THE LARGE-TIME BEHAVIOR OF SOLUTIONS OF HAMILTON-JACOBI EQUATIONS ON THE REAL LINE*

NAOYUKI ICHIHARA ${ }^{\dagger}$ and HITOSHI ISHII ${ }^{\ddagger}$

Dedicated to Professor Neil S. Trudinger on the occasion of his 65th birthday

Abstract

We investigate the large-time behavior of solutions of the Cauchy problem for Hamilton-Jacobi equations on the real line \mathbf{R}. We establish a result on convergence of the solutions to asymptotic solutions as time t goes to infinity.

Key words. Large-time behavior, Hamilton-Jacobi equations, asymptotic solutions.
AMS subject classifications. 35B40, 70H20, 49L25

1. Introduction and main results. We investigate the large-time behavior of solutions of the Hamilton-Jacobi equation

$$
\begin{equation*}
u_{t}(x, t)+H(x, D u(x, t))=0 \quad \text { in } \mathbf{R} \times(0, \infty), \tag{1}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
\left.u\right|_{t=0}=u_{0} \quad \text { on } \mathbf{R} \tag{2}
\end{equation*}
$$

where $H \in C(\mathbf{R} \times \mathbf{R})$ and $u_{0} \in C(\mathbf{R})$ are given functions, $u \in C(\mathbf{R} \times[0, \infty))$ represents the unknown function, and u_{t} and $D u$ denote the partial derivatives $\partial u / \partial t$ and $\partial u / \partial x$, respectively.

In this note, as far as Hamilton-Jacobi equations are concerned, we mean by solution (resp., subsolution or supersolution) viscosity solution (resp., viscosity subsolution or viscosity supersolution). We refer to $[3,1,7]$ for general overviews of viscosity solutions theory.

The large-time behavior of solutions of (1) or more generally

$$
\begin{equation*}
u_{t}(x, t)+H(x, D u(x, t))=0 \quad \text { in } \Omega \times(0, \infty), \tag{3}
\end{equation*}
$$

where Ω is an n-dimensional manifold, has been studied by many authors since the works by Kruzkov [18], Lions [19], and Barles [2]. In the last decade it has received much attention under the influence of developments of weak KAM theory introduced by Fathi $[9,11]$. We refer for related developments to Namah-Roquejoffre [23], Fathi [10], Roquejoffre [24], Barles-Souganidis [5], Davini-Siconolfi [8], Fujita-Ishii-Loreti [14], Barles-Roquejoffre [4], Ishii [17], Ichihara-Ishii [15, 16], and Mitake [21, 22].

In $[10,23,24,5,8]$ they studied the asymptotic problem for (3) in the case where Ω is a compact manifold or simply an n-dimensional flat torus. The results obtained there are fairly general and one of them states that if $H(x, p)$ is coercive and strictly

[^0]convex in p, then the solution u of (3) behaves as an asymptotic solution for large t, that is, there is a solution $(c, v) \in \mathbf{R} \times C(\Omega)$ of the additive eigenvalue problem for H
\[

$$
\begin{equation*}
H(x, D v(x))=c \quad \text { in } \Omega \tag{4}
\end{equation*}
$$

\]

such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}(u(x, t)-(v(x)-c t))=0 \quad \text { uniformly for } x \in \Omega \tag{5}
\end{equation*}
$$

Here and henceforth, for a solution (c, v) of (4), we call the function $v(x)-c t$ an asymptotic solution of (3). The strict convexity requirement for H in the above result can be replaced by a condition which is much weaker than the usual strict convexity, for which we refer to [5] (see also [15]). Moreover, as Barles-Souganidis [5] pointed out, the convexity of $H(x, p)$ in p is not enough to guarantee the convergence (5).

If (c, v) is a solution of (4), then we call c and v an (additive) eigenvalue and (additive) eigenfunction for H, respectively.

