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Introduction. A number of authors have studied the problem

(0.1) ∆u = g(u) in Ω, u ≡ ∞ on ∂Ω

for various choices of the function g, where Ω is a domain in R
n
. Following standard

practice, we assume initially that

g is locally Lipschitz on R(0.2a)

(although this condition can be considerably relaxed (see [30])), and that there is a

t0 ∈ R ∪ {−∞} such that

g is increasing and positive on (t0,∞),(0.2b)

lim
t→t+

0

g(t) = 0.(0.2c)

(If t0 = −∞, we also assume that g is integrable at −∞.) In addition, we define the

function G by

G(s) =

∫ s

t0

g(t) dt

and we assume that

(0.3)
1

√
G

is integrable at ∞.

We refer to the survey paper [2] for a detailed discussion of the history of this problem,

but we point out specifically that, according to results of Osserman [31] and Keller

[17], if (0.2) holds, then there is a solution of (0.1) for Ω a ball if and only if (0.3)

holds. For this reason, the function ψ, defined by

ψ(s) =

∫ ∞

s

1
√

2G(t)
dt

(with the constant 2 introduced for normalization), plays an important role in the

theory. A key element of the theory is to examine the asymptotic behavior of u near

∂Ω and a number of estimates for this behavior are given in, for example, [1, 21, 28, 29]
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when ∂Ω is sufficiently smooth. Our goal here is to provide a unified approach to

these estimates which can also be applied in less smooth domains. We also provide

more detailed estimates, similar to those in [18, 19], but with weaker smoothness

for ∂Ω than in those works. In fact, our main idea is based on the one in [18, 19];

we look at the boundary value problem satisfied by v = ψ(u). Such a function is

known to have intrinsic interest, too. If n = 2 and g(u) = 4e2u
or if n > 2 and

g(u) = n(n − 2)u(n+2)/(n−2)
, then v is known as the hyperbolic radius of Ω (see [1,

Section 3] for a discussion of the hyperbolic radius), but it has rarely been studied

by analyzing the boundary value problem it solves. For example, in [18, 19], the

author studies the asymptotic behavior of v by looking at the equation solved by

w = (v − d)/d2
, where d denotes distance to ∂Ω.

As in all the cited works, we make some additional assumptions on g. Specifically,

we look at the quantities

γ = lim inf
t→∞

ψ(t)ψ′′
(t)

ψ′(t)2
,

Γ = lim sup
t→∞

ψ(t)ψ′′
(t)

ψ′(t)2
.

Note that 0 ≤ γ ≤ Γ ≤ ∞ because ψψ′′/(ψ′
)
2

= ψg/
√

2G. In addition, we must

have Γ ≥ 1 because, otherwise, there are constants θ ∈ [0, 1) and t1 ≥ t0 such that

ψ1−θ
is concave and decreasing on (t1,∞), which can’t happen because this function

is positive.

We begin in Section 1 with some representative examples for the function g. We

point out here that the different nature of this structure condition from those in the

cited works makes a direct comparison difficult, so it’s useful to have a full range of

examples to work from. (In fact, our main goal here is to illustrate a general method,

so we do not always give the best hypotheses for our estimates.) Section 2 lists the

properties of a regularized distance function, which we use to construct comparison

functions. Our first comparison functions are used in Section 3 to prove first order

asymptotic expansions of the solution. To obtain higher order expansions, it will be

useful to have some gradient estimates. We derive them in Section 4, and, unlike

earlier gradient estimates, we control the direction of the gradient in addition to its

length. The higher estimates are obtained in Section 5, using the first order expansion,

the gradient estimate and a simple Schauder-type estimate for elliptic equations with

unbounded coefficients. Section 6 presents some uniqueness results, and we close in

Section 7 by presenting the forms of the estimates for some of our examples and by

discussing the uniqueness of solutions in various circumstances.

We note that there has been a lot of work on a modification of (0.1) in which

the Laplace operator is replaced by a more general, possibly nonlinear, elliptic op-

erator. For example, [16] is concerned with the blow-up problem for the equation

div(|Du|p−2Du) = g(u), and [8, 9, 7] look at the equation ∆u+ au = b(x)g(u) with a
a suitable constant and b a nonnegative function satisfying some additional technical

conditions relating b to g and a. We defer a study of such problems to a future work,

but point out here that we are able to study g from a larger class of functions than

in those works (when specialized to p = 2 in [16] and to b ≡ 1 and a = 0 in [8, 9, 7]).

1. Examples. We start with two standard examples.

Example 1.1. Let

g(s) = sq
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with q > 1. Then t0 = 0,

G(s) =
sq+1

q + 1
, ψ(s) =

√

2(q + 1)

q − 1
s(1−q)/2,

and

ψ(s)g(s)
√

2G(s)
≡
q + 1

q − 1
,

so γ = Γ = (q + 1)/(q − 1).

Example 1.2. Now, let

g(s) = es.

So t0 = −∞,

G(s) = es, ψ(s) =

√
2e−s/2,

and

ψ(s)g(s)
√

2G(s)
≡ 1,

so γ = Γ = 1.

Next, we look at a generalization of Example 1.1.

Example 1.3. Let’s suppose g satisfies

(1.1) 2 + η ≤
sg(s)

G(s)
≤ 2 + θ if s ≥ t1

for constants t1, η, and θ satisfying 0 < η ≤ θ and t1 ≥ t0. Then simple integration

(see, for example, [23, Lemma 1.1(b)]) shows that

2

θ
≤
ψ(s)

√

2G(s)

s
≤

2

η
.

Hence

η + 2

θ
≤
ψ(s)g(s)
√

2G(s)
≤
θ + 2

η
,

and therefore γ ≥ (η + 2)/θ and Γ ≤ (θ + 2)/η. (Note that, if we weaken (1.1) to

2 ≤
sg(s)

G(s)
≤ 2 + θ if s ≥ t1,

then we still obtain γ ≥ 2/θ but we don’t obtain a finite upper bound for Γ.)

