=0

(−r)k Γ(n+ ν + 1)

k! Γ(k + ν)
+

∞∑

k=n+1

(−r)k Γ(n+ ν + 1)

k! Γ(k + ν)
= 0 (15)

Using the convenient notation ζ ≡ ν+n, we could rewrite the respective gamma ratios

as Pochhammer factorials, namely Γ(n+ν+1)
Γ(k+ν) = (ζ + k − n)n+1−k if k ≤ n, whereas

Γ(k+ν)
Γ(n+ν+1) = (ζ + 1)k−n−1 for k ≥ n + 1. Changing the index of the infinite sum to

l = k − n − 1 and multiplying everything by (−1)n+1, we can formulate (15) in the
rather clear and accessible form

ζ

n∑

k=0

rk(1 − ζ)n−k

k!
= rn+1

∞∑

l=0

(−r)l

(n+ 1 + l)! (ζ + 1)l

, (16)

which tells us that for the respective zero νn ≡ ζ−n we should receive a perturbative
series of the shape ζ = rn+1

∑∞
k=0 Ej

n r
j , where the successive corrections Ej

n are to be
determined. In order to achieve this, insert the formal perturbative series for ζ into
(16) and divide by rn+1:

∞∑

j=0

Ej
n r

j

[
n∑

k=0

rk(n− k)!

k!
+ O

(
rn+1

)
]

=
∞∑

l=0

(−r)l

(n+ 1 + l)!

[
1

l!
+ O

(
rn+1

)]
(17)

Comparison of the coefficients corresponding to the respective powers of r leads to the
wanted recursion (14) for k ≤ n. For k > n the complexity of the relations increases
to some extent, since then the otherwise negligible terms O(rn+1) in equation (17)
must be involved — this gives further E–terms.
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Paying attention to those additional E–terms, one gets the explicit numerical
values

E1
0 = −1

2
and E2

0 =
7

12
, E2

1 =
15

16

for the lowest-order corrections, while the recursion (14) yields the eventual formulas

E0
n =

1

n!(n+ 1)!
∀n ≥ 0,

E1
n =

1

n!(n+ 2)!

(
−2 − 2

n

)
∀n ≥ 1,

E2
n =

1

n!(n+ 3)!

[
2 +

5

n
− 6

n2(n− 1)

]
∀n ≥ 2.

We could go to higher orders if needed. One recognition is rather appealing: from the
above formulas we get the impression that there should be uniform asymptotics for
the corrections as n→ ∞.

Indeed, such asymptotics may be established — in Corollary 6.8 of [14] the inves-
tigation was started. However, we are now able to derive more detailed results: The
suggested scaling ej

n := n!(n + j + 1)! Ej
n of the corrections for n, j ∈ N0 transforms

(14) into the recurrence relation

k∑

j=0

ej
n

(k − j)!
Πj

n,k =
(−1)k

k!
where Πj

n,k :=
(n+ 1)k+1

(n+ 1 + j − k)k+1
. (18)

In the limit n → ∞, in view of the convergence Πj
n,k → 1, the new relation (18)

becomes

k∑

j=0

xj

(k − j)!
= ck where xj := lim

n→∞
ej

n, ck :=
(−1)k

k!
∀ j, k ∈ N0. (19)

Before we come back to (18), let us prove a lemma that is useful for solving such
a recursion:

Lemma [G]. For generic values ck equation (19) can be solved for the xj, using
the generating functions

G(x; z) =
∞∑

j=0

xj z
j and G(c; z) =

∞∑

k=0

ck z
k

in view of their functional relation G(x; z) = e−z G(c; z). Our values are “generic”
in a certain sense!

Proof. Multiply the relation (19) by zk and sum over all k ∈ N0; this gives the
generating function G(c; z) on the right-hand side. On the left-hand side we reverse
the summations

G(c; z) =

∞∑

k=0

zk

k∑

j=0

xj

(k − j)!
=

∞∑

j=0

xj z
j

∞∑

k=j

zk−j

(k − j)!
= G(x; z) ez
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to end up with the functional relation. The upcoming proposition clarifies the term
“generic”.

