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BESSEL AND FLETT POTENTIALS ASSOCIATED WITH

DUNKL OPERATORS ON IRd∗

NÉJIB BEN SALEM† , ANIS EL GARNA† , AND SAMIR KALLEL†

Abstract. Analogous of Bessel and Flett potentials are defined and studied for the Dunkl
transform associated with a family of weighted functions that are invariant under a reflection group.
We show that the Dunkl-Bessel potentials, of positive order, can be represented by an integral
involving the k-heat transform and we give some applications of this result.

Also, we obtain an explicit inversion formula for the Dunkl-Flett potentials, which are interpreted
as negative fractional powers of a certain operator expressed in terms of the Dunkl-Laplacian.
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Introduction. In this paper we consider the harmonic analysis associated with
differential-difference operators Dj , j = 1, · · · , d, on IRd introduced by Dunkl [4] and
called in the literature Dunkl operators associated with some finite reflection groups.
These operators play an important role in pure Mathematics and Physics.

For a family of weighted functions hk, invariant under a reflection group, Dunkl
transform Fk is an extension of the ordinary Fourier transform which is an isometry
of L2(IRd, h2

k), the space of squared integrable functions with respect to the measure
h2

k(x)dx (see [6]). Fk is defined by

Fk(f)(x) = ch

∫

IRd

Ek(x,−iy)f(y)h2
k(y)dy, f ∈ L1(IRd, h2

k),

where the usual character e−i<x,y> is replaced by Ek(x,−iy) = Vk(e−i<x,.>)(y), Vk is
a positive linear operator and ch is a constant. Dunkl transform permits to introduce
the Dunkl translation operator, T k

y , y ∈ IRd, on L2(IRd, h2
k) defined by

Fk(T k
y f)(x) = Ek(y,−ix)Fk(f)(x), x ∈ IRd, and f ∈ L2(IRd, h2

k).

The explicit expression of T k
y f is known only in some special cases and it is not a

positive operator in general. Also, it generates a new convolution product structure
associated with Dunkl operators denoted here by ∗k.

In this work, we study the operatorGk
t , t > 0, called the k-heat transform, defined

on Lp(IRd, h2
k), p ∈ [1,+∞], by Gk

t f = F k
t ∗k f, t > 0, where F k

t is a solution of the

heat-equation for the k-Laplacian △k =
∑d

j=1 D2
j . And we give some of its properties.

Next, as in the ordinary case, we define the Dunkl-Bessel potential J k
α , of positive

order α, of a sufficiently smooth function via the Dunkl transform as Fk(J k
α f)(x) =

(1 + ‖x‖2)−
α
2 Fk(f)(x). To be more precise, J k

α can be written as a convolution
operator given by

J k
α f = bkα ∗k f, where Fk(bkα)(x) = (1 + ‖x‖2)−

α
2 .
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We show that when f ∈ Lp(IRd, h2
k), J k

α f can be represented by an integral of a
very simple form involving the k-heat transform of f . This representation permits
to extend the definition of the Dunkl-Bessel potential of ordre α first to a class of
k-temperatures i.e. solutions of the heat equation for the k-Laplacian △k on the
upper-half space IRd × IR+, then to the space of tempered distributions on IRd.

The Dunkl-Bessel potential is closely related to the Dunkl-Riesz potential (see
[15]), since the kernel of the Dunkl-Bessel potential has essentially the same local be-
haviour as that of the Dunkl-Riesz potential as ‖x‖ → 0, but the behaviour of the ker-
nel of the Dunkl-Riesz potential at infinity is not as good as that of the Dunkl-Bessel
potential. There are, however, other fractional integral operators whose behaviours
are roughly midway between the Dunkl-Riesz and the Dunkl-Bessel potentials, for in-
stance, the Dunkl-Flett potentials Iα

k of positive ordre α, which is studied in the last

section and given by Iα
k = (I −△

1
2

k )−α. It has the following integral representation

Iα
k f(x) =

1

Γ(α)

∫ +∞

0

tα−1e−tP k
t f(x)dt, where P k

t is the Poisson transform associ-

ated with Dunkl operators on IRd. Iα
k generalizes the usual Flett potential (which

corresponds to k = 0) introduced by Flett in [8].

One important problem concerning the Dunkl-Flett potential is obtaining an ex-
plicit inversion formula. For this aim, we introduce an integral transform

Wk,µ
t f(x) =

∫

IR+

e−tηP k
tηf(x)dµ(η), x ∈ IRd, f ∈ Lp(IRd, h2

k), t > 0.

Wk,µ
t is called the k-weighted wavelet-like transform of f associated with the k-Poisson

transform and generated by an appropriate Borel measure µ on IR+ according to our
needs. The explicit inversion formula for the Dunkl-Flett potential is obtained in term
of the Wk,µ

t transform.

The paper is arranged as follows. In the first section we collect some background
materials for the harmonic analysis associated with Dunkl operators. In the second
section we give some properties of the k-heat transform of a measurable function.
In the third section we study the Dunkl-Bessel potential J k

α f of a function f ∈
Lp(IRd, h2

k) of positive order α and we show that J k
α f can be represented by an integral

involving the k-heat transform of f . By making use of this representation we extend
the definition of the Dunkl-Bessel potential of order α to a class of k-temperatures. We
finish this section by studing the Dunkl-Bessel potential of a temperated distribution.
In the last section we define the Dunkl-Flett potential and we obtain the explicit
inversion formula.

1. Preliminaries. The purpose of this section is to establish our basic notations
and collect some further facts on Dunkl transform, Dunkl translation operator and
Dunkl convolution product which serve as fundamental tools for our later investiga-
tions. General references here are [4, 5, 6], [7], [11], [14] and [16].

Notations:

• C0(IR
d) the space of continuous functions vanishing at infinity, provided with

the usual topology of uniform convergence on IRd.
• E(IRd) the space of C∞-functions on IRd, endowed with the usual topology

of uniform convergence of the functions and their derivatives of all order on
compact subsets of IRd.
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• S(IRd) the space of C∞-functions on IRd which are rapidly decreasing as their
derivatives, provided with the topology defined by the seminorms

ρs,l(ϕ) = sup
x∈IRd,|ν|≤s

(1 + ‖x‖2)l|Dνϕ(x)|, s, l ∈ IN,

with Dν = Dν1
1 o · · · oDνd

d , ν = (ν1, · · · , νd) ∈ INd.
• S′(IRd) the space of tempered distributions on IRd, it is the topological dual

of S(IRd)
Let G be a finite reflection group (also called Coxeter group) on IRd associated

with a root system R and R+ the positive subsystem of R ([5] ,[7], [10]) . We denote
by k a nonnegative multiplicity function defined on R with the property that k is
G-invariant. We associate with k the weight function

hk(x) =
∏

v∈R+

| < x, v > |k(v), x ∈ IRd.

