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NON-ANNIHILATION OF TRAVELLING PULSES IN A

REACTION-DIFFUSION SYSTEM ∗

M. MIMURA† , M. NAGAYAMA‡ , AND T. OHTA§

Abstract. It is demonstrated that slowly travelling pulses arising in a reaction-diffusion(RD)
system with the FitzHugh-Nagumo type nonlinearity do not necessarily annihilate but reflect off of
each other before they collide. This phenomenon is in contrast with the well-known annihilation of
travelling pulses on nerve axon and expanding rings in the Belousov-Zhabotinsky chemical reaction.
By using singular perturbation methods, we derive a fourth order system of ODEs from the RD
system, and study non-annihilation phenomenon of very slowly travelling pulses.

1. Introduction. It is well known that excitable pulses propagating on nerve
axon or expanding rings in the 2-dimensional Belousov-Zhabotinsky chemical reac-
tion annihilate one another on collision. It had been believed that this phenomenon
is a typical feature of mono-stable excitable reaction-diffusion (RD) systems([18], for
instance), from pulse-dynamics viewpoint. Alternatively, the non-annihilation phe-
nomenon of travelling pulses has been recently observed in some excitable reaction-
diffusion systems([8],[10],[15],[16]). As an example, Fig.1.1 demonstrates repulsive
interaction of two slowly travelling pluses in the RD system proposed by Gray and
Scott [2]







ut = uxx + ε−1(−au + u2v),
t > 0, x ∈ Rn,

vt = dvxx + h(1 − v) − u2v
(1.1)

where a, h, d and ε are suitable positive constants.
We conjectured in [11] that travelling pulses arising in more general RD systems

possibly reflect each other before collision, if the velocity is very slow. The reason can
be intuitively stated as follows: when two slowly travelling pulses approach closely,
the concentration of the reactant v between two pulses is gradually lower than the one
in the back part of each pulse so that there occur two possibilities: two pulses fade
out before collision or repel each other and move to the reversed direction, recovering
their original shapes.

However, theoretical understanding of such non-annihilation of travelling pulses
has not yet been established. There are mainly two difficulties : (i) Such non-
annihilation is not always observed but occurs only in some restricted parameter
regime in the system, in other words, annihilation or non-annihilation depends sensi-
tively on values of parameters. (ii) this behavior is really a transient process.

In order to overcome these difficulties, we pick up a specific RD system with a
small parameter ε (see (2.1)), and take the singular limit procedure as ε ↓ 0, which
enables to trace the location of travelling pulses. Moreover, assuming that the velocity
is very slow, we obtain a system of ODEs which describes the front and back interfacial
points of pulses, and discuss this system to show the non-annihilation behavior of
slowly travelling pulses.
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Fig. 1.1. Repulsion of two travelling pulses of (1.1) where a = 0.07, h = 0.018, ε = 1.0.

2. Bistable reaction-diffusion system. The system which we treat is the
following 1-dimensional FitzHugh-Nagumo(FHN) system with a sufficiently small pa-
rameter ε > 0 [12]:



















ετ
∂u

∂t
= ε2 ∂2u

∂x2
+ f(u) − v,

t > 0, x ∈ R

∂v

∂t
= d

∂2v

∂x2
+ u − γv

(2.1)

with f(u) = u(1 − u)(u − a), where ε, τ, d, a and γ are positive constants and par-
ticularly, ε is sufficiently small and 0 < a < 1/2. We assume that f(u) − v = 0
and u − γv = 0 have three intersection points, say P = (0, 0), Q = (uQ, vQ) and
R = (uR, vR), as in Fig.2.1 where P and R are stable constant equilibrium points of
(2.1), while Q is an unstable one. We impose the boundary conditions to (2.1) as

(u, v)(t,±∞) = P. (2.2)

Let γ = γ∗ be given such that f(u) − v = 0 and u − γ∗v = 0 have an odd symmetry
with respect to the point Q in the (u, v)-plane. Assuming that γ is chosen to be
less than γ∗, it is shown that (2.1) with (2.2) has travelling pulse solutions with one
front and one back layers in u for relatively small τ [7]. If γ is close to γ∗ so that
f(u)−v = 0 and u−γv = 0 take nearly odd symmetry with respect to Q, the distance
between two layers is rather long and when γ tends to γ∗, it becomes infinity so that
the pulse tends to either a front wave or a back one [5].

When γ is close to γ∗, we consider the interaction of two travelling pulses. When
τ is small, the travelling pulses annihilate on collision, as in Fig.2.2. As τ increases,
these pulses move slowly and fade out before collision, as in Fig.2.3 and as τ increases
slightly further, the pulses move more slowly and they repel each other in such a
way that two facing travelling front layers repel each other twice, and each pair of
front and back layers approach and repel each other once, as in Fig.2.4. Although the
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Fig. 2.1. Nulclines of f and g in (2.1) where a = 0.25, γ = 10.2857.

repulsive behavior in Fig.2.4 is qualitatively different from the one in the RD system
(1.1) in Fig.1.1, it could be confirmed that very slowly travelling pulse solutions of
(2.1) with (2.2) possess non-annihilation property.
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Fig. 2.2. Annihilation of two travelling pulses of (2.1) where d = 1.0, a = 0.25, γ = 10.2857, τ =
0.035, ε = 0.025.

