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ELLIPTIC AND PARABOLIC EQUATIONS WITH MEASURABLE

COEFFICIENTS IN LP -SPACES WITH MIXED NORMS∗

DOYOON KIM†

Abstract. The unique solvability results for second order parabolic and elliptic equations in
Sobolev spaces with mixed norms are presented. The second order coefficients are measurable in one
spatial variable and VMO (vanishing mean oscillation) in the other spatial variables. In the parabolic
case, the coefficients (except a11) are further allowed to be only measurable in time. We first prove
the solvability results for equations in the whole Euclidean space. Then, using these results as well
as some extension techniques, we prove the solvability results for equations on a half space without
any boundary estimates. The mixed norms we present here are more general than the usual mixed
norm Lt

qLx
p .
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1. Introduction. In this paper we study elliptic and parabolic equations of non-
divergence type in Sobolev spaces with mixed norms. The differential equations we
consider are (elliptic and parabolic, respectively)

aij(x)uxixj + bi(x)uxi + c(x)u = f, (1)

ut + aij(t, x)uxixj + bi(t, x)uxi + c(t, x)u = f. (2)

The equations are assumed to be uniformly non-degenerate with bounded coefficients.
The regularity assumptions on the coefficients aij (no regularity assumptions are
needed for coefficients bi and c) are, roughly speaking, that they are merely measurable
(i.e., no regularity assumptions) in one spatial direction, and belong to the space of
VMO (mean vanishing oscillation) as functions of the other variables. In the parabolic
case, they (except a11) are measurable in two variables including the time variable
and in the space of VMO as functions of the remaining variables. The coefficient a11

is measurable in one spatial variable and VMO in the other variables.
There has been, in fact, considerable study of parabolic equations in mixed norm

spaces in the literature (see, e.g., [4, 18, 11, 10, 12, 21, 3, 6, 20, 14] and references
therein). The usual mixed norms are of the form Lq((0, T ), Lp), that is, q summability
in the time variable and p summability in the spatial variables. For example, in [12,
21, 20, 14] parabolic equations as in (2) (quasi-linear equations in [20]) are investigated
in Sobolev spaces with the mixed norm Lq((0, T ), Lp(Ω)), where Ω ⊆ Rd. In [3] one
sees parabolic systems in Lq((0, T ), X), where X is an Lp space with a Muckenhoupt
weight. In this paper, however, by mixed norms we mean, not the usual mixed norms,
but more general ones defined as follows.

First we explain some notations. By Rd we mean a d-dimensional Euclidean space
and a point in Rd is denoted by x. In the parabolic case we consider Rd+1, where
a point in Rd+1 is denoted by (t, x). Throughout the paper, we fix two nonnegative
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integers d1 and d2 such that d1+d2 = d. We also fix all different integers i1, i2, · · · , id1

and j1, j2, · · · , jd2
from {1, 2, · · · , d}. Then for x = (x1, x2, · · · , xd) ∈ Rd, we denote

x1 = (xi1 , xi2 , · · · , xid1 ) ∈ Rd1 , x2 = (xj1 , xj2 , · · · , xjd2 ) ∈ Rd2 . (3)

Note that, as one can see, for example, x1 consists of d1 coordinates, but x1 is not
necessarily the first d1 coordinates of x ∈ Rd. Likewise, Rd1 above is a subspace of
Rd, but not necessarily consists of the first d1 coordinates of points in Rd. If D is a
subset in Rd+1, we define

‖u‖
L

t,x1
q L

x2
p (D)

=

(

∫

R×Rd1

(∫

Rd2

|u(t, x)|pID(t, x) dx2

)q/p

dx1 dt

)1/q

,

where ID is the indicator function. Similarly,

‖u‖L
x1
q L

t,x2
p (D) =

(

∫

Rd1

(∫

R×Rd2

|u(t, x)|pID(t, x) dx2 dt

)q/p

dx1

)1/q

.

For elliptic equations, we define

‖u‖L
x1
q L

x2
p (Ω) =

(

∫

Rd1

(∫

Rd2

|u(x)|pIΩ(x) dx2

)q/p

x1

)1/q

,

where Ω is a subset in Rd. Finally we set

Lq,p(D) := Lt,x1

q Lx2

p (D) or Lx1

q L
t,x2

p (D), (4)

Lq,p(Ω) := Lx1

q L
x2

p (Ω).

Note that, in case p = q, Lp(D) = Lp,p(D) = Lt,x1
p Lx2

p (D) = Lx1
p L

t,x2
p (D) and Lp(Ω) =

Lp,p(Ω).
Apparently our mixed norms are more general than the usual mixed norms such

as Lq((0, T ), Lp(R
d)). According to the notation above, Lq((0, T ), Lp(R

d)) is denoted
by Lt

qL
x
p((0, T ) × Rd). In our case we have q summability in any given variables,

which may or may not include the time variable, and p summability in the remaining
variables.

With the above mixed norms in hand, we prove that, for a given f ∈ Lq,p((0, T )×
Rd), q > p ≥ 2, there exists a unique solution u ∈ W 1,2

q,p ((0, T )× Rd) to the parabolic

equation (2) with an appropriate initial condition, where u ∈ W 1,2
q,p ((0, T )×Rd) means

that u, ut, uxi , uxixj ∈ Lq,p((0, T ) × Rd). We also prove the unique solvability of
the elliptic equation (1) in Sobolev spaces with mixed norms, which are somewhat
more general than the usual homogenous Sobolev spaces (no mixed norms) for elliptic
equations as in [5, 13, 8]. Considering elliptic equations in mixed norm spaces as
ours must be another expansion of Lp-theory for elliptic equations. The proof for the
elliptic case is rather simple and uses the solvability result for parabolic equations.

As explained in [14], the necessity of mixed norms for differential equations arises
when one has to improve the regularity of a solution in some directions. For example,
if the derivatives of a solution are in Lt

qL
x
p((0, T )×Rd) and q is large enough, then using

embedding theorems we might be able to increase the regularity of the solution in the
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time direction. Indeed, in [7] the solvability of parabolic equations in Sobolev space
with mixed norms is used when proving results for equations in Sobolev spaces without

mixed norms (for instance, the Hölder continuity of solutions to parabolic equations
in Sobolev spaces without mixed norms). Moreover, by having mixed norms as ours
we are able to have better regularity of solutions as functions of some given variables
(not as functions of only time or only the whole spatial variables). An example of this
argument is presented in the proof of Lemma 5.5 of this paper.

We also prove the existence and uniqueness of solutions to equations defined on
a half space Rd

+ = {x = (x1, · · · , xd) ∈ Rd, x1 > 0}. Traditionally, in order to
solve equations on a half space or on a bounded domain, one has to have boundary
estimates. However, we do not need any boundary estimates but the results for
equations in the whole space. As is seen in the proof of Theorem 2.5, this is made
possible by our assumption that aij are measurable in one spatial direction. This
shows that the class of coefficients aij in this paper is very useful. Certainly, our
results for equations on a half space can be used, via a partition of unity and the
usual flattening argument, when dealing with equations on a bounded domain if the
leading coefficients are, for instance, in the class of VMO as functions of (t, x).

The same (or similar) class of coefficients is presented in [8, 9, 7], where homoge-
neous Sobolev spaces are considered. Before the current class of coefficients aij was
introduced, one considerably general assumption on aij had been that they are in
the space of VMO, which were first investigated in [2, 1]. Then recently a new class
of coefficients (called VMOx coefficients) was suggested by N. Krylov in [13]. The
VMOx coefficients are characterized as being measurable in the time variable and
VMO in the spatial variables. For more information about general elliptic and par-
abolic equations in Sobolev spaces, see [5, 17, 19, 15] and references therein. On the
other hand, for example, in [6, 12, 14] one can see VMO or measurable coefficients
for parabolic equations in mixed norm spaces. The coefficients in [6] are VMO in
x ∈ Rd, but independent of t ∈ R, whereas the coefficients aij in [12] are measurable
functions of only t, and the coefficients aij in [14] are VMOx coefficients, the same
class as in [13]. Since in our case (in the parabolic case) the coefficients aij(t, x) (ex-
cept a11) are measurable as functions of (t, x1) and VMO as functions of x′, where
x′ = (x2, · · · , xd) ∈ Rd−1 (a11 is measurable in x1 and VMO in (t, x′)), as far as
coefficients aij , i 6= 1 or j 6= 1, are concerned, the class of coefficients in this paper is
bigger than those in [6, 12, 14].

Our approach to dealing with mixed norms is based on the method presented
in [14]. In order to have, for example, an Lt,x1

q Lx2
p (Rd+1)-estimate, we first prove

pointwise estimates of the sharp functions of ‖uxixj (t,x1, ·)‖Lp(Rd2 ) as functions of

(t,x1) ∈ R×Rd1 . Then we obtain the desired mixed norm estimate using the Hardy-
Littlewood theorem and Fefferman-Stein theorem. This approach is quite different
from ones used in many papers about equations in Sobolev spaces with or without
mixed norms. Especially, semigroup or singular integral based methods seem not to
be applicable in our situation.

This paper consist of two parts. In the first part we solve the equation (2) in
Sobolev spaces with mixed norms when the coefficients aij are measurable in x1 ∈ R

and VMO in (t, x′) ∈ R × Rd−1. This result serves as one of main steps in [7]. Then
using the results in [7] as well as in the first part of this paper, we prove the main
results of this paper. The first part consists of section 3 and 4; the second part consists
of section 5 and 6. In section 2 we states the assumptions and the main results.

A few more words about notation: We denote x′ the last d− 1 coordinates of x,



440 D. KIM

that is, x′ = (x2, · · · , xd) ∈ Rd−1, so that x = (x1, x′). By ux′ we mean, depending
on the context, one of uxj , i = 2, · · · , d, or the whole collection {ux2, · · · , uxd}. As
usual, ux represents one of uxi, i = 1, · · · , d, or the whole collection of {ux1, · · · , uxd}.
Thus uxx′ is one of uxixj , where i ∈ {1, · · · , d} and j ∈ {2, · · · , d}, or the collection of
them. For a function g defined on Rm (or on a subset in Rm), m ≤ d+ 1, the average
of g over an open set Ω ⊂ Rm is denoted by (u)Ω, i.e.,

(g)Ω =
1

|Ω|

∫

Ω

g(x) dx = –

∫

Ω

g(x) dx,

where |Ω| is the m-dimensional volume of Ω. Finally, various constants are denoted
by N , their values may vary from one occurrence to another. We write N(d, δ, . . . ) if
N depends only on d, δ, . . . .

2. Main results. We consider the elliptic (1) and parabolic equation (2) with
coefficients aij , bi, and c satisfying the following assumptions. If the elliptic equation
is considered, we assume that all coefficients are independent of t ∈ R.

Assumption 2.1. The coefficients aij , bi, and c are measurable functions defined
on Rd+1, aij = aji. There exist constants δ ∈ (0, 1) and K > 0 such that

|bi(t, x)| ≤ K, |c(t, x)| ≤ K,

δ|ϑ|2 ≤
d
∑

i,j=1

aij(t, x)ϑiϑj ≤ δ−1|ϑ|2

for any (t, x) ∈ Rd+1 and ϑ ∈ Rd.