This example includes functions like those studied in [8]. Specifically, that work

examined blow-up solutions for the differential equation

∆u+ au = b(x)g(u)
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for a a suitable constant, b a nonnegative function, and g a regularly varying function

(at infinity) with index q > 1. Regularly varying functions were first introduced by

Karamata in 1930 and are defined by the condition

lim
s→∞

g(λs)

g(s)
= λq

for all λ > 0. We refer to [6] for a thorough discussion of such functions, but

we note that [6, Theorem 1.5.11] (also called Karamata’s Theorem) says that

lims→∞ sg(s)/G(s) = q + 1 in this case, so γ = Γ = (q + 1)/(q − 1). The impor-

tant element in [8] that we do not deal with here is that b is allowed to vanish in part

of Ω and it need not be bounded away from zero near ∂Ω.

We can also look at functions g with faster growth at infinity.

Example 1.4. Let’s suppose that g(s) = exp(h(s)) for s ≥ t1 for some t1 ≥
max{t0, 0} (the behavior of g on (t0, t1) is not important here), where h is a function

satisfying

η ≤
sh′(s)

h(s)
≤ θ

for positive constants η ≤ θ. In this case, explicit formulae for G and ψ are not

available, but we can still compute the asymptotic behavior of ψg/
√

2G. For this

computation, we recall that the usual proof of l’Hôpital’s rule (see, for example, [32,

Theorem 5.13]) says that, if k and k1 are differentiable functions defined on [a,∞) for

some real number a with k′
1

never zero, and if lims→∞ k1(s) = ∞, then

lim inf
s→∞

k′(s)

k′
1
(s)

≤ lim inf
s→∞

k(s)

k1(s)
≤ lim sup

s→∞

k(s)

k1(s)
≤ lim sup

s→∞

k′(s)

k′
1
(s)

.

We now apply this inequality with k(s) = g(s)s/h(s) and k1(s) = G(s). Then

k′(s)

k′
1
(s)

=

(

1

h(s) −
sh′

(s)
h(s)2

)

g(s) − s
h(s)h

′
(s)g(s)

g(s)
=
h(s) − sh′(s)

h(s)2
+
sh′(s)

h(s)
.

Since lims→∞ h(s) = ∞, it follows that

η ≤ lim inf
s→∞

s

h(s)

g(s)

G(s)
≤ lim sup

s→∞

s

h(s)

g(s)

G(s)
≤ θ.

If we take k(s) = ψ(s) and k1(s) = (s/h(s))/
√

2G(s), we find that

k′(s)

k′
1
(s)

=
1

(

sh′
(s)

h(s)2 − 1

h(s)

)

+
s

h(s)
g(s)

2G(s)

,

so

2

θ
≤ lim inf

s→∞

h(s)

s

ψ(s)

1/
√

2G(s)
≤ lim sup

s→∞

h(s)

s

ψ(s)

1/
√

2G(s)
≤

2

η
.

Therefore

γ ≥
η

θ
, Γ ≤

θ

η
.
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This example was inspired by the structure conditions in [9]. There are several impor-

tant differences to note, however. In [9], the equation has the form ∆u+au = b(x)g(u),

and the function g has the form expm(h) with expm being the m-th iterated expo-

nential (exp
1

= exp and expm = exp(expm−1
)) and h being a function of regular

variation. Unlike the situation for our previous example, this class of gs is not con-

tained in ours even if we make the straightforward modifications needed to replace

the exponential by an iterated exponential. On the other hand, we allow functions

that cannot be written in the form used in [9].

Other examples can be generated from these via the following lemma.

Lemma 1.1. Let g satisfy (0.2) and (0.3). Suppose that g0 is locally Lipschitz on
R and that there is a constant t1 ∈ R ∪ {−∞} such that g0 is positive and increasing
on (t1,∞) with

lim
t→t+

1

g0(t) = 0.

Define G0 by

G0(s) =

∫ s

t1

g0(t) dt.

Suppose also that there are real constants A > 0 and t2 ≥ max{t0, t1} such that
g(s) ≤ Ag0(s) for all s ≥ t2. Then, for any ε > 0, there is a t3 ≥ t2 such that

(1.2) G(s) ≤ (A+ ε)G0(s)

for all s ≥ t3. Moreover, if g satisfies (0.3), then 1/
√
G0 is integrable at infinity. If

ψ0 is defined by

ψ0(s) =

∫ ∞

s

1
√

2G0(t)
dt,

then ψ0(s) ≤
√
A+ εψ(s) for all s ≥ t3.

Proof. If s ≥ t2, then

G(s) = G(t2) +

∫ s

t2

g(t) dt

≤ G(t2) +A(G0(s) −G(t2))

≤ G(t2) +AG0(s)

Then, because G0(s) → ∞ as s→ ∞, there is a constant t3 such that

G(t2) ≤ εG0(t3),

so s ≥ t3 implies (1.2) because G0 is increasing.

To prove that 1/
√

2G0 is integrable at infinity, we observe that

1
√

2G0(s)
≤

√
A+ ε

√

2G(s)

if s ≥ t3. This inequality immediately implies the inequality for ψ and ψ0.
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Note that, if there are constants A ≥ B > 0 such that Bg0(s) ≤ g(s) ≤ Ag0(s)
for s ≥ t2, then

γ ≥
B

A
lim inf
s→∞

ψ0(s)g0(s)
√

2G0(s)
,

and

Γ ≤
A

B
lim sup

s→∞

ψ0(s)g0(s)
√

2G0(s)
.

In particular, if limt→∞ g(s)/g0(s) = 1, then

γ = lim inf
s→∞

ψ0(s)g0(s)
√

2G0(s)
,

and

Γ = lim sup
s→∞

ψ0(s)g0(s)
√

2G0(s)
.

Further examples can be generated by starting with a suitable function ψ.

Example 1.5. Suppose that there is a decreasing C3
function h such that

ψ(s) = exp(h(ln s))

for s sufficiently large, say s ≥ s0. Then

ψ(s)ψ′′
(s)

(ψ′(s))2
= 1 +

h′′(ln s)

(h′(ln s))2
−

1

h′(ln s)

and

g(s) = exp(−2h(ln s))

(

−
s

h′(ln s)
−

sh′′(ln s)

(h′(ln s))3
+

s

(h′(ln s))2

)

.