3. Limiting system as ε ↓ 0. We consider a pulse-like solution with one front
and one back layer of the bistable FHN system (2.1) with (2.2) in R. By taking the
limit as ε ↓ 0, each layer becomes the corresponding interface as in Fig.3.1. Let ηF (t)
and ηB(t) satisfying 0 < ηF (t) < ηB(t) be respectively the front and back interfaces.
The singular perturbation methods ([1], for instance) lead the evolutional equations
of ηF (t) and ηB(t) which are described by

τ ˙ηF (t) = −λ(v(t, ηF (t))), t > 0, (3.1)

τ ˙ηB(t) = λ(v(t, ηB(t))), t > 0, (3.2)

where dot means the first derivative of time t. For each number ξ such that f(u)−ξ = 0
has three zeros u = h±(ξ) and h0(ξ), as in Fig.3.2, λ(ξ) is the velocity of a travelling
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Fig. 2.3. Annihilation of two travelling pulses of (2.1) where the parameters are the same as
those in Fig.2.2 except τ = 0.04311.
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Fig. 2.4. Repulsion of two travelling pulses of (2.1) where the parameters are the same as those
in Fig.2.2 except τ = 0.048.

front solution u(z) (z = x − λt) of

ut = uxx + f(u) − ξ, z ∈ R (3.3)

with the boundary conditions

lim
x→±∞

u(t, x) = h∓(ξ). (3.4)
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Here λ(ξ) is uniquely determined for ξ ∈ (v−, v+). By (2.1), the equation for v(t, x)
is given by

∂v

∂t
= d

∂2v

∂x2
+

{

h−(v) − γv, t > 0, x ∈ R \ (ηF (t), ηB(t)),
h+(v) − γv, t > 0, x ∈ (ηF (t), ηB(t))

(3.5)

with

v(t, ·) ∈ C1(R), t > 0 (3.6)

and

lim
|x|→∞

v(t, x) = 0, t > 0. (3.7)

The derivation of (3.1)-(3.7) is stated in Appendix A. It turns out that (3.1)-(3.7) is
a free boundary problem for the free boundaries ηF (t) and ηB(t).
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g
F (t) g
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Fig. 3.1. A travelling pulse of (2.1) with ε ↓ 0 where the parameters are the same as those in
Fig.2.2 expect τ = 0.04685.
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Fig. 3.2. Graph of the equation f(u) − v = 0, where u = h−(v), u = h+(v) and u = h0(v)
denote three branches of f(u) − v = 0.

A travelling pulse solution of (3.1)-(3.7) can be described by v(t, x) = V (z) (z =
x− ct) with constant velocity c, coupled with the interfaces ηF (t) = zF = xF − ct and
ηB(t) = zB = xB − ct (Fig.3.3). The resulting problem for (V (z), c) with unknowns
zF and zB is stated as follows:

−τc = −λ(V (zF )) = λ(V (zB)), (3.8)
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−cVz = dVzz +

{

h−(V ) − γV, z ∈ R \ (zF , zB),
h+(V ) − γV, z ∈ (zF , zB),

(3.9)

V ∈ C1(R), (3.10)

lim
|z|→∞

V (z) = 0. (3.11)

Ikeda[4] proved the existence of travelling and standing pulse solutions of (3.8)-(3.11).
For any τ , there is uniquely a standing pulse solution of (3.8)-(3.11). Furthermore,
there is the critical value τc such that there are travelling pulses V (z; τ) with veloc-
ity ±c(τ) for 0 < τ < τc. Furthermore, he showed that these are super-critically
bifurcated from the standing pulse.

0.2

0

0 10

z

V(z)

zF zB

Fig. 3.3. A travelling pulse solution V (z) of (3.8)-(3.11) where d = 1.0, a = 0.25, γ =
10.28571, τ = 0.044.

4. Pulse-pulse interaction in the limit system. In this section, we consider
the repulsive interaction of two travelling pulses of (3.8)-(3.11) for fixed τ > 0 , where
they are located symmetrically with x = 0 in R. In order to analyze this interaction,
we assume that there is the reflecting wall at x = 0 and that one of the pulses moves
to the left direction in R+ = (0,+∞). Let x = η1(t), x = η2(t) be interfaces satisfying
0 < η2(t) < η1(t) < +∞ where 2η2(t) is the distance between two front interfaces.
The resulting problem of (3.1)-(3.7) can be stated as follows:

τ η̇1 = λ(v(t, η1(t))), t > 0, (4.1)

τ η̇2 = −λ(v(t, η2(t))), t > 0, (4.2)

∂v

∂t
= d

∂2v

∂x2
+

{

h−(v) − γv, t > 0, x ∈ R+ \ (η2(t), η1(t)),
h+(v) − γv, t > 0, x ∈ (η2(t), η1(t)),

(4.3)

v(t, ·) ∈ C1(R+) (4.4)

with the boundary and initial conditions

∂v

∂x
= 0, t > 0, x = 0, (4.5)
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lim
x→+∞

v = 0, t > 0 (4.6)

and






η1(0) = η10,
η2(0) = η20,
v(0, x) = v0(x), x ∈ R+.

(4.7)

The existence and uniqueness of solutions to (4.1)-(4.7) are proved in [3] and the
convergence between the RD system (2.1) and ones of the limiting system (4.1)-(4.7)
as ε ↓ 0 is discussed in [19].

Now, our problem can be formulated as follows: Suppose that the initial con-
dition (v0(x), η10, η20) are chosen to approximately satisfy a slowly travelling pulse
(V (x; τ), xB , xF ) for large xB and xF . When τ is suitably fixed to generate that c(τ)
is very small, does the solution (v(t, x), η1(t), η2(t)) of (4.1)-(4.7) exhibit repulsive
behavior when it approaches the wall x = 0 ?