In the case where $\Omega=\mathbf{R}^{n}$, there are a few results (e.g., $[6,14,4,17,15,16]$) on the large-time asymptotic behavior of solutions of (3), but the situation is not so clear compared to the case where Ω is compact.

We use the notation: $H[u]$ or $H[u](x)$ for $H(x, D u(x))$ in what follows. For instance, " $H[u] \leq 0$ in Ω " means that u is a subsolution of $H(x, D u(x))=0$ in Ω. We denote by $\mathcal{S}_{H}^{-}(\Omega)$ (resp., $\mathcal{S}_{H}^{+}(\Omega)$ or $\mathcal{S}_{H}(\Omega)$) the set of all subsolutions (resp., supersolutions and solutions) u of $H[u]=0$ in Ω. We write \mathcal{S}_{H}^{-}(resp., \mathcal{S}_{H}^{+}or \mathcal{S}_{H}) for $\mathcal{S}_{H}^{-}(\Omega)$ (resp., $\mathcal{S}_{H}^{+}(\Omega)$ or $\mathcal{S}_{H}(\Omega)$) when there is no confusion.

In this note we restrict ourselves to the case where $\Omega=\mathbf{R}$ and give an overview on the large-time asymptotic behavior of solutions of (3).

We will always assume the following assumptions (A1)-(A6).
(A1) $H \in C\left(\mathbf{R}^{2}\right)$.
(A2) $\quad H$ is locally coercive in the sense that

$$
\lim _{r \rightarrow \infty} \inf \{H(x, p)|(x, p) \in[-R, R] \times \mathbf{R},|p| \geq r\}=\infty \quad \text { for all } R>0
$$

(A3) $\quad H(x, \cdot)$ is convex on \mathbf{R} for every $x \in \mathbf{R}$.
$\mathcal{S}_{H}^{-}(\mathbf{R}) \neq \emptyset$.
(A5) For any $\phi \in \mathcal{S}_{H}(\mathbf{R})$ there exist a function $\psi \in C(\mathbf{R})$ and a constant $C>0$ such that $\psi \in \mathcal{S}_{H-C}^{-}(\mathbf{R})$ and $\lim _{|x| \rightarrow \infty}(\phi-\psi)(x)=\infty$.
(A6) $\quad u_{0} \in C(\mathbf{R})$.
Our main theorem (Theorem 3 below) states that, under (A1)-(A6) together with certain additional assumptions, the convergence (5) holds with $c=0$ on compact sets. Note that if u is a solution of (1) and c is a given constant, then the function $w(x, t)=u(x, t)+c t$ satisfies $w_{t}+H[w]-c=0$ in $\mathbf{R} \times(0, \infty)$. Thus, through this simple change of unknown functions, our main theorem applies to the general situation where c in (5) may not be zero.

We denote by $C^{0+1}(X)$ the space of real-valued locally Lipschitz continuous functions on metric space X. If a given function $H \in C\left(\mathbf{R}^{2}\right)$ satisfies (A1)-(A3) and
furthermore the condition that there exist a function $\phi_{0} \in C^{0+1}(\mathbf{R})$ and three (real) constants $c<B$ and $\rho>0$ such that

$$
\left\{\begin{array}{l}
H\left(x, D \phi_{0}(x)\right) \leq c \quad \text { a.e. } x \in \mathbf{R} \\
H(x, p) \leq c \quad \Longrightarrow \quad H(x, p+q) \leq B \quad \text { for all } q \in[-\rho, \rho]
\end{array}\right.
$$

