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A NEW REGULARITY CRITERION FOR THE NAVIER-STOKES

EQUATIONS IN TERMS OF THE GRADIENT

OF ONE VELOCITY COMPONENT ∗

YONG ZHOU†

Abstract. In this paper we consider the regularity criteria for the weak solutions to the Navier-
Stokes equations in R

3. It is proved that if the gradient of any one component of the velocity field
belongs to Lα,γ with 2/α + 3/γ = 3/2, 3 ≤ γ < ∞, then the weak solution actually is strong.

1. Introduction. We consider the following Cauchy problem for the incompress-
ible Navier-Stokes equations in R

3 × (0, T )











∂u

∂t
+ u · ∇u + ∇p = ∆u,

divu = 0,
u(x, 0) = u0(x),

(1)

where u = (u1(x, t), u2(x, t), u3(x, t)) is the velocity field, p(x, t) is a scalar pressure,
and u0(x) with divu0 = 0 in the sense of distribution is the initial velocity field.

The study of the incompressible Navier-Stokes equations in three space dimensions
has a long history. In the pioneering work [10] and [7], Leray and Hopf proved the
existence of its weak solutions u(x, t) ∈ L∞(0, T ;L2(R3))∩L2(0, T ;H1(R3)) for given
u0(x) ∈ L2(R3). But the uniqueness and regularity of the Leray-Hopf weak solutions
are still big open problems. In [12], Scheffer began to study the partial regularity
theory of the Navier-Stokes equations. Deeper results were obtained by Caffarelli,
Kohn and Nirenberg in [2]. Further result can be found in [17] and references there
in.

On the other hand, the regularity of a given weak solution u can be shown under
additional conditions. In 1962, Serrin [13] proved that if u is a Leray-Hopf weak
solution belonging to Lα,γ ≡ Lα(0, T ;Lγ(R3)) with 2/α + 3/γ ≤ 1, 2 < α < ∞, 3 <
γ < ∞, then the solution u(x, t) ∈ C∞(R3 × (0, T )). From then on, there are many
criterion results added on u. In [18] and [5], von Wahl and Giga showed that if u
is a weak solution in C([0, T );L3(R3)), then u(x, t) ∈ C∞(R3 × (0, T )); Struwe [16]
proved the same regularity of u in L∞(0, T ;L3(R3) provided sup0<t<T ‖u(x, t)‖L3

is sufficiently small and Kozono and Sohr [8] obtained the regularity for the weak
solution u(x, t) ∈ C∞(R3 × (0, T )) provided u(x, t) is left continuous with respect to
L3-norm for every t ∈ (0, T ). Recently Kozono and Taniuchi [9] showed that if a
Leray-Hopf weak solution u(x, t) ∈ L2(0, T ;BMO), then u(x, t)is actually a strong
solution of (1) on (0, T ). Lα,γ is defined by

‖u‖Lα,γ =











(

∫ t

0

‖u(., τ)‖α
Lγ dτ

)1/α

if 1 ≤ α < ∞

ess sup
0<τ<t

‖u(., τ)‖Lγ if α = ∞
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where

‖u(., τ)‖Lγ =











(

∫

R3

|u(x, τ)|γdx
)1/γ

if 1 ≤ γ < ∞

ess sup
x∈R3

|u(x, τ)| if γ = ∞

The point is that ‖uλ‖Lα,γ = ‖u‖Lα,γ holds for all λ > 0 if and only if 2/α + 3/γ = 1,
where uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t) and if (u, p) solves the Navier-
Stokes equations, then so does (uλ, pλ) for all λ > 0. Usually we say that the norm
‖u‖Lα,γ has the scaling dimension zero for 2/α + 3/γ = 1 [2].

Sohr [14] extended Serrin’s regularity criterion by introducing Lorentz space in
both time and spatial direction, u ∈ Ls,r(0, T ;Lq,∞) with 2/s + 3/q = 1, 3 < q < ∞,
2 < s ≤ r < ∞, here Lp,q is Lorentz space, for weak solutions which satisfy the strong
energy inequality. Later on, Sohr [15] extended Serrin’s regularity class for weak
solutions of the Navier-Stokes equations replacing the Lq-space by Sobolev spaces of
negative order, u ∈ Ls(0, T ;H−α,q) with 2/s + 3/q = 1 − α, 3 < q < ∞, 2 < s < ∞,
for 0 ≤ α < 1.

Zhou [21] proved the regularity of the Leray-Hopf weak solution by adding the
Serrin’s regularity criterion only on two components of the velocity field. Also in [21],
the author gave a regularity criterion by adding condition on one velocity component,
say, u3 ∈ Lα,γ with 2/α + 3/γ ≤ 1/2 for γ > 6.

One can find that if 2/α + 3/γ = 2, both ‖∇u‖Lα,γ and ‖p‖Lα,γ have scaling
dimension zero. Related to this point, Beirão da Veiga [1] proposed the regularity
criterion on ∇u, which states that if a weak solution u(x, t) satisfies ∇u ∈ Lα,γ , 2/α+
3/γ ≤ 2, 3/2 < γ < ∞, then u(x, t) ∈ C∞(R3 × (0, T )). Chae and Choe [3] improved
Beirão da Veiga’s condition by imposing that only on the two components of the
vorticity field. Very recently, Zhou [21] proved that if a Leray-Hopf weak solution
satisfies ∇u3 ∈ Lα,γ with 2/α + 3/γ ≤ 3/2, 2 < γ < 3, or ‖∇u3‖L∞,2 is sufficiently
small, then the weak solution is strong.