Proposition 7. For j ≤ n the scaled corrections may be expanded into the
asymptotic series

ej
n =

(−2)j

j!

[
1 +

j(j + 3)

4N
+
j(j + 3)

4N2
+
j(j − 1)(j − 2)(j + 5)

32N2
+ O

(
N−3

)]
(20)

with N ≡ n + 1, whereby the “true” corrections are determined through ej
n ≡ n!(n+

j + 1)! Ej
n.

Proof. Let us prove that the scaled corrections indeed admit a uniform asymptotic
expansion of the form ej

n =
∑∞

m=0 ε
j
mN−m with N ≡ n+ 1. In order to see this, first

notice that one certainly has an expansion of the form Πj
n,k = 1+

∑∞
l=1 γ

j
l,k N

−l with
suitable coefficients; the initial coefficients obey

γ
j
1,k = (k+ 1)K, γ

j
2,k = γ

j
1,k +

1

2
(k+ 1)(k+ 2)K(K − 1) where K ≡ k− j, (21)

but of course more could be computed. Insert both expansions into (18) to have the
link

n∑

j=0

ε
j
0

(k − j)!
=

(−1)k

k!
,

n∑

j=0

εj
m

(k − j)!
= −

n∑

j=0

1

(k − j)!

∑

s+t=m−1

γ
j
s,k ε

j
t ∀m ∈ N

for any k ∈ N0. Once we know ε
j
0 (easy task!), the following εj

m for m ∈ N are
uniquely determined. In view of the uniqueness of the solution of (18), we thereby get
the asymptotic series of its solution. The remaining task is to compute the generating
functions G(εm; z) ≡ ∑∞

j=0 ε
j
m zj stepwise, using the strategy of Lemma [G] in each

step. The initial coefficients (21) allow to achieve this for m ∈ {0, 1, 2} — one gets
after straightforward but tedious algebra

G(ε0; z) = e−2z, G(ε1; z) = z(z − 2)e−2z, G(ε2; z) = G(ε1; z) +
1

2
(z − 4)z3e−2z.

After expansion in powers of z, those generating functions eventually lead to the claim
(20).

7. Associated Meixner polynomials. The associated Meixner polynomials
correspond to a birth–and–death process without killing, whose birth and death
rates are fixed by the relations

λn = c(n+ γ + β), µn = n+ γ(1 − ηδn0) ∀n ≥ 0

where 0 < c < 1, γ + min{1, β} > 0. (22)

The additional parameter η ∈ {0, 1} in (22) obeys η = 0 for the standard associated
Meixner polynomials, whereas we have η = 1 for their “zero-related” partners. The
second case seems to be more adjusted to the modeling of populations because it
guarantees µ0 = 0, which means there can be no emigation when the population has
already died out. Anyway, we shall treat both cases.

In both cases η ∈ {0, 1} of (22), the Stieltjes transform for the measure of the OP
was computed in [6]: the spectrum is purely discrete and located at the zeros of the
entire function

f(x) :=
Γ(η − x)

Γ(−x)Γ(η + γ − x)
2F1

(
γ, 1 − β − x

η + γ − x

∣∣∣∣ c
)
.
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For γ = 0 we recover the Meixner polynomials with the discrete spectrum n ∈ N0.
(For more information about Meixner’s OP and their relation to linear birth–and–
death processes with killing let us refer the reader to [8] or Chapter 3 of [14].)
However, for γ 6= 0 very little is known about the spectrum. The ideas developed
for the Lommel spectrum will be shown to give some new insights into the associated
Meixner spectrum. Let us begin with a result similar to Proposition 4.

Proposition 8. The discrete spectrum for the associated Meixner OP consists
of mass points x̃n ≡ γ + η − νn with νn > νn+1 for n ∈ N0, while there appears an
additional mass at x̂ = 0 for η = 1; we set ν := γ + η − x. The decreasing numbers
νn are the roots of the hypergeometric function

F(ν) := 2F1

(
γ, 1 − β − x

η + γ − x

∣∣∣∣ c
)

≡
∞∑

k=0

ck(γ)k(ν − α)k

k! (ν)k

,

while we agree on α := β + γ + η − 1. If the two conditions

min{γ, α} ≥ 0 and max{γ, α} ≤ 1

hold simultaneously, then ν0 > 0 and the other roots obey the inclusion νn ∈ (−n, 1−n)
for n ∈ N.