then (A1)-(A5) are satisfied with $H-c$ in replace of H. Indeed, it is clear that (A1)(A3) hold with $H-c$ in place of H and that $\phi_{0} \in \mathcal{S}_{H-c}^{-}(\mathbf{R})$ and hence (A4) holds with $H-c$ in place of H. (Note here by the convexity of $H(x, p)$ in p that the above condition on ϕ_{0} is equivalent to saying that $\left.\phi_{0} \in \mathcal{S}_{H}^{-}(\mathbf{R}).\right)$ We define the function $g \in C(\mathbf{R})$ by $g(x)=\rho|x|$ and, for any $\phi \in \mathcal{S}_{H-c}^{-}(\mathbf{R})$, we set $\psi:=\phi-g$. Then we have $\psi \in \mathcal{S}_{H-B}^{-}(\mathbf{R})$ and $\lim _{|x| \rightarrow \infty}(\phi-\psi)(x)=\infty$. That is, (A5) holds with $H-c$ in place of H.

Another remark here is that we have $\min _{p \in \mathbf{R}} H(x, p) \leq 0$ by (A4), which reads

$$
L(x, 0) \geq 0 \quad \text { for all } x \in \mathbf{R}
$$

where L denotes the Lagrangian of the Hamiltonian H, i.e., L is the function defined by $L(x, \xi)=\sup _{p \in \mathbf{R}}(\xi p-H(x, p))$.

We define the function $d: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ by

$$
d(x, y)=\sup \left\{w(x)-w(y) \mid w \in \mathcal{S}_{H}^{-}(\mathbf{R})\right\} \quad \text { for }(x, y) \in \mathbf{R} \times \mathbf{R} .
$$

It is well-known (see, for instance, $[12,13,17]$) that $d(x, x)=0$ for all $x \in \mathbf{R}$, $d \in C^{0+1}\left(\mathbf{R}^{2}\right), d(\cdot, y) \in \mathcal{S}_{H}^{-}(\mathbf{R}) \cap \mathcal{S}_{H}(\mathbf{R} \backslash\{y\})$ for all $y \in \mathbf{R}$, and

$$
d(x, y)=\inf \left\{\int_{0}^{t} L(\gamma(s), \dot{\gamma}(s)) d s \mid t>0, \gamma \in \mathrm{AC}([0, t]), \gamma(t)=x, \gamma(0)=y\right\}
$$

We define the (projected) Aubry set \mathcal{A}_{H} for H as the set of those points $y \in \mathbf{R}$ for which $d(\cdot, y) \in \mathcal{S}_{H}(\mathbf{R})$. See $[12,13,17]$ for some properties of \mathcal{A}_{H}. The function $d(\cdot, y)$ can be regarded, in terms of optimal control, as the value function of the optimal hitting problem having y and L as its target point and running cost, respectively.

As a reflection of our one-dimensional domain \mathbf{R}, we have:
Proposition 1. (a) If $x \leq y \leq z$, then $d(x, z)=d(x, y)+d(y, z)$. (b) If $x \geq y \geq$ z, then $d(x, z)=d(x, y)+d(y, z)$.

We postpone the proof of the above proposition till the next section.
We observe that if $x \leq 0<y$, then $d(x, y)-d(0, y)=d(x, 0)+d(0, y)-d(0, y)=$ $d(x, 0)$ and if $0<x<y$, then $d(x, y)-d(0, y)=d(x, y)-d(0, x)-d(x, y)=-d(0, x)$, and define $d_{+} \in C^{0+1}(\mathbf{R})$ by

$$
d_{+}(x)=\lim _{y \rightarrow \infty}(d(x, y)-d(0, y)) \equiv \begin{cases}d(x, 0) & \text { for } x \leq 0 \\ -d(0, x) & \text { for } x>0\end{cases}
$$

Also, we observe that if $y<x \leq 0$, then $d(x, y)-d(0, y)=d(x, y)-d(0, x)-d(x, y)=$ $-d(0, x)$ and if $y<0<x$, then $d(x, y)-d(0, y)=d(x, 0)+d(0, y)-d(0, y)=d(x, 0)$, and define $d_{-} \in C^{0+1}(\mathbf{R})$ by

$$
d_{-}(x)=\lim _{y \rightarrow-\infty}(d(x, y)-d(0, y)) \equiv \begin{cases}-d(0, x) & \text { for } x \leq 0 \\ d(x, 0) & \text { for } x>0\end{cases}
$$