We rely on numerical procedures to solve (4.1)-(4.7) which is a free boundary
problem for η1(t) and η2(t). When τ is very small, these travelling interfaces annihilate
after collision, as in Fig.4.1. When τ increases, two travelling interfaces annihilate
before collision, as in Fig.4.2, when τ is still increases but less than τc, these interfaces
reflect each other, as in Fig.4.3. Comparing Figs.4.1-4.3 and Figs.2.2-2.4, one finds
that the limiting problem (4.1)-(4.7) is qualitatively a good approximation to the
bistable FHN system (2.1) with (2.2) with sufficiently small ε > 0, from the pulse-
pulse interaction view point.

t

x 100
0

2.0

x = g  (t)1 

2x = g  (t)

Fig. 4.1. Annihilation of travelling pulses of (4.1)-(4.7) where d = 1.0, a = 0.25, γ =
10.28571, τ = 0.034.

5. Equations of interface-interface interaction.

5.1. Existence of travelling pulses. As was shown in Fig.4.1, the reflection
process of interfaces is truly transient. In order to study this problem, we further
reduce (4.1)-(4.7) to a system of ODEs for the interfaces η1(t) and η2(t) only, assuming
that they move very slowly.

For this purpose, we approximate f(u) in (2.1) by a piecewise linear function
f(u) = −u + H(u − a) with a constant satisfying 0 < a < 1/2 where H(s) = 1 for
s > 0 and H(s) = 0 for s < 0 (see Fig.5.1). Then the velocity λ(ξ) of (3.3) is explicitly
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2x = g  (t)
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Fig. 4.2. Annihilation of travelling pulses of (4.1)-(4.7) where the parameters are the same as
those in Fig.4.1 except τ = 0.0375.
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2x = g  (t)

t
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10x0

Fig. 4.3. Repulsion of travelling pulses of (4.1)-(4.7) where the parameters are the same as
those in Fig.4.1 except τ = 0.044.

given as

λ(ξ) =
1 − 2a − 2ξ

√

(a + ξ)(−1 + a + ξ)
(5.1)

[17] or equivalently

λ(ξ)
√

λ2(ξ) + 4
= 1 − 2a − 2ξ. (5.2)

With z = x − ct, travelling pulse solutions V (z) with velocity c are obtained by
solving the following problem resulting from (3.8)-(3.11):

τc
√

(τc)2 + 4
= 1 − 2a − V (zF ), (5.3)

τc
√

(τc)2 + 4
= −1 + 2a + V (zB) (5.4)
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Fig. 5.1. Nulclines of f and g of the piecewise-linear nonlinearities in (2.1) where a = 0.25, γ =
0.9999999.

and

−cVz = dVzz +

{

−(1 + γ)V, x ∈ R \ (zF , zB),
−(1 + γ)V + 1, x ∈ (zF , zB),

(5.5)

V ∈ C1(R), (5.6)

lim
|z|→∞

V (z) = 0. (5.7)

For fixed c and zB − zF = s, we obtain the unknown V by (5.5)-(5.7). Substituting
it into (5.3) and (5.4), we have the following equations for c and s:

τc
√

(τc)2 + 4
= 1 − 2a − φ−

βφ

(

1 − exp(−φ+

2d
s)

)

, (5.8)

τc
√

(τc)2 + 4
= −1 + 2a +

φ+

βφ

(

1 − exp(−φ−

2d
s)

)

, (5.9)

where β = 1+ γ, φ(c) =
√

c2 + 4dβ and φ±(c) = φ(c)± c . It is convenient to rewrite
(5.8),(5.9) as

F (c, s) =
φ−

2βφ
exp(−φ+

2d
s) +

φ+

2βφ
exp(−φ−

2d
s) − 2a − 1

β
+ 1 = 0, (5.10)

G(c, s; τ) =
τc

√

(τc)2 + 4
− c

βφ
− φ−

2βφ
exp(−φ+

2d
s) +

φ+

2βφ
exp(−φ−

2d
s) = 0. (5.11)

When 2a + 1/β − 1 = 0 (or equivalently γ = γ∗ = 2a/(1 − 2a)), f(u) − v = 0 and
u − γ∗v = 0 take odd symmetry. When 2a + 1/β − 1 ≤ 0 (or γ ≥ γ∗), one knows
F (c, s) > 0 so that there is no travelling solution. We therefore assume 2a+1/β−1 > 0
(or 0 < γ < γ∗). It is obvious that (c, s) = (0, s0) with

s0 = −
√

d/β log(2aβ + 1 − β) (5.12)
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is a solution of (5.10) and (5.11) for any τ > 0. This yields a standing pulse solution of
(5.1)-(5.7). Taking τ as a free parameter and keeping a, γ(< γ∗) and d to be suitably
fixed, we find that there is a critical value τcT such that travelling pulse solutions of
(5.1)-(5.7) exist for τ < τcT , which are bifurcated from the standing one at τ = τcT

(Fig.5.2). The relation between the parameter τ and the width s is shown in Fig.5.3.

0

C

t
cTt

Fig. 5.2. Relation between the velocity c and the parameter τ where d = 1.0, a = 0.25, γ =
0.9999999, τct = 0.353554.

S

S0

tcTt

Fig. 5.3. Relation between the width s and the parameter τ where the parameters are the same
as those in Fig.5.2.