The Dunkl operators associated with G and k are given by [4]

Dif(x) = ∂if(x) +
∑

v∈R+

k(v)
f(x) − f(σv(x))

< x, v >
< v, ei >, 1 ≤ i ≤ d, x ∈ IRd,

where ∂i is the ordinary partial derivative with respect to xi and e1, · · · , ed are the
standard unit vectors of IRd. The above definition does not depend on the special
choice of R+, thanks to the G invariance of k. In the case k = 0, the Di, i = 1, · · ·d,
reduce to the corresponding partial derivatives. These operators map Pd

n to Pd
n−1,

where Pd
n is the space of homogeneous polynomials of degree n in d variables. More

importantly, these operators mutually commute ; that is, DiDj = DjDi. The Dunkl

Laplacian is defined by △k =
∑d

i=1 D2
i .

There is a linear isomorphism that intertwines the algebra generated by Dunkl’s
operators with the algebra of partial differential operators. The intertwining operator
Vk is an operator determined uniquely by

VkPd
n ⊂ Pd

n, Vk1 = 1, DiVk = Vk∂i, 1 ≤ i ≤ d.

The explicit formula of Vk is not known in general. In [10], it was shown that Vk

has a Laplace-type representation as follows: For every x ∈ IRd, there exists a unique
probability measure µk

x on the Borel σ-algebra of IRd such that

Vkp(x) =

∫

IRd

p(ξ)dµk
x(ξ), (1)

for each polynomial function p on IRd. The representing measures µk
x are compactly

supported with suppµk
x ⊆ C(x) := co{vx, v ∈ G}, the convex hull of the G-orbit of x

in IRd.
By means of formula (1), Vk may be extended to various larger function spaces,

including E(IRd). We denote this extension by Vk again. In fact, Vk establishes a
topological isomorphism from E(IRd) onto itself (see [16] and [3]). For y ∈ IRd the
function

Ek(x, y) = Vk(e<.,y>)(x) =

∫

IRd

e<ξ,y>dµk
x(ξ), x ∈ IRd, (2)
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is called the Dunkl kernel and generalizes the usual exponential function e<x,y>. It
plays an important role in the development of the Dunkl transform which is an integral
transform generalizing the ordinary Fourier transform.

The Dunkl kernel possesses the following properties: for x, y ∈ IRd, we have

Ek(x, y) = Ek(y, x), Ek(x, 0) = 1, Ek(−ix, y) = Ek(ix, y)

|Ek(ix, y)| ≤ 1 and Ek(λx, y) = Ek(x, λy), λ ∈ IC.

For each ν ∈ INd there exists a constant dν > 0 such that

|∂ν
xEk(x, z)| ≤ dν |z||ν|e|x||Rez|, for all x ∈ IRd, z ∈ ICd, (3)

here the underscript x denotes the operators act with respect to the x-variable. Here-
after, we denote by Lp(IRd, h2

k), p ∈ [1,∞], the space of mesurable functions on IRd

such that

‖f‖k,p = (

∫

IRd

|f(x)|ph2
k(x)dx)

1
p < +∞, 1 ≤ p <∞,

and

‖f‖k,∞ = ess sup
x∈IRd

|f(x)| < +∞.

For f ∈ L1(IRd, h2
k), the Dunkl transform is defined by

∀y ∈ IRd, Fk(f)(y) := ch

∫

IRd

f(x)Ek(x,−iy)h2
k(x)dx,

where c−1
h =

∫

IRd

h2
k(x)e−‖x‖2/2dx.

Many properties of the ordinary Fourier transform carry over the Dunkl transform.
For instance, if we denote by Ak(IRd) =

{

f ∈ L1(IRd, h2
k) : Fk(f) ∈ L1(IRd, h2

k)
}

,

then we have the following results (see [6, 7]).

Proposition 1.1.

• For f ∈ L1(IRd, h2
k), Fk(f) is in C0(IR

d).
• Let f ∈ Ak(IRd), we have the inversion formula f(x) =

∫

IRd

Ek(ix, y)Fk(f)(y)h2
k(y)dy, a.e.

• The Dunkl transform extends to an isometry of L2(IRd, h2
k).

• Let f ∈ S(IRd), we have Fk(Djf)(y) = iyjFk(f)(y).

For y ∈ IRd, we define a translation operator T k
y associated with Dunkl operators

on L2(IRd, h2
k) by

Fk(T k
y f)(x) = Ek(y,−ix)Fk(f)(x), x ∈ IRd.

It plays the role of the ordinary translation Tyf = f(. − y) of IRd, since the Fourier
transform of Ty is given by: F(Tyf)(x) = e−i<x,y>F(f)(x). The generalized transla-
tion operator has been studied in [11, 14, 17].
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Proposition 1.2. (see [11]) Let f ∈ Ak(IRd) (resp. f ∈ E(IRd)) be radial and
let f(x) = fo(‖x‖). Then

T k
y f(x) =

∫

C(y)

fo(
√

‖x‖2 + ‖y‖2 + 2 < x, η >)dµk
y(η),

which gives that T k
y f(x) ≥ 0 for all y ∈ IRd if f(x) = fo(‖x‖) ≥ 0.

Proposition 1.3. (see [14])
(i) If f ∈ C∞

0 (IRd) with compact support, then for 1 ≤ p ≤ ∞, lim
y→0

‖T k
y f − f‖k,p = 0.

(ii) Let G = Zd
2. For f ∈ Lp(IRd, h2

k), 1 ≤ p ≤ ∞, ‖T k
y f‖k,p ≤ 3‖f‖k,p.

Remark. Let us mention that there is an abstract formula for T k
y given in terms

of the intertwining operator Vk and its inverse, (see[16]). It takes the form of

T k
y f(x) = Vk,xVk,y

[

V −1
k (f)(x+ y)

]

, ∀f ∈ E(IRd). (4)

The translation operator T k
y can be used to define a convolution structure on

L2(IRd, h2
k), by

f ∗k g(x) =

∫

IRd

f(y)T k
−xǧ(y)h

2
k(y)dy, f, g ∈ L2(IRd, h2

k), (5)

where ǧ(y) = g(−y). Since, T k
x ǧ ∈ L2(IRd, h2

k) the convolution is well defined. This
convolution structure has been considered by several authors [11, 14, 17] and the
references therein. It is associative, commutative and satisfies the following property:

Fk(f ∗k g) = Fk(f)Fk(g).