Hence

g′(s) = exp(−2h(ln s))h0(ln s),

where

h0 = 2 +
1

h′
+

1

(h′)2
−

h′′′

(h′)3
+

3h′′

(h′)2

(

1 −
1

h′
+

h′′

(h′)2

)

.

It follows that g is increasing if h0(t) > 0 for t > ln(t0), with t0 suitably chosen so

that g(t0) = 0. (This can be arranged easily for a given t0 < s0 if h′(t) < 0 and

1 +
h′′(t)

(h′(t))2
−

1

h′(t)
> 0

for t ≥ ln(s0). Just define g to be linear from t0 to s0 and continuous at s0.)
In particular, if

h(t) = t(η + θ sin(ln(ln t)))
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for constants η < 0 and θ ∈ (0,−η), then

h′(t) = η + θ sin(ln(ln t)) +
θ

t ln t
cos(ln(ln t)),

so, for given negative numbers A < B we can make A ≤ h′(t) ≤ B for suitably large t
by choosing η < 0 and β ∈ (0,−η) appropriately. On the other hand |h′′(t)|+|h′′′(t)| =

o(|h′(t)|) and

2 +
1

h′
+

1

(h′)2
≥

7

4
.

Therefore we can make h0(s) positive for sufficiently large s and we can make γ and

Γ be arbitrary numbers satisfying 1 < γ ≤ Γ <∞ by choosing η < 0 and θ ∈ (0,−α)

appropriately. Hence the distinction between γ and Γ is important.

On the other hand, we can also arrange to have γ ∈ (0, 1). (Note that in all the

examples so far, either we have γ ≥ 1 by explicit calculation of γ or we only have a

lower bound on γ.) This time, we take

h(t) = ηt+ θ sin t

for suitable η < 0 and θ ∈ (0,−η). The calculations are more delicate, and we do not

attempt to show that we can choose γ and Γ completely arbitrarily. First, we have

h′(t) = η + θ cos t,

h′′(t) = −θ sin t,

h′′′(t) = −θ cos t,

so

1 +
h′′(t)

(h′(t))2
−

1

h′(t)
< 1

is equivalent to h′′(t) < h′(t). This inequality is just η + θ sin t > −θ cos t, which is

satisfied for t = π/4 if θ > −η/
√

2. For convenience, we now choose θ = − 3

4
η. Then

1 +
h′′(t)

(h′(t))2
−

1

h′(t)
> 0

for all t if and only if (h′)2 ≥ h′ − h′′. From our choice of θ, we infer that

(h′(t))2 = η2

(1 −
3

4
cos t)2 ≥

η2

16

and

h′(t) − h′′(t) = η[1 −
3

4
cos t+

3

4
sin t] ≤ |η|(

3

4

√
2 − 1).

Since (
3

4

√
2 − 1) < 1

16
, it follows that 0 < γ < 1 if |η| ≥ 1. In addition,

h0 ≥
7

4
−
C

η2
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for some absolute constant C. Hence h0 ≥ 0 if η is sufficiently large (and nega-

tive).With this choice for η and θ = − 3

4
η, we conclude that γ ∈ (0, 1) (and hence

γ < Γ because Γ ≥ 1) and that g satisfies (0.2) and (0.3).

Our final example has very slow growth at infinity. Since these functions satisfy

the limit condition

lim
t→∞

ψ(βt)

ψ(t)
= 1

for all β ∈ (0, 1), they do not fall under the scope of, for example, [1].

Example 1.6. Now, we suppose that

(1.3) g(s) = 2s(ln s)2+θ
+ (2 + θ)s(ln s)1+θ

for some positive constant θ. Then

G(s) = s2(ln s)2+θ, ψ(s) =

√
2

θ
(ln s)−θ/2.

Since

ψψ′′

(ψ′)2
=

2 ln s+ 2 + θ

θ
,

it follows that γ = Γ = ∞. As we shall see, we can obtain estimates in this case

as well. In addition (at least for θ sufficiently large), we can get uniqueness results.

These results have been proved also by Cı̂rstea and Du [7] (for all θ > 0), but their

proof takes strong account of the logarithmic growth of g.

2. Regularized distance. We recall from [22] the following definitions. First,

we write d for distance to the boundary of Ω, that is,

d(x) = inf{|x− y| : y ∈ ∂Ω}.

We say that ρ : Ω → R is a regularized distance if ρ ∈ C2
(Ω) and the ratio ρ/d is

bounded above and below in Ω by positive constants. If, in addition, there is a δ0 > 0

such that |Dρ| is bounded away from zero on the set where d(x) < δ0, then we say

that ρ is proper.

To proceed, it will be convenient to introduce standard weighted Hölder spaces.

We write diam Ω for the diameter of Ω. If δ ∈ (0, 1] and β ≥ −δ, we define the

weighted Hölder seminorm:

[u]
(β)

δ = sup

{

dδ+β |u(x) − u(y)|

|x− y|δ
: x ∈ Ω, 0 < |x− y| <

1

2
d(x)

}

.

Finally, for k a nonnegative integer, δ ∈ (0, 1], and β ≥ −k − δ, we also define

|u|
(β)

k+δ =

k
∑

j=0

|Dju|
(j+β)

0
+ [Dku]

(k+δ+β)

δ ,

and we write H
(β)

k+δ for the set of all u ∈ Ck,δ
(Ω) such that |u|

(β)

k+δ is finite. (These

are equivalent to the norms in [15, (6.10)] if β ≥ 0 and to the norms in [14, (2.1)] if
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β ≥ −k− δ.) Note that, if β is a positive non-integer less than or equal to 2+ δ, then

u ∈ H
(−β)

δ implies that u ∈ Cβ
(Ω).

We also have a simple existence theorem for regularized distances.

Lemma 2.1. Let ∂Ω ∈ C1,α for some α ∈ (0, 1]. Then there is a proper regularized

distance ρ ∈ H
(−1−α)

3
; if α = 1, then ρ ∈ C1,1 as well. Moreover, we can take this ρ

so that there is a positive δ0 so that |Dρ| = 1 if ρ < δ0.