If τ is chosen to be near τcT , the velocity c is very small so that its explicit form

can be obtained. Using F (0, s0) = 0 and
∂F

∂s
(0, s0) 6= 0, the implicit function theorem

says that F (c, s) = 0 has a solution s = h(c) in a neighborhood of c = 0 satisfying
s0 = h(0). It is expanded in terms of c up to O(c2) as follows:

s = h(c) = s0 + s1c
2, (5.13)

where

s1 =
1

16
(
s0

dβ
+

s2
0

d
√

dβ
). (5.14)
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Substituting (5.13) into G(c, s; τ) = 0 and expanding it with small c, we obtain the
following relation up to O(c3):

c

2
(τ − τ∗) + g(τ)c3 = 0, (5.15)

where

τ∗ =
1

β
√

dβ

(

1 −
(

1 + s0

√

β/d
)

exp(−s0

√

β/d)
)

> 0 (5.16)

and

g(τ) =
1

16

[ 1

dβ2
√

dβ
+

(

s3
0

3d3β
− s0

d2β3
− 1

dβ2
√

dβ
− 8s0s1

d
√

dβ

)

exp(−
√

β/ds0) − τ3
]

.

(5.17)
When γ is near γ∗ and τ is also near τ∗, one finds g(τ) > 0 so that the velocity c is

expressed as c = ±
√

(τ∗ − τ)/2g(τ).

5.2. Stability of travelling pulse solutions. We now consider the stability
of travelling pulse solutions in R. The spectral analysis shows that when τ decreases,
the standing pulse solution of (3.1)-(3.7) is primarily destabilized through Hopf bifur-
cation at τ = τcO and then secondly through translational one at τ = τcT (τcT < τcO)
[6], where the bifurcating travelling pulse solutions globally exist for τ < τcT . This
information tells us that they are unstable when τ is near τcT . However, there is
the critical value, say τ = τcOT (τcOT < τcT ) so that the unstable travelling pulse
solutions recover their stability for τ < τcOT (Fig.5.4) [7]. We should note that if γ is
less than but near γ∗ (i.e. f(u) − v = 0 and u − γv = 0 take nearly odd symmetry),
three critical values τcOT , τcT and τcO are very close with each other (in fact, if they
are completely odd symmetric, then τcOT = τcT = τcO hold). We thus find that there
exist very slowly travelling pulse solutions which are stable, if γ is near γ∗ and τ is
also near τcOT .

0

C

t

STP

USP SSP t
cOT

tcT tcO

Fig. 5.4. Schematic bifurcation diagram of travelling pulses with the parameter τ , where the
vertical axis indicates the velocity of the travelling pulse. (SSP: stable standing pulse, USP: unstable
standing pulse, STP: stable travelling pulse.)

5.3. A system describing pulse-pulse interaction. Consider the situation
where there is a pulse-like solution (v(t, x), η1(t), η2(t)) (η2(t) < η1(t)) in R+ with
the reflecting wall x = 0. The problem resulting from (4.1)-(4.7) with (5.1) is written
as

τ η̇1(t)
√

(τ η̇1(t))2 + 4
= 1 − 2a − 2v(t, η1(t)), t > 0, (5.18)
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τ η̇2(t)
√

(τ η̇2(t))2 + 4
= −1 + 2a + 2v(t, η2(t)), t > 0, (5.19)

where η2(t) < η1(t) is assumed for any t > 0, and

∂v

∂t
= d

∂2v

∂x2
+

{

−βv, x ∈ R+ \ (η2(t), η1(t)),
−βv + 1, x ∈ (η2(t), η1(t))),

(5.20)

v(t, ·) ∈ C1(R+), (5.21)

∂v

∂x
= 0, x = 0, t > 0, (5.22)

lim
x→∞

v = 0, t > 0, (5.23)







η1(0) = η10,
η2(0) = η20 (< η10),
v(0, x) = v0(x), x ∈ R+.

(5.24)

By using the advantage of piecewise-linear nonlinearity of (5.3) in (5.20),
v(t, ηi(t)) (i = 1, 2) can be determined for given ηi(t) (i = 1, 2). We thus formally
obtain the closed system for η1(t) and η2(t), which is described by integral equations
with respect to time as well as space. To obtain this system, we employ the following
formal approximation:

ηi(t̃) = ηi(t) + (t̃ − t)η̇i(t) +
(t̃ − t)2

2
η̈i(t) + · · · , (5.25)

which is valid for sufficiently weak variation of ηi (i = 1, 2). It is shown in Appendix
C that the expansion in (5.25) is actually an expansion in powers of δ =

√
τ∗ − τ .

Therefore, the truncation up to the second derivative with respect to time is justified
near the bifurcation threshold τ = τ∗.

After straightforward calculation in (5.18)-(5.24), we obtain the following fourth
order system of ODEs for η1(t) and η2(t) up to O(η̈i) (i = 1, 2):























m(η1, η̇1)η̈1 − n1(η1, η2, η̇2)η̈2 = 1 − 2a − v1(η1, η2, η̇1, η̇2) −
τ η̇1

√

(τ η̇1)2 + 4
,

t > 0,

m(η2, η̇2)η̈2 − n2(η1, η2, η̇1)η̈1 = −1 + 2a + v2(η1, η2, η̇1, η̇1) −
τ η̇2

√

(τ η̇2)2 + 4
,

(5.26)
where the coefficient functions m,n1, n2 are non-negative for all η1, η2, η̇1, η̇2 , and
v1, v2 describe the interaction term between the two travelling pulses. The derivation
of (5.26), the forms of functions m,n1, n2, v1 and v2 are explicitly stated in Appendix
B.