For the general reflection group, the following result is proved in [14].

Theorem 1.4. Let g be a bounded radial function in L1(IRd, h2
k). Then f ∗k g

initially defined in (5) on the intersection of L1(IRd, h2
k) and L2(IRd, h2

k) extends to
all Lp(IRd, h2

k), 1 ≤ p ≤ ∞ as a bounded operator. In particular, ‖f ∗k g‖k,p ≤
‖g‖k,1‖f‖k,p.

2. The k-heat transforms of a function. In this section we give some prop-
erties of the k-heat transforms of a measurable function f . For t > 0, let F k

t be the
function defined by

F k
t (x) = (2t)−(γk+d

2 )exp(−‖x‖2

4t
),

which is a solution of the heat equation for the k-Laplacian △kU(x, t) = ∂tU(x, t),
where △k is applied to x variables (see [9]). The function F k

t may be called the heat
kernel associated with Dunkl operators or the k-heat kernel and it has the following
basic properties. (Throughout this paper we use the convention that B denotes a
generic constant, depending on d, k, ν or other fixed parameters, its value may change
from line to line).

Lemma 2.1. For all (x, t) ∈ IRd×]0,+∞[, we have

(i) 0 ≤ F k
t (x) ≤ (2t)−γk− d

2 .
(ii) For ν = (ν1, · · · , νd) ∈ INd, we have

DνF k
t (x) = t−

|ν|
2 F k

t (x)P,
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where P is a polynomial of degree |ν| = ν1+ · · ·+νd in the variables xi

2
√

t
(i = 1, · · · , d)

with coefficients depending only on d, ν and k.
(iii) If m is a positive integer, then

∂m
t F

k
t (x) = t−mR(

‖x‖2

4t
)F k

t (x),

with R is a polynomial of degree m with coefficients depending only on m, d and k.
(iv) If t > 0, η ≥ 0 and g is measurable on ]0,+∞[, then

∫

‖x‖≥η

g(‖x‖2)F k
t (x)h2

k(x)dx =
1

chΓ(γk + d
2 )

∫ +∞

η2

4t

g(4tσ)e−σσλkdσ,

whenever the integral on the right exists. In particular,

ch

∫

IRd

F k
t (x)h2

k(x)dx = 1,

∫

IRd

(
‖x‖2

4t
)aF k

t (x)h2
k(x)dx =

Γ(γk + d
2 + a)

chΓ(γk + d
2 )

, (a > −d
2
−γk).

(v)

∫

IRd

(
∂

∂t
)mF k

t (x)h2
k(x)dx = 0, m ∈ IN\{0}.

(vi) If ν ∈ INd and m ∈ IN\{0}, then

∫

IRd

|DνF k
t (x)|h2

k(x)dx ≤ B(d, k, ν)t−
|ν|
2 ,

∫

IRd

| ∂
m

∂tm
F k

t (x)|h2
k(x)dx ≤ B(d, k,m)t−m,

where B(d, k, ν) and B(d, k,m) are constants.

(vii) For all (x, t) ∈ IRd×]0,+∞[, Fk(F k
t )(x) = e−t‖x‖2

.
(viii) For all (x, y, t) ∈ IRd × IRd×]0,+∞[, we have

T k
−yF

k
t (x) =

1

(2t)γk+ d
2

e−( ‖x‖2+‖y‖2

4t
)Ek(

x√
2t
,
y√
2t

).

(ix) If s > 0, t > 0, and x ∈ IRd, we have

∫

IRd

F k
s (y)T k

−yF
k
t (x)h2

k(y)dy = F k
t+s(x).

Proof. (i) is clear. (ii) and (iii) are obtained by a short calculation. To obtain
(iv), we use the spherical-polar coordinates and a change of variables. The assertion
(v) follows from representation (iv) by taking the differentiations under the integral
sign. (vi) is a consequence of (ii) and (iii). Using Lemma 4.11 of [7] we deduce the
assertion (vii). (viii) is a special case of Proposition 1.2. (ix) is obtained by applying
Dunkl transform to F k

s ∗k F
k
t and using (vii).

Definition 2.2. The k-heat transform of a smooth measurable function f on IRd

is given by

Gk
t (f)(x) =

∫

IRd

T k
−yF

k
t (x)f(y)h2

k(y)dy, t > 0.
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Since, F k
t , t > 0, is a bounded radial function in L1(IRd, h2

k), then for all f ∈
Lp(IRd, h2

k), p ∈ [1,+∞], Gk
t (f), t > 0, is well defined and continuous on IRd.

Theorem 2.3. Let f be a measurable bounded function on IRd. Then,
(i) (x, t) 7→ Gk

t (f)(x) is infinitely differentiable on IRd×]0,+∞[ and it is a solution of
the heat equation for the k-Laplacian. Further, if ν ∈ INd, m ∈ IN , then for all t > 0

DνGk
t (f) = DνF k

t ∗k f and ∂m
t G

k
t (f) = ∂m

t F
k
t ∗k f.

(ii) For all s, t > 0 and x ∈ IRd, we have Gk
t+s(f)(x) =

∫

IRd

T k
−yF

k
t (x)Gk

s (f)(y)h2
k(y)dy.

(iii) For all (x, t) ∈ IRd×]0,+∞[, and for all s > t, we have

|Gk
t (f)(x)| ≤ (

s

t
)γk+ d

2 (Gk
s (|f |))(x).

(iv) If f ∈ Cb(IR
d), then Gk

t (f)(x) → f(ξ) as (x, t) → (ξ, 0).

Proof. (i) We use the estimations (3) for the partial derivatives of Ek, these
provide sufficient decay properties for the derivatives of T k

−yF
k
t , allowing the necessary

differentiations of Gk
t (f) under the integral sign by using dominated convergence

Theorem.
From Fubini’s Theorem, Proposition 3.2 of [14] and the following relation

∫

IRd

F k
t (y)T k

−y

(

T k
−zF

k
s

)

(x)h2
k(y)dy = F k

t ∗k T k
−zF

k
s (x) = T k

−zF
k
s+t(x), z, x ∈ IRd,

we deduce (ii).
(iii) We have, for all z ∈ IRd and 0 < t ≤ s,

F k
t (z) ≤ (

s

t
)γk+ d

2F k
s (z). (6)

Then we obtain the result using Proposition 1.2. The assertion (iv) is proved in [9]
p. 538.