It is easily seen (see also Proposition 7 (a) below) that $d_{+}, d_{-} \in \mathcal{S}_{H}(\mathbf{R})$.
We assume only (A6) on initial data u_{0} and do not know any existence and uniqueness result concerning solutions u of (1)-(2) which applies in this generality. Our choice of solution of (1)-(2) here is the function u given by

$$
\begin{equation*}
u(x, t)=\inf \left\{\int_{0}^{t} L(\gamma(s), \dot{\gamma}(s)) \mathrm{d} s+u_{0}(\gamma(0)) \mid \gamma \in \mathrm{AC}([0, t]), \gamma(t)=x\right\} \tag{6}
\end{equation*}
$$

We understand that formula (6) for $t=0$ means that $u(x, 0)=u_{0}(x)$. Note that $L(x, \xi)$ may take the value $+\infty$ at some points (x, ξ) and that $L(x, \xi) \geq-H(x, 0) \geq$ $-\sup _{|z| \leq R} H(z, 0)>-\infty$ for all $R>0$ and $(x, \xi) \in[-R, R] \times \mathbf{R}$. These observations clearly give the meaning of the integral $\int_{0}^{t} L(\gamma, \dot{\gamma}) \mathrm{d} s$ as a real number or $+\infty$. Note that it may happen that $u(x, t)=-\infty$ for some points $(x, t) \in \mathbf{R} \times(0, \infty)$. Noting that $L(x, 0)=-\min _{p \in \mathbf{R}} H(x, p)<\infty$ for all $x \in \mathbf{R}$, we see that $u(x, t) \leq L(x, 0) t+$ $u_{0}(x)<\infty$ for all $(x, t) \in \mathbf{R} \times[0, \infty)$. Hence we have $-\infty \leq u(x, t)<\infty$ for all $(x, t) \in \mathbf{R} \times[0, \infty)$. Also we remark (see, e.g., [17, Theorems A.1, A.2]) that if $u \in C(U)$ for some open set $U \subset \mathbf{R} \times(0, \infty)$, then u is a viscosity solution of (1) in U.

We introduce functions u_{∞}, u_{0}^{-}on \mathbf{R} as

$$
\begin{aligned}
u_{0}^{-}(x) & =\sup \left\{v(x) \mid v \in \mathcal{S}_{H}^{-}, v \leq u_{0} \quad \text { in } \mathbf{R}\right\} \\
u_{\infty}(x) & =\inf \left\{v(x) \mid v \in \mathcal{S}_{H}, v \geq u_{0}^{-} \quad \text { in } \mathbf{R}\right\}
\end{aligned}
$$

Note that the set $\left\{v \in \mathcal{S}_{H}^{-} \mid v \leq u_{0}\right.$ in $\left.\mathbf{R}\right\}$ may be empty, in which case $u_{0}^{-}(x) \equiv-\infty$. Otherwise, $u_{0}^{-} \in \mathcal{S}_{H}^{-}(\mathbf{R})$, and $u_{0}^{-} \in C^{0+1}(\mathbf{R})$ because of (A2). Similarly, it may happen that $u_{\infty}(x) \equiv+\infty$. Otherwise, we have $u_{\infty} \in \mathcal{S}_{H}(\mathbf{R})$ and $u_{\infty} \in C^{0+1}(\mathbf{R})$.

Proposition 2. Let u be the function given by (6). (a) If $u_{0}^{-}(x) \equiv-\infty$, then $\liminf _{t \rightarrow \infty} u(x, t)=-\infty$ for all $x \in \mathbf{R}$. (b) If $u_{0}^{-}(x)>-\infty$ and $u_{\infty}(x)=+\infty$ for all $x \in \mathbf{R}$, then $\lim _{t \rightarrow \infty} u(x, t)=+\infty$ for all $x \in \mathbf{R}$.