Suppose that η1(t) − η2(t) is finite and η1(t) is very large for any t > 0. Then
we find by (B.7), (B.9), (B.13)–(B.15) that (5.26) is reduced to the following slightly
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simplified fourth order system of ODEs:























m̄(η̇1)η̈1 − ñ(η1 − η2, η̇2)η̈2 = 1 − 2a − ṽ1(η1 − η2, η̇1, η̇2) −
τ η̇1

√

(τ η̇1)2 + 4
,

t > 0,

m(η2, η̇2)η̈2 − ñ(η1 − η2,−η̇1)η̈1 = −1 + 2a + ṽ2(η1, η2, η̇1, η̇2) −
τ η̇2

√

(τ η̇2)2 + 4
,

(5.27)
where

m̄(k) =
12d2

φ(k)5
, (5.28)

ñ(s, k) =

(

s2

φ3(k)
+

6ds

φ4(k)
+

12d2

φ5(k)

)

exp(−s
φ+(k)

2d
) (5.29)

with φ(k) =
√

k2 + 4dβ and φ±(k) = φ(k) ± k,

ṽ1(η1 − η2, η̇1, η̇2) =
φ1−

βφ1
− φ2−

βφ2
exp(−(η1 − η2)

φ2+

2d
), (5.30)

ṽ2(η1, η2, η̇1, η̇2) =
φ2+

βφ2

(

1 + exp(−2η2
φ2−

2d
)

)

− φ1+

βφ1
exp(−(η1 − η2)

φ1−

2d
) (5.31)

for φi = φ(η̇i) =
√

η̇2
i + 4dβ and φi± = φ(η̇i) ± η̇i (i = 1, 2).

5.4. Reflection property of travelling pulses. We take the initial conditions
as







η1(0) = α + s(τ),
η2(0) = α,
η̇i(0) = −c(τ) (< 0) (i = 1, 2),

(5.32)

where α is fixed arbitrarily large. Suppose that s0 is very large, that is, 2a + 1/β − 1
is positive but sufficiently small, and that τ is suitably fixed to require that c(τ) is
very small and s(τ) is very close to s0. Under this situation, numerical computation
of (5.27) clearly shows that the front interface η2(t) reflects with the wall x = 0 twice,
while it reflect with the back η1(t) once, as in Fig.5.5. This behavior is qualitatively
similar to the ones in Figs.4.3 and 2.4.

Now, let us analytically consider the above reflection-process demonstrated in
Fig.5.5. We can classify the behavior of η1(t) and η2(t) into the following 3-stages:
(i) η2(t) reflects with the wall x = 0 :(η1(t) ≫ 1, η1(t) − η2(t) ≫ 1 and η̇1(t) < 0);
(ii) η1(t) and η2(t) repel each other : (η1(t) ≫ 1, η2(t) ≫ 1 and η1(t)−η2(t) = O(1));
(iii) η2(t) reflects with the wall x = 0 again : (η1(t) ≫ 1, η1(t) − η2(t) ≫ 1 and
η̇1(t) > 0).
Depending on the stages (i)-(iii), (5.27) can be simplified as follows:

Stage (i): Since η1(t) − η2(t) is very large, one may expect that the interfaces
η1(t) and η2(t) are independent, so that (5.27) is decoupled as

m̄(η̇1)η̈1 = 1 − 2a − v̂1(η̇1) −
τ η̇1

√

(τ η̇1)2 + 4
(5.33)



506 M. MIMURA, M. NAGAYAMA AND T. OHTA
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x = g  (t)1 

2x = g  (t)

t

0

750

Fig. 5.5. Repulsion of the interfaces η1(t) and η2(t) where d = 1.0, a = 0.25, γ = 0.9999999, τ =
0.3535, c = 0.05669, s = 12.1537.

and

m(η2, η̇2)η̈2 = −1 + 2a + v̂2(η2, η̇2) −
τ η̇2

√

(τ η̇2)2 + 4
, (5.34)

where

v̂1(η̇1) =
φ1−

βφ1
, (5.35)

v̂2(η2, η̇2) =
φ2+

βφ2

(

1 + exp(−2η2
φ2−

2d
)

)

. (5.36)

Putting η̇1 = ξ1 into (5.33), we obtain the equation for ξ1 only as

m̄(ξ1)ξ̇1 = 1 − 2a − 1

β
+

ξ1

β
√

ξ2
1 + 4dβ

− τξ1
√

(τξ1)2 + 4
≡ S(ξ1; τ), t > 0. (5.37)

As the functional form of S(ξ1; τ) is shown in Fig.5.6, there is the critical value τc

such that (5.37) has one critical point ξ1 = c1 < 0 for τc < τ and three critical
points ξ1 = ci (i = 1, 2, 3) satisfying c1 < 0 < c2 < c3 for 0 < τ < τc. Noting that
ξ1 = c1, c3 are asymptotically stable and ξ1 = c2 is unstable, one finds that η̇1(t)
becomes asymptotically c1, that is, η1(t) becomes a travelling interface with velocity
c1. Here we should remark that c1 is the velocity of the travelling back solution
v(z) (z = x − ct) of the following problem:























−τc = λ(v(t, η1(t))), t > 0,
∂v

∂t
= d

∂2v

∂x2
+

{

−βv, x ∈ (η1(t),∞),
−βv + 1, x ∈ (−∞, η1(t)),

v(t, ·) ∈ C1(R),
lim

x→−∞
v = vR, lim

x→−∞
v = 0.