Remark. The assertion (ii) is true when we take f ∈ Lp(IRd, h2
k), p ∈ [1,+∞].

Theorem 2.4. Let p ∈ [1,+∞], and let f ∈ Lp(IRd, h2
k). Then, the k-heat

transform Gk
t (f) of f has the following properties:

(i) For all t > 0 and m ∈ IN , we have

‖Gk
t (f)‖k,p ≤ c−1

h ‖f‖k,p , ‖∂m
t G

k
t (f)‖k,p ≤ B(d, k,m)t−m‖f‖k,p,

where B(d, k,m) is a constant.
(ii) Let G = Zd

2, if 1 ≤ p < r <∞ and δ = 1
p − 1

r , then for all t > 0

‖Gk
t (f)‖k,r ≤ t−(γk+ d

2 )δcδ−2
h ‖f‖k,p, (7)

and ‖Gk
t (f)‖k,r = o

(

t−(γk+ d
2 )δ

)

, as t→ 0+.

Further, if ν ∈ INd and m ∈ IN , then for all t > 0 we have

‖DνGk
t (f)‖k,r ≤ B(d, k, ν, r, p)t−

|ν|
2 −(γk+ d

2 )δ‖f‖k,p, (8)
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‖∂m
t G

k
t (f)‖k,r ≤ B(d, k,m, r, p)t−m−(γk+ d

2 )δ‖f‖k,p, (9)

where B(d, k, ν, r, p) and B(d, k,m, r, p) are constants. In particular, Gk
t (f), DνGk

t (f)
and ∂m

t G
k
t (f) are bounded on IRd × [c,+∞[ for each c > 0.

(iii) For each t > 0 and m ∈ IN , the functions x 7→ Gk
t (f)(x) and x 7→ ∂m

t G
k
t (f)(x)

are uniformly continuous on IRd.
(iv) For f ∈ Lp(IRd, h2

k), 1 ≤ p < ∞ or f ∈ C0(IR
d), p = ∞, then lim

t→0
‖Gk

t (f) −
f‖k,p = 0.
(v) t 7→ ‖Gk

t (f)‖k,p is continuous on ]0,+∞[.
(vi) Let G = Zd

2, if 1 ≤ p < ∞ and m is a positive integer, then ‖∂m
t G

k
t (f)‖k,p =

o(t−m) as t→ 0+.

Proof. (i) is a consequence from the relation Gk
t (f) = F k

t ∗k f , Theorem 2.3(i),
Theorem 1.4 and Lemma 2.1(vi).

(ii) Let q such that
1

r
=

1

p
+

1

q
− 1. From Theorem 2.3 (ii), we can write Gk

t (f)(x) =

F k
t
2
∗k G

k
t
2
(f)(x). Using Proposition 7.2 of [14] and the result (i), we have

‖Gk
t (f)‖k,r ≤ c−1

h ‖F k
t
2
‖k,q‖f‖k,p.

By a simple verification, we deduce that ‖F k
t
2
‖k,q ≤ t−(γk+ d

2 )δcδ−1
h . So, we obtain (7)

and in the same way we obtain (8) and (9).
(iii) From Theorem 2.3(ii), we have for all t > 0

|Gk
t (f)(x) −Gk

t (f)(x′)| ≤ ‖Gk
t
2
(f)‖∞‖T k

x F
k
t
2
− T k

x′F k
t
2
‖k,1.

Taking limit as x goes to x′ and using dominated convergence theorem, we deduce the
result. Analogous reasoning proves that the function x 7→ ∂m

t G
k
t (f)(x) is uniformly

continous on IRd. Since Gk
t (f) = F k

t ∗k f , using Theoerm 4.2 [14], we obtain (iv).

(v) Suppose first that p ∈ [1,+∞[. Since we have |Gk
t (f)(x)| ≤ 2γk+ d

2Gk
s(|f |)(x),

whenever 0 < 1
2s ≤ t < s; also ‖Gk

s(|f |)‖k,p ≤ ‖f‖k,p and t 7→ |Gk
t (f)|p is con-

tinuous, an application of dominated convergence Theorem shows that the function
t 7→ ‖Gk

t (f)‖k,p is continuous on [12s, s] for each s > 0, and therefore is continuous on
]0,+∞[.
If p = ∞, then by applying the relation (6), Proposition 1.2 and the following relation

∫

IRd

T k
x F

k
t (y)h2

k(y)dy =

∫

IRd

F k
t (y)h2

k(y)dy, (10)

we obtain for 0 < s < t

0 ≤ ‖Gk
t (f)‖∞ − ‖Gk

s(f)‖∞ ≤ c−1
h ‖f‖∞|

(

t

s

)γk+ d
2

− 1|.

The result is shown to hold by a limiting argument.
(vi) By using Lemma 2.1(v), Theorem 2.3(i) and Minkowski’s inequality, we obtain

‖∂m
t G

k
t (f)‖k,p ≤

∫

IRd

‖T k
−yf − f‖k,p|∂m

t F
k
t (y)|h2

k(y)dy.

Since limy→0 ‖T k
−yf−f‖k,p = 0, then for each ǫ, we can find β > 0 such that ‖T k

−yf−
f‖k,p ≤ ǫ, for ‖y‖ < β and we also have ‖T k

−yf − f‖k,p ≤ 4‖f‖k,p. Thus

‖∂m
t G

k
t (f)‖k,p ≤ ǫ

∫

IRd

|∂m
t F

k
t (y)|h2

k(y)dy + 4‖f‖k,p

∫

‖y‖≥β

|∂m
t F

k
t (y)|h2

k(y)dy.
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The first integral on the right does not exceed B(d, k,m)t−m, and the second integral
on the right is o(t−m). This completes the proof.

3. Dunkl-Bessel potential. This section is devoted to the study of the Dunkl-
Bessel potential of a function, then of a k-temperature and finally of a tempered
distribution.