We are now ready to state our main result of this note.
Theorem 3. Assume that $u_{0}^{-}(x)>-\infty$ and $u_{\infty}(x)<\infty$ for all $x \in \mathbf{R}$. Let u be the solution of (1)-(2) given by (6). Then we have

$$
\begin{equation*}
u(x, t) \rightarrow u_{\infty}(x) \quad \text { uniformly on bounded intervals of } \mathbf{R} \text { as } t \rightarrow \infty \tag{7}
\end{equation*}
$$

except the following two cases (a) and (b).
(a) $\left\{\begin{array}{l}\sup \mathcal{A}_{H}<\infty, \\ u_{\infty}(x)=d_{+}(x)+c_{+} \quad \text { for all } x>R \quad \text { and some } c_{+} \in \mathbf{R}, R>0, \\ \liminf _{x \rightarrow \infty}\left(u_{0}-u_{0}^{-}\right)(x)=0<\limsup _{x \rightarrow \infty}\left(u_{0}-u_{0}^{-}\right)(x) .\end{array}\right.$
(b) $\left\{\begin{array}{l}\inf \mathcal{A}_{H}>-\infty, \\ u_{\infty}(x)=d_{-}(x)+c_{-} \quad \text { for all } x<-R \quad \text { and } \text { some } c_{-} \in \mathbf{R}, R>0, \\ \liminf _{x \rightarrow-\infty}\left(u_{0}-u_{0}^{-}\right)(x)=0<\limsup _{x \rightarrow-\infty}\left(u_{0}-u_{0}^{-}\right)(x)>0 .\end{array}\right.$

The rest of this note is organized as follows. In Section 2 we give some preliminary observations which are needed in our proof of Theorem 3. Section 3 is devoted to the
proof of Theorem 3. In Section 4 we discuss two examples and classical convergence results as well as a new twist of "strict convexity" hypothesis on H in connection with Proposition 2 and Theorem 3.
2. Preliminaries. In this section we give some observations on $d_{ \pm}, \mathcal{S}_{H}, \mathcal{A}_{H}$, u_{0}^{-}, u_{∞}, and extremal curves as well as the proof of Propositions 1 and 2 . We use the notation: $L[\gamma] \equiv L[\gamma](t)$ for $L(\gamma(t), \dot{\gamma}(t))$.

Proof of Proposition 1. We prove only assertion (a). Assertion (b) can be proved in a similar way. Let $x \leq y \leq z$. We know that $d(x, z) \leq d(x, y)+d(y, z)$. Fix an $\varepsilon>0$ and choose a curve $\gamma \in \mathrm{AC}([0, t])$, with $t>0$, so that $\gamma(t)=x, \gamma(0)=z$, and

$$
d(x, z)+\varepsilon>\int_{0}^{t} L[\gamma](s) \mathrm{d} s
$$

Choose a $\tau \in[0, t]$ so that $\gamma(\tau)=y$, and observe that

$$
d(x, z)+\varepsilon>\int_{\tau}^{t} L[\gamma] \mathrm{d} s+\int_{0}^{\tau} L[\gamma] \mathrm{d} s \geq d(x, y)+d(y, z)
$$

Hence we get $d(x, z) \geq d(x, y)+d(y, z)$, which proves that $d(x, z)=d(z, y)+d(y, z)$.