(5.38)

This indicates that the dynamics of the back interface η1(t) is approximated by the
travelling back solution of (5.38). Next consider (5.34). If η2 is very large, then
ξ2 = η̇2 satisfies

m̄(ξ2)ξ̇2 = −1+2a+
1

β
+

ξ2

β
√

ξ2
2 + 4dβ

− τξ2
√

(τξ2)2 + 4
≡ −S(−ξ2; τ), t > 0. (5.39)
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Therefore, η̇2(t) is approximately −c3, that is, η2(t) becomes a travelling interface
with velocity −c3. However, if η2(t) approaches the wall x = 0, that is, η2(t) = O(1),
it is no longer described by (5.39) only but by (5.34). We conveniently rewrite (5.34)
as


















































η̇2 = ξ2,
t > 0,

m(η2, ξ2)ξ̇2 = −1 + 2a +
1

β
+

ξ2

β
√

ξ2
2 + 4dβ

− τξ2
√

(τξ2)2 + 4

+
1

β

(

1 +
ξ2

√

ξ2
2 + 4dβ

)

exp

(

−η2

√

ξ2
2 + 4dβ − ξ2

d

)

≡ f2(η2, ξ2; τ).
(5.40)

The nuclide of f2 is drawn in Figs.5.7(a) and 5.8(a). Using the phase plane analysis
for (5.40), we arrive at the following result: Fix (η2(0), ξ2(0)) to satisfy that η2(0) is
very large and ξ2(0) takes nearly −c3. (i) when τ is very small, then η2(t) is decreasing
and η2(t1) = 0 for some t1 > 0, as in Fig.5.7(b); (ii) when τ > 0 is very close but
less than τc, then η2(t) decreases and change the direction and increases as if it were
repulsive with the wall x = 0, as in Fig.5.8(b).

S

n
c2c1 c3

1

(b)

S

n1

(a)

c1

Fig. 5.6. Functions of S(ξ1; τ) with ξ1 where d = 1.0, a = 0.25, γ = 0.9999999: (a) τ = 0.35355;
(b) τ = 0.3535.

Stage (ii): After Stage (i), one finds that η1(t) and η2(t) approach each other
so as to satisfy η1(t) − η2(t) = O(1). We therefore have to consider (5.27) for η1(t)
and η2(t). Since Stage (i) indicates that η1(t) and η2(t) asymptotically moves with
opposite velocities c1 and −c1, respectively, we may assume η̇1(t) = −η̇2(t). Therefore,
putting 2η(t) = η1(t)− η2(t), (5.27) reduces to the following 2-dimensional ODEs for
η only:

(m̄(η̇) + n̄(η, η̇))η̈ = 1 − 2a − v̄(η, η̇) − τ η̇
√

(τ η̇)2 + 4
, (5.41)

where

n̄(η, η̇) =

(

4η2

φ3
+

12dη

φ4
+

12d2

φ5

)

exp(−2η
φ1−

2d
) (5.42)
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Fig. 5.7. Annihilation of the front interface where the parameters are the same as those in
Fig.5.5 except τ = 0.15: (a) Trajectory of (5.40) in the (η2, ξ2)-plane; (b) Time evolution of η2(t)
of (5.40).
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Fig. 5.8. Repulsion of the front interface where the parameters are the same as those in
Fig.5.5 except τ = 0.3535: (a) Trajectory of (5.40) in the (η2, ξ2)-plane; (b) Time evolution of η2(t)
of (5.40).

and

v̄(η, η̇) =
φ−

βφ

(

1 − φ+

βφ−
exp(−2η

φ−

2d
)

)

. (5.43)

Using the phase plane analysis in (5.41) again, it is found that η1(t) and η2(t) repel
each other with the center (η1 + η2)/2 (Fig.5.9).

Stage (iii): Since this stage can be treated in a similar way to Stage (i), we omit
the discussion.

6. Concluding remarks. In order to understand that very slowly travelling
pulses repel each other, as if they are elastic objects, we have proposed a bistable RD
system of the FitzHugh-Nagumo type and have used the interfacial dynamics approach
to derive a limiting problem to describe the motion of interfaces from the RD system,
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x = g  (t)1 2x = g  (t)t

0
x

700

30 70

Fig. 5.9. Repulsion of the back interfaces. Time evolution of (η1(t), η2(t)) of (5.41) where the
parameters are the same as those in Fig.5.5.

taking ε ↓ 0. We thus obtained the fourth order system of ODEs to describe very
slow motion of interfaces. Although the derivation is formal and has not yet been
justified, the analysis with complementarily numerical calculations reveals that the
reduced ODEs is a good approximate system to understand the repulsive interaction
of very slowly travelling pulses. In a forthcoming paper, we consider the interaction
of pulses, instead of interfaces, by using the pulse-dynamics methods and show that
a general class of reaction-diffusion systems possess the pulse-reflection property, if
the travelling velocity is sufficiently slow in a sense that travelling pulses bifurcate
super-critically from a standing one.

Although, our conjecture is that all travelling pulses with very low velocity pos-
sess the repulsive property, it is not necessarily true that a travelling pulse with the
repulsive property must have low velocity. Recently, it has been demonstrated in a
suitable 3-component RD system that even if the velocity is not necessarily low, the
travelling pulses reflect each other when they approach [9].
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7. Appendices.