Proof. The existence of a proper regularized distance is just [22, Theorem 1.3].

To see that we can make |Dρ| = 1 near the boundary, let ρ0 be any proper regularized

distance. Then there is a positive constant δ0 such that |Dρ| > 0 for ρ < 2δ0. If g
is a smooth, increasing, nonnegative function which is zero on [0, δ0] and positive on

(δ0,∞), then ρ defined by

ρ =
ρ0

(|Dρ0|2 + g(ρ0))
1/2

is the desired function.

We also point out that, for this regularized distance ρ, we have |d−ρ| = O(d1+α
).

The proof of this fact is easy. Let x ∈ Ω, set r = d(x) and let y be any point in ∂Ω

such that |x− y| = d(x). Then

ρ(x) =

∫

1

0

Dρ(tx + (1 − t)y) · (x− y) dt,

and Dρ(y) = (x − y)/r = D(tx + (1 − t)y) for t ∈ [0, 1]. Hence

|ρ(x) − d(x)| ≤

∫

1

0

|Dρ(tx + (1 − t)y) −Dρ(y)| dt|x− y| ≤ Cd(x)1+α

because |(tx+ (1 − t)y) − y| ≤ |x− y|.

3. Basic expansions. In this section, we prove some simple pointwise estimates

for v = ψ(u). An easy calculation shows that

(3.1) ∆v = G̃(v)(|Dv|2 − 1) in Ω, v = 0 on ∂Ω,

where

G̃ =
g ◦ ψ−1

√

2G ◦ ψ−1

.

For our estimates, it is very useful to introduce the operator Q defined by Qw(x) =

∆w − G̃(v)(|Dw|2 − 1).

Our first step is a general estimate on how fast v approaches zero at the boundary.

Lemma 3.1. Suppose ∂Ω ∈ C1,α. Then there is a positive constant H, determined
only by g and Ω, such that v ≤ Hd in Ω.

Proof. Let R be a positive number such that Ω is contained in a strip of the

form ξ · x ∈ [a, a + 2R] for some unit vector ξ and some a ∈ R. For ε > 0, set

w+

ε = (1+ ε)(ξ ·x− a) and w−
ε = (1+ ε)(a+2R− ξ ·x). Since |Dw±

ε | = 1+ ε > 1 and

∆w±
ε = 0, it follows that Qw±

ε < 0 in Ω, so [15, Theorem 10.1] implies that w±
ε ≥ v

in Ω. Sending ε→ 0 gives v ≤ min{ξ · x− a, a+ 2R− ξ · x} ≤ R.
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To proceed, we first note that, from Lemma 2.1, there is a constant H1 such that

|∆ρ| ≤ H1ρ
α−1

in Ω. Now, we set

δ1 = min{δ0, [α/(4H1 + 1)]
1/α},

H = 2 +
2R

δ1
, B = 2H1H/[α(1 + α)],

and Ω
′
= {x ∈ Ω : ρ(x) < δ1}. It follows that w = Hρ− Bρ1+α

satisfies Qw < 0 in

Ω
′
because |Dw| > 1 and ∆w ≤ 0 there. In addition, w ≥ v on ∂Ω

′
, so [15, Theorem

10.1] implies that w ≥ v in Ω
′
. Therefore v ≤ Hρ if ρ < δ1, and the definition of H

along with the previously proved inequality v ≤ R implies that v ≤ Hρ if ρ ≥ δ1.
A similar (but more complicated) argument shows the corresponding lower bound

for v. Because we don’t need this result in the sequel, we omit the proof.

Lemma 3.2. Suppose ∂Ω ∈ C1,α. Then there is a positive constant h, determined
only by g and Ω such that v ≥ hd in Ω.

We are now ready to prove a sharper upper estimate on v provided ψg/
√

2G is

bounded away from 0.

Theorem 3.3. Suppose ∂Ω ∈ C1,αand suppose that γ > 0. Then there are
constants δ ≤ α and K such that

v ≤ ρ+Kρ1+δ.

Proof. Let H be the constant from Lemma 3.1. With δ1 ∈ (0,min{1, δ0}] and

δ ∈ (0, α] to be chosen, we set w = ρ+Hδ−δ
1
ρ1+δ

. We also set

Ω1 = {x ∈ Ω : ρ(x) < δ1}, Σ = {x ∈ Ω : ρ(x) = δ1}.

Then w = (1 +H)δ1 ≥ v on Σ and w = 0 = v on ∂Ω, so w ≥ v on ∂Ω1.

In addition, with H1 as in the proof of Lemma 3.1 (so |∆ρ| ≤ H1ρ
α−1

), we have

∆w = [1 + (1 + δ)Hδ−δ
1
ρδ

]∆ρ+ δ(1 + δ)Hδ−δ
1
ρδ−1

≤ [1 + (1 + δ)H ]H1ρ
α−1

+ δ(1 + δ)Hδ−δ
1
ρδ−1.

while

|Dw|2 − 1 = Hδ−δ
1

(1 + δ)ρδ
[2 +Hδ−δ

1
(1 + δ)ρδ

] ≥ 2Hδ−δ
1

(1 + δ)ρδ.

Let us now assume that δ1 is so small that ψ(s)g(s) ≥ 1

2
γ
√

2G(s) if s > ψ−1
(Hδ1).

Then G̃(v) ≥ γ/v ≥ γ/(Hρ) in Ω1, so

G̃(v)(|Dw|2 − 1) ≥
1

2
γδ−δ

1
(1 + δ)2ρδ−1,

and hence

Qw ≤ ρδ−1

[(1 + (1 + δ)H)H1 + δ(1 + δ)Hδ−δ
1

− γδ−δ
1

(1 + δ)].

By choosing δ = min{α, γ/(2H)} and taking δ1 sufficiently small, we see that Qw < 0

in Ω1 and hence w ≥ v there. This gives our inequality for ρ < δ1 and it’s clear for

ρ ≥ δ1.



BLOW-UP SOLUTIONS 253

We now observe that the constant δ can be taken independent of H .

Corollary 3.4. Theorem 3.3 is true for any δ satisfying δ ≤ α and δ < 2γ.