Definition 3.1. For any f ∈ Lp(IRd, h2
k), where 1 ≤ p ≤ ∞, and for any α > 0,

the k-Bessel potential J k
α f of order α of f is given by

J k
α f = bkα ∗k f,

with the kernel function

bkα(x) =
1

2γk+ d
2 Γ(α

2 )

∫ +∞

0

e−te−
‖x‖2

4t t−γk+ (α−d)
2 −1dt

=
1

2
α
2 −1Γ(α

2 )
‖x‖ 1

2 (α−d)−γkKα
2 − d

2−γk
(‖x‖).

Here

Kβ(z) =
π

2

{

J−β(z) − Jβ(z)

sinβπ

}

,

where Jβ is the modified Bessel function of the first kind with series expansion

Jβ(z) =

+∞
∑

n=0

(1
2z)

β+2n

n!Γ(β + n+ 1)
.

The k-Bessel potentials are bounded operators from Lp(IRp, h2
k) to itself for 1 ≤ p ≤ ∞

(see [15]), i.e. if f ∈ Lp(IRd, h2
k) and α > 0, then J k

α f ∈ Lp(IRd, h2
k) and ‖J k

α f‖k,p ≤
‖f‖k,p. Further, for α, β > 0

J k
α (J k

β f) = J k
α+βf.

Since, bkα ∈ Erad(IR
d) (the subspace of radial functions in E(IRd)). Then according to

Proposition 1.2, relation (1) and formula (17) given in [2] p.313, we have

T k
y b

k
α(x) =

1

2
α
2 −1Γ(α

2 )

∫

C(y)

(

‖x‖2 + ‖y‖2 + 2 < x, ξ >
)

1
2 ( α−d

2 −γk) ×

Kα
2 −γk− d

2
(
√

‖x‖2 + ‖y‖2 + 2 < x, ξ >)dµk
y(ξ). (11)

Our discussion of k-Bessel potential is motivated by the following theorem.

Theorem 3.2. Let α > 0, 1 ≤ p ≤ ∞ and let f ∈ Lp(IRp, h2
k), then

(i) The k-Bessel potential J k
α f of order α of f is given for almost all x by

J k
α f(x) =

1

Γ(α
2 )

∫ +∞

0

t
α
2 −1e−tGk

t (f)(x)dt, (12)
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where Gk
t (f), t > 0, is the k-heat transform of f on IRd.

(ii) The k-heat transform of J k
α f , α > 0, on IRd is the function Gk

s(J k
α f) given by

Gk
s(J k

α f)(x) =
1

Γ(α
2 )

∫ +∞

0

t
α
2 −1e−tGk

s+t(f)(x)dt. (13)

Moreover, for each s > 0, the function x 7→ Gk
s (J k

α f)(x) is the k-Bessel potential of
x 7→ Gk

s(f)(x).

Proof. Let g : IRd → IR be given by

g(x) =
1

Γ(α
2 )

∫ +∞

0

t
α
2 −1e−t|Gk

t (f)(x)|dt.

By Minkowski’s inequality and Theorem 2.4(i), we have ‖g‖k,p ≤ c−1
h ‖f‖k,p. Hence,

the integral on the right of (12) exists a.e.
We may assume without loss of generality that f ≥ 0. From Fubini-Tonelli’s theorem
and Lemma 2.1(viii), we have

∫ +∞

0

t
α
2 −1e−tGk

t (f)(x)dt =

2−γk−d
2

∫

IRd

f(y)

{
∫ +∞

0

t
α
2 −γk−d

2−1e−t− ‖x‖2+‖y‖2

4 t−1

Ek(x,
y

2t
)dt

}

h2
k(y)dy. (14)

Using the relation (2), Fubini-Tonelli’s theorem and formula (17) given in [2] p.313,
we obtain Z +∞

0

t
α
2
−γk− d

2
−1

e
−t−

‖x‖2+‖y‖2

4
t−1

Ek(
x

2t
, y)dt = 2− α

2
+γk+ d

2
+1× (15)Z

C(y)

�
‖x‖2 + ‖y‖2 − 2 < ξ, x >

� 1
2
( α−d

2
−γk)

K α
2
−γk− d

2
(
p

‖x‖2 + ‖y‖2 − 2 < ξ, x >)dµ
k
y(ξ).

Then (12) is a consequence of (11). We deduce (13) from the assertion (i), Fubini’s
theorem and Theorem 2.3(ii).

Definition 3.3. A function Uk on Ω = IRd×]0,+∞[ is said to be a k-temperature
if it is indefinitely differentiable on Ω and satisfies at each point of Ω the heat equation
for the k-Laplacian i.e.

△k,xU
k(x, t) = ∂tU

k(x, t).

We refer to [8] for the following definition of a k-Bessel potential for certain k-
temperatures.

Definition 3.4. Let T k(Ω) denote the linear space of k-temperatures Uk on Ω
with the properties that if (ν,m) ∈ INd × IN , b > 0, c > 0, and S is a compact subset
of IRd, there exists C ≥ 0 such that

|Dν∂m
t U

k(x, t)| ≤ Ct−bet, for all (x, t) ∈ S × [c,+∞[. (16)
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For any real number α and for any Uk ∈ T k(Ω) we define J k
α (Uk) to be the function

with domain Ω given as follows:
(i) J k

0 (Uk) = Uk;
(ii) if α > 0, then

J k
α (Uk)(x, s) =

1

Γ(α
2 )

∫ +∞

0

t
α
2 −1e−tUk(x, s+ t)dt; (17)

(iii) if α is a negative even integer, say α = −2m, then

J k
α (Uk)(x, s) = J k

−2m(Uk)(x, s) = (−1)mes∂m
s {e−sUk(x, s)};

(iv) if α = −β < 0 and β is not an even integer, then

J k
α (Uk) = J k

−β(Uk) = J k
2m−β

(

J k
−2m(Uk)

)

;

where m = [12β] + 1 1, and where J k
2m−β and J k

−2m are defined as in (ii) and (iii).

The proof of the following theorem follows the argument for the ordinary case
(i.e., k = 0) as given in [8] p.401.

Theorem 3.5. Let Uk ∈ T k(Ω), and let J k
α (Uk) be defined as in definition 3.4.

Then
(i) for each real α the function J k

α (Uk) ∈ T k(Ω),
(ii) for all real α, β

J k
α

(

J k
β (Uk)

)

= J k
α+β(Uk).

Corollary 3.6. For each real number α, J k
α is a linear isomorphism of T k(Ω)

onto itself, with inverse J k
−α.