7.1. Appendix A. Although the derivation of (3.1)-(3.7) is already stated else-
where (for instance, [1]), we show it. We formally put ε = 0 in (2.1) and then obtain

v = f(u), (A.1)

∂v

∂t
= d

∂2v

∂x2
+

{

h−(v) − γv, t > 0, x ∈ R \ (ηF (t), ηB(t)),
h+(v) − γv, t > 0, x ∈ (ηF (t), ηB(t)),

(A.2)

To determine the motion of the interface x = ηB(t), for instance, let us introduce the
new variable ξ instead of x

ξ =
x − ηB(t)

ε
for | x − ηB(t) |< δ, (A.3)
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where δ = O(1). The resulting equations from (2.1) are given by

−τ ˙ηB(t)ũξ + τεũt = ũξξ + f(ũ) − ṽ, (A.4)

t > 0, −δ/ε < ξ < δ/ε,

−ε ˙ηB(t)ṽξ + ε2ṽt = dṽξξ + ε2g(ũ, ṽ), (A.5)

where ũ = u(ηB(t) + εξ, t), ṽ = v(ηB(t) + εξ, t). In the limit ε ↓ 0, (A.4) and (A.5)
formally become

−τ ˙ηB(t)ũξ = ũξξ + f(ũ) − ṽ, (A.6)

t > 0, −∞ < ξ < +∞,

dṽξξ = 0, (A.7)

where the boundary conditions are

ũ(t,±∞) = h∓(v(t, ηB(t))), (A.8)

ṽ(t,±∞) = v(t, ηB(t)). (A.9)

From (A.7) and (A.9), we obtain

ṽ(t, ξ) = v(t, ηB(t)) for any ξ ∈ R. (A.10)

Therefore, (A.2) reduces to the following scalar equation for ũ with the parameter t:

−τ ˙ηB(t)ũξ = ũξξ + f(ũ) − v(t, ηB(t)), (A.11)

ũ(t,±∞) = h∓(v(t, ηB(t))). (A.12)

Solving the following nonlinear eigenvalue problem with λ

{

−λuz = uzz + f(u) − ξ, z ∈ R,
u(+∞) = h−(ξ), u(−∞) = h+(ξ),

(A.13)

we obtain the interface equation for ηB(t) as

τ ˙ηB(t) = λ(v(t, ηB(t))). (A.14)

By using a similar analysis to the above, the interface equation for ηF (t) is also given
by

τ ˙ηF (t) = −λ(v(t, ηF (t))). (A.15)
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7.2. Appendix B. We derive the interface equations (5.26)D We extend R+ to
the whole domain R, by using the mirror symmetry at x = 0. Applying the Fourier
transform given by

vq(t) =

∫ ∞

−∞

v(x, t)eiqxdx

to (5.18), we have

v̇q(t) = −(dq2 + β)vq(t) +
2

q
(sin(qη1(t)) − sin(qη2(t)), (B.1)

where the term vq(0) exp(−(dq2 + β)t) was ignored, since we consider the dynamics
after large time. The inverse Fourier transform of (B.1) yields

v(x, t) =
1

2π

∫ ∞

−∞

2

q

∫ t

0

exp(−(dq2 + β)(t − s) − iqx) sin(qη1(s))ds dq

− 1

2π

∫ ∞

−∞

2

q

∫ t

0

exp(−(dq2 + β)(t − s) − iqx) sin(qη2(s))ds dq.

(B.2)

Hence we obtain

v1(t) = v(η1(t), t)

=
1

2π

∫ ∞

−∞

2

q

∫ t

0

exp(−(dq2 + β)(t − s) − iqη1(t)) sin(qη1(s))ds dq

− 1

2π

∫ ∞

−∞

2

q

∫ t

0

exp(−(dq2 + β)(t − s) − iqη1(t)) sin(qη2(s))ds dq

(B.3)
and

v2(t) = v(η2(t), t)

=
1

2π

∫ ∞

−∞

2

q

∫ t

0

exp(−(dq2 + β)(t − s) − iqη2(t)) sin(qη1(s))ds dq

− 1

2π

∫ ∞

−∞

2

q

∫ t

0

exp(−(dq2 + β)(t − s) − iqη2(t)) sin(qη2(s))ds dq.

(B.4)
(B.3) and (B.4) indicate that there is a time-delayed interaction between two pulses
mediated by v. Therefore, to solve (B.3) and (B.4), we take account of the effects of
the time-delayed interaction perturbatively and employ the following approximation:

ηi(s) = ηi(t) + η̇i(t)(s − t) + η̈i(t)
(s − t)2

2
+ · · · (i = 1, 2). (B.5)

More precise explanation of (B.5) is stated in Appendix C. After straightforward
calculation, we approximate (B.3) up to O(η̈i) as

v1(t) = v
(1)
1 (t) + v

(2)
1 (t), (B.6)
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where the term of O(e−βt) was ignored, since we consider the dynamics after large
time and

v
(1)
1 (t) =

1

2π

∫ ∞

−∞

2

2iq

(

1

dq2 + β + iqη̇1
− exp(−2iqη1)

dq2 + β − iqη̇1

−exp(−iq(η1 − η2))

dq2 + β + iqη̇2
+

exp(−iq(η1 + η2))

dq2 + β − iqη̇2

)

dq

=
1

2βφ1

(

(φ1− − φ1+ exp(−2η1
φ1−

2d
)

)

− 1

2βφ2

(

φ2− exp(−(η1 − η2)
φ2+

2d
) − φ2+ exp(−(η1 + η2)

φ2−

2d
)

)

≡ v2(η1, η2, η̇1, η̇2).
(B.7)

By (B.3), the first order correction v
(2)
1 is given as

v
(2)
1 (t) =

1

2π

∫ ∞

−∞

η̈1

(

1

(dq2 + β + iqη̇1)3
+

exp(−2iqη1)

(dq2 + β − iqη̇1)3

)

−η̈2

(

exp(−iq(η1 − η2))

(dq2 + β + iqη̇2)3
+

exp(−iq(η1 + η2))

(dq2 + β − iqη̇2)3

)

dq.