Proof. Choose ε so that

δ(1 + ε)2 + ε2 + 3ε < 2γ.

We then follow the proof of Theorem 3.3. By choosing δ1 sufficiently small, we have

from Theorem 3.3 that v ≤ (1+ε)ρ and G̃(v) ≥ (γ−ε)/((1+ε)ρ) in Ω1, so we proceed

with 1 + ε in place of H . It then follows that

Qw ≤ ρδ−1

[(1 + (1 + δ)(1 + ε))H1 − εδ−δ
1

(1 + δ)]

because

δ(1 + ε) + ε <
2(γ − ε)

1 + ε
.

Choosing δ1 even smaller guarantees that Qw < 0 in this case.

In particular, if γ > α/2 (which is the case for any α < 1 for Examples 1.1, 1.2,

and 1.4), then we can take δ = α.

Lower bounds for v are proved by similar methods but with some subtle variation.

Theorem 3.5. Suppose ∂Ω ∈ C1,αand suppose γ > 0. If δ ≤ α and δ < γ/(γ+2),
then there is a constant K such that

v ≥ ρ−Kρ1+δ.

Proof. Let H1 be as in Lemma 3.1. With δ1 ∈ (0,min{1, δ0}] and δ ∈ (0, α] to be

chosen, we set w = ρ− δ−δ
1
ρ1+δ

. We also set

Ω1 = {x ∈ Ω : ρ(x) < δ1}, Σ = {x ∈ Ω : ρ(x) = δ1}.

Since δ−δ
1
ρδ ∈ (0, 1), it follows that −δ ≤ 1 − δ−δ

1
(1 + δ)ρδ

, and hence

∆w ≥ ρδ−1

[−H1 − δ(1 + δ)δ−δ
1

].

In addition,

|Dw|2 − 1 = δ−δ
1

(1 + δ)ρδ
[−2 + δ−δ

1
ρδ

(1 + δ)] ≤ δ−δ
1

(1 + δ)ρδ
(δ − 1).

From Theorem 3.3, we can arrange G̃(v) ≥ γ/(2ρ) if δ1 is sufficiently small. It

follows that

w ≥ ρδ−1

[

−H1 + (1 + δ)δ−δ
1

(

−δ +
γ

2
(1 − δ)

)]

,

Since δ < γ/(γ + 2), we can take δ1 small enough to obtain w > 0. Since v = ψ(u),

it follows that v ≥ 0 in Ω, so v ≥ w on ∂Ω1. Again [15, Theorem 10.1] implies that

v ≥ w in Ω1, which leads to the desired estimate.

Again, we can improve the constant δ in this theorem.

Corollary 3.6. Theorem 3.5 is true for δ satisfying δ ≤ α and δ < 2γ.
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Proof. Let δ1 be the constant from the proof of Theorem 3.5 and fix ε ∈ (0, 1)

such that

γ − ε

1 + ε
(2 − ε(1 + δ)) > δ.

With δ2 ∈ (0, δ1) to be further specified, we now set

w = ρ− εδ−δ
2
ρ1+δ.

Again, by choosing δ2 sufficiently small, we can arrange w > 0 in

Ω2 = {x ∈ Ω : ρ(x) < δ2}.

Furthermore, from Theorem 3.5, we have v ≥ (1 − ε)ρ in Ω2 for δ2 sufficiently small,

so v ≥ w on ∂Ω2. The proof is completed as before.

Note that Theorems 3.3 and 3.5 imply that

lim
d(x)→0

v(x)

d(x)
= 1.

For ∂Ω ∈ C1,1
, this limit behavior is well-known even without the assumption γ > 0.

See, for example, [13, Theorem 6.8]. (The assertion there is for C2
boundary but the

proof there applies directly to C1,1
boundaries.) On the other hand, the argument

in [13] seem to be tied very closely to the exact structure of C1,1
domains and the

Laplace operator because it is based on estimates of radial symmetric solutions of the

partial differential equation. In addition, there is no easy way to determine the rate

of convergence of the ratio v/d to 1 from that proof.

4. Gradient estimates. From our pointwise bounds, we can derive estimates

on the gradient of v as well.

Theorem 4.1. Suppose ∂Ω ∈ C1,α. If γ > 0 and Γ < ∞, then, for any δ
satisfying δ ≤ α and δ < 2γ, there is a constant K2 such that

|Dv −Dρ| ≤ K2ρ
δ.

In addition, if δ < 1, then v ∈ C1,δ
(Ω).

Proof. Our first step is to obtain a gradient bound for v. So fix x0 ∈ Ω and set

R = d(x0)/2. If R is sufficiently small (say R < R0), then we have R/2 < v < 2R in

B(x0, R) and ψ(s)g(s)/
√

2G(s) ≤ 2Γ for s ≥ ψ−1
(2R). Hence, we also have

|∆v| ≤
2Γ

v
[|Dv|2 + 1]

in B(x0, R). Now set v̄(x) = v(x0 +Rx)/R, so |∆v̄| ≤ 4Γ[|Dv̄|2 + 1] and 1/2 < v̄ < 2

in B(0, 1). It follows from, for example, [15, Theorem 15.8] that |Dv̄(0)| ≤ C(Γ), and

hence |Dv(x0)| ≤ C(Γ). On the other hand, if R ≥ R0, then G̃(v) is bounded from

above by a positive constant in B(x0, R) and we can apply [15, Theorem 15.8] directly

to v.
To proceed, we set h = v − ρ and b = −G̃(v)(Dh + 2Dρ). Then

∆h+ biDih = −∆ρ
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in Ω. Our gradient estimate implies that |b| ≤ C/ρ and Lemma 2.1 implies that

|∆ρ| ≤ Cρδ−1
. Moreover, Theorems 3.3 and 3.5 give |h| ≤ Cρ1+δ

. If δ < 1, then it

follows from [26, Lemma 7.4] (which is just the divergence form version of the weighted