Another assumption on the coefficients aij(t, x) is that they are, in case p ∈ (2,∞),
measurable in (t, x1) ∈ R2 and VMO in x′ = (x2, · · · , xd) ∈ Rd−1 (the coefficient
a11(t, x) is measurable in x1 ∈ R and VMO in (t, x′) ∈ Rd). In case p = 2, the
coefficients aij(t, x) are measurable functions of only (t, x1) ∈ R2, but a11(t, x1) is
VMO in t ∈ R. If aij are independent of t (i.e., the elliptic case), they are measurable
in x1 and VMO in x′ ∈ Rd−1. To state this assumption precisely, we introduce the
following notations. Let

Br(x) = {y ∈ Rd : |x− y| < r}, B′
r(x

′) = {y′ ∈ Rd−1 : |x′ − y′| < r},

Γr(x) = (x1 − r, x1 + r) ×B′
r(x

′),

Qr(t, x) = (t, t+ r2) ×Br(x), Λr(t, x) = (t, t+ r2) × Γr(x).

Set Br = Br(0), B′
r = B′

r(0), Qr = Qr(0) and so on. By |B′
r| we mean the d − 1-

dimensional volume of B′
r(0). Denote

oscx′

(

aij ,Λr(t, x)
)

= r−3|B′
r|−2

∫ t+r2

t

∫ x1+r

x1−r

Aij
x′(s, τ) dτ ds,

osc(t,x′)

(

aij ,Λr(t, x)
)

= r−5|B′
r|−2

∫ x1+r

x1−r

Aij
(t,x′)(τ) dτ,
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where

Aij
x′(s, τ) =

∫

y′,z′∈B′
r(x′)

|aij(s, τ, y′) − aij(s, τ, z′)| dy′ dz′,

Aij
(t,x′)(τ) =

∫

σ,̺∈(t,t+r2)

∫

y′,z′∈B′
r(t,x′)

|aij(σ, τ, y′) − aij(̺, τ, z′)| dy′ dz′ dσ d̺.

Also denote

O x′

R (aij) = sup
(t,x)∈Rd+1

sup
r≤R

oscx′

(

aij ,Λr(t, x)
)

,

O(t,x′)
R (aij) = sup

(t,x)∈Rd+1

sup
r≤R

osc(t,x′)

(

aij ,Λr(t, x)
)

.

Finally set

a#
R = O(t,x′)

R (a11) +
∑

i6=1 or j 6=1

O x′

R (aij).

If elliptic equations are considered, we set

oscx′

(

aij ,Γr(x)
)

= r−1|B′
r|−2

∫ x1+r

x1−r

∫

y′,z′∈B′
r(x′)

|aij(τ, y′) − aij(τ, z′)| dy′ dz′ dτ

and

a#
R = sup

x∈Rd

sup
r≤R

oscx′

(

aij ,Γr(x)
)

.

Assumption 2.2. There is a continuous function ω(r) defined on [0,∞) such

that ω(0) = 0 and a#
R ≤ ω(R) for all R ∈ [0,∞).

By W 1,2
q,p (D), where D is an open set in Rd+1, we mean the collection of all

functions defined on D such that

‖u‖W 1,2
q,p (D) := ‖u‖Lq,p(D) + ‖ux‖Lq,p(D) + ‖uxx‖Lq,p(D) + ‖ut‖Lq,p(D) <∞,

where Lq,p(D) is defined in (4). For elliptic equations, we say u ∈ W 2
q,p(Ω) if u, ux,

uxx ∈ Lq,p(Ω), where Ω is an open set in Rd. Again note that W 1,2
p,p (D) = W 1,2

p (D)
and W 2

p,p(Ω) = W 2
p (Ω). We denote the parabolic and elliptic differential operators by

L and E, respectively, that is,

Lu = ut + aijuxixj + biuxi + cu,

Eu = aijuxixj + biuxi + cu.

The following are our main results. First we state our result about parabolic
equations in the whole space.

Theorem 2.3. Let q > p ≥ 2, 0 < T < ∞, and the coefficients of L satisfy

Assumption 2.1 and 2.2. In addition, we assume that, in case p = 2, aij are inde-

pendent of x′ ∈ Rd−1. Then for any f ∈ Lq,p((0, T ) × Rd), there exists a unique
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u ∈W 1,2
q,p ((0, T )×Rd) such that u(T, x) = 0 and Lu = f in (0, T )×Rd. Furthermore,

there is a constant N , depending only on d1, d2, δ, K, p, q, T , and the function ω,

such that

‖u‖W 1,2
q,p ((0,T )×Rd) ≤ N‖Lu‖Lq,p((0,T )×Rd)

for any u ∈ W 1,2
q,p ((0, T )× Rd) satisfying u(T, x) = 0.

We have the following result for elliptic equations in the whole space.

Theorem 2.4. Let q > p ≥ 2 and the coefficients of E satisfy Assumption 2.1

and 2.2. In addition, we assume that, in case p = 2, aij are independent of x′ ∈ Rd−1.

Then there exist constants λ0 ≥ 0 and N , depending only on d1, d2, δ, K, p, q, and

the function ω, such that

λ‖u‖Lq,p(Rd) +
√
λ‖ux‖Lq,p(Rd) + ‖uxx‖Lq,p(Rd) ≤ N‖Eu− λu‖Lq,p(Rd) (5)

for any u ∈ W 2
q,p(R

d) and λ ≥ λ0. Moreover, for any λ > λ0 and f ∈ Lq,p(R
d), there

exists a unique u ∈ W 2
q,p(R

d) such that Eu− λu = f in Rd.

We present results about equations on a half space. Recall the definition of Rd
+

given in the introduction. The proofs of the following two theorems show how useful
is the assumption that aij are allowed to be only measurable in one spatial direction.
Since their proofs are almost the same, we here give only a proof of Theorem 2.5.
Also see Theorem 2.7 in [9] and Theorem 2.7 in [8].

Theorem 2.5. Let q > p ≥ 2, 0 < T < ∞, and the coefficients of L satisfy

Assumption 2.1 and 2.2. In addition, we assume that, in case p = 2, aij are inde-

pendent of x′ ∈ Rd−1. Then for any f ∈ Lq,p((0, T ) × Rd
+), there exists a unique

u ∈W 1,2
q,p ((0, T ) × Rd

+) such that u(T, x) = u(t, 0, x′) = 0 and Lu = f in (0, T ) × Rd
+.

Proof. Define a new operator L̂ by

L̂ =
∂

∂t
+ âij ∂2

∂xi∂xj
+ b̂i

∂

∂xi
+ ĉ,

where âij , b̂i, and ĉ are either even or odd extensions of aij , bi, and c. Specifically,
for i = j = 1 or i, j ∈ {2, · · · , d}, the coefficients âij are even extensions of aij :

âij(t, x1, x′) = aij(t, x1, x′)Ix1≥0 + aij(t,−x1, x′)Ix1<0.

For j = 2, · · · , d, the coefficients â1j are odd extensions of a1j :

â1j(t, x1, x′) = a1j(t, x1, x′)Ix1≥0 − a1j(t,−x1, x′)Ix1<0.

Similarly, b̂1 is the odd extension of b1, and b̂i, j = 2, · · ·d, as well as ĉ are the even
extensions of bj and c. We see that the coefficients âij , b̂i, and ĉ satisfy Assumption
2.1. In addition, the coefficients âij satisfy Assumption 2.2 with 2ω. Let f̂ be the odd
extension of f . By Theorem 2.3 there exists a unique u ∈ W 1,2

q,p ((0, T )×Rd) such that

L̂u = f̂ and u(T, x) = 0. It is easy to check that −u(t,−x1, x′) ∈ W 1,2
q,p ((0, T ) × Rd)

also satisfies the same equation, so by uniqueness we have u(t, x1, x′) = −u(t,−x1, x′).
From this it follows that u(t, 0, x′) = 0 for (t, x′) ∈ (0, T )× Rd−1. This together with
the fact that u(T, 0) = 0 shows that that u, as a function defined on (0, T ) × Rd

+,
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is a solution to Lu = f satisfying u(T, x) = u(t, 0, x) = 0. Uniqueness follows from
the fact that the odd extension of a solution belongs to W 1,2

q,p ((0, T ) × Rd) and the

uniqueness of solutions to equations on (0, T ) × Rd.

Theorem 2.6. Let q > p ≥ 2 and the coefficients of E satisfy Assumption 2.1

and 2.2. In addition, we assume that, in case p = 2, aij are independent of x′ ∈ Rd−1.

Then there exist constants λ0 ≥ 0 and N , depending only on d1, d2, δ, K, p, q, and

the function ω, such that, for any λ > λ0 and f ∈ Lq,p(R
d
+), there exists a unique

u ∈W 2
q,p(R

d
+) satisfying u(0, x′) = 0 and Eu− λu = f in Rd

+.

Remark 2.7. The above four theorems for the case q = p ≥ 2 follow from the
results in [8, 9, 7]. If q = p = 2, all of the coefficients aij(t, x) for the parabolic
operator L are further allowed to be measurable in (t, x1) (see [9]) as long as they are
functions of only (t, x1). In the above theorems, the condition that aij are independent
of x′ ∈ Rd−1 can be obviously replaced by the uniform continuity of aij as functions
of x′ ∈ Rd−1 uniformly in (t, x1). Regarding Theorem 2.5 and 2.6, appropriate Lq,p-
estimates can be stated. Moreover, it is possible to replace the Dirichlet boundary
condition by the Neumann boundary condition. That is, in Theorem 2.5 the condition
u(t, 0, x) = 0 can be replaced by ux1(t, 0, x) = 0. In Theorem 2.6 ux1(0, x) = 0 in
place of u(0, x) = 0. The proofs are the same, but instead of the odd extension of f ,
one has to use its even extension. For details, see Theorem 2.8 in [8] or Theorem 2.8
in [9].

3. Parabolic equations with aij measurable in x1 ∈ R and VMO in

(t, x′) ∈ Rd. To move toward the proofs of the main results above, we first need to
deal with the parabolic operator L when the coefficients aij(t, x1, x′) are measurable
in x1 ∈ R and VMO in (t, x′) ∈ Rd. Note that in Theorem 2.3 and 2.5 all coefficients
aij(t, x1, x′) except a11 are assumed to be measurable in (t, x1) and VMO in x′, so the
class of coefficients we consider in this section is less general than those in Theorem
2.3 and 2.5. To state this assumption on the coefficients aij precisely, set

a
#(t,x′)
R =

∑

i,j=1

O(t,x′)
R (aij).

Assumption 3.1. There is a continuous function ω(r) defined on [0,∞) such

that ω(0) = 0 and a
#(t,x′)
R ≤ ω(R) for all R ∈ [0,∞).

The following is the main result of this section.