In this paper, we want to prove the analogous result for γ ≥ 3. More precisely,
our main theorem reads

Theorem 1. Suppose u0 ∈ H1(R3), and divu0 = 0 in the sense of distribution.
Assume that u(x, t) is a Leray-Hopf weak solution of (1) in (0, T ). If ∇u3 ∈ Lα,γ

with 2/α + 3/γ = 3/2, 3 ≤ γ < ∞, or ∇u3 ∈ L4/3,∞ then u(x, t) is a strong solution
on [0, T ).

Remark 1. In [6], He proved the same conclusion under a stronger condition
∇u3 ∈ Lα,γ with 2/α + 3/γ = 1.

Before going to sections, we recall the definition of Leray-Hopf weak solutions.

Definition. A measurable vector u is called a Leray-Hopf weak solution to the
Navier- Stokes equations (1), if u satisfies the following properties
(i) u is weakly continuous from [0, T ) to L2(R3).
(ii) u verifies (1) in the sense of distribution, i.e.,

∫ T

0

∫

R3

(∂φ

∂t
+ (u · ∇)φ

)

udxdt +

∫

R3

u0φ(x, 0)dx =

∫ T

0

∫

R3

∇u : ∇φdxdt
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for all φ ∈ C∞
0 (R3 × [0, T )) with divφ = 0.

∫ T

0

∫

R3

u · ∇φdxdt = 0

for every φ ∈ C∞
0 (R3 × [0, T )).

(iii) The energy inequality, i.e.,

‖u(., t)‖2
L2 + 2

∫ t

0

‖∇u(., s)‖2
L2ds ≤ ‖u0‖

2
L2 , 0 ≤ t ≤ T.

By a strong solution we mean a weak solution u such that

u ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2)

It is well-known that strong solutions are regular (say, classical) and unique in the
class of weak solutions.

The constants are different from section to section.

2. Proof of the Main Theorem. The proof follows from the framework es-
tablished in [20].

First, we give a very simple interpolation lemma

Lemma 1. Assume that a measurable function u(x, t) ∈ L∞,2 and ∇u ∈ L2,2

on [0, T ∗), T ∗ ≤ T , then u ∈ Lp,q with p ≥ 2, 2 ≤ q ≤ 6 and 2/p + 3/q ≥ 3/2 for
0 ≤ t ≤ T ∗

‖u‖Lp,q ≤ C1‖u‖
3
q −

1
2

L∞,2‖∇u‖
3
2−

3
q

L2,2 (2)

where C1 = C1(p, q, T ). If 2
p + 3

q = 3
2 , then

‖u‖Lp,q ≤ C1(q)‖u‖
1− 2

p

L∞,2‖∇u‖
3
2−

3
q

L2,2 (3)

The proof is simple (see Lemma 1 in [21]).
The second lemma is the following Gronwall type inequality.

Lemma 2 [4]. a(x) and b(x) be nonnegative functions on [0, A) and 0 < δ < 1.
Suppose a nonnegative function y(x) satisfies the differential inequality

y′(x) + b(x) ≤ a(x)yδ(x) on [0, A), y(0) = y0. (4)

Then for 0 ≤ x < A,

y(x) +

∫ x

0

b(s)ds ≤ (2δ/(1−δ) + 1)y0 + 2δ/(1−δ)
(

∫ x

0

a(s)ds
)1/(1−δ)

. (5)

Proof. Solving the homogeneous differential inequality y′ ≤ a(x)yδ, one obtains

y(x) ≤
{

y1−δ
0 +

∫ x

0

a(s)ds
}1/(1−δ)

. (6)
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substituting (6) into (4) and integrating over [0, x], we obtain

y(x) +

∫ x

0

b(s)ds ≤

∫ x

0

a(s)ds
{

y1−δ
0 +

∫ x

0

a(s)ds
}δ/(1−δ)

+ y0

≤
{

y1−δ
0 +

∫ x

0

a(s)ds
}1/(1−δ)

+ y0

≤ 2δ/(1−δ)
{

y0 +
(

∫ x

0

a(s)ds
)1/(1−δ)

}

+ y0.

This complete the proof.

Now we go to the proof of the main theorem. Since there are some differences
between the proof for γ = 3 and γ > 3, we divide the proof into two parts.

Proof of Theorem 1 for γ = 3. Now our condition is that u is a
Leray-Hopf weak solution on (0, T ) with ∇u3 ∈ L4,3. For the vorticity field
ω = curlu = (ω1, ω2, ω3), one has the following estimate.

Lemma 3. Suppose u0 ∈ H1(R3) with divu0 = 0. Assume that (u, p) is a smooth
solution in R

3 × (0, T ), which satisfies the energy inequality, with ∇u ∈ L∞,2 and
∆u ∈ L2,2. If ∇u3 ∈ L4,3(R3 × (0, T )), then for 0 ≤ t < T

‖ω3(., t)‖
2
L2 +

∫ t

0

‖∇ω3(., τ)‖2
L2dτ (7)

≤ 3‖ω0
3‖

2
L2 + C2‖∇u3‖

2
L4,3‖∇u‖

1
2

L∞,2‖∆u‖
1
2

L2,2

where C2 = C2(‖u0‖L2) and ω0(x) is the initial datum for ω.

Proof. Vorticity ω = curlu satisfies



















∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ∆ω,

divu = 0,
curlu = ω,
ω(x, 0) = ω0(x).