Definition 3.7. Let T be in S′(IRd) and ϕ in S(IRd). The Dunkl convolution
product of T and ϕ is the function T ∗k ϕ defined by

∀x ∈ IRd, T ∗k ϕ(x) =< Ty, T k
−xϕ̌(y) > .

The Dunkl transform of a distribution T in S′(IRd) is defined by

< Fk(T ), ϕ >=< T,Fk(ϕ) >, ϕ ∈ S(IRd).

Proposition 3.8. ([18]) (i) For T in S′(IRd) and ϕ in S(IRd) the function T ∗kϕ

belongs to E(IRd) and we have

Dν(T ∗k ϕ) = T ∗k Dνϕ.

(ii) Let T be in S′(IRd) and ϕ in S(IRd). Then the distribution on IRd given by T ∗kϕ

belongs to S′(IRd) and we have

Fk(T ∗k ϕ) = Fk(ϕ)Fk(T ).

1Here [x] denotes the greatest integer not exceeding x, x ∈ IR.
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Remarks. If T, g ∈ S′(IRd) and Fk(g) ∈ O (the class of indefinitely differentiable
functions on IRd all of whose Dunkl derivatives are slowly increasing), then T ∗k g is
the element of S′(IRd) given by Fk(T ∗k g) = Fk(T )Fk(g).

Definition 3.9. For any T ∈ S′(IRd), the k-heat transform of T is given by

Gk
t (T )(x) = T ∗k F

k
t (x).

Lemma 3.10. Let T ∈ S′(IRd), and let Gk
t (T ) be its k-heat transform. Then

Gk
t (T ) is a k-temperature on Ω. Moreover, for each (ν,m) ∈ INd × IN , c > 0, there

exist non-negative numbers a, b, r and C such that for all (x, t) ∈ IRd × [c,+∞[

|Dν∂m
t G

k
t (T )(x)| ≤ C(1 + ‖x‖2)a(1 + t)bt−r.

Proof. Since F k
t is a k-temperature and T is linear, then Proposition 3.8 gives

that Gk
t (T ) is a k-temperature on Ω.

As T belongs to S′(IRd), then there exist a positive constant c0 and s0, l0 ∈ IN such
that

|T ∗k ϕ(x)| ≤ c0ρs0,l0(T k
x ϕ), ∀ϕ ∈ S(IRd).

In particular,

|Dν∂m
t G

k
t (T )(x)| ≤ c0ρs0,l0(T k

x Dν∂m
t F

k
t ).

But using the inequality

∀x, y ∈ IRd, 1 + ‖x+ y‖2 ≤ 2(1 + ‖x‖2)(1 + ‖y‖2),

the relations (4), (1) and the representation of V −1
k (see [16]), we deduce that there

exist a positive constant c1 and s, l ∈ IN such that

ρs0,l0(T k
x Dν∂m

t F
k
t ) ≤ c1(1 + ‖x‖2)l0ρs,l(Dν∂m

t F
k
t ).

Further, by Lemma 2.1(ii)(iii), we have for all (y, t) ∈ IRd × [c,+∞[, λ ∈ INd

|Dλ∂m
t F

k
t (y)|

≤ B(d, λ, k,m)t−m−γk− d
2

[

t−|λ|(1 +
‖y‖√
t
)2m + t−

|λ|
2 (1 + ‖y‖t− 1

2 )|λ|
]

e−
‖y‖2

4 t−1

.

The elementary inequality (
√
t+ ‖y‖)p ≤ 2

1
2p(1 + t)

1
2p(1 + ‖y‖2)

1
2p, p ∈ IN, leads to

|Dλ∂m
t F

k
t (y)| ≤ B(d, λ, k,m, c)t−m−|λ|−γk−d

2 (1 + t)m+ |λ|
2 (1 + ‖y‖2)m+ |λ|

2 e−
‖y‖2

4t .

Hence, there exists m0 ∈ IN such that

ρs,l(Dν∂m
t F

k
t )

≤ B̃(d, k, ν, l,m, c)t−m−|ν|−m0−γk− d
2 (1 + t)m+ |ν|

2 +
m0
2 sup

y∈IRd

{(1 + ‖y‖2)m+ |ν|
2 +l+se−

‖y‖2

4t }.

Since

sup
ρ≥0

(1 + ρ)m+ |ν|
2 +l+se−

ρ
4t ≤ B(ν,m)(1 + t)m+ |ν|

2 +l+s,
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then we have

|Dν∂m
t G

k
t (T )(x)| ≤ C(1 + ‖x‖2)l0t−m−|ν|−m0−γk− d

2 (1 + t)2m+|ν|+l+s+
m0
2 .

Definition 3.11. For any real number α and for any T ∈ S′(IRd) the k-Bessel
potential of order α of T is the element J k

α (T ) of S′(IRd) given by the relation

Fk(J k
α (T )) = (1 + ‖.‖2)−

α
2 Fk(T ),

where the identity is to be understood in the sense of distributions.

Remark.

• For all real α, β, and all T ∈ S′(IRd), we have J k
α (J k

β (T )) = J k
α+β(T ).

• By definition, we have

J k
α (T ) = T ∗k b

k
α,

where bkα is a tempered distribution whose Dunkl transform Fk(bkα) = [(1 +
‖.‖2)−

α
2 ],2.

• If f ∈ Lp(IRd, h2
k), where 1 ≤ p ≤ ∞ and α > 0, then

J k
α ([f ]) = J k

α (f) = f ∗k b
k
α. (18)

Using the following formula

Kν(z) ∼ (
π

2z
)

1
2 e−z, as z → ∞, for all ν ∈ IR,

we deduce that, if α > 0 and y be fixed in IRd

T k
y b

k
α(x) ∼ B(d, α, k)‖x‖ 1

2 (α−d−1)−γke−‖x‖, as ‖x‖ → ∞. (19)

Theorem 3.12. Let α ∈ IR, and T ∈ S′(IRd). Then
(i) Gk

t (T ) ∈ T k(Ω), and J k
α (Gk

t (T )) is the k-heat transform of J k
α (T ).

(ii) For each t > 0, the function x 7→ J k
α (Gk

t (T ))(x) is the k-Bessel potential of order
α of x 7→ Gk

t (T )(x), in the distributional sense.