We need the following lemmas for the proof of Proposition 2.
Lemma 4. There exists a constant $C_{R}>0$ for each $R>0$ and a curve $\eta \in$ $\mathrm{AC}([0, T])$ for each $x, y \in[-R, R]$ and $T>C_{R}|x-y|$ such that $\eta(0)=x, \eta(T)=y$, and

$$
\int_{0}^{T} L(\eta(t), \dot{\eta}(t)) \mathrm{d} t \leq C_{R} T
$$

Proof. Fix $R>0$ and choose constants $\delta>0$ and $M>0$ (see for instance [17, Proposition 2.1]), depending on R, such that $L(x, \xi) \leq M$ for all $(x, \xi) \in[-R, R] \times$ $[-\delta, \delta]$. Fix any $x, y \in[-R, R]$ and $T>0$. We define $\eta \in \mathrm{AC}([0, T])$ by setting $\eta(t)=x+\frac{t}{T}(y-x)$ for $t \in[0, T]$. We observe that $\eta(0)=x, \eta(T)=y, \eta(t) \in[-R, R]$ and $\dot{\eta}(t)=(y-x) / T$ for all $t \in[0, T]$. Hence, if $T>|y-x| / \delta$, then we get $|\dot{\gamma}(t)|<\delta$ for all $t \in[0, T]$ and therefore

$$
\int_{0}^{T} L(\eta(t), \dot{\eta}(t)) \mathrm{d} t=\int_{0}^{T} L\left(\eta(t), \frac{y-x}{T}\right) \mathrm{d} t \leq M T
$$

Thus the curve η has the required properties with $C_{R}=\max \{M, 1 / \delta\}$.
Lemma 5. Let $U \subset \mathbf{R}$ be an open interval and $v \in \operatorname{USC}(U \times(0, \infty))$ a subsolution of (1) in $U \times(0, \infty)$. Assume that there exists a constant $C_{0}>0$ such that $-C_{0} \leq$ $v(x, t) \leq C_{0}(1+t)$ for all $(x, t) \in U \times(0, \infty)$. Define $w \in \operatorname{USC}(U)$ by $w(x)=$ $\inf _{t>0} v(x, t)$. Then $w \in \mathcal{S}_{H}^{-}(U)$.

An observation similar to the above lemma can be found in [15, Lemma 4.1].
Proof. We may assume that $v \in \operatorname{USC}(U \times[0, \infty))$ by setting $v(x, 0)=\lim _{r \rightarrow+0}$ $\sup \{v(y, s)|(y, s) \in U \times(0, \infty),|y-x|+s<r\}$. Let $\varepsilon>0$, and consider the sup-convolution v^{ε} of v defined by

$$
v^{\varepsilon}(x, t)=\sup _{s \geq 0}\left(v(x, s)-\frac{(t-s)^{2}}{2 \varepsilon}\right)
$$

Observe that $v^{\varepsilon}(x, t) \geq v(x, t) \geq-C_{0}$ for all $(x, t) \in U \times(0, \infty)$.
Fix $(x, t) \in U \times(0, \infty)$. It is clear that there exists an $s \geq 0$ such that $v^{\varepsilon}(x, t)=$ $v(x, s)-(t-s)^{2} /(2 \varepsilon)$. Fix such an $s \geq 0$, and observe that

$$
\begin{aligned}
-C_{0} & \leq v(x, t) \leq v^{\varepsilon}(x, t)=v(x, s)-\frac{(t-s)^{2}}{2 \varepsilon} \leq C_{0}(1+s)-\frac{(t-s)^{2}}{2 \varepsilon} \\
& \leq C_{0}(1+t+|t-s|)-\frac{(t-s)^{2}}{2 \varepsilon} \leq-\frac{(t-s)^{2}}{4 \varepsilon}+C_{0}(1+t)+\varepsilon C_{0}^{2}
\end{aligned}
$$

and hence

$$
|s-t| \leq 2\left\{\varepsilon\left(2 C_{0}(1+t)+\varepsilon C_{0}^{2}\right)\right\}^{1 / 2} .
$$

From this last estimate, we see that for each $\tau>0$ there exists a $\delta>0$ such that if $t>\tau$ and $0<\varepsilon<\delta$, then $s>0$. Fix any $\tau>0$ and choose such a constant $\delta>0$. It is now a standard observation that if $\varepsilon \in(0, \delta)$, then v^{ε} is a subsolution of (1) in $U \times(\tau, \infty)$ and $v^{\varepsilon} \in C^{0+1}(U \times(\tau, T))$ for all $T>\tau$. Fix any $\sigma>0$ and define $w^{\varepsilon, \sigma} \in C(U \times(0, \infty))$ by $w^{\varepsilon, \sigma}(x, t)=\inf _{0<s<\sigma} v^{\varepsilon}(x, t+s)$.