Theorem 3.2. Let q > p ≥ 2, 0 < T < ∞, and the coefficients of L satisfy

Assumption 2.1 and 3.1. In addition, we assume that, in case p = 2, aij are inde-

pendent of x′ ∈ Rd−1. Then for any f ∈ Lq,p((0, T ) × Rd), there exists a unique

u ∈W 1,2
q,p ((0, T )×Rd) such that u(T, x) = 0 and Lu = f in (0, T )×Rd. Furthermore,

there is a constant N , depending only on d1, d2, δ, K, p, q, T , and the function ω,

such that

‖u‖W 1,2
q,p ((0,T )×Rd) ≤ N‖Lu‖Lq,p((0,T )×Rd)

for any u ∈ W 1,2
q,p ((0, T )× Rd) satisfying u(T, x) = 0.

This theorem is proved in the next section after presenting some preliminary
results. Throughout this section, we set

Lλu = ut + aij(x1)uxixj − λu,
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where λ ≥ 0 and aij are measurable functions of only x1 ∈ R satisfying Assumption
2.1. We start with a theorem which can be derived from results in [9].

Theorem 3.3. Let p ≥ 2 and T ∈ [−∞,∞). For any λ > 0 and f ∈ Lp((T,∞)×
Rd), there exists a unique solution u ∈ W 1,2

p ((T,∞) × Rd) to the equation Lλu = f .
Furthermore, there is a constant N = N(d, p, δ) such that, for any λ ≥ 0 and u ∈
W 1,2

p ((T,∞) × Rd), we have

‖ut‖Lp((T,∞)×Rd) + ‖uxx‖Lp((T,∞)×Rd) +
√
λ‖ux‖Lp((T,∞)×Rd)

+λ‖u‖Lp((T,∞)×Rd) ≤ N‖Lλu‖Lp((T,∞)×Rd).

If T = −∞, this theorem is obtained from Theorem 3.2 in [9] for p = 2 and
Lemma 5.3∗ in [9] for p > 2. For the case T ∈ (−∞,∞), we use the case T = −∞
and the argument following Corollary 5.14 in [14].

The following three lemmas are Lp-versions of Lemma 4.2, 4.3, and 4.4 in [9].
Since the estimate in Theorem 3.3 is available, their proofs can be done by repeating
the proofs of Lemma 4.2, 4.3, and 4.4 in [9] with p in place of 2.

Lemma 3.4. Let p ∈ [2,∞). For any u ∈W 1,2
p,loc(R

d+1), we have

‖ut‖Lp(Qr) + ‖uxx‖Lp(Qr) + ‖ux‖Lp(Qr) ≤ N
(

‖L0u‖Lp(QR) + ‖u‖Lp(QR)

)

,

where 0 < r < R <∞ and N = N(d, p, δ, r, R).

Lemma 3.5. Let p ∈ [2,∞), 0 < r < R < ∞, and γ = (γ1, · · · , γd) be a multi-

index such that γ1 = 0, 1, 2. If v ∈ C∞
loc

(Rd+1) is a function such that L0v = 0 in QR,

then
∫

Qr

|Dm
t D

γ
xv|p dx dt ≤ N

∫

QR

|v|p dx dt,

where m is a nonnegative integer and N = N(d, p, δ, γ,m, r,R).

Lemma 3.6. Let p ≥ 2 and v ∈ C∞
loc

(Rd+1) be a function such that L0v = 0 in

Q4. Then

sup
Q1

|vtt| + sup
Q1

|vtx| + sup
Q1

|vtxx′ | + sup
Q1

|vxxx′| ≤ N‖v‖Lp(Q4),

where N = N(d, p, δ).

The proofs of the lemmas and theorem below follow the ideas in [14], specifically,
those in the proofs of Lemma 5.9, Theorem 5.10, and Theorem 5.1 in [14].

Lemma 3.7. Let p ≥ 2 and λ ≥ 0. For every v ∈ C∞
loc

(Rd+1) such that Lλv = 0
in Q4, we have

sup
Q1

|vtt| + sup
Q1

|vtx| + sup
Q1

|vtxx′ | + sup
Q1

|vxxx′ |

≤ N(d, p, δ)
(

‖vxx‖Lp(Q4) + ‖vt‖Lp(Q4) +
√
λ‖vx‖Lp(Q4)

)

.

∗In fact, Lemma 5.3 in [9] says that the estimate in Theorem 3.3 holds for all λ ≥ λ0 ≥ 0, where
λ0 is not necessarily 0. However, since the coefficients aij of Lλ are measurable functions of only
x1 ∈ R and bi = c = 0, it can be proved, using a dilation argument, that λ0 = 0 in our case.
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Proof. We first note that, in case λ = 0, by Lemma 3.6

I := sup
Q1

|vtt| + sup
Q1

|vtx| + sup
Q1

|vtxx′ | + sup
Q1

|vxxx′ | ≤ N‖v‖Lp(Q4),

The function u := v − (v)Q4
− xi (vxi)Q4

can replace v in the above inequality since
L0u = 0 in Q4. This together with the fact that Dm

t D
γ
xv = Dm

t D
γ
xu for m ≥ 1 or

|γ| ≥ 2 gives

I ≤ N‖v − (v)Q4
− xi (vxi)Q4

‖Lp(Q4).

This and Lemma 5.4 in [14] prove the inequality in the lemma for λ = 0.
In case λ > 0, we extend v(t, x) to a function defined on Rd+2. Specifically, set

v(t, x, ξ) = v(t, x) cos(
√
λ ξ),

where ξ ∈ R and (t, x, ξ) ∈ Rd+2. Notice that

L0v + vξξ = 0 in Q4,

Dm
t D

γ
xv(t, x) = Dm

t D
γ
xv(t, x, 0), sup

Q1

|Dm
t D

γ
xv| ≤ sup

Q1

|Dm
t D

γ
xv|,

where Qr = (0, r2) × {(x, ξ) ∈ Rd+1 : |x|2 + ξ2 < r2}. Thus by the argument above
for the case λ = 0 we have

I ≤ N
(

‖vxx‖Lp(Q4) + ‖vxξ‖Lp(Q4) + ‖vξξ‖Lp(Q4) + ‖vt‖Lp(Q4)

)

. (6)

Note that, for example,

vxx = vxx cos(
√
λ ξ), vxξ = −

√
λvx sin(

√
λ ξ), vξξ = −λv cos(

√
λ ξ).

Therefore, the right-hand side of the inequality (6) is not greater than a constant
times

‖vxx‖Lp(Q4) + ‖vt‖Lp(Q4) +
√
λ‖vx‖Lp(Q4) + λ‖v‖Lp(Q4).

This is bounded by the right-hand side of the inequality in the lemma (note that
λv = L0v in Q4). The lemma is proved.

Lemma 3.8. Let p ≥ 2, λ ≥ 0, κ ≥ 4, and r ∈ (0,∞). Let v ∈ C∞
loc

(Rd+1) be

such that Lλv = 0 in Qκr. Then there is a constant N , depending only on d, p, and

δ, such that

–

∫

Qr

|vt(t, x) − (vt)Qr
|p dx dt+ –

∫

Qr

|vxx′(t, x) − (vxx′)Qr
|p dx dt

≤ Nκ−p
(

|vxx|p + |vt|p + λp/2|vx|p
)

Qκr

. (7)

Proof. Due to a dilation argument (see the proof of Theorem 5.10 in [14]), it is
enough to prove the inequality (7) when r = 1.

For v ∈ C∞
loc(R

d+1) such that Lλv = 0 in Qκ, κ ≥ 4, set

v̌(t, x) = v

(

(κ

4

)2

t,
κ

4
x

)

, ǎij(x1) = aij(κx1/4).
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Then

Ľ( κ
4
)2λv̌(t, x) :=

(

∂

∂t
+ ǎij(x1)

∂2

∂xi∂xj
−
(κ

4

)2

λ

)

v̌(t, x)

=
(κ

4

)2

(Lλv)

(

(κ

4

)2

t,
κ

4
x

)

= 0 in Q4.

Thus by Lemma 3.7, it follows that

Ǐ ≤ N
(

‖v̌xx‖Lp(Q4) + ‖v̌t‖Lp(Q4) +
κ

4

√
λ‖v̌x‖Lp(Q4)

)

, (8)

where

Ǐ := sup
Q1

|v̌tt| + sup
Q1

|v̌tx| + sup
Q1

|v̌txx′ | + sup
Q1

|v̌xxx′ |.

Note that

(4/κ)3 Ǐ = (κ/4)

(

sup
Qκ/4

|vtt| + sup
Qκ/4

|vtxx′ |
)

+ sup
Qκ/4

|vtx| + sup
Qκ/4

|vxxx′ |.

Using this, the inequality (8), and the fact that κ ≥ 4, we have

–

∫

Q1

|vt(t, x) − (vt)Q1
|p dx dt + –

∫

Q1

|vxx′(t, x) − (vxx′)Q1
|p dx dt

≤ N

(

sup
Qκ/4

|vtt| + sup
Qκ/4

|vtx| + sup
Qκ/4

|vtxx′ | + sup
Qκ/4

|vxxx′ |
)p

≤ Nκ−3pǏp

≤ Nκ−3p
(

‖v̌xx‖p
Lp(Q4) + ‖v̌t‖p

Lp(Q4)
+ κpλp/2‖v̌x‖p

Lp(Q4)

)

= Nκ−p
(

|vxx|p + |vt|p + λp/2|vx|p
)

Lp(Qκ)
.

This finishes the proof.

Theorem 3.9. Let p ≥ 2. Then there is a constant N , depending only on d, p,
and δ, such that, for any u ∈W 1,2

p (Rd+1), r ∈ (0,∞), and κ ≥ 8,

–

∫

Qr

|ut(t, x) − (ut)Qr
|p dx dt + –

∫

Qr

|uxx′(t, x) − (uxx′)Qr
|p dx dt

≤ Nκd+2 (|L0u|p)Qκr
+Nκ−p (|uxx|p)Qκr

.

Proof. Since C∞
0 (Rd+1) is dense in W 1,2

p (Rd+1), it is enough to have u ∈
C∞

0 (Rd+1). In addition, we can assume that aij(x1) are infinitely differentiable. Take
a λ > 0 and, for u ∈ C∞

0 (Rd+1), let

f := fλ = Lλu.



EQUATIONS IN Lp-SPACES WITH MIXED NORMS 447

We see f ∈ C∞
0 (Rd+1). For given r > 0 and κ ≥ 8, let η ∈ C∞

0 (Rd+1) be a function
such that η = 1 on Qκr/2 and η = 0 outside

(

−(κr)2, (κr)2
)

×Bκr. Also let

g := fη, h := f(1 − η).

Then by Theorem 3.3 there exists a unique solution v ∈ W 1,2
p (Rd+1) (note that

λ > 0) to the equation Lλv = h. From the classical theory we see that the function
v is infinitely differentiable. Moreover, since Lλv = h = 0 in Qκr/2 and κ/2 ≥ 4, by
Lemma 3.8, we have

–

∫

Qr

|vt(t, x) − (vt)Qr
|p dx dt + –

∫

Qr

|vxx′(t, x) − (vxx′)Qr
|p dx dt

≤ Nκ−p
(

|vxx|p + |vt|p + λp/2|vx|p
)

Qκr/2

≤ Nκ−p
(

|vxx|p + |vt|p + λp/2|vx|p
)

Qκr

.