Schauder estimate [15, Lemma 6.20]) that h ∈ C1,δ
(Ω) and that |Dh| ≤ Cρδ

. When

δ = 1, it’s easy to modify the proof of that lemma to see that |Dh| ≤ Cρ.
In most references (in particular [1, 2]), a weaker version of this theorem is proved;

the authors show that, if Ω satisfies a uniform interior and exterior sphere condition,

then |Dv(x)| → 1 as x → ∂Ω. Here, we show that the direction of the gradient

converges to the unit inner normal. For example, we can improve [1, Theorem 3.2] as

follows:

Proposition 4.2. Suppose g satisfies (0.3) and (0.2) and that

lim
t→∞

g(t)

tq
= 1

for some q > 1. If u is a solution of (0.1) and if ∂Ω ∈ C1,α, then for any ε > 0, there
is a positive constant η(ε) such that

∣

∣

∣

∣

q − 1

2aq
ρ(q+1)/(q−1)Du−Dρ

∣

∣

∣

∣

≤ ε

if ρ(x) < η(ε), where

(4.1) aq =

{

q − 1
√

2(q + 1)

}−2/(q−1)

.

Proof. From Theorem 4.1, we have

∣

∣

∣

∣

1
√

2G
Du−Dρ

∣

∣

∣

∣

≤ K2ρ
δ,

and the triangle inequality gives

∣

∣

∣

∣

q − 1

2aq
ρ(q+1)/(q−1)Du−Dρ

∣

∣

∣

∣

≤
q − 1

2aq
ρ(q+1)/(q−1)

∣

∣

∣
Du−

√
2GDρ

∣

∣

∣

+

∣

∣

∣

∣

1 −

(

q − 1

2aq
ρ(q+1)/(q−1)

)√
2G

∣

∣

∣

∣

.

Then Lemma 1.1 and Corollaries 3.4 and 3.6 imply that there is a constant K3 such

that

ρ(q+1)/(q−1) ≤ K3/
√

2G.

Hence

q − 1

2aq
ρ(q+1)/(q−1)

∣

∣

∣
Du−

√
2GDρ

∣

∣

∣
≤ Cρδ.

In addition, it follows from Lemma 1.1 and Corollaries 3.4 and 3.6 that there is

a positive η1 such that ρ < η1 implies that

∣

∣

∣

∣

1 −

(

q − 1

2aq
ρ(q+1)(q−1)

)√
2G

∣

∣

∣

∣

≤
ε

2
.
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The proof is completed by choosing η ≤ η1 so that Cηδ ≤ ε/2.

In fact, [1, Theorem 3.2] applies if u only becomes infinite on part of ∂Ω, a

situation we defer to future work.

Similarly, we can improve [1, Theorem 3.3]. In this case, we give a rate of con-

vergence.

Proposition 4.3. If u is a solution of (0.1) with g(t) = et and if ∂Ω ∈ C1,α,
then there is a constant K such that

|ρDu+ 2Dρ| ≤ Kρα.

Proof. Here, Example 1.2 gives Dv = − 1

2
vDu, so |Du| ≤ C/ρ and ρDu+ 2Dρ =

−2Dv + 2Dρ + (ρ − v)Du. From Corollaries 3.4 and 3.6, we have |ρ − v| ≤ Cρα+1
,

and combining these inequalities gives the estimate.

If we only assume that lims→∞ g(s)/es
= 1, then we see that |ρDu + 2Dρ| con-

verges uniformly to zero as we approach ∂Ω.

5. Higher order estimates. Under stronger hypotheses on g, we can obtain

more terms in the asymptotic expansion of ψ. For reasons of technical simplicity, we

focus here on second order terms.

Theorem 5.1. Suppose ∂Ω ∈ C2,α. Suppose also that there are constants G∗

and H such that

(5.1)

∣

∣

∣

∣

G̃(v) −
G∗

v

∣

∣

∣

∣

≤ Hvα−1

for v close to zero. Then there is a function F ∈ Cα
(Ω) such that

(5.2) |v − d− Fd2| ≤ Cd2+α.

Moreover, F = ∆d/(4G∗ − 2) on ∂Ω.

Proof. Again, we write h = v− ρ, where now we assume that ρ = d near ∂Ω. We

then set b = −(G∗/v)(Dh + 2Dd) and define the operator L by Lw = ∆w + biDiw.

From Theorem 4.1, we see that |Dh| ≤ Cd, so Lh = f for a function f satisfying

|f + ∆d| ≤ Cdα
. We now use ideas from the proof of [26, Theorem 8.3]. For any

y ∈ ∂Ω, we set

F0(y) = lim
x→y
x∈Ω

−∆d(x)

2 + 2d(x)bi(x)Did(x)
.

We note that dbiDid = −(G∗/v)(Dih+ 2Did)Did. Since ∆d is continuous in Ω and

we have Dh→ 0 and d/v → 1 as x→ y, it follows that F0 = ∆d/(4G∗ − 2), which is

well-defined because G∗
= Γ ≥ 1. Now let F be an H

(−α)

2+α extension of F0 into Ω and

set w = Fρ2
. It follows that |L(h− w)| ≤ Cρα

. Moreover,

(2 + α)(1 + α) + (2 + α)dbiDid = (2 + α)(1 + α− (dG∗/v)(Dih+ 2Did)Did)

and this quantity is negative near ∂Ω since it converges to (2+α)(1+α−2G∗
). Hence

[26, Lemma 8.2] implies that |h− w| ≤ Cd2+α
, which is the same as (5.2).

Note that, in the special case that g(u) = uq
(in which case G̃(v) = G∗/v),

this theorem is the same as [19, Theorem 1.1], which generalizes [11, Theorem 1.1].

Similarly, when g(u) = eu
, this theorem is the same as [18, Theorem 1.1]. On the

other hand, the relationship between (5.1) and the conditions in [4] or [5] is not so

clear because those works introduce some additional structure functions, in particular,
∫ t

0

√

G(s) ds.
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6. Uniqueness. It follows from the argument in [27] that solutions of (0.1) are

unique if g(s)/s is an increasing function of s and the boundary is sufficiently smooth.

The proof is a simple maximum principle argument which uses weak asymptotic infor-

mation (namely that the ratio of two solutions approaches 1 at the boundary). When

g(s)/s is not necessarily increasing, other methods have been used which rely on other

conditions for g. (We refer to [28] and [29] for a discussion of these other methods.)