(8)

Multiplying the first equation of (8) by ω3, and integrating on R
3, after suitable

integration by parts, we obtain

1

2

d

dt
‖ω3(., t)‖

2
L2 + ‖∇ω3(., t)‖

2
L2

≤

∫

R3

|(ω · ∇u3)ω3|dx

≤ 2‖∇u‖
L

12
5
‖∇u3‖L3‖ω3‖L4

(

|ω| < 2|∇u|
)

≤ C3‖∇u‖
L

12
5
‖∇u3‖L3‖ω3‖

1
4

L2‖∇ω3‖
3
4

L2

(

Gagliardo-Nirenberg inequality
)

≤
1

2
‖∇ω3‖

2
L2 + C3‖∇u‖

8/5

L
12
5
‖∇u3‖

8/5
L3 ‖ω3‖

2/5
L2

(

Young iequality
)

. (9)
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Then we can apply Lemma 2 on (9) corresponding to δ = 1
5 in Lemma 2,

‖ω3(., t)‖
2
L2 +

∫ t

0

‖∇ω3(., τ)‖2
L2dτ

≤ 3‖ω0
3‖

2
L2 + C4

{

∫ t

0

‖∇u‖
8/5

L
12
5
‖∇u3‖

8/5
L3 dτ

}5/4

≤ 3‖ω0
3‖

2
L2 + C4

{

∫ t

0

‖∇u‖
4/5
L2 ‖∇u‖

4/5
L3 ‖∇u3‖

8/5
L3 dτ

}5/4

≤ 3‖ω0
3‖

2
L2 + C4‖∇u‖L2,2‖∇u‖L4,3‖∇u3‖

2
L4,3

≤ 3‖ω0
3‖

2
L2 + C5‖∇u‖

1
2

L∞,2‖∆u‖
1
2

L2,2‖∇u3‖
2
L4,3

where we use the energy inequality and apply Lemma 1 on ‖∇u‖L4,3 , since 2
4 + 3

3 = 3
2 .

So we finish the proof.
After the a priori estimate on ω3, we establish the following a priori estimate for the
velocity field.

Lemma 4. Under the same condition as that in Lemma 3, we have

sup
0≤t<T

‖∇u(., t)‖2
L2 +

∫ T

0

‖∆u(., τ)‖2
L2dτ ≤ C6 (10)

where C6 depends on T , ‖∇u0‖L2 , ‖∇u0‖L2 and ‖∇u3‖L4,3 .

Proof. As we have done in [21] we can rewrite the first equation of the Navier-
Stokes equations (1) as

∂u

∂t
+ ω × u +

1

2
∇|u|2 + ∇p = ∆u. (11)

Multiply the equation (11) by ∆u and integrate on R
3×(0, t), after suitable integration

by parts, one obtains

1

2
‖∇u(., t)‖2

L2 +

∫ t

0

‖∆u(., τ)‖2
L2dτ (12)

=

∫ t

0

∫

R3

(ω × u) · ∆udxdτ +
1

2
‖∇u0‖

2
L2

let

I =

∫ t

0

∫

R3

(ω × u) · ∆udxdτ

≤

∫ t

0

∫

R3

|ω2u3∆u1|dxdτ +

∫ t

0

∫

R3

|ω3u2∆u1|dxdτ +

∫ t

0

∫

R3

|ω3u1∆u2|dxdτ

+

∫ t

0

∫

R3

|ω2u3∆u2|dxdτ +
∣

∣

∣

∫ t

0

∫

R3

ω1u2∆u3dxdτ
∣

∣

∣
+

∣

∣

∣

∫ t

0

∫

R3

ω2u1∆u3dxdτ
∣

∣

∣

≡ I1 + I2 + I3 + I4 + I5 + I6
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We will estimate the terms one by one.

I1 =

∫ t

0

∫

R3

|ω2u3∆u1|dxdτ

≤

∫ t

0

‖ω2‖L4‖u3‖L4‖∆u‖L2dτ

≤ C7

∫ t

0

‖∇u‖
1/4
L2 ‖∇u3‖

1/2
L3 ‖u‖

1/2
L2 ‖∆u‖

7/4
L2 dτ

(

Gagliardo-Nirenberg inequality, for ω2 and u3

)

≤
1

20
‖∆‖2

L2,2 + C8‖∇u3‖
4
L4,3‖∇u‖2

L∞,2 ,
(

Young inequality
)

(13)

where C8 is a constant depending on ‖u0‖L2 only.

I2 ≤
1

20
‖∆u‖2

L2,2 + 5

∫ t

0

‖u2‖
2
La‖ω3‖

2
Lbdτ

(

Hölder’s and Young inequality 1
a + 1

b = 1
2

)

≤
1

20
‖∆u‖2

L2,2 + 5‖u2‖
2
Lp,a‖ω3‖

2
Lq,b

(

Hölder’s inequality 1
p + 1

q = 1
2

)

Now we want to apply Lemma 1 on ‖w3‖Lq,b , so a, b, p and q satisfies







1
a + 1

b = 1
2 ,

1
p + 1

q = 1
2 ,

2
q + 3

b = 3
2

(14)

(14) can be solved as

{

p = ∞, a = 3;
q = 2, b = 6.

(15)

Then Lemma 3 tells us

‖ω3‖
2
L2,6 ≤ C9‖∇u3‖

2
L4,3‖∇u‖

1/2
L∞,2‖∆u‖

1/2
L2,2 + C10, (16)

where C9 and C10 are constants depending only on ‖ω0
3‖L2 .