Set w := u− v ∈W 1,2
p (Rd+1). Then from the above inequality it follows that

–

∫

Qr

|uxx′(t, x) − (uxx′)Qr
|p dx dt

≤ 2p –

∫

Qr

|wxx′(t, x) − (wxx′)Qr
|p dx dt+ 2p –

∫

Qr

|vxx′(t, x) − (vxx′)Qr
|p dx dt

≤ N (|wxx′ |p)Qr
+Nκ−p

(

|vxx|p + |vt|p + λp/2|vx|p
)

Qκr

.

Similar inequalities are possible with ut in place of uxx′ . Thus we have

–

∫

Qr

|ut(t, x) − (ut)Qr
|p dx dt+ –

∫

Qr

|uxx′(t, x) − (uxx′)Qr
|p dx dt

≤ N (|wt|p + |wxx|p)Qr
+Nκ−p

(

|vxx|p + |vt|p + λp/2|vx|p
)

Qκr

. (9)

Now we observe that

Lλw = Lλ(u− v) = f − h = g

and, by Theorem 3.3,
∫

Qr

|wt|p dx dt+

∫

Qr

|wxx|p dx dt

≤ ‖wt‖p
Lp((0,∞)×Rd)

+ ‖wxx‖p
Lp((0,∞)×Rd)

+ λp/2‖wx‖p
Lp((0,∞)×Rd)

≤ N‖g‖p
Lp((0,∞)×Rd)

= N

∫

Qκr

|g|p dx dt ≤ N

∫

Qκr

|f |p dx dt.

From this we see that

(|wt|p)Qr
+ (|wxx|p)Qr

≤ Nκd+2 (|f |p)Qκr
,
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(

|wxx|p + |wt|p + λp/2|wx|p
)

Qκr

≤ N (|f |p)Qκr
.

Now we use the these inequalities as well as the inequality (9). We also use the
fact u = w + v and κ ≥ 8. Then we obtain

–

∫

Qr

|ut(t, x) − (ut)Qr
|p dx dt + –

∫

Qr

|uxx′(t, x) − (uxx′)Qr
|p dx dt

≤ Nκd+2 (|f |p)Qκr
+Nκ−p

(

|wxx|p + |wt|p + λp/2|wx|p
)

Qκr

+Nκ−p
(

|uxx|p + |ut|p + λp/2|ux|p
)

Qκr

≤ Nκd+2 (|f |p)Qκr
+Nκ−p

(

|uxx|p + |ut|p + λp/2|ux|p
)

Qκr

.

To complete the proof, we use the fact that ut = f + λu − aijuxixj , and then let
λց 0.

4. Proof of Theorem 3.2. Set

L0u = ut + aij(t, x)uxixj ,

where coefficients aij satisfies Assumption 2.1 and 3.1.

Lemma 4.1. Let p > q ≥ 2, and r ∈ (0, 1]. Assume that v ∈ W 1,2
p,loc(R

d+1)
satisfies L0v = 0 in Q2r. Then

(|vxx|p)1/p
Qr

≤ N
(

|vxx|2
)1/2

Q2r
≤ N (|vxx|q)1/q

Q2r
,

where N depends only on d, p, δ, and the function ω.

Proof. This lemma is almost the same as Corollary 6.4 in [14] if L0 is replaced by
the operator used there. In our case, we can repeat the argument in Corollary 6.4 of
[14] if we have the estimate

‖uxx‖Lp(Qr) ≤ N
(

‖L0u‖Lp(Qκr) + r−1‖ux‖Lp(Qκr) + r−2‖u‖Lp(Qκr)

)

for p ∈ (2,∞) and u ∈ W 1,2
p,loc(R

d+1), where r ∈ (0, 1], κ ∈ (1,∞), and N depends
only on d, p, δ, κ, and the function ω. This is obtained using Theorem 2.5 in [9] and
the argument in the proof of Lemma 6.3 in [14].

The following theorem is proved in the same way as Lemma 3.1 in [14]. However,
because of the different conditions on aij between our operator L0 and the operator
defined in [14], we give a complete proof here.

Theorem 4.2. Let p ≥ 2. In case p = 2, the coefficients aij of L0 are assumed

to be independent of x′ ∈ Rd−1. Then there exists a constant N , depending on d, p,
δ, and the function ω, such that, for any u ∈ C∞

0 (Rd+1), κ ≥ 16, and r ∈ (0, 1/κ], we

have

–

∫

Qr

|ut(t, x) − (ut)Qr
|p dx dt + –

∫

Qr

|uxx′(t, x) − (uxx′)Qr
|p dx dt
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≤ Nκd+2 (|L0u|p)Qκr
+N

(

κ−p + κd+2â1/2
)

(|uxx|p)Qκr
,

where â = a
#(t,x′)
κr .

Proof. For given u ∈ C∞
0 (Rd+1), κ ≥ 16, and r ∈ (0, 1/κ], find a unique function

w̃ ∈W 1,2
p ((−3, 4) × Rd) satisfying w̃(4, x) = 0 and

L0w̃ = fIQκr ,

where f := L0u. This is possible by Theorem 2.2 and 2.5 in [9]. Moreover, w̃ ∈
W 1,2

q ((−3, 4) × Rd) for all q ∈ (2,∞) because fIQκr ∈ Lq((−3, 4) × Rd) for all q > 2.
Let

w(t, x) = η(t)w̃(t, x),

where η(t) is an infinitely differentiable function defined on R such that

η(t) = 1, −1 ≤ t ≤ 2, η(t) = 0, t ≤ −2 or t ≥ 3.

We see that w ∈ W 1,2
p (Rd+1) and, in addition, w ∈ W 1,2

q (Rd+1) for all q ∈ (2,∞).
From the estimates from Theorem 2.2 and 2.5 in [9] we have

∫

Qκr

(|wt|p + |wxx|p) dx dt ≤
∫

(−3,4)×Rd

(|w̃t|p + |w̃xx|p) dx dt ≤ N

∫

Qκr

|f |p dx dt,

where N depends only on d, δ, p, and the function ω (it also depends on the time
interval, but the time interval here is fixed as (−3, 4)). Thus

(|wt|p + |wxx|p)Qκr
≤ N (|f |p)Qκr

, (10)

(|wt|p + |wxx|p)Qr
≤ Nκd+2 (|f |p)Qκr

. (11)

where N = N(d, δ, p, ω).
Now we set v = u−w. Then v ∈W 1,2

p (Rd+1), v ∈W 1,2
q (Rd+1) for all q ∈ (2,∞),

and

L0v = 0 in Qκr.

Let

L̄0 =
∂

∂t
+ āij(x1)

∂2

∂i∂j
,

where

āij(x1) = –

∫ (κr/2)2

0

–

∫

B′
κr/2

aij(s, x1, y′) dy′ ds.

Since v ∈ W 1,2
p (Rd+1) and κ/2 ≥ 8, by Theorem 3.9 applied to the operator L̄0, we

have

–

∫

Qr

|vt(t, x) − (vt)Qr
|p dx dt + –

∫

Qr

|vxx′(t, x) − (vxx′)Qr
|p dx dt
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≤ Nκd+2
(

|L̄0v|p
)

Qκr/2
+Nκ−p (|vxx|p)Qκr/2

.

Using the fact that L0v = 0 in Qκr, we have

(

|L̄0v|p
)

Qκr/2
= –

∫

Qκr/2

|
(

āij(x1) − aij(t, x)
)

vxixj |p dx dt

≤
(

–

∫

Qκr/2

|āij(x1) − aij(t, x)|2p dx dt

)1/2(

–

∫

Qκr/2

|vxixj |2p dx dt

)1/2

,

where we see

–

∫

Qκr/2

|āij(x1) − aij(t, x)|2p dx dt ≤ N –

∫

Qκr/2

|āij(x1) − aij(t, x)| dx dt ≤ Na
#(t,x′)
κr/2 .

From Lemma 4.1 we also see

(

–

∫

Qκr/2

|vxixj |2p dx dt

)1/2

≤ N(d, p, δ, ω)

(

–

∫

Qκr

|vxx|p dx dt
)

.

Hence

–

∫

Qr

|vt(t, x) − (vt)Qr
|p dx dt + –

∫

Qr

|vxx′(t, x) − (vxx′)Qr
|p dx dt

≤ N
(

κ−p + κd+2â1/2
)

(|vxx|p)Qκr
.

Note that

(|vxx|p)Qκr
≤ N (|uxx|p)Qκr

+N (|wxx|p)Qκr
≤ N (|uxx|p)Qκr

+N (|f |p)Qκr
,

where the second inequality is due to (10). Also note that, using the inequality (11),

–

∫

Qr

|wxx′(t, x) − (wxx′)Qr
|p dx dt ≤ N (|wxx′ |p)Qr

≤ Nκd+2 (|f |p)Qκr
,

–

∫

Qr

|wt(t, x) − (wt)Qr
|p dx dt ≤ N (|wt|p)Qr

≤ Nκd+2 (|f |p)Qκr
.

Therefore,

–

∫

Qr

|uxx′(t, x) − (uxx′)Qr
|p dx dt

≤ N –

∫

Qr

|vxx′(t, x) − (vxx′)Qr
|p dx dt+N –

∫

Qr

|wxx′(t, x) − (wxx′)Qr
|p dx dt

≤ N
(

κ−p + κd+2â1/2
)

(|uxx|p + |f |p)Qκr
+Nκd+2 (|f |p)Qκr

.
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Similarly, we have

–

∫

Qr

|ut(t, x) − (ut)Qr
|p dx dt

≤ N
(

κ−p + κd+2â1/2
)

(|uxx|p + |f |p)Qκr
+Nκd+2 (|f |p)Qκr

.

The theorem is proved.
Here we introduce some notations we use below. Let

Bd1

r (x1) = {|x1 − y1| < r : y1 ∈ Rd1}, Qd1

r (t,x1) = (t, t+ r2) ×Bd1

r (x1),

Bd2

r (x2) = {|x2 − y2| < r : y2 ∈ Rd2}, Qd2

r (t,x2) = (t, t+ r2) ×Bd2

r (x2).

Recall that x1 and x2 are those defined in (3). As before, we set, for example,
Bd1

r = Bd1
r (0) and Qd1

r = Qd1
r (0, 0). For a function f defined on Rd+1, denote

‖f(t,x1, ·)‖p(d2) =

(∫

Rd2

|f(t, x)|p dx2

)1/p

.

Note that ‖f(t,x1, ·)‖p(d2) is a function of (t,x1). To define the above norm more
precisely as well as explain some notations below, we add the following remark.

Remark 4.3. As indicated in the introduction, we have fixed two nonnegative
integers d1 and d2 (d1 + d2 = d) and all different integers i1, i2, · · · , id1

, j1, j2, · · · , jd2

from {1, 2, · · · , d}. For x = (x1, x2, · · · , xd) ∈ Rd, we have denoted

x1 = (xi1 , xi2 , · · · , xid1 ) ∈ Rd1 , x2 = (xj1 , xj2 , · · · , xjd2 ) ∈ Rd2 .