In [16], the authors suggest that these structure conditions can be dispensed with,

at least for smooth domains. Since there are known examples (see, e.g. [10, 20])

of nonsmooth domains in which uniqueness fails even for g(s) = sq
with q > 1, we

consider an intermediate smoothness situation, and we show how to implement the

program of [16] in sufficiently smooth domains. In the applications, we shall see a

relation between the smoothness of the domain and the structure of g in order to infer

uniqueness, although we do not make any claims that our conditions are sharp.

We start with a simple result, which was proved for a more general class of

operators in [16, Theorem 1.2]. Here, we reproduce (for the reader’s convenience) the

proof of [12, Lemma 2.4], which is close in spirit (but not in detail) to the proof of

[21, Lemma 3.1].

Theorem 6.1. Suppose u1 and u2 are solutions of (0.1) such that, for any ε > 0,
there is an η > 0 such that

|u1(x) − u2(x)| < ε

if d(x) < η. Then u1 ≡ u2 in Ω.

Proof. Let ε > 0 be given, set vε = u1 − u2 − ε, and write Ωε for the subset of Ω

on which vε > 0. Suppose that Ωε is non-empty. Then it is an open subset of Ω and

Ωε is a compact subset of Ω. On Ωε, we have u1 > u2 and hence

∆vε = ∆u1 − ∆u2 = g(u1) − g(u2) > 0.

Therefore vε can’t have a maximum in Ωε. But vε ≤ 0 on ∂Ωε, so vε ≤ 0 in Ωε, which

means that Ωε is empty. It follows that u1 ≤ u2 + ε for any ε ≥ 0 and hence u1 ≤ u2

in Ω.

A similar argument shows that u2 ≤ u1 in Ω, and therefore u1 ≡ u2.

Our next theorem extends one which was first proved by Loewner and Nirenberg

as part of [27, Theorem 4] (see also [3, Theorem 2.4]). Although we may only a simple

change in the proof, our version is applicable to a wide range of examples.

Theorem 6.2. Suppose u1 and u2 are solutions of (0.1) such that, for any ε > 0,
there is an η > 0 such that

∣

∣

∣

∣

u1(x)

u2(x)
− 1

∣

∣

∣

∣

< ε

if d(x) < η. Suppose also that there is a constant K such that u1 + K and u2 + K
are both positive in Ω and such that g(z)/(z + K) is an increasing function of z for
z ≥ min{minu1,minu2}. Then u1 ≡ u2 in Ω.

Proof. First, we note that, because u1 and u2 tend to infinity near ∂Ω, for any

ε > 0, there is δ > 0 such that

∣

∣

∣

∣

u1(x) +K

u2(x) +K
− 1

∣

∣

∣

∣

< ε
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if d(x) < δ. We now argue as in [27]. Define v by

v(x) =

{

u1(x)+K
u2(x)+K if x ∈ Ω,

1 if x ∈ ∂Ω.

Then v ∈ C2
(Ω) ∩ C(Ω) and it satisfies the differential equation Lv = f in Ω with L

defined by

Lw = ∆w −
2

u2 +K
Du ·Dw

and

f(x) =

(

g(u1(x))

u1(x) +K
−

g(u2(x))

u2(x) +K

)

v(x).

Since f ≥ 0 wherever v > 1 and f ≤ 0 wherever v < 1, it follows from the maximum

principle that v cannot have a maximum wherever v > 1 or a minimum wherever

v < 1. It follows that v ≡ 1, which implies that u1 ≡ u2.

Let us note that, because g is locally Lipschitz, the condition g(z)/(z + K) is

increasing is equivalent to g′(z)(z +K) ≥ g(z) for all z ≥ −K. We first observe that

this condition is satisfied if there are constants t1 > t0 and K1 such that g′(z)(z +

K1) ≥ g(z) for z ≥ t1 and if

inf{g′(z) : t2 ≤ z ≤ t1} > 0

for any t2 ∈ (t0, t1). In this case, by choosing t2 = min{minu1,minu2}, we have

g′(z)(z + K) ≥ (z + K) inf{g′(z) : t2 ≤ z ≤ t1} for any K > −t2. By choosing K
sufficiently large, we see that g′(z)(z+K) ≥ g(t2) ≥ g(z) if z ≤ t1 and g′(z)(z+K) ≥
g′(z)(z+K1) ≥ g(z) if z ≥ t1 provided we take K ≥ K1. In particular, if g is convex,

we can apply Theorem 6.2.

7. Applications to examples. We are now ready to examine some examples.

Unless otherwise specified, we assume that ∂Ω ∈ C1,α
for some α ∈ (0, 1].

First, we suppose that g(s) = sq
for some q > 1. It then follows from Corollaries

3.4 and 3.6 that there is a positive constant K such that

d−Kd1+α ≤ ψ(u) ≤ d+Kd1+α.

The explicit formula for ψ then says that

aqd
2/(1−q)

[1 +Kdα
]
2/(1−q) ≤ u ≤ aqd

2/(1−q)
[1 −Kdα

]
2/(1−q)

as long as Kdα < 1. Therefore

u = aqd
2/(1−q)

+O(d2/(1−q)+α
).

Since sq/s is an increasing function of s, we easily obtain uniqueness from Theorem

6.2 in this situation because

∣

∣

∣

∣

u

aqd2/(1−q)
− 1

∣

∣

∣

∣

= O(dα
).

If ∂Ω ∈ C2,α
, then we can apply Theorem 5.1 to conclude that

u = aq(d+ Fd2

)
2/(1−q)

+O(d2/(1−q)+1+α
),
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where F is a Hölder continuous function such that

F =
2q + 6

q − 1
∆d

on ∂Ω. Note that the estimate for v from Theorem 5.1 is, after taking into account

the different notation, really the same as [19, Theorem 1.1]; we have replaced the o(1)

term in that theorem by the term O(dα
) but the proof of [19, Theorem 1.1] also gives

this result.