On the other hand,

‖u2‖
2
L∞,3 ≤ ‖u‖2

L∞,3

≤ ‖u‖L∞,2‖u‖L∞,6

≤ C11‖∇u‖L∞,2 ,
(

Energy inequality and Sobolev inequality
)

where C11 depends on ‖u0‖L2 only.
Therefore I2 can be estimated as

I2 ≤
1

20
‖∆u‖2

L2,2 + C12‖∇u‖
3/2
L∞,2‖∆u‖

1/2
L2,2‖∇u3‖

2
L4,3 + C13‖∇u‖L∞,2 , (17)

where C12 depends on ‖u0‖L2 , while C13 depends on ‖u0‖L2 and ‖ω0
3‖L2 .
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I3 is similar to I2,

I3 ≤
1

20
‖∆u‖2

L2,2 + C12‖∇u‖
3/2
L∞,2‖∆u‖

1/2
L2,2‖∇u3‖

2
L4,3 + C13‖∇u‖L∞,2 , (18)

and I4 is similar to I1,

I4 ≤
1

20
‖∆u‖2

L2,2 + C8‖∇u3‖
4
L4,3‖∇u‖2

L∞,2 (19)

I5 =
∣

∣

∣

∫ t

0

∫

R3

ω1u2∆u3dxdτ
∣

∣

∣

≤

∫ t

0

∫

R3

|(∂2u3)u2∆u3|dxdτ +
∣

∣

∣

∫ t

0

∫

R3

(∂3u2)u2∆u3dxdτ
∣

∣

∣
≡ I1

5 + I2
5

I1
5 =

∫ t

0

∫

R3

|(∂2u3)u2∆u3|dxdτ

≤ C14

∫ t

0

‖∆u‖L2‖∇u3‖L3‖∇u‖L2dτ
(

Hölder’s and Sobolev inequality
)

≤
1

40
‖∆u‖2

L2,2 + 5C14T
1/2‖∇u3‖

2
L4,3‖∇u‖2

L∞,2 , (20)

where in the last inequality, we use Young and Hölder’s inequality. For simplicity, we
denote 5C14T

1/2 as C15 which depends on T .

I2
5 =

∣

∣

∣

∫ t

0

∫

R3

(∂3u3)u2∆u3dxdτ
∣

∣

∣
=

∣

∣

∣

∫ t

0

∫

R3

1

2
u2

2∆(∂3u3)dxdτ
∣

∣

∣

≤
∣

∣

∣

∫ t

0

∫

R3

(∂3u3)u2∆u2dxdτ
∣

∣

∣
+

∣

∣

∣

∫ t

0

∫

R3

(∂3u3)|∇u2|
2dxdτ

∣

∣

∣

≤
1

40
‖∆u‖2

L2,2 + C15‖∇u3‖
2
L4,3‖∇u‖2

L∞,2 +

∫ t

0

‖∇u2‖
2
L3‖∇u3‖L3dτ

(

By (20) and Hölder’s inequality respectively
)

≤
1

40
‖∆u‖2

L2,2 + C15‖∇u3‖
2
L4,3‖∇u‖2

L∞,2 + C16

∫ t

0

‖∇u‖L2‖∆u‖L2‖∇u3‖L3dτ

≤
1

20
‖∆u‖2

L2,2 + C17‖∇u3‖
2
L4,3‖∇u‖2

L∞,2 (21)

I6 can be treated similarly

I6 ≤
3

40
‖∆u‖2

L2,2 + (C15 + C17)‖∇u3‖
2
L4,3‖∇u‖2

L∞,2 (22)

where C15 and C17 depend only on T .
Substituting the above estimates (13), (17), (18), (19), (20), (21) and (22) into

(12), it follows that

1

2
‖∇u(., t)‖2

L2 +
13

20
‖∆u‖2

L2,2 −
1

2
‖∇u0‖

2
L2

≤ 2
(

C8‖∇u3‖
4
L4,3 + (C15 + C17)‖∇u3‖

2
L4,3

)

‖∇u‖2
L∞,2

+2C12‖∇u‖
3/2
L∞,2‖∆u‖

1/2
L2,2‖∇u3‖

2
L4,3 + 2C13‖∇u‖L∞,2

≤ 2
(

C8‖∇u3‖
4
L4,3 + (C15 + C17)‖∇u3‖

2
L4,3

)

‖∇u‖2
L∞,2

+4C18‖∇u3‖
8/3
L4,3‖∇u‖2

L∞,2 +
3

20
‖∆u‖2

L2,2 + 4C2
13 +

1

8
‖u‖2

L∞,2



570 Y. ZHOU

where C18 is a constant depends on ‖u0‖L2 . Hence

‖∇u(., t)‖2
L2 + ‖∆u‖L2,2 − ‖∇u0‖

2
L2

≤ 4
(

C8‖∇u3‖
4
L4,3 + (C15 + C17)‖∇u3‖

2
L4,3

+2C18‖∇u3‖
8/3
L4,3

)

‖∇u‖2
L∞,2 + 8C2

13 +
1

4
‖u‖2

L∞,2 , (23)

Now we choose 0 < t0 ≤ T , which is small enough, such that

C8

∫ t0

0

‖∇u3(., τ)‖4
L3dτ + (C15 + C17)

(
∫ t0

0

‖∇u3(., τ)‖4
L3dτ

)1/2

+2C18

(
∫ t0

0

‖∇u3(., τ)‖4
L3

)2/3

≤
1

8
,

and consequently from (23), we obtain that

sup
0≤t≤t0

‖∇u(., t)‖2
L2 +

∫ t0

0

‖∆u(., τ)‖2
L2dτ ≤ 32C2

13 + 4‖∇u0‖
2
L2 . (24)

Then we can repeat the above process from t0, if t0 < T , with u(t0) as its initial data
for the problem (1) and obtain a similar estimate as (23), for t0 ≤ t < T ,

‖∇u(., t)‖2
L2 +

∫ t

t0

‖∆u(., τ)‖2
L2dτ

≤ 4
(

C8‖∇u3‖
4
L4,3 + (C15 + C17)‖∇u3‖

2
L4,3 + 2C18‖∇u3‖

8/3
L4,3

)

sup
t0≤τ≤t

‖∇u‖2
L2

+8C2
13 +

1

4
sup

t0≤τ≤t
‖u‖2

L2 + ‖∇u(., t0)‖
2
L2

There exists a number for t1, such that

C8

∫ t1

t0

‖∇u3(., τ)‖4
L3dτ + (C15 + C17)