Let Π1 be a projection from Rd onto Rd1 such that Π1(x) = x1. Likewise, let Π2

be a projection from Rd onto Rd2 such that Π2(x) = x2. Define Π to be a function
from Rd onto Rd1 ×Rd2 such that Π(x) = (Π1(x),Π2(x)) = (x1,x2). We see that the
inverse Π−1 of Π exists. Then by ‖f(t,x1, ·)‖p(d2) we mean

(∫

Rd2

|f
(

t,Π−1(x1,x2)
)

|p dx2

)1/p

.

In the following we use, for example, u(t,x1,x2), the precise notation for which is
therefore u(t,Π−1(x1,x2)).

Lemma 4.4. Let p ≥ 2. In case p = 2, we assume that the coefficients aij of

L0 are independent of x′ ∈ Rd−1. Then there exists a constant N = N(d1, d2, p, δ, ω)
such that

–

∫

Q
d1
r

–

∫

Q
d1
r

∣

∣‖ut(t,x1, ·)‖p(d2) − ‖ut(s,y1, ·)‖p(d2)

∣

∣

p
dx1 dt dy1 ds

+ –

∫

Q
d1
r

–

∫

Q
d1
r

∣

∣‖uxx′(t,x1, ·)‖p(d2) − ‖uxx′(s,y1, ·)‖p(d2)

∣

∣

p
dx1 dt dy1 ds
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≤ N
(

κ−p + κd+2â1/2
)

–

∫

Q
d1
κr

‖uxx(t,x1, ·)‖p
p(d2)

dx1 dt

+Nκd+2 –

∫

Q
d1
κr

‖L0u(t,x1, ·)‖p
p(d2)

dx1 dt,

for any u ∈ C∞
0 (Rd+1), r > 0, and κ ≥ 16

√
2 satisfying κr ≤ 1, where â = a

#(t,x′)
κr .

Proof. Let us denote by I the left-hand side of the inequality in the lemma. Note
that

∣

∣‖ut(t,x1, ·)‖p(d2) − ‖ut(s,y1, ·)‖p(d2)

∣

∣

p ≤ ‖ut(t,x1, ·) − ut(s,y1, ·)‖p
p(d2)

.

A similar inequality holds for the integrand of the second integral of I. Thus

I ≤ –

∫

Q
d1
r

–

∫

Q
d1
r

‖ut(t,x1, ·) − ut(s,y1, ·)‖p
p(d2)

dx1 dt dy1 ds

+ –

∫

Q
d1
r

–

∫

Q
d1
r

‖uxx′(t,x1, ·) − uxx′(s,y1, ·)‖p
p(d2)

dx1 dt dy1 ds := I1 + I2.

Note that

‖ut(t,x1, ·) − ut(s,y1, ·)‖p
p(d2)

= –

∫

B
d2
r

∫

Rd2

|ut(t,x1, z2 + w2) − ut(s,y1, z2 + w2)|p dz2 dw2

=

∫

Rd2

–

∫

B
d2
r (z2)

|ut(t,x1,w2) − ut(s,y1,w2)|p dw2 dz2.

Hence

I1 =

∫

Rd2

–

∫

Q
d1
r

–

∫

Q
d1
r

–

∫

B
d2
r (z2)

|ut(t,x1,w2) − ut(s,y1,w2)|p dw2 dx1 dt dy1 ds dz2.

Also note that

|ut(t,x1,w2) − ut(s,y1,w2)|p

≤ 2p
∣

∣

∣ut(t,x1,w2) − (ut)Q√
2r(0,z2)

∣

∣

∣

p

+ 2p
∣

∣

∣ut(s,y1,w2) − (ut)Q√
2r(0,z2)

∣

∣

∣

p

and

Qd1

r ×Bd2

r (z2) ⊂ Q√
2r(0, z2),

where, and throughout the proof, (0, z2) = (0,Π−1(0, z2)) (see Remark 4.3). Thus

I1 ≤ N(d, p)

∫

Rd2

–

∫

Q√
2r(0,z2)

∣

∣

∣ut(t,x1,w2) − (ut)Q√
2r(0,z2)

∣

∣

∣

p

dw2 dx1 dt dz2.
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Then by Theorem 4.2 (with an appropriate translation) we have

I1 ≤ Nκd+2

∫

Rd2

(|f |p)Qκr(0,z2)
dz2

+N

(

κ−p + κd+2
(

a#(t,x′)
κr

)1/2
)∫

Rd2

(|uxx|p)Qκr(0,z2)
dz2,

where f = L0u, κ ≥ 16
√

2, and κr ≤ 1. Observe that
∫

Rd2

(|f |p)Qκr(0,z2)
dz2 =

∫

Rd2

–

∫

Qκr

|f(t,x1, z2 + w2)|p dw2 dx1 dt dz2

≤ N(d)

∫

Rd2

–

∫

Q
d1
κr

–

∫

B
d2
κr

|f(t,x1, z2 + w2)|p dw2 dx1 dt dz2

= N(d) –

∫

Q
d1
κr

∫

Rd2

|f(t,x1, z2)|p dz2 dx1 dt = N(d) –

∫

Q
d1
κr

‖f(t,x1, ·)‖p
p(d2)

dx1 dt.

Similarly,
∫

Rd2

(|uxx|p)Qκr(0,z2)
dz2 ≤ N(d) –

∫

Q
d1
κr

‖uxx(t,x1, ·)‖p
p(d2)

dx1 dt.

Therefore,

I1 ≤ Nκd+2 –

∫

Q
d1
κr

‖f(t,x1, ·)‖p
p(d2)

dx1 dt

+N

(

κ−p + κd+2
(

a#(t,x′)
κr

)1/2
)

–

∫

Q
d1
κr

‖uxx(t,x1, ·)‖p
p(d2)

dx1 dt.

By following the same argument above, we arrive at the above inequality with I2 in
place of I1. This finishes the proof.

Set

φ(t,x1) = ‖ut(t,x1, ·)‖p(d2), ϕ(t,x1) = ‖uxx′(t,x1, ·)‖p(d2),

ζ(t,x1) = ‖uxx(t,x1, ·)‖p(d2), ψ(t,x1) = ‖L0u(t,x1, ·)‖p(d2).

Then they are functions of (t,x1) ∈ R×Rd1. Let Qd1 be the collection of all Qd1
r (t,x1),

(t,x1) ∈ R × Rd1 , r ∈ (0,∞). The maximal and sharp function of g(t,x1), (t,x1) ∈
R × Rd1 , are defined by

Mg(t,x1) = sup
(t,x1)∈Qd1

–

∫

Qd1

|g(s,y1)| dy1 ds,

g#(t,x1) = sup
(t,x1)∈Qd1

–

∫

Qd1

|g(s,y1) − (g)Qd1 | dy1 ds,



454 D. KIM

where the supremums are taken over all Qd1 ∈ Qd1 containing (t,x1).

Lemma 4.5. Let p ≥ 2. In case p = 2, we assume that the coefficients aij of L0

are independent of x′ ∈ Rd−1. Let R ∈ (0, 1] and u be a function in C∞
0 (Rd+1) such

that

u(t, x) = u(t,x1,x2) = 0 if (t,x1) /∈ (0, R4) ×Bd1

R2 .

Then

φ#(t,x1) + ϕ#(t,x1) ≤ Nκ(d+2)/p (Mψp(t,x1))
1/p

+N(κR)2−2/p (Mφp(t,x1))
1/p

+N
(

(κR)
(d1+2)(1−1/p)

+ κ−1 + κ(d+2)/p (ω(R))
1/(2p)

)

(Mζp(t,x1))
1/p

for all κ ≥ 16
√

2 and (t,x1) ∈ R × Rd1 , where N = N(d1, d2, p, δ, ω).

Proof. Take a κ such that κ ≥ 16
√

2. If r ≤ R/κ, then

κr ≤ R ≤ 1, a#(t,x′)
κr ≤ a

#(t,x′)
R ≤ ω(R).

Thus by Lemma 4.4,

–

∫

Q
d1
r

∣

∣

∣φ(s,y1) − (φ)
Q

d1
r

∣

∣

∣

p

dy1 ds+ –

∫

Q
d1
r

∣

∣

∣ϕ(s,y1) − (ϕ)
Q

d1
r

∣

∣

∣

p

dy1 ds

≤ Nκd+2(ψp)
Q

d1
κr

+N
(

κ−p + κd+2 (ω(R))
1/2
)

(φp)
Q

d1
κr
.

From this and an appropriate translation we obtain, for (t̄, x̄1) ∈ R × Rd1 ,

–

∫

Q
d1
r (t̄,x̄1)

∣

∣

∣φ(s,y1) − (φ)
Q

d1
r (t̄,x̄1)

∣

∣

∣

p

dy1 ds+ –

∫

Q
d1
r (t̄,x̄1)

∣

∣

∣ϕ(s,y1) − (ϕ)
Q

d1
r (t̄,x̄1)

∣

∣

∣

p

dy1 ds

≤ Nκd+2(ψp)
Q

d1
κr(t̄,x̄1)

+N
(

κ−p + κd+2 (ω(R))
1/2
)

(ζp)
Q

d1
κr(t̄,x̄1)

if r ≤ R/κ. Then using the Hölder’s inequality it follows that, for r ≤ R/κ,

–

∫

Q
d1
r (t̄,x̄1)

∣

∣

∣
φ(s,y1) − (φ)

Q
d1
r (t̄,x̄1)

∣

∣

∣
dy1 ds+ –

∫

Q
d1
r (t̄,x̄1)

∣

∣

∣
ϕ(s,y1) − (ϕ)

Q
d1
r (t̄,x̄1)

∣

∣

∣
dy1 ds

≤ Nκ(d+2)/p(ψp)
1/p

Q
d1
κr(t̄,x̄1)

+N
(

κ−1 + κ(d+2)/p (ω(R))
1/(2p)

)

(ζp)
1/p

Q
d1
κr(t̄,x̄1)

.

On the other hand, if r > R/κ,

–

∫

Q
d1
r (t̄,x̄1)

∣

∣

∣φ(s,y1) − (φ)
Q

d1
r (t̄,x̄1)

∣

∣

∣ dy1 ds

≤ 2

(

–

∫

Q
d1
r (t̄,x̄1)

I
Q

d1

R2

dy1 ds

)1−1/p(

–

∫

Q
d1
r (t̄,x̄1)

|φ(s,y1)|p dy1 ds

)1/p
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≤ N(d1)
(

R2/r
)(d1+2)(1−1/p)

(φp)
1/p

Q
d1
r (t̄,x̄1)

≤ N(d1) (κR)
(d1+2)(1−1/p)

(φp)
1/p

Q
d1
r (t̄,x̄1)

.

By the same reasoning, if r > R/κ, we have

–

∫

Q
d1
r (t̄,x̄1)

∣

∣

∣ϕ(s,y1) − (ϕ)
Q

d1
r (t̄,x̄1)

∣

∣

∣ dy1 ds ≤ N (κR)(d1+2)(1−1/p) (ϕp)
1/p

Q
d1
r (t̄,x̄1)

.