Let $\varepsilon \in(0, \delta)$, and observe that $w^{\varepsilon, \sigma} \in C^{0+1}(U \times(\tau, T))$ for all $T>\tau$ and by the convexity of $H(x, p)$ in p that $w^{\varepsilon, \sigma}$ is a subsolution of (1) in $U \times(\tau, \infty)$. Note that $w^{\varepsilon, \sigma}(x, t)$ is non-increasing as a function of σ and therefore that if we set $w^{\varepsilon}(x, t):=\inf _{s>0} v^{\varepsilon}(x, t+s)$ for $(x, t) \in U \times(0, \infty)$, then for any $(x, t) \in U \times(0, \infty)$,

$$
w^{\varepsilon}(x, t)=\lim _{r \rightarrow+0} \sup \left\{w^{\varepsilon, \sigma}(y, s)|(y, s) \in U \times(0, \infty),|y-x|+|s-t|<r, \sigma>1 / r\}\right.
$$

We now see by the stability of the viscosity property under half relaxed limits that $w^{\varepsilon} \in \operatorname{USC}(U \times(0, \infty))$ is a subsolution of (1) in $U \times(\tau, \infty)$. By the definition of w^{ε}, it is clear that for any $x \in U$, the function $w^{\varepsilon}(x, t)$ is non-decreasing in $t \in(0, \infty)$, from which we deduce that $w^{\varepsilon}(\cdot, t) \in \mathcal{S}_{H}^{-}(U)$ for all $t>\tau$. In particular, we see that the family $\left\{w^{\varepsilon}(\cdot, t) \mid t>\tau\right\} \subset C^{0+1}(U)$ is locally equi-Lipschitz continuous on U.

Note that $w^{\varepsilon}(x, t)$ is non-decreasing as a function of ε, that $w^{\varepsilon}(x, t) \geq \inf _{s>0} v(x, t$ $+s)$ for all $(x, t) \in U \times(0, \infty)$ and $\varepsilon>0$, and that $\inf _{\varepsilon>0} w^{\varepsilon}(x, t)=\inf \left\{v^{\varepsilon}(x, t+s) \mid s\right.$ $>0, \varepsilon>0\}$ for all $(x, t) \in U \times(0, \infty)$. It is now easy to see by using the convexity of H that if we set $z(x, t):=\inf _{\varepsilon>0} w^{\varepsilon}(x, t)$, then $z(x, t)=\inf _{0<\varepsilon<\delta} w^{\varepsilon}(x, t)$ for all $(x, t) \in U \times(0, \infty)$ and $z(\cdot, t) \in \mathcal{S}_{H}^{-}(U)$ for all $t>\tau$. Since $\tau>0$ is arbitrary, we see that $z(\cdot, t) \in \mathcal{S}_{H}^{-}(U)$ for all $t>0$. Setting $w(x):=\inf _{t>0} z(x, t)$ for $x \in U$, we see that $w(x)=\inf _{t>0} v(x, t)$ for all $x \in U$ and moreover that $w \in \mathcal{S}_{H}^{-}(U)$.

Lemma 6. Let $\phi \in \mathcal{S}_{H}^{-}$and $\gamma \in \mathrm{AC}([0, t])$. Then

$$
\phi(\gamma(t))-\phi(\gamma(0)) \leq \int_{0}^{t} L[\gamma] \mathrm{d} s
$$

For a proof of the above lemma we refer, for instance, to [17, Proposition 2.5].
Proof of Proposition 2. We begin with (a). Assume that $u_{0}^{-}(x) \equiv-\infty$. We suppose that there exists an $x_{0} \in \mathbf{R}$ such that $\lim \inf _{t \rightarrow \infty} u\left(x_{0}, t\right)>-\infty$, and will get a contradiction. By translation, we may assume that $x_{0}=0$.