(
∫ t1

t0

‖∇u3(., τ)‖4
L3dτ

)1/2

+2C18

(
∫ t1

t0

‖∇u3(., τ)‖4
L3

)2/3

≤
1

8
,

therefore we have

sup
t0≤t≤t1

‖∇u(., t)‖2
L2 +

∫ t1

t0

‖∆u(., τ)‖2
L2dτ

≤ 32C2
13 + 4‖∇u(., t0)‖

2
L2 ≤ 96C2

13 + 8‖∇u(., t0)‖
2
L2

Then we can repeat the above process from t1, if t1 < T . Actually, since ∇u3 ∈ L4,3

on [0, T ), and the coefficients involving ‖u3‖L4,3 in (23), which depend only on T , p,
b, ‖u0‖L2 , the above process only can be done for finite times. More precisely, we can
get a estimate on the whole time interval.

sup
0≤t<T

‖∇u(., t)‖2
L2 +

∫ T

0

‖∆u(., τ)‖2
L2dτ ≤ C6 (25)
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where C6 depends on T , ‖∇u0‖L2 , ‖u0‖L2 and ‖u3‖L4,3 .
After we got the a priori estimate, the proof of Theorem 1 for the case γ = 3 is simple.
It is well known [19] that there is a unique strong solution ũ ∈ L∞(0, T0;H

1(R3))∩u ∈
L2(0, T0;H

2(R3)) to (1),for some 0 < T0, for any given u0 ∈ L2(R3) ∩ H1(R3) with
divu0 = 0. Since u is a Leray-Hopf weak solution which satisfies the energy inequality,
we have according to the uniqueness result, u ≡ ũ on [0, T0). By the a priori estimate (
25) and standard continuation argument, the local strong solution u can be extended
to time T . So we have proved u actually is a strong solution on [0, T ).

Proof of Theorem 1 for γ > 3. Like the proof for γ = 3, we want to give an
estimate on ω3 first. The constants are different from the above’s.

Lemma 5. Suppose u0 ∈ H1(R3) with divu0 = 0. Assume that (u, p) is a smooth
solution in R

3 × (0, T ), which satisfies the energy inequality, with ∇u ∈ L∞,2 and
∆u ∈ L2,2. If ∇u3 ∈ Lα,γ(R3 × (0, T )) for 2

α + 3
γ ≤ 3

2 , then for 0 ≤ t ≤ T ∗

‖ω3(., t)‖
2
L2 +

∫ t

0

‖∇ω3(., τ)‖2
L2dτ (26)

≤ 3‖ω0
3‖

2
L2 + C2‖∇u3‖

2
Lα,γ‖∇u‖

1− 3
γ

L∞,2‖∆u‖
3
γ

L2,2

where C2 = C2(γ, ‖u0‖L2) and ω0(x) is the initial datum for ω.

Proof. The proof is more difficult than that of Lemma 3, although the method is
same. You know, when you use Hölder’s inequality, how to choose the numbers which
are suitable for the estimates is difficult since there are so many choices.

Multiplying the first equation of (8) by ω3, and integrating on R
3, after suitable

integration by parts, we obtain

1

2

d

dt
‖ω3(., t)‖

2
L2 + ‖∇ω3(., t)‖

2
L2

≤

∫

R3

|(ω · ∇u3)ω3|dx

≤ 2‖∇u‖
L

2γ
γ−1

‖∇u3‖Lγ‖ω3‖
L

2γ
γ−1

(

|ω| < 2|∇u|
)

≤ C3‖∇u‖
L

2γ
γ−1

‖∇u3‖Lγ‖ω3‖
1− 3

2γ

L2 ‖∇ω3‖
3
2γ

L2

(

Gagliardo-Nirenberg inequality
)

≤
1

2
‖∇ω3‖

2
L2 + C3‖∇u‖

4γ
4γ−3

L
2γ

γ−1

‖∇u3‖
4γ

4γ−3

Lγ ‖ω3‖
(2γ−3)2
4γ−3

L2

(

Young iequality
)

. (27)
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Then we can apply Lemma 2 on (27) corresponding to δ = 2γ−3
4γ−3 in Lemma 2,

‖ω3(., t)‖
2
L2 +

∫ t

0

‖∇ω3(., τ)‖2
L2dτ

≤ 3‖ω0
3‖

2
L2 + C4

{

∫ t

0

‖∇u‖
4γ

4γ−3

L
2γ

γ−1

‖∇u3‖
4γ

4γ−3

Lγ dτ
}

4γ−3
2γ

≤ 3‖ω0
3‖

2
L2 + C4

{

∫ t

0

‖∇u‖
2γ

4γ−3

L2 ‖∇u‖
2γ

4γ−3

L
2γ

γ−2

‖∇u3‖
4γ

4γ−3

Lγ dτ
}

4γ−3
2γ

(

Interpolation inequality γ−1
2γ = 1

2
1
2 + 1

2
γ−2
2γ

)

≤ 3‖ω0
3‖

2
L2 + C4‖∇u‖L∞,2‖∇u‖

L
2γ
3

,
2γ

γ−2
‖∇u3‖

2
Lα,γ

(

Hölder’s inequality
2γ

4γ−3

2 +
4γ

4γ−3

α +
2γ

4γ−3

2γ/3 = 1
)

≤ 3‖ω0
3‖

2
L2 + C5‖∇u‖

1− 3
γ

L∞,2‖∆u‖
3
γ

L2,2‖∇u3‖
2
Lα,γ

(

Energy inequality and Lemma 1 since 2
2γ/3 + 3

2γ
γ−2

= 3
2

)

The proof is complete.