Therefore,

–

∫

Q
d1
r (t̄,x̄1)

∣

∣

∣φ(s,y1) − (φ)
Q

d1
r (t̄,x̄1)

∣

∣

∣ dy1 ds+ –

∫

Q
d1
r (t̄,x̄1)

∣

∣

∣ϕ(s,y1) − (ϕ)
Q

d1
r (t̄,x̄1)

∣

∣

∣ dy1 ds

≤ Nκ(d+2)/p(ψp)
1/p

Q
d1
κr(t̄,x̄1)

+N
(

κ−1 + κ(d+2)/p (ω(R))
1/(2p)

)

(ζp)
1/p

Q
d1
κr(t̄,x̄1)

+N (κR)(d1+2)(1−1/p)
(

(φp)
1/p

Q
d1
r (t̄,x̄1)

+ (ϕp)
1/p

Q
d1
r (t̄,x̄1)

)

(12)

for all r > 0.
Now we observe that, for any (t,x1) ∈ Qr(t̄, x̄1),

(ψp)
Q

d1
κr(t̄,x̄1)

≤Mψp(t,x1), (ζp)
Q

d1
κr(t̄,x̄1)

≤Mζp(t,x1),

(φp)
Q

d1
κr(t̄,x̄1)

≤Mφp(t,x1), (ϕp)
Q

d1
κr(t̄,x̄1)

≤Mζp(t,x1).

The last two inequalities also hold true if κr is replaced by r. From these inequalities
as well as (12) it follows that, for any Qd1 ∈ Qd1 such that Qd1 ∋ (t,x1),

–

∫

Qd1

∣

∣φ(s,y1) − (φ)Qd1

∣

∣ dy1 ds+ –

∫

Qd1

∣

∣ϕ(s,y1) − (ϕ)Qd1

∣

∣ dy1 ds

≤ Nκ(d+2)/p (Mψp(t,x1))
1/p

+N (κR)
(d1+2)(1−1/p)

(Mφp(t,x1))
1/p

+N
(

(κR)
(d1+2)(1−1/p)

+ κ−1 + κ(d+2)/p (ω(R))
1/(2p)

)

(Mζp(t,x1))
1/p

.

Taking the supremum of the left-hand side of the above inequality over all Qd1 ∈ Qd1

such that Qd1 ∋ (t,x1), we obtain the inequality in the lemma. The lemma is proved.

Now we set

‖u‖Lq,p = ‖u‖L
t,x1
q L

x2
p (R×Rd).

Corollary 4.6. Let q > p ≥ 2. In case p = 2, we assume that the coefficients aij

of L0 are independent of x′ ∈ Rd−1. Then there exist constants R and N , depending

only on d1, d2, p, q, δ, and the function ω, such that

‖ut‖Lq,p + ‖uxx‖Lq,p ≤ N‖L0u‖Lq,p (13)
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for any u ∈ C∞
0 (Rd+1) satisfying

u(t, x) = u(t,x1,x2) = 0 if (t,x1) /∈ (0, R4) ×Bd1

R2 .

Proof. Let u ∈ C∞
0 (Rd+1) be a function such that

u(t, x) = u(t,x1,x2) = 0 if (t, x′) /∈ (0, R4) ×Bd1

R2 ,

where R ∈ (0, 1] will be specified below. Using the inequality in Lemma 4.5 as well
as the Hardy-Littlewood theorem and Fefferman-Stein theorem (note that q/p > 1),
we have

‖ut‖Lq,p + ‖uxx′‖Lq,p ≤ Nκ(d+2)/p‖L0u‖Lq,p +N(κR)2−2/p‖ut‖Lq,p

+N
(

(κR)
(d1+2)(1−1/p)

+ κ−1 + κ(d+2)/p (ω(R))
1/(2p)

)

‖uxx‖Lq,p .

for all κ ≥ 16
√

2. The left-hand side of the above inequality can be replaced by
‖ut‖Lq,p + ‖uxx‖Lq,p because

ux1x1 =
1

a11



L0u− ut −
∑

i6=1 or j 6=1

aijux1xj



 .

Now we choose a large κ and then a small R so that

N
(

(κR)(d1+2)(1−1/p) + κ−1 + κ(d+2)/p (ω(R))
1/(2p)

)

< 1/2

and

N(κR)2−2/p < 1/2.

It then follows that

‖ut‖Lq,p + ‖uxx‖Lq,p ≤ 2Nκ(d+2)/p‖L0u‖Lq,p .

This finishes the proof.

Remark 4.7. In the above corollary the estimate is prove when Lq,p =
Lt,x1

q Lx2
p (R × Rd). However, by making appropriates changes in Lemma 4.4 and

Lemma 4.5, we prove the same estimate when Lq,p = Lx1
q L

t,x2
p (R × Rd).

Theorem 4.8. Under the assumptions on L given in Theorem 3.2, there exist

λ0 ≥ 0 and N , depending only on d1, d2, δ, K, p, q, and the function ω, such that

λ‖u‖Lq,p((T,∞)×Rd) +
√
λ‖ux‖Lq,p((T,∞)×Rd) + ‖uxx‖Lq,p((T,∞)×Rd)

+ ‖ut‖Lq,p((T,∞)×Rd) ≤ N‖(L− λ)u‖Lq,p((T,∞)×Rd) (14)

for all λ ≥ λ0 and u ∈W 1,2
q,p ((T,∞) × Rd), where −∞ ≤ T <∞.

Proof. By the argument following Corollary 5.14 in [14] it is enough to prove (14)
for T = −∞. Moreover, it is enough to prove (14) for u ∈ C∞

0 (Rd+1). Then the
inequality (14) follows from Corollary 4.6 (also see Remark 4.7) and a partition of
unity. Details can be obtained by following the proofs in section 3 [14], more precisely,
those of Lemma 3.4 and Theorem 3.5 in [14].

Proof of Theorem 3.2. The estimate in Theorem 4.8 along with the method of
continuity implies Theorem 3.2. For details, see the proof of Theorem 2.1 in [13].



EQUATIONS IN Lp-SPACES WITH MIXED NORMS 457

5. Equations with aij measurable in (t, x1) ∈ R2. Throughout this section,
we set

Lλu = ut + aij(t, x1)uxixj − λu,

where λ ≥ 0 and aij are functions of only (t, x1) ∈ R2, a11(x1) is a function of x1 ∈ R,
satisfying Assumption 2.1.

As is seen in [7], one of key steps there is based on Theorem 3.2 in this paper
when d1 = 0 and d2 = d. Now that we have proved Theorem 3.2, it is legitimate to
use the results in [7]. Thus we can state the following theorem, which is due to the
result in [7] as well as in [9].

Theorem 5.1. Let p ≥ 2 and T ∈ [−∞,∞). For any λ > 0 and f ∈ Lp((T,∞)×
Rd), there exists a unique solution u ∈ W 1,2

p ((T,∞) × Rd) to the equation Lλu = f .
Furthermore, there is a constant N = N(d, p, δ) such that, for any λ ≥ 0 and u ∈
W 1,2

p ((T,∞) × Rd), we have

‖ut‖Lp((T,∞)×Rd) + ‖uxx‖Lp((T,∞)×Rd) +
√
λ‖ux‖Lp((T,∞)×Rd)

+λ‖u‖Lp((T,∞)×Rd) ≤ N‖Lλu‖Lp((T,∞)×Rd).

More precisely, this theorem follows, in case p = 2, from Theorem 3.2 in [9] and,
in case p > 2, from Corollary 4.2 in [7] as well as the argument in the proof of Theorem
4.1 in [13] (also see the discussion following Theorem 3.3).

Based on the estimate in the above theorem, we have the following lemma, the
proof of which is almost identical to those of Lemma 3.4 and Lemma 5.3 (a complete
proof of Lemma 5.3 is given). Recall that Λr = (0, r2) × (−r, r) ×B′

r.

Lemma 5.2. Let p ∈ [2,∞). For any u ∈W 1,2
p,loc(R

d+1), we have

‖ut‖Lp(Λr) + ‖uxx‖Lp(Λr) + ‖ux‖Lp(Λr) ≤ N
(

‖L0u‖Lp(ΛR) + ‖u‖Lp(ΛR)

)

,

where 0 < r < R <∞ and N = N(d, p, δ, r, R).

In the following we set ‖u‖Lq,p(Λr) = ‖u‖
Lt,x1

q Lx′
p (Λr)

, i.e.,

‖u‖Lq,p(Λr) =





∫ r2

0

∫ r

−r

(

∫

B′
r

|u(t, x1, x′)|p dx′
)q/p

dx1 dt





1/q

.

Lemma 5.3. Let

L0u = ut + a11(x1)ux1x1 + ∆d−1u,

where ∆d−1u =
∑d

j=2 uxjxj . Then for p, q ∈ [2,∞) such that q ≥ p, we have

‖ut‖Lq,p(Λr) + ‖uxx‖Lq,p(Λr) + ‖ux‖Lq,p(Λr) ≤ N
(

‖L0u‖Lq,p(ΛR) + ‖u‖Lq,p(ΛR)

)

for u ∈ C∞
loc

(Rd+1), where 0 < r < R <∞ and N = N(d, p, q, δ, r, R).
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Proof. The case p = q is proved in Lemma 5.2, so we assume that q > p. Set

r0 = r, rm = r + (R− r)
m
∑

k=1

1

2k
, m = 1, 2, · · · ,

Λm = (0, rm)2 × (−rm, rm) ×B′
rm
, m = 0, 1, · · · .

Then take ηm ∈ C∞
0 (Rd+1) such that

ηm(t, x) =

{

1 if (t, x) ∈ Λm,

0 if (t, x) /∈ (−r2m+1, r
2
m+1) × (−rm+1, rm+1) ×B′

rm+1
,

|(ηm)x| ≤ N
2m+1

R− r
, |(ηm)xx| ≤ N

22m+2

(R − r)2
, |(ηm)t| ≤ N

22m+2

(R− r)2
,

where N depends only on d. To construct them take an infinitely differentiable func-
tion g(s), s ∈ (−∞,∞), such that g(s) = 1 for s ≤ 0, g(s) = 0 for s ≥ 1, and
0 ≤ g ≤ 1. After this define

ηm(t, x1, x′) = η1m(t)η2m(x1)η3m(x′),

where

η1m(t) = g
(

2m+1(R − r)−1(
√

|t| − rm)
)

, η2m(x1) = g
(

2m+1(R− r)−1(|x1| − rm)
)

,

η3m(x′) = g
(

2m+1(R − r)−1(|x′| − rm)
)

.

Now we observe that the coefficients L0 satisfy the assumptions in Theorem 3.2,
so the estimate (14) is available. Let d1 = 1 (especially, we set x1 = x1) and d2 = d−1.
For u ∈ C∞

loc(R
d+1), we take an appropriate λ > 0 and apply the estimate (14) with

T = 0 to ηmu. Then

Am := ‖ηmu‖W 1,2
q,p ((0,∞)×Rd) ≤ N‖(L0 − λ)(ηmu)‖Lq,p((0,∞)×Rd)

≤ NB +N‖ηmxux‖Lq,p((0,∞)×Rd) +N
22m

(R− r)2
C, (15)

where N = N(d, p, q, δ) and

B := ‖(L0 − λ)u‖Lq,p(ΛR), C := ‖u‖Lq,p(ΛR).