Proof. The mentioned structure of the spectrum becomes clear from the special
shape of the entire function f . Now we try to detect the roots νn of F. Use of the
partial fraction expansion

(ν − α)k

(ν)k

=

k∑

p=1

(−1)p−1(1 − p− α)k

(p− 1)!(k − p)!

1

ν + p− 1
∀ k ∈ N

after reversing the summation order (as in the proof of Proposition 4) leads to

F(ν) = 1 +

∞∑

p=1

(−1)p−1

(p− 1)!(ν + p− 1)

∞∑

k=p

ck(γ)k(1 − p− α)k

k!(k − p)!
.

Next change the second summation index to l = k − p and use the factorial facts
(γ)l+p = (γ)p(γ + p)l as well as (1 − p− α)l+p = (−1)p (α)p(1 − α)l to end up with

F(ν) = 1 −
∞∑

p=1

cp (γ)p(α)p

p!(p− 1)!

1

ν + p− 1
2F1

(
p+ γ, 1 − α

p+ 1

∣∣∣∣ c
)
, (23)

which off the poles apparently has the derivative

F′(ν) =

∞∑

p=1

cp (γ)p(α)p

p!(p− 1)!

1

(ν + p− 1)2
2F1

(
p+ γ, 1 − α

p+ 1

∣∣∣∣ c
)
. (24)

Let us now discuss the conditions that ensure the positivity of (24): In order to guar-
antee positivity in front of the hypergeometric term, we need to fulfill the stricter pos-
itivity constraint min{γ, α} ≥ 0, which corresponds to the first condition. (Favard’s
positivity condition min{γ, α} > −1 from (22) is weaker!) The hypergeometric term
— expanded in its series — becomes positive under the additional constraint α ≤ 1.
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The alternative γ ≤ 1 can be obtained from a simple Euler transformation of the hy-
pergeometric term. Combining both alternatives, we end up with the second condition
max{γ, α} ≤ 1.

Now, given that the derivative (24) is purely positive, the function F must strictly
increase in every interval (−n, 1 − n) for n ∈ N between the poles. Continuity guar-
antees unique zeros νn ∈ (−n, 1 − n), while the existence of the largest zero ν0 > 0
follows from (23) in view of F(ν) → 1 as ν → ∞.

8. Kato–Rellich analysis. In order to apply the Kato–Rellich lemma from
Section 5, let us interpret the Jacobi operator from (22) as a perturbationH ≡ H0+ρV
of a diagonal operator H0, which we may still shift by some a ≥ 0. This cannot
be achieved in choosing the association parameter γ for the coupling constant ρ.
However, it seems that c might be a good choice, since this parameter also represents
the variable of the hypergeometric functions at hand. In fact, it is even better to
choose ρ ≡ √

c as coupling constant: then the operators H0 + a and V are given
through their action

(H0 + a)en ≡ (a+ µn)en and V en ≡ αnen+1 + ρ(n+ γ + β)en + αn−1en−1, (25)

where we abbreviate αn := −
√

(n+ γ + β)µn+1 for n ∈ N0. A suitable choice of the
shift a establishes the following result, despite of the fact that V still depends on the
parameter ρ.

Proposition 9. The perturbation series of the respective mass points x̃n ≡ γ +
η− νn(ρ) from Proposition 8 converge absolutely for n ∈ N0 whenever ρ ≡ √

c ∈ (0, 1)
is chosen such that

ρ < −1 +

√
1 +

1

2(n+ σ)
=

1

4n
+ O

(
n−2

)
with σ := (1 + γ)(1 + η) + max{1, β}.

There is no uniform Kato–Rellich bound under which we could guarantee con-
vergence for all νn ≡ νn(ρ).