Proof. (i) By Lemma 3.10, we deduce that (x, t) 7→ Gk
t (T )(x) belongs to T k(Ω)

and x 7→ Gk
t (T )(x) belongs to O, for each t > 0. So that J k

α (Gk
t (T ))(x, t) and

J k
α (Gk

t (T )) are defined. It is easily verified that

Gk
t (J k

α (T )) = J k
α (Gk

t (T ))

in the distributional sense.
(ii) By the definition 3.9 and Lemma 2.1(ix), we obtain

Gk
t (Gk

s (T )) = Gk
t+s(T ), for s, t > 0. (20)

2[f ] is the distribution on IRd associated with the function f . In addition [f ] belongs to S′(IRd),
when f ∈ Lp(IRd, h2

k
) or f is slowly increasing.
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Suppose first α > 0. Since Gk
t (T ) ∈ O, t > 0, then from the relation (18), we have

Gk
t (J k

α (T ))(x) =

∫

IRd

T k
−yb

k
α(x)Gk

t (T )(y)dy.

From the relation (19), we remark that the integral on the right is finite.
In view of relations (11), (15), (14) and (20) we obtain

Gk
t (J k

αT )(x) =
1

Γ(α
2 )

∫ +∞

0

s
α
2 −1e−sGk

t+s(T )(x)ds = J k
α (Gk

t (T ))(x, t).

Next, let α = −β < 0, we have

J k
β (Gk

t (J k
−β(T ))) = Gk

t (T ).

Hence, by Theorem 3.5(ii), we deduce

J k
−β(Gk

t (T ))(x, t) = Gk
t (J k

−β(T ))(x).

4. Dunkl-Flett potential and Dunkl weighted wavelet-like transform

associated to the k-Poisson transform. We begin this section by introducing the
k-Poisson transform which permits to define and study the Dunkl-Flett potential and
its relation with the Dunkl weighted wavelet-like transform which is also studied here
and we give an associated inversion formula.

By analogy with the euclidean case [12], we define for t > 0, the function P k
t on

IRd by

P k
t (x) := cd,k

t

(t2 + ‖x‖2)γk+ d+1
2

,

where cd,k = 2γk+ d
2

Γ( 1
2 )

Γ(γk + d+1
2 ).

The function P k
t , may be called k-Poisson kernel. This function has the following

basic properties which can be easily verified :
(i) Fk(P k

t )(x) = e−t‖x‖, for all t > 0.

(ii)

∫

IRd

P k
t (y)h2

k(y)dy = 1.

(iii) If η > 0, then

∫

‖y‖≥η

P k
t (y)h2

k(y)dy → 0, as t→ 0.

However, for t > 0 and for all f ∈ Lp(IRd, h2
k), p ∈ [1,∞], we put

P k
t f(x) := P k

t ∗k f(x), x ∈ IRd.

The function P k
t (f) is called the k-Poisson transform of f .

Before, asserting some properties of the k-Poisson transform in a technical lemma
we recall that the homologous of maximal function in the Dunkl setting is defined in
[14] to be the operator Mk acting on Lp(IRd, h2

k), given by

Mkf(x) = sup
r>0

1

dkrd+2γk
|f ∗k χBr

(x)|,

where χBr
is the characteristic function of the ball Br of radius r centered at 0 and

d−1
k =

∫

B1

h2
k(y)dy = (d+ 2γk)

∫

Sd−1

h2
k(x)dω(x).
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The maximal function can also be written as

Mkf(x) = sup
r>0

∣

∣

∣

∣

∫

Br

T k
y f(x)h2

k(y)dy

∣

∣

∣

∣

∫

Br

h2
k(y)dy

.

Lemma 4.1. Let f ∈ Lp(IRd, h2
k), 1 ≤ p ≤ ∞ and P k

t f is the k-Poisson transform
of f . Then
(a) ‖P k

t f‖k,p ≤ ‖f‖k,p;
(b) sup

t>0
|P k

t f(x)| ≤ ˜cd,kMkf(x), where ˜cd,k = 22γk+d+1cd,k ;

(c) lim
t→0

P k
t f(x) = f(x), where the limit is interpreted in Lp,k-norm and pointwise a.e.

For f ∈ C0(IR
d) the convergence is uniform on IRd;

(d) P k
τ P

k
t f = P k

τ+tf , τ, t > 0;

(e) sup
x∈IRd

|P k
t f(x)| ≤ (cd,k)

1
p t

−d−2γk
p ‖f‖k,p, p ∈ [1,+∞[.

Proof. (a) is merely Tonelli’s theorem and the fact
∫

IRd

T k
x P

k
t (y)h2

k(y)dy =

∫

IRd

P k
t (y)h2

k(y)dy = 1 (21)

when p = 1. If 1 < p < ∞, let q be the conjugate exponent to p, then using Hölder’s
inequality, relation (21) and Fubini’s theorem we prove the result. When p = ∞ the
proof is trivial. The assertion (b) and (c) follow from the the writing of P k

t f as

P k
t f(x) = f ∗k ψ

k
t (x),

where ψk
t is the dilation of ψk(x) = cd,k

1

(1+‖x‖2)γk+ d+1
2

given by ψk
t (x) =

t−2γk−dφk(x
t ), and are the consequences of Theorem 6.2 and Theorem 7.3 [14]. The

assertion (d) is clear.
(e) From Proposition 1.2 and relation (1), we have

T k
x P

k
t (y) ≤ cd,kt

−2γk−d.

We deduce the result, using the following inequality

|P k
t f(x)| ≤

{
∫

IRd

T k
x P

k
t (−y)|f(y)|ph2

k(y)dy

}
1
p

.

Given a finite Borel measure µ on IR, the notation
∫ b

a
ϕ(t)dµ(t) is used for the

integral
∫

[a,b) ϕ(t)dµ(t). In case of limt→a+ |ϕ(t)| = ∞, we assume that µ({a}) = 0

and
∫

[a,b)

ϕ(t)dµ(t) =

∫

(a,b)

ϕ(t)dµ(t).

Definition 4.2. For any f ∈ Lp(IRd, h2
k), where 1 ≤ p ≤ ∞ and for any α > 0,

the k-Flett potential Iα
k f of order α of f is given by

Iα
k f(x) =

1

Γ(α)

∫ +∞

0

tα−1e−tP k
t f(x)dt.
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Remarks. We can also write Iα
k f = φα

k ∗k f , where

φk
α(x) =

1

Γ(α)

∫ +∞

0

tα−1e−tP k
t (x)dt =

cd,k

Γ(α)
‖x‖α−2γk−d

∫ +∞

0

sαe−s‖x‖

(1 + s2)γk+ d+1
2

ds.