Lemma 6. Under the same condition as that in Lemma 5, we have

sup
0≤t<T

‖∇u(., t)‖2
L2 +

∫ T

0

‖∆u(., τ)‖2
L2dτ ≤ C6 (28)

where C6 depends on α, γ, ‖∇u0‖L2 , ‖u0‖L2 and ‖u3‖Lα,γ .

Proof.Rewrite the first equation of the Navier-Stokes equations (1) as

∂u

∂t
+ ω × u +

1

2
∇|u|2 + ∇p = ∆u. (29)

Multiply the equation (29) by ∆u and integrate on R
3×(0, t), after suitable integration

by parts, one obtains

1

2
‖∇u(., t)‖2

L2 +

∫ t

0

‖∆u(., τ)‖2
L2dτ (30)

=

∫ t

0

∫

R3

(ω × u) · ∆udxdτ +
1

2
‖∇u0‖

2
L2

let

I =

∫ t

0

∫

R3

(ω × u) · ∆udxdτ

≤

∫ t

0

∫

R3

|ω2u3∆u1|dxdτ +

∫ t

0

∫

R3

|ω3u2∆u1|dxdτ +

∫ t

0

∫

R3

|ω3u1∆u2|dxdτ

+

∫ t

0

∫

R3

|ω1u3∆u2|dxdτ +
∣

∣

∣

∫ t

0

∫

R3

ω1u2∆u3dxdτ
∣

∣

∣
+

∣

∣

∣

∫ t

0

∫

R3

ω2u1∆u3dxdτ
∣

∣

∣

≡ I1 + I2 + I3 + I4 + I5 + I6
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We will estimate the terms one by one.

I1 =

∫ t

0

∫

R3

|ω2u3∆u1|dxdτ

≤

∫ t

0

‖ω2‖
L

6α
α+2

‖u3‖
L

3α
α−1

‖∆u‖L2dτ

≤ C7

∫ t

0

‖∇u‖
1/α
L2 ‖∇u3‖

1/2
Lγ ‖u‖

1/2
L2 ‖∆u‖

2−1/α
L2 dτ

(

Gagliardo-Nirenberg inequality, for ω2 and u3

)

≤
1

20
‖∆u‖2

L2,2 + C8‖u3‖
α
Lα,γ‖∇u‖2

L∞,2

(

Young inequality
)

(31)

I2 ≤
1

20
‖∆u‖2

L2,2 + 5

∫ t

0

‖u2‖
2
La‖ω3‖

2
Lbdτ

(

Hölder’s and Young inequality 1
a + 1

b = 1
2

)

≤
1

20
‖∆u‖2

L2,2 + 5‖u2‖
2
Lp,a‖ω3‖

2
Lq,b

(

Hölder’s inequality 1
p + 1

q = 1
2

)

Just as the estimate of I2 for ∇u3 ∈ L4,3, we can solve p, q, a and b with
{

p = ∞, a = 3;
q = 2, b = 6.

Then Lemma 5 tells us

‖ω3‖L2,6 ≤ C9‖∇u3‖Lα,γ‖∇u‖
1/2− 3

2γ

L∞,2 ‖∆u‖
3
2γ

L2,2 + C10, (32)

where C9 depends on γ and ‖u0‖L2 and C10 depends on γ and ‖ω0
3‖L2 .

On the other hand,

‖u2‖
2
L∞,3 ≤ ‖u‖2

L∞,3 ≤ ‖u‖L∞,2‖u‖L∞,6

≤ C11‖∇u‖L∞,2

(

Energy inequality and Sobolev inequality
)

So we have the estimate for I2 as

I2 ≤ C12‖∇u‖
2−3/γ
L∞,2 ‖∆u‖

3/γ
L2,2‖∇u3‖

2
Lα,γ +

1

20
‖∆u‖2

L2,2 + C13‖∇u‖L∞,2 , (33)

where C12 depends on γ and ‖u0‖L2 , while C13 depends on γ, ‖u0‖L2 and ‖ω0
3‖L2 .

I3 is similar to I2,

I3 ≤ C12‖∇u‖
2−3/γ
L∞,2 ‖∆u‖

3/γ
L2,2‖∇u3‖

2
Lα,γ +

1

20
‖∆u‖2

L2,2 + C13‖∇u‖L∞,2 , (34)

and I4 is similar to I1,

I4 ≤
1

20
‖∆u‖2

L2,2 + C8‖u3‖
α
Lα,γ‖∇u‖2

L∞,2 . (35)

I5 =
∣

∣

∣

∫ t

0

∫

R3

ω1u2∆u3dxdτ
∣

∣

∣

≤

∫ t

0

∫

R3

|(∂2u3)u2∆u3|dxdτ +
∣

∣

∣

∫ t

0

∫

R3

(∂3u2)u2∆u3dxdτ
∣

∣

∣
≡ I1

5 + I2
5
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Since 2/α + 3/γ = 3/2, if 3 < γ < ∞, then 4/3 < α < 4. However, the techniques are
different between 4/3 < α < 2 and 2 ≤ α < 4. We deal with 2 < α < 4 first.

I1
5 =

∫ t

0

∫

R3

|(∂2u3)u2∆u3|dxdτ

≤

∫ t

0

‖∆u‖L2‖∇u3‖Lγ‖u2‖Ltdτ

≤
1

20
‖∆u‖2

L2,2 + C14‖∇u3‖
2
Lα,γ‖u‖2

L
2α

α−2
,

2γ
γ−2

, (36)

where we used Hölder’s and Young inequality.