Observe that, for arbitrary ε > 0,

‖ηmxux‖Lq,p((0,∞)×Rd) = ‖ηmx(ηm+1u)x‖Lq,p((0,∞)×Rd)

≤ N
2m

R− r
‖(ηm+1u)x‖Lq,p((0,∞)×Rd) ≤ εAm+1 +Nε−1 22m

(R− r)2
C,

where the last inequality is due to the interpolation inequality. Thus, (15) yields

Am ≤ NB + εAm+1 +Nε−1 22m

(R − r)2
C.
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Set ε = 1/8. Then by multiplying both sides by ε and summing up, we get

A0 +
∞
∑

m=1

εmAm ≤ NB +
∞
∑

m=1

εmAm +N
1

(R− r)2
C.

Indeed, the series of εmAm = 8−mAm converges since

Am ≤ N22m(R − r)−2‖u‖W 1,2
q,p (ΛR).

Therefore, after taking care of similar terms we see that A0 is less than or equal to
the right-hand side of the inequality in the lemma. The left-hand side is obviously
less than A0, so the lemma is proved.

Denote

qr(t, x
1) := (t, t+ r2) × (x1 − r, x1 + r) ⊂ R × R.

Especially, qr = qr(0, 0) = (0, r2) × (−r, r).
Lemma 5.4. Let p, q ∈ [2,∞) be such that q ≥ p and 1/q ≥ 1/p − 1/3. Also

let 0 < r < R < ∞ and γ = (γ1, · · · , γd) be a multi-index such that γ1 = 0. If

v ∈ C∞
loc

(Rd+1) is a function such that L0v = 0 in ΛR, then

‖Dγ
x′vt‖Lq,p(Λr) +

2
∑

m=0

‖Dγ
x′D

m
x1v‖Lq,p(Λr) ≤ N‖v‖Lp(ΛR),

where N = N(d1, d2, p, q, δ, γ, r, R).

Proof. It is enough to prove

‖v‖Lq,p(Λr) + ‖vx1‖Lq,p(Λr) + ‖vx1x1‖Lq,p(Λr) + ‖vt‖Lq,p(Λr) ≤ N‖v‖Lp(Λr1
), (16)

where r1 is a number such that r < r1 < R. To see this, using the fact that Dγ
x′v

satisfies L0D
γ
x′v = 0 in ΛR, we have the above inequality with Dγ

x′v in place of v.
Then using Lemma 5.2 as many times as needed, we arrive at the desired inequality
in the lemma.

If p = q, the inequality (16) follows directly from Lemma 5.2, so we consider the
case q > p. Since L0v = 0 in ΛR, we have

vt + a11(x1)vx1x1 + ∆d−1v = ∆d−1v −
∑

i6=1 or j 6=1

aijvxixj in ΛR.

If τ is a number between r and r1, by Lemma 5.3, we have

‖v‖Lq,p(Λr) + ‖vx1‖Lq,p(Λr) + ‖vx1x1‖Lq,p(Λr) + ‖vt‖Lq,p(Λr)

≤ N
(

‖vxx′‖Lq,p(Λτ ) + ‖v‖Lq,p(Λτ )

)

,

where N = N(d, p, q, r, τ, δ). Thus we obtain the inequality (16) once we prove

‖vxx′‖Lq,p(Λτ ) + ‖v‖Lq,p(Λτ ) ≤ N‖v‖Lp(Λr1
).

However, we prove

‖vxx′‖
Lx′

p Lt,x1

q (Λτ )
+ ‖v‖

Lx′
p Lt,x1

q (Λτ )
≤ N‖v‖Lp(Λr1

) (17)
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because by Minkowski’s inequality (note that q/p > 1), for example,

‖vxx′‖Lq,p(Λτ ) = ‖vxx′‖
Lt,x1

q Lx′
p (Λτ )

≤ ‖vxx′‖
Lx′

p Lt,x1

q (Λτ )
.

To prove (17), for each x′ ∈ B′
R, we view v(t, x1, x′) as a function of (t, x1). By

the Sobolev embedding theorem (Lemma 3.3 in Chapter 2 [16])

‖v(·, x′)‖Lq(qτ ) + ‖vx1(·, x′)‖Lq(qτ ) ≤ N‖v(·, x′)‖W 1,2
p (qτ ),

where N = N(p, q, τ). In the above inequality we can replace v(t, x1, x′) by
vx′(t, x1, x′) or vx′x′(t, x1, x′) as functions of (t, x1). Then, for each x′ ∈ B′

R, we
have

‖v(·, x′)‖Lq(qτ ) + ‖vxx′(·, x′)‖Lq(qτ ) ≤ N
2
∑

m=0

‖Dm
x′v(·, x′)‖W 1,2

p (qτ ),

where Dm
x′v, m = 0, 1, 2, is v, vx′ , and vx′x′ , respectively. By integrating pth power of

both sides of the above inequality over B′
τ with respect to x′ ∈ Rd−1, we get

‖v‖
Lx′

p Lt,x1

q (Λτ )
+ ‖vxx′‖

Lx′
p Lt,x1

q (Λτ )
≤ N

2
∑

m=0

∫

B′
τ

‖Dm
x′v(·, x′)‖p

W 1,2
p (qτ )

dx′

≤ N





2
∑

m=0

‖Dm
x′vt‖p

Lp(Λτ ) +

2
∑

l,m=0

‖Dl
x1Dm

x′v‖p
Lp(Λτ )



 ≤ N‖v‖p
Lp(Λr1

),

where the last inequality is due to the fact L0v = 0 in ΛR and repeated use of Lemma
5.2. Hence the inequality (17) is proved, and so is the lemma.

Below we use the following notations (0 < µ < 1).

|f |0,Qr := sup
(t,x)∈Qr

|f(t, x)|, [f ]µ,Qr := sup
(t,x),(s,y)∈Qr

(t,x) 6=(s,y)

|f(t, x) − f(s, y)|
|t− s|µ/2 + |x− y|µ .

Lemma 5.5. Let p ≥ 2. Assume that v ∈ C∞
loc

(Rd+1) is a function such that

L0v = 0 in Q4. Then

[vxx′ ]µ,Q1
≤ N(d1, d2, p, δ)‖v‖Lp(Q4),

where µ = µ(p) ∈ (0, 1).

Proof. We prove

[v]µ,Q1
+ [vx1 ]µ,Q1

≤ N‖v‖Lp(Λτ ), (18)

where 2 < τ <
√

8. If this is done, we can finish the proof using Lemma 5.4 (when
p = q) and the fact that Lvx′ = Lvx′x′ = 0 in Q4 (also note that Λ√

8 ⊂ Q4).
Fix a number q as follows. If p > 3, then q = p. If 2 ≤ p ≤ 3, then q is a number

such that 3 < q ≤ 6. We see that q ≥ p and 1/q ≥ 1/p− 1/3.
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We first prove

max
x′∈B′

1

‖v(·, x′)‖W 1,2
q (q1)

+ max
x′∈B′

1

‖vx′(·, x′)‖W 1,2
q (q1)

≤ N‖v‖Lp(Qτ ). (19)

Consider v(t, x1, x′) as a function of x′ ∈ B′
1. By the Sobolev embedding theorem

there exist N and k such that, for each (t, x1) ∈ q1,

max
x′∈B′

1

|v(t, x1, x′)| ≤ N‖v(t, x1, ·)‖W k
p (B′

1),

where ‖v(t, x1, ·)‖W k
p (B′

1) is the W k
p (B′

1) norm of v as a function of x′. Similarly, by

considering vt(t, x
1, x′) as well as Dm

x1v(t, x1, x′), m = 1, 2, as functions of x′ ∈ B′
1,

we have the same inequalities as above with vt or Dm
x1v in place of v. Thus, for each

(t, x1) ∈ q1,

max
x′∈B′

1

|vt(t, x
1, x′)| +

2
∑

m=0

max
x′∈B′

1

|Dm
x1v(t, x1, x′)|

≤ N

(

‖vt(t, x
1, ·)‖W k

p (B′
1)

+

2
∑

m=0

‖Dm
x1v(t, x1, ·)‖W k

p (B′
1)

)

.

This implies that

max
x′∈B′

1

‖v(·, x′)‖W 1,2
q (q1)

≤ N

(

∫

q1

‖vt(t, x
1, ·)‖q

W k
p (B′

1)
+

2
∑

m=0

‖Dm
x1v(t, x1, ·)‖q

W k
p (B′

1)
dx1 dt

)1/q

≤ N
∑

|γ|≤k

(

‖Dγ
x′vt‖Lq,p(Λ1) +

2
∑

m=0

‖Dγ
x′D

m
x1v‖Lq,p(Λ1)

)

≤ N‖v‖Lp(Λτ ),

where the last inequality is from Lemma 5.4. Thus the first term in (19) is proved
to be less than or equal to the right hand side of the inequality. To complete the
inequality (19), we repeat the same argument as above with vx′ in place of v.

Now we obtain the following inequalities. For each x′ ∈ B′
1, view v(t, x1, x′) and

vx′(t, x1, x′) as functions of (t, x1) defined on q1. Then by the embedding theorem
(Lemma 3.3 in Chapter 2 [16])

|vx′(·, x′)|0,q1
+ |vx1x′(·, x′)|0,q1

≤ N‖vx′(·, x′)‖W 1,2
q (q1)

, (20)

[v(·, x′)]µ,q1
+ [vx1(·, x′)]µ,q1

≤ N‖v(·, x′)‖W 1,2
q (q1) (21)

for each x′ ∈ B′
1, where µ = 1 − 3/q and N = N(q).

Finally, we prove the inequality (18). Note that

|vx1(t, x) − vx1(s, y)| ≤ I1 + I2,
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where

I1 = |vx1(t, x1, x′) − vx1(s, y1, x′)|, I2 = |vx1(s, y1, x′) − vx1(s, y1, y′)|.

By (21) and (19)

I1 ≤ N
(

|t− s|µ/2 + |x1 − y1|µ
)

‖v‖Lp(Λτ ).

To take care of I2, we use (20) and (19).

I2 ≤ |x′ − y′| max
z′∈B′

1

|vx1x′(s, y1, z′)| ≤ |x′ − y′| max
z′∈B′

1

‖vx′(·, z′)‖W 1,2
q (q1)

≤ |x′ − y′|‖v‖Lp(Λτ ).

This shows that

[vx1 ]µ,ν,Q1
≤ N‖v‖Lp(Qτ ).

By repeating the above argument with v in place of vx1 , we complete the proof of the
inequality (18). The lemma is proved.

Lemmas similar to Lemma 3.7 and 3.8 in section 3 are repeated below, but since
the operator Lλ is being dealt with, the lemmas have to be modified as follows.

Lemma 5.6. Let p ≥ 2 and λ ≥ 0. For every v ∈ C∞
loc

(Rd+1) such that Lλv = 0
in Q4, we have

[vxx′ ]µ,Q1
≤ N

(

‖vxx‖Lp(Q4) + ‖vt‖Lp(Q4) +
√
λ‖vx‖Lp(Q4)

)

,

where µ = µ(p) ∈ (0, 1) and N = N(d, p, δ).