(22)
It is easily proved from (22) that φk

α has the following basic properties:
(i) a) If α > d+ 2γk, then φk

α is continuous on IRd and φk
α(x) > 0, for all x ∈ IRd.

b) If 0 < α ≤ d+2γk, then φk
α is continuous on IRd\{0} and φk

α(x) > 0 for all non-zero
x ∈ IRd. Further, if 0 < α < d+ 2γk, then

φk
α(x) ∼ cd,kΓ(1

2 (α+ 1))Γ(γk + 1
2 (d− α))

2Γ(α)Γ(γk + 1
2 (d+ 1))

‖x‖α−2γk−d as ‖x‖ → 0,

and

φk
d+2γk

(x) ∼ cd,k

2Γ(d+ 2γk)
log

1

‖x‖ as ‖x‖ → 0.

(ii) φk
α ∈ L1(IRd, h2

k), ‖φk
α‖k,1 = 1 and Fk(φk

α)(x) = (1 + ‖x‖)−α, for all α > 0.
(iii) φk

α ∗k φ
k
β = φk

α+β , whenever α, β > 0.
(iv) ‖Iα

k f‖k,p ≤ ‖f‖k,p, ∀α > 0, 1 ≤ p ≤ ∞.
(v) For all α > 0, φk

α(x) ∼ αcd,k‖x‖−2γk−d−1 as ‖x‖ → ∞.

Definition 4.3. A signed Borel measure on IR+ is said to be a wavelet measure
if

‖µ‖ ≡ |µ|(IR+) ≡
∫

IR+

d|µ|(η) <∞ and µ(IR+) ≡
∫ ∞

0

dµ(η) = 0.

Definition 4.4. Let µ be a wavelet measure on IR+. The k-weighted wavelet-like
transform of f ∈ Lp(IRd, h2

k) associated to the k-Poisson transform P k
t f and generated

by the measure µ is defined as

Wk,µ
t f(x) =

∫

IR+

e−tηP k
tηf(x)dµ(η), x ∈ IRd, t > 0.

Remarks.

• Owing to Lemma 4.1(c), it is assumed that e−tηP k
tηf(x)|η=0 = f(x) and

therefore
∫

IR+

e−tηP k
tηf(x)dµ(η) =

∫

(0,∞)

e−tηP k
tηf(x)dµ(η) + µ({0})f(x).

• For any fixed t > 0, the k-weighted wavelet-like transforms are bounded
operators from Lp(IRd, h2

k) to itself for p ∈ [1,+∞], i.e., if f ∈ Lp(IRd, h2
k),

t > 0, ‖Wk,µ
t f‖k,p ≤ ‖µ‖‖f‖k,p.

The proof of the following Lemma follows the proof of Theorem 3.12 p.60 in [13].

Lemma 4.5. Let {Tǫ}, ǫ > 0, be a family of linear operators mapping Lp(IRd, h2
k),

1 ≤ p ≤ ∞, into the space of measurable functions on IRd. For each f ∈ Lp(IRd, h2
k)

define T ∗f by letting

(T ∗f)(x) = sup
ǫ>0

|(Tǫf)(x)|, x ∈ IRd.
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Suppose that there exists a constant c > 0 and a real number q ≥ 1 such that
∫

{x:(T∗f)(x)>t}
h2

k(x)dx ≤
(

c‖f‖k,p

t

)q

,

for all t > 0 and f ∈ Lp(IRd, h2
k). If there exists a dense subset D of Lp(IRd, h2

k)
such that lim

ǫ→0
(Tǫg)(x) exists and is finite a.e. whenever g ∈ D, then for each f ∈

Lp(IRd, h2
k), lim

ǫ→0
(Tǫf)(x) exists and is finite a.e.

Using the last lemma and lemma 4.1 the proof of the following theorems carried
over from classical case setting in [1] without changes.

Theorem 4.6. Let f ∈ Lp(IRd, h2
k), 1 ≤ p < ∞, or f ∈ C0(IR

d) when p = ∞.
Suppose that µ is a finite Borel measure on IR+ satisfying

µ(IR+) ≡ 0 and

∫

IR+

| log τ |d|µ|(τ) < +∞.

Then
∫ +∞

0

Wk,µ
t f(x)

dt

t
= lim

ǫ→0

∫ +∞

ǫ

Wk,µ
t f(x)

dt

t
= cµ.f(x), (23)

where cµ =
∫ +∞
0

log 1
τ dµ(τ). The limit in (23) is understood in Lp,k-norm and point-

wise for almost all x ∈ IRd. In case of f ∈ C0(IR
d), the convergence is uniform on

IRd.

The next theorem gives a new representation of the k-Flett potentials with the
aid of the k-weighted wavelet-like transform Wk,µ

t .

Theorem 4.7. Let α > 0, f ∈ Lp(IRd, h2
k), 1 ≤ p ≤ ∞ and let µ be a finite Borel

measure on IR+ satisfying the conditions

∫ +∞

0

t−αd|µ|(t) <∞ and cα,µ ≡
∫ +∞

0

t−αdµ(t) 6= 0.

Then

Iα
k f(x) =

1

Γ(α)cα,µ

∫ +∞

0

tαWk,µ
t f(x)

dt

t
.

The following theorem gives an inversion formula for the transform Wk,µ
t .

Theorem 4.8. Let α > 0, f ∈ Lp(IRd, h2
k), 1 ≤ p ≤ ∞ and let µ be a finite Borel

measure on IR+ satisfying
•

∫ ∞
1
tβd|µ|(t) <∞ for some β > α;

•
∫ ∞
0
tkdµ(t) = 0, k = 0, 1 · · · ,m, where m = [α] is the integer part of α.

Then

1

kα,µ

∫ +∞

0

t−αWk,µ
t (Iα

k f)(x)
dt

t
≡ 1

kα,µ
lim
ǫ→0

∫ +∞

ǫ

t−αWk,µ
t (Iα

k f)(x)
dt

t
= f(x), (24)

where

kα,µ =

{

Γ(−α)
∫ ∞
0
tαdµ(t) , if α ∈ IR+\IN,

(−1)α+1

α!

∫ ∞
0
tα log t dµ(t) , if α ∈ IN.
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The limit in (24) is interpreted in Lp,k-norm and pointwise a.e., for 1 ≤ p < ∞. If
f ∈ C0(IR

d), the convergence is uniform on IRd.
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