On the other hand,

‖u‖
L

2α
α−2

,
2γ

γ−2
≤ ‖u‖

(1−α/4)

L
2α

α−2
, 6α

α+4
‖u‖

α/4

L
2α

α−2
,6

≤ C(‖u0‖L2)‖u‖
α/4

L
2α

α−2
,6

(

By Lemma 1
2
2α

α−2

+
3
6α

α+4

=
3

2

)

≤ C15‖∇u‖
1/2
L∞,2‖∇u‖

α/4−1/2
L2,2

(

Sobolev inequality and interpolation inequality
)

≤ C16‖∇u‖
1/2
L∞,2 .

where C16 depends on α, γ and ‖u0‖L2 .

For α = 2 and γ = 6, from (36), we have

I1
5 ≤

1

20
‖∆u‖2

L2,2 + C17‖∇u3‖
2
Lα,γ‖u‖2

L∞,3

≤
1

20
‖∆u‖2

L2,2 + C17‖∇u3‖
2
Lα,γ‖u‖L∞,2‖u‖L∞,6

≤
1

20
‖∆u‖2

L2,2 + C18‖∇u3‖
2
Lα,γ‖∇u‖L∞,2 ,

where C18 only depends on ‖u0‖L2 .

So for 2 ≤ α < 4, we have

I1
5 ≤

1

20
‖∆u‖2

L2,2 + C19‖∇u3‖
2
Lα,γ‖∇u‖L∞,2 , (37)

where C19 depends only on α, γ and ‖u0‖L2 .

Then we turn our attention to 4/3 < α < 2. Actually it is more difficult than the
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previous case.

I1
5 =

∫ t

0

∫

R3

|(∂2u3)u2∆u3|dxdτ

≤

∫ t

0

‖∆u‖L2‖∇u3‖Lb‖u2‖Ladτ

≤

∫ t

0

‖∆u‖L2‖∇u3‖
δ
Lγ‖∇u‖1−δ

Lp ‖u‖Ladτ

≤ C20

∫ t

0

‖∆u‖L2‖∇u3‖
δ
Lγ‖∇u‖

(1−δ)θ
L2 ‖∆u‖

(1−θ)(1−δ)
L2 ‖u‖Ladτ

≤
1

20
‖∆u‖2

L2,2 + C21

∫ t

0

‖∇u3‖
2δ/(θ+δ−θδ)
Lγ ‖∇u‖

2θ(1−δ)/(θ+δ−θδ)
L2 ‖u‖

2/(θ+δ−θδ)
La dτ

≤
1

20
‖∆u‖2

L2,2 + C21‖∇u3‖
2δ/(θ+δ−θδ)
Lα,γ ‖∇u‖

2θ(1−δ)/(θ+δ−θδ)
L∞,2 ‖u‖

2/(θ+δ−θδ)
Lq,a

where the constants satisfy the following system














1
a + 1

b = 1
2

1
b = δ

γ + 1−δ
p

1
p = (1 − θ)

(

1
2 − 1

3

)

+ 1
2θ

2δ
θ+δ−θδ × 1

α + 2
θ+δ−θδ × 1

q = 1

(38)

It is obvious that the system is under determined since 4 equations and 6 unknowns.
How can we find other equations?

Before solving (38), one can calculate directly from (38) that

2

q
+

3

a
= 1,

therefore, as the above estimate, it is not difficult to obtain

‖u‖Lq,a ≤ C(q, a, θ, δ, ‖u0‖L2)‖∇u‖
1/2
L∞,2 ,

actually one can choose q = ∞, and a natural requirement of θ, δ is as follows

1 + 2θ(1 − δ)

θ + δ − θδ
= 2.

Now, we can solve (38) with






























δ = 1
2

θ = 2
α − 1

p = 6α
4−α

a = 3
b = 6
q = ∞

Therefore

I1
5 ≤

1

20
‖∆u‖2

L2,2 + C21‖∇u3‖
α
Lα,γ‖∇u‖2−α

L∞,2‖u‖
2α
L∞,3

≤
1

20
‖∆u‖2

L2,2 + C21‖∇u3‖
α
Lα,γ‖∇u‖2−α

L∞,2‖u‖
α
L∞,2‖u‖α

L∞,6

≤
1

20
‖∆u‖2

L2,2 + C22‖∇u3‖
α
Lα,γ‖∇u‖2

L∞,2 (39)
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where C21 depends on α, γ and ‖u0‖L2 .

I2
5 =

∣

∣

∣

∫ t

0

∫

R3

(∂3u3)u2∆u3dxdτ
∣

∣

∣
=

∣

∣

∣

∫ t

0

∫

R3

1

2
u2

2∆(∂3u3)dxdτ
∣

∣

∣

≤
∣

∣

∣

∫ t

0

∫

R3

(∂3u3)u2∆u2dxdτ
∣

∣

∣
+

∣

∣

∣

∫ t

0

∫

R3

(∂3u3)|∇u2|
2dxdτ

∣

∣

∣
≡ I2,1

5 + I2,2
5

I2,1
5 can be treated similarly as I1

5 . For 2 ≤ α < 4,

I2,1
5 ≤

1

20
‖∆u‖2

L2,2 + C19‖∇u3‖
2
Lα,γ‖∇u‖L∞,2 , (40)

while for 4/3 < α < 2,

I2,1
5 ≤

1

20
‖∆u‖2

L2,2 + C22‖∇u3‖
α
Lα,γ‖∇u‖2

L∞,2 . (41)

I2,2
5 ≤

∫ t

0

∫

R3

∣

∣(∂3u3)|∇u2|
2
∣

∣dxdτ

≤ ‖∇u3‖Lα,γ‖∇u‖2
L2α/(α−1),2γ/(γ−1)