(B.8)

We may derive the equation for v2 in the similar way to (B.7) so that v
(1)
2 is given as

v
(1)
2 (t) =

1

2π

∫ ∞

−∞

2

2iq

(

− 1

dq2 + β + iqη̇2
+

exp(−2iqη2)

dq2 + β − iqη̇2

+
exp(iq(η1 − η2))

dq2 + β + iqη̇1
− exp(−iq(η1 + η2))

dq2 + β − iqη̇1

)

dq

=
1

2βφ2

(

φ2+ + φ2+ exp(−2η2
φ2−

2d
)

)

− 1

2βφ1

(

φ1+ exp(−(η1 − η2)
φ1−

2d
) + φ1+ exp(−(η1 + η2)

φ−1

2d
)

)

≡ v2(η1, η2, η̇1, η̇2).
(B.9)

By (B.4), the correction v
(2)
2 is obtained as

−v
(2)
2 (t) =

1

2π

∫ ∞

−∞

η̈2

(

1

(dq2 + β + iqη̇2)3
+

exp(−2iqη2)

(dq2 + β − iqη̇2)3

)

−η̈1

(

exp(iq(η1 − η2))

(dq2 + β + iqη̇1)3
+

exp(−iq(η1 + η2))

(dq2 + β − iqη̇1)3

)

dq.

(B.10)

Thus one may write v
(2)
1 and v

(2)
2 as

v
(2)
1 = m(η1, η̇1)η̈1 − n1(η1, η2, η̇2)η̈2 (B.11)
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and

−v
(2)
2 = m(η2, η̇2)η̈2 − n2(η1, η2, η̇1)η̈1, (B.12)

where mi (i = 1, 2) are defined by

mi(ηi, η̇i) =
1

2π

∫ ∞

−∞

(

1

(dq2 + β + iqη̇i)3
+

exp(−2iqηi)

(dq2 + β − iqη̇i)3

)

dq

=
6d2

φ
5/2
i

(1 + exp(−2ηiφi−)) +

(

2η2
i

φ
3/2
i

+
6dηi

φ2
i

)

exp(−2ηiφi−).

(B.13)

In the similar way to (B.12), n1 and n2 are defined by

n1 =
1

2π

∫ ∞

−∞

(

exp(−iq(η1 − η2))

(dq2 + β + iqη̇2)3
+

exp(−iq(η1 + η2))

(dq2 + β − iqη̇2)3

)

dq

=

(

(η1 − η2)
2

2φ
3/2
2

+
3d(η1 − η2)

φ2
2

+
6d2

φ
5/2
2

)

exp(−(η1 − η2)φ2+)

+

(

(η1 + η2)
2

2φ
3/2
2

+
3d(η1 + η2)

φ2
2

+
6d2

φ
5/2
2

)

exp(−(η1 + η2)φ2−)

≡ n1(η1, η2, η̇2),

(B.14)

n2 =
1

2π

∫ ∞

−∞

(

exp(iq(η1 − η2))

(dq2 + β + iqη̇1)3
+

exp(−iq(η1 + η2))

(dq2 + β − iqη̇1)3

)

dq

=

(

(η1 − η2)
2

2φ
3/2
1

+
3d(η1 − η2)

φ2
1

+
6d2

φ
5/2
1

)

exp(−(η1 − η2)φ1−)

+

(

(η1 + η2)
2

2φ
3/2
1

+
3d(η1 + η2)

φ2
1

+
6d2

φ
5/2
1

)

exp(−(η1 + η2)φ1−)

≡ n2(η1, η2, η̇1).

(B.15)

Therefore (5.26) can be obtained.

7.3. Appendix C. In this appendix, we examine the condition that the approx-
imation (5.25) holds. The main part is to clarify the reason why one may ignore the
higher order time derivative in the pulse equation of motion. We will show below that
this approximation is justified in the vicinity of the supercritical pulse-bifurcation
point τ∗.

It is pointed out that there is another bifurcation threshold τc for the front motion.
Actually, the expansion in terms of c1 = η̇1 of the right hand side of (5.26) becomes

mċ1 − nċ2 + (τ − τc)c1 + h(τ)c3
1 = α

+
1

β
(exp(−2η1

√

β/d) + exp(−(η1 − η2)
√

β/d) − exp(−(η1 + η2)
√

β/d))

(C.1)
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where α = 1 − 2a − 1/β, τc = 1/β
√

dβ and

h(τ) =
1

16dβ2
√

dβ
− τ3

16

and a similar equation for c2 = η̇2. The coefficient h(τ) is positive for τ ∼ τc.
As shown just below (5.15), the stationary solution is c1 = O(δ1/2) where δ =√

τ∗ − τ . Here we have used the fact that τ∗ − τc = O(δ3/2 log δ) which will be shown
below in (C.5). Therefore it is convenient to introduce the scaled velocity

ĉ1 = c1/δ1/2. (C.2)

Since the motion of a pulse is very slow near the bifurcation threshold, we make a
scaling of time as

t̂ = δt. (C.3)

In terms of these scaled quantities, all the terms on the left hand side of (C.1) are
found to be of order of δ3/2. The higher order time-derivative ignored in (C.1) can be
written as

dnc1

dtn
= δ1/2+n dnĉ1

dt̂n
. (C.4)

Therefore these derivatives for n ≥ 2 are higher order in δ.
To balance all the terms in (C.1), the constant α should be regarded as α =

O(δ3/2) and the front and back positions are also restricted to satisfy this smallness.
The difference τ∗ − τc is given from (5.12) and (5.16) by

τ∗ − τc =
ατc

β

(

1 + s0

√

β

d

)

. (C.5)

This indicates τ∗ − τc = O(δ3/2 log δ).
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