In similar fashion, if g(s) = es
, we obtain

|u+ 2 ln d− ln 2| ≤ max{ln(1 +Kdα
),− ln(1 −Kdα

)},

so |u+ 2 lnd− ln 2| = O(dα
). Uniqueness now follows from Theorem 6.1.

Now, suppose that there is an increasing function g0 such that

lim
t→t+

1

g0(t) = 0

and g(t) > 0 if t > t1 for some constant t1 ∈ R ∪ {−∞}. Suppose also that there are

constants t2 > t1, δ, and θ satisfying 0 < δ ≤ θ such that

2 + η ≤
sg0(s)

G0(s)
≤ 2 + θ if s ≥ t2.

(In other words, g0 satisfies (0.2) and (1.1).) Suppose also that there are positive

constants A ≥ B such that

Bg0(t) ≤ g(t) ≤ Ag0(t)

for t ≥ t2. This time, we also assume that 2B(η + 2) > Aαθ (to guarantee that

α < 2γ). Writing φ for the inverse function to ψ, we see that t2/ηφ(t) is an increasing

function of t. It follows from Corollary 3.4 that v ≤ d+Kd1+α
, so

u ≥ φ(d +Kd1+α
) ≥ (1 +Kdα

)
−2/ηφ(d) ≥ φ(d)(1 −O(dα

)).

A similar argument using Corollary 3.6 gives a corresponding upper bound for u and

hence

|u− φ(d)| = φ(d)O(dα
).

If g(s)/s is an increasing function of s, then we obtain a uniqueness result immediately.

Otherwise, we need to show that φ(d)dα → 0 as d→ 0. This will be the case if 2 < αη.
Since α ≤ 1 in any case, it follows that this method proves uniqueness only if η > 2.

Now suppose that there are constants t1 and H along with a function h satisfying

0 ≤ h(s) ≤ Hes
for s ≥ t1 such that g(s) = es

+ h(s). (Note that this information is

not enough to determine t0 other than seeing that t1 ≤ t0, but we do assume that h
is chosen so that g satisfies (0.2).) For example, we could take

h(s) =

{

(1 + sin s)es
if s ≥ 0,

(1 + s)es
if s < 0,

in which case t0 = −1. Then, from Lemma 1.1, we see that there is a t2 ≥ t1 such

that (2 + H)
−1/2 ≤ et/2ψ(t)/

√
2 ≤ 2 for t ≥ t2. Hence |φ(s) + 2 ln s| ≤ C(H) for



260 G. M. LIEBERMAN

s ∈ (0, s0) with s0 = ψ(t2) and C(H) a suitable positive constant. In addition,

φ′(s) = −
√

2G ◦ φ(s) satisfies −C1(H)/s ≤ φ′(s) ≤ −C2(H)/s for suitable positive

constants C1 ≥ C2. From Corollaries 3.4 and 3.6, we see that there are numbers

d1 ∈ (d−Kd1+α, d) and d2 ∈ (d, d+Kd1+α
) such that

u ≥ φ(d +Kd1+α
) = φ(d) + φ′(d1)Kd

1+α ≥ φ(d) − C1Kd
1+α/d1

and

u ≤ φ(d−Kd1+α
) = φ(d) − φ′(d2)Kd

1+α ≤ φ(d) + C2Kd
1+α/d2.

If d is small enough that Kdα ≤ 1/2, we infer that |u − φ(d)| = O(dα
). Hence

Theorem 6.1 again provides a uniqueness result in this case. (Note that, in [16], the

corresponding structure is g(s) = es
+Asq

for some positive exponent q.)
Now, let us suppose that there are positive constants t1 and η ≤ θ such that

h = ln(g) satisfies

η ≤
sh′(s)

h(s)
≤ θ

for s ≥ t1. If α < 2η/θ, we infer that there are numbers d1 ∈ (d − Kd1+α, d) and

d2 ∈ (d, d+Kd1+α
) such that

u ≥ φ(d+Kd1+α
) = φ(d) + φ′(d1)Kd

1+α ≥ φ(d) + 2Kd1φ
′
(d1)d

α

and

u ≤ φ(d−Kd1+α
) = φ(d) − φ′(d2)Kd

1+α ≤ φ(d) − 2Kd2φ
′
(d2)d

α

for some positive constant K and d ≤ 1/(2K)
1/α

. If we set δj = φ(dj) for j = 1, 2,

then have

|φ′(dj)dj | =

√

2G(δj)ψ(δj) ≤
4

η

δj
h(δj)

≤ Cδj

provided δj is sufficiently large (which means d is sufficiently small). Now, ψ(s) ≤

(2/η)[h(s)/s
√

2G(s)], so ψ(s) ≤ s−2/α
if s is sufficiently large. Hence, if d is suffi-

ciently small, then

δjd
α ≤ 2δj(d

α/2

j )dα/2 ≤ 2dα/2.

It follows that |u − φ(d)| = O(dα/2
), which again implies uniqueness. Note that, in

fact, we have |u− φ(d)| = O(dδ
) for any δ ∈ (0, 1). Moreover, if η ≥ 1, then δj/h(δj)

is bounded, so we obtain |u− φ(d)| = O(dα
) in this case.

Finally, let us suppose that g has the form (1.3) for some θ > 0. If we set

Θ = (
√

2/θ)2/θ
, then we can write

φ(t) = exp(Θt−2/θ
),

so Corollary 3.4 implies that there is a positive constant K such that

u(x) ≥ φ(d +Kd1+α
) = exp(Θd−2/θ

(1 +Kdα
)
−2/θ

).
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Now, the mean value theorem implies that there is a constant d1 ∈ (0, d) such that

(1 +Kdα
)
−2/θ

= 1 −
2

θ
(1 +Kdα

1
)
−1−(2/θ)Kdα,

and hence

(1 +Kdα
)
−2/θ ≥ 1 −

2K

θ
dα

if d is sufficiently small. Therefore, for small d, we have

u(x) ≥ φ(d) exp(−
2K

θ
dα−2/θ

).

Similarly, for small d, we also have

u(x) ≤ φ(d) exp(
2K

θ
dα−2/θ

).

Hence u/φ(d) → 1 if α > 2/θ, and we obtain a uniqueness result in this case.
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