Proof. We follow the steps in the proof of Lemma 3.7, but the sup-norms of the
derivatives of v on Q1 have to be replaced by [vxx′ ]µ,Q1

.

Lemma 5.7. Let p ≥ 2, λ ≥ 0, κ ≥ 4, and r ∈ (0,∞). Let v ∈ C∞
loc

(Rd+1) be

such that Lλv = 0 in Qκr. Then there is a constant N , depending only on d, p, and

δ, such that

–

∫

Qr

|vxx′(t, x) − (vxx′)Qr
|p dx dt ≤ Nκ−µp

(

|vxx|p + |vt|p + λp/2|vx|p
)

Qκr

,

where µ = µ(p) ∈ (0, 1).

Proof. We use Lemma 5.6. Note that

–

∫

Q1

|vxx′(t, x) − (vxx′)Q1
|p dx dt ≤ N [vxx′ ]pµ,Q1

and

[v̌xx′ ]µ,Q1
=
(κ

4

)µ+2

[vxx′ ]µ,Qκ/4
if v̌(t, x) = v

(

(κ

4

)2

t,
κ

4
x

)

.

Using these as well as the argument in the proof of Lemma 3.8, one can complete the
proof.
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Now we arrive at the following theorem, the proof of which is almost identical to
that of Theorem 3.9.

Theorem 5.8. Let p ≥ 2. Then there is a constant N , depending only on d, p,
and δ, such that, for any u ∈W 1,2

p (Rd+1), r ∈ (0,∞), and κ ≥ 8,

–

∫

Qr

|uxx′(t, x) − (uxx′)Qr
|p dx dt ≤ Nκd+2 (|L0u|p)Qκr

+Nκ−µp (|uxx|p)Qκr
,

where µ = µ(p) ∈ (0, 1).

6. Proof of Theorem 2.3 and 2.4. In this section, as stated in Theorem 2.3,
we deal with coefficients of L satisfying Assumption 2.1 and 2.2. Also note that the
coefficients aij(t, x) are independent of x′ ∈ Rd−1 if p = 2. Throughout the section,
we denote

L0u = ut + aij(t, x)uxixj .

As noted earlier, due to Theorem 3.2 in this paper, the results in [7] are now
available. This implies that, by the same reasoning as in the proof of Lemma 4.1,
the inequalities in Lemma 4.1 are possible with L0 defined above. Then using the
results in section 5 and repeating the proof of Theorem 4.2 (with necessary changes),
we obtain

Theorem 6.1. Let p ≥ 2. In case p = 2, we assume that the coefficients aij(t, x)
of L0 are independent of x′ ∈ Rd−1. Then there exists a constant N , depending on d,
p, δ, and the function ω, such that, for any u ∈ C∞

0 (Rd+1), κ ≥ 16, and r ∈ (0, 1/κ],
we have

–

∫

Qr

|uxx′(t, x) − (uxx′)Qr
|p dx dt

≤ Nκd+2 (|L0u|p)Qκr
+N

(

κ−µp + κd+2(a#
κr)

1/2
)

(|uxx|p)Qκr
,

where µ = µ(p) ∈ (0, 1).

In the following we state two lemmas corresponding to Lemma 4.4 and Lemma
4.5, respectively. Since we are dealing with aij different from those in section 4, we
have different statements, but the proofs are almost the same as those for Lemma 4.4
and Lemma 4.5.

Lemma 6.2. Let p ≥ 2. In case p = 2, we assume that the coefficients aij(t, x)
of L0 are independent of x′ ∈ Rd−1. Then there exists a constant N , depending on

d1, d2, p, δ, and the function ω, such that, for any u ∈ C∞
0 (Rd+1), κ ≥ 16

√
2, and

r ∈ (0, 1/κ], we have

–

∫

Q
d1
r

–

∫

Q
d1
r

|ϕ(t,x1) − ϕ(s,y1)|p dx1 dt dy1 ds

≤ Nκd+2(ψp)
Q

d1
κr

+N
(

κ−µp + κd+2(a#
κr)

1/2
)

(ζp)
Q

d1
κr
,
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where µ = µ(p) ∈ (0, 1),

ϕ(t,x1) = ‖uxx′(t,x1, ·)‖p(d2),

ζ(t,x1) = ‖uxx(t,x1, ·)‖p(d2), ψ(t,x1) = ‖L0u(t,x1, ·)‖p(d2).

Lemma 6.3. Let p ≥ 2. In case p = 2, we assume that the coefficients aij(t, x)
of L0 are independent of x′ ∈ Rd−1. Let R ∈ (0, 1] and u be a function in C∞

0 (Rd+1)
such that

u(t, x) = u(t,x1,x2) = 0 if (t,x1) /∈ (0, R4) ×Bd1

R2 .

Then

ϕ#(t,x1) ≤ Nκ(d+2)/p (Mψp(t,x1))
1/p

+N
(

(κR)(d1+2)(1−1/p) + κ−µ + κ(d+2)/p (ω(R))
1/2p

)

(Mζp(t,x1))
1/p

for all κ ≥ 16
√

2 and (t,x1) ∈ R×Rd1 , where µ = µ(p) ∈ (0, 1), N = N(d1, d2, p, δ, ω),
and the functions ϕ, ζ, ψ are those defined as in Lemma 6.2.

The proof of the next corollary clearly shows the necessity of the result for the case
with aij(t, x) measurable in x1 ∈ R and VMO in (t, x′) ∈ Rd (Theorem 3.2, specifically,
Corollary 4.6). As in corollary 4.6, we set Lq,p = Lt,x1

q Lx2
p (R × Rd). However, as we

see in Remark 4.7, the result holds true as well for Lq,p = Lx1
q L

t,x2
p (R × Rd).

Corollary 6.4. Let q > p ≥ 2. Assume that, in case p = 2, the coefficients aij

of L0 are independent of x′ ∈ Rd−1. Then there exist R and N , depending only on

d1, d2, p, q, δ, and the function ω, such that

‖ut‖Lq,p + ‖uxx‖Lq,p ≤ N‖L0u‖Lq,p ,

for any u ∈ C∞
0 (Rd+1) satisfying

u(t, x) = u(t,x1,x2) = 0 if (t,x1) /∈ (0, R4) ×Bd1

R2 .

Proof. As is seen in Corollary 4.6, from Lemma 6.3, we obtain

‖uxx′‖Lq,p ≤ Nκ(d+2)/p‖L0u‖Lq,p

+N
(

(κR)(d1+2)(1−1/p) + κ−µ + κ(d+2)/p (ω(R))
1/2p

)

‖uxx‖Lq,p

for all κ ≥ 16
√

2 and R ∈ (0, 1]. To obtain an estimate for ux1x1 , we set

g = L0u+ ∆d−1u−
∑

i6=1,j 6=1

aijuxixj ,

where ∆d−1u =
∑d

i=2 uxixi . Then

L1u := ut + a11ux1x1 + ∆d−1u = g
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and the operator L1 satisfies the assumptions in Corollary 4.6. Thus there exist
R1 = R1(d1, d2, p, q, δ, ω) and N = N(d1, d2, q, δ, ω) such that

‖ux1x1‖Lq,p ≤ N‖g‖Lq,p ≤ N
(

‖L0u‖Lq,p + ‖uxx′‖Lq,p

)

for all u ∈ C∞
0 (Rd+1) such that

u(t, x) = u(t,x1,x2) = 0 if (t,x1) /∈ (0, R4
1) ×Bd1

R2
1

.

From this together with the estimate for ‖uxx′‖Lq,p above, we have

‖uxx‖Lq,p ≤ Nκ(d+2)/p‖L0u‖Lq,p

+N
(

(κR)(d1+2)(1−1/p) + κ−µ + κ(d+2)/p (ω(R))
1/2p

)

‖uxx‖Lq,p

if u(t, x) = u(t,x1,x2) = 0 for (t,x1) /∈ (0, R4)×Bd1

R2 ∩ (0, R4
1)×Bd1

R2
1

. Now we choose

a large κ and then a small R (smaller than R1) such that

N
(

(κR)(d1+1)(1−1/p) + κ−µ + κ(d+2)/p (ω(R))
1/2p

)

< 1/2

(note that µ > 0). Then we have

‖uxx‖Lq,p ≤ 2Nκ(d+2)/p‖L0u‖Lq,p .

Finally, notice that

‖ut‖Lq,p = ‖L0u− aijuxixj‖Lq,p ≤ ‖L0u‖Lq,p +N‖uxx‖Lq,p .

The corollary is now proved.
As Corollary 4.6 implies Theorem 4.8, the above corollary implies the following

theorem.

Theorem 6.5. Under the assumptions on L given in Theorem 2.3, there exist

λ0 ≥ 0 and N , depending only on d1, d2, δ, K, p, q, and the function ω, such that

λ‖u‖Lq,p((T,∞)×Rd) +
√
λ‖ux‖Lq,p((T,∞)×Rd) + ‖uxx‖Lq,p((T,∞)×Rd)

+‖ut‖Lq,p((T,∞)×Rd) ≤ N‖(L− λ)u‖Lq,p((T,∞)×Rd)

for all λ ≥ λ0 and u ∈W 1,2((T,∞) × Rd), where −∞ ≤ T <∞.

The following proof illustrate how parabolic results can be used proving the unique
solvability of elliptic equations.

Proof of Theorem 2.4. It is enough to prove the a priori estimate (5) for u ∈
C∞

0 (Rd). Set w(t, x) = η(t/n)u(x), where η(t) ∈ C∞
0 (R), and Lw = wt + Ew. Since

the operator L satisfies the assumptions in Theorem 6.5, there exist λ0 and N such
that

λ‖w‖Lq,p(Rd+1) +
√
λ‖wx‖Lq,p(Rd+1) + ‖wxx‖Lq,p(Rd+1)
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+‖wt‖Lq,p(Rd+1) ≤ N‖(L− λ)w‖Lq,p(Rd+1)

for all λ ≥ λ0. Note that

‖w‖Lq,p(Rd+1) = n1/qc1‖u‖Lq,p(Rd), ‖wx‖Lq,p(Rd+1) = n1/qc1‖ux‖Lq,p(Rd),

‖wxx‖Lq,p(Rd+1) = n1/qc1‖uxx‖Lq,p(Rd),

‖(L− λ)w‖Lq,p(Rd+1) ≤ n1/qc1‖Eu− λu‖Lq,p(Rd) + n1/q−1c2‖u‖Lq,p(Rd),

where c1 = ‖η‖Lq(R) and c2 = ‖η′‖Lq(R). Therefore,

λ‖u‖Lq,p(Rd) +
√
λ‖ux‖Lq,p(Rd) + ‖uxx‖Lq,p(Rd)

≤ N‖Eu− λu‖Lq,p(Rd) +Nn−1‖u‖Lq,p(Rd).

By letting n→ ∞, we arrive at the desired estimate.

Proof of Theorem 2.3. This theorem is proved in the same manner as Theorem
3.2 using the estimate in Theorem 6.5.
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