≤ ‖∇u3‖Lα,γ‖∇u‖
1/2
L2,2‖∇u‖

3/2

L6α/(3α−4),6γ/(3γ−4)

≤ C23‖∇u3‖Lα,γ‖∇u‖
2/α
L∞,2‖∆u‖

3/γ
L2,2 . (42)

where C23 depends on γ and ‖u0‖L2 .
Similarly, for 2 ≤ α < 4,

I6 ≤
1

10
‖∆u‖2

L2,2 + 2C19‖∇u3‖
2
Lα,γ‖∇u‖L∞,2

C23‖∇u3‖Lα,γ‖∇u‖
2/α
L∞,2‖∆u‖

3/γ
L2,2 , (43)

while for 4/3 < α < 2,

I6 ≤
1

10
‖∆u‖2

L2,2 + 2C22‖∇u3‖
α
Lα,γ‖∇u‖2

L∞,2

+C23‖∇u3‖Lα,γ‖∇u‖
2/α
L∞,2‖∆u‖

3/γ
L2,2 . (44)

For 2 ≤ α < 4, putting (31), (33), (34), (35), (37), (40), (42) and (43) into (30), one
obtain

1

2
‖∇u‖2

L2 + ‖∆u‖2
L2,2

≤
2

5
‖∆u‖2

L2,2 + 2C8‖∇u3‖
α
Lα,γ‖∇u‖2

L∞,2

+2C12‖∇u‖
2−3/γ
L∞,2 ‖∆u‖

3/γ
L2,2‖∇u3‖

2
Lα,γ

+4C19‖∇u3‖
2
Lα,γ‖∇u‖L∞,2 +

1

2
‖∇u0‖

2
L2

+2C23‖∇u3‖Lα,γ‖∇u‖
2/α
L∞,2‖∆u‖

3/γ
L2,2 + 2C13‖∇u‖L∞,2

≤
1

2
‖∆u‖2

L2,2 + 2
(

C8‖∇u3‖
α
Lα,γ + C24‖∇u3‖

4/(2−3/γ)
Lα,γ

)

‖∇u‖2
L∞,2

+4C19‖∇u3‖
2
Lα,γ‖∇u‖L∞,2

+2C25‖∇u3‖
2γ

2γ−3

Lα,γ ‖∇u‖
2− γ

2γ−3

L∞,2 + 2C13‖∇u‖L∞,2 +
1

2
‖∇u0‖

2
L2 . (45)
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For 2 ≤ α < 4, putting (31), (33), (34), (35), (39), (41), (42) and (44) into (30),
one obtain

1

2
‖∇u‖2

L2 + ‖∆u‖2
L2,2

≤
2

5
‖∆u‖2

L2,2 + 2C8‖∇u3‖
α
Lα,γ‖∇u‖2

L∞,2

+2C12‖∇u‖
2−3/γ
L∞,2 ‖∆u‖

3/γ
L2,2‖∇u3‖

2
Lα,γ

4C22‖∇u3‖
α
Lα,γ‖∇u‖2

L∞,2

+2C23‖∇u3‖Lα,γ‖∇u‖
2/α
L∞,2‖∆u‖

3/γ
L2,2 + 2C13‖∇u‖L∞,2

≤
1

2
‖∆u‖2

L2,2 + 2
(

(C8 + 2C22)‖∇u3‖
α
Lα,γ + C26‖∇u3‖

4/(2−3/γ)
Lα,γ

)

‖∇u‖2
L∞,2

+4C19‖∇u3‖
2
Lα,γ‖∇u‖L∞,2

+2C27‖∇u3‖
2γ

2γ−3

Lα,γ ‖∇u‖
2− γ

2γ−3

L∞,2 + 2C13‖∇u‖L∞,2 +
1

2
‖∇u0‖

2
L2 . (46)

Just as the proof for the case γ = 3, using the integrability of ‖u3‖Lγ with respect to
time variable, we can choose a sufficiently small t0, 0 < t0 ≤ T , such that

C8

∫ t0

0

‖∇u3(., τ)‖α
Lγ dτ + C24

(
∫ t0

0

‖∇u3(.τ)‖α
Lγ dτ

)

4
α(2−3/γ)

≤
1

4
(47)

Due to (45) and (47),

1

4
‖∇u‖2

L∞,2 +
1

2
‖∆u‖2

L2,2

≤ 4C19‖∇u3‖
2
Lα,γ‖∇u‖L∞,2 +

1

2
‖∇u0‖

2
L2

+2C25‖∇u3‖
2γ

2γ−3

Lα,γ ‖∇u‖
2− γ

2γ−3

L∞,2 + 2C13‖∇u‖L∞,2 (48)

Since the power of ‖∇u‖L∞,2 in the right side of (48) is strictly less than 2, so we
immediately have the estimate

‖∇u‖2
L∞,2 + ‖∆u‖2

L2,2 ≤ C28, (49)

where C28 depends on α, γ, ‖u0‖L2 and ‖∇u0‖L2 . Then the remaining argument is
same as that in the proof of Lemma 4.

Similar argument can be done for 4/3 < α < 2. This finishes the proof of Lemma
6.
After we have the a priori estimates Lemma 6, the proof of Theorem 1 is completely
similar to the case when γ = 3.

Therefore, we finish the proof of Theorem 1.
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[7] E. Hopf, Über die Anfangwertaufgaben für die hydromischen Grundgleichungen, Math. Nach.,

4 (1951), pp. 213–321.
[8] H. Kozono, H. Sohr, Regularity criterion on weak solutions to the Navier-Stokes equations,

Adv. Differential Equations, 2 (1997), pp. 535–554.
[9] H. Kozono, Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations, Math.

Z., 235 (2000), pp. 173–194.
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