Proof. Choose the shift a large enough, for instance a := γη + max{1, β}. Some
easy arguments using the triangle inequality — compare the proof of Theorem 5.5 in
[14] — establish that

‖V φ‖ ≤ (2 + ρ)
∥∥(H0 + a)φ

∥∥ whenever φ ≡
∞∑

n=0

φnen ∈ D(H0);

notice that both λn and |αn| are dominated by a+µn to understand this estimation —
in fact our shift a = γη+max{1, β} yields the minimal choice for uniform domination!
But this means that one can choose constants A := 2 + ρ and B ≡ 0 in the sense of
the Kato–Rellich lemma. Finally, as the respective unperturbed eigenvalues of H0 +a

due to (25) are indeed given by n+ σ − 1, one has uniform spectral distances δn ≡ 1.
Combination of those recognitions gives bounds

ρn =
1

2(2 + ρ)(n+ σ)
∀n ∈ N0

in the Kato–Rellich sense. So the sufficient convergence condition ρ < ρn yields a
quadratic inequality for ρ ≡ √

c ∈ (0, 1), whose solution in terms of the coupling
constant eventually proves the claim.
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One should remark at this point that such Kato–Rellich conditions for convergence
are often not at all necessary: Example 5.9 of [14] shows that there may exist a uniform
disc of convergence for the spectrum, even if the Kato–Rellich bounds are not uniform;
Example 5.10 even allows entire convergence! Nonetheless, it is quite profitable to
have sufficient estimations of the convergence ranges.

9. Further perturbative computations. Since hypergeometric series pos-
sess a similar structure as the Bessel functions, including Pochhammer factorials —
thereby Gamma functions — after all, the same ideas as in Section 6 may be used for
perturbative computations; we could therefore locate the discrete spectrum as follows:

Proposition 10. In their respective perturbative regimes of Proposition 9, the
mass points x̃n ≡ γ + η − νn for n ∈ N0 may be expanded in a perturbation series

νn ≡ −n+ (γ)n+1(α)n+1 cn+1
∞∑

j=0

Ej
n cj with c :=

c

1 − c
, (26)

where the perturbative corrections Ej
n are recursively given by

k∑

j=0

Ej
n

(n− k + j)! (γ)k−j(α)k−j

(k − j)!
=

(−1)k(n+ 1 + γ)k(n+ 1 + α)k

k!(n+ 1 + k)!
when k ≤ n.

(27)

Proof. Let us first denote ζ = n + ν for fixed n ∈ N0. A Pfaff transformation of
F yields

2F1

(
γ, α

ν

∣∣∣∣−c

)
= 0 with ν = γ+ η−x, α = β+γ+ η−1, c :=

c

1 − c
. (28)

All perturbative regimes of Proposition 9 indeed guarantee the necessary condition
|c| < 1, which we need in order to use the hypergeometric series; now split this
series into two pieces and multiply each piece by (−1)n+1(ν)n+1, moreover using some
factorial cancelations and the index change l = k − n − 1 for the infinite sum — in
apparent analogy to the proof of Proposition 7. Application of those operations on
equation (28) produces the equivalent relation

ζ

n∑

k=0

ck(γ)k(α)k(1 − ζ)n−k

k!
= (γ)n+1(α)n+1 cn+1

∞∑

l=0

(−c)l(n+ 1 + γ)l(n+ 1 + α)l

(n+ 1 + l)! (ζ + 1)l

,

(29)
which corresponds to (16) from the Lommel proof. The structure of (29) already
implies the expanded shape (26) with ζ ≡ (γ)n+1(α)n+1 cn+1

∑∞
j=0 Ej

n cj . The rest
works exactly as in the Lommel case: insert the expansion of ζ into (29) — this yields
a relation similar to (17). Comparison of the coefficients for the respective powers of
c then leads to the desired recursion (27); we skip the details.

In fact, the situation in Proposition 10 shows a great analogy to Proposition 6.
However, the recursion (27) has a more difficult shape this time, since it includes
additional factorials in α and γ. For this reason we could not yet establish as detailed
asymptotic treatments for the corrections as in Section 7. Finding a suitable “Lemma
[G]” will probably be the hardest task in the associated Meixner setting.
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