We show first that for each $R>0$ there exists a constant $M_{R}>0$ such that $u(x, t) \geq-M_{R}$ for all $(x, t) \in[-R, R] \times[0, \infty)$. For this we fix $R>0$ and choose constants $\tau>0$ and $C_{0}>0$ so that $u(0, t) \geq-C_{0}$ for all $t \geq \tau$. Let $C_{R}>0$ be the constant from Lemma 4 and fix any $(x, t) \in[-R, R] \times[0, \infty)$. By Lemma 4 , we may
choose a curve $\eta \in \mathrm{AC}\left(\left[0, T_{R}\right]\right)$, with $T_{R}:=R C_{R}+\tau$, so that $\eta(0)=x, \eta\left(T_{R}\right)=0$, and

$$
\int_{0}^{T_{R}} L[\eta] \mathrm{d} s \leq C_{R} T_{R}
$$

Fix any $\gamma \in \mathrm{AC}([0, t])$ so that $\gamma(t)=x$, and define $\zeta \in \mathrm{AC}\left(\left[0, t+T_{R}\right]\right)$ by

$$
\zeta(s)= \begin{cases}\gamma(s) & \text { for } 0 \leq s \leq t \\ \eta(s-t) & \text { for } t \leq s \leq t+T_{R}\end{cases}
$$

We observe that

$$
\begin{aligned}
-C_{0} & \leq u\left(0, t+t_{R}\right) \leq \int_{0}^{t} L[\gamma] \mathrm{d} s+\int_{0}^{t_{R}} L[\eta] \mathrm{d} s+u_{0}(\zeta(0)) \\
& \leq C_{R} T_{R}+\int_{0}^{t} L[\gamma] \mathrm{d} s+u_{0}(\gamma(0))
\end{aligned}
$$

from which we deduce that $u(x, t) \geq-C_{0}-C_{R} T_{R}$. Thus we conclude that $u(x, t) \geq$ $-M_{R}$ for all $(x, t) \in[-R, R] \times[0, \infty)$, where $M_{R}:=C_{0}+C_{R} T_{R}$.

Next we observe from (6) that $u(x, t) \leq L(x, 0) t+u_{0}(x)$ for all $(x, t) \in \mathbf{R} \times[0, \infty)$. Since $L(x, 0)=-\min _{p \in \mathbf{R}} H(x, p)$ is a continuous function of x because of (A1) and (A2), we see that u is locally bounded on $\mathbf{R} \times[0, \infty)$ and hence by [17, Theorem A.1] for instance that u^{*} is a viscosity subsolution of (1), where u^{*} is the upper semicontinuous envelope of u, i.e., $u^{*}(x, t):=\lim _{r \rightarrow+0} \sup \{u(y, s)|(y, s) \in \mathbf{R} \times[0, \infty),|y-x|+|s-t|<$ $r\}$. Set $w(x)=\inf _{t>0} u^{*}(x, t)$ for $x \in \mathbf{R}$. According to Lemma 5, we have $w \in \mathcal{S}_{H}^{-}(\mathbf{R})$. Also, since $u^{*}(x, t) \leq L(x, 0) t+u_{0}(x)$ for all $(x, t) \in \mathbf{R} \times(0, \infty)$, we have $w(x) \leq u_{0}(x)$ for all $x \in \mathbf{R}$. Now we see that $u_{0}^{-}(x) \geq w(x)>-\infty$ for all $x \in \mathbf{R}$. This is a contradiction, which proves (a).

We now turn to (b). Assume that $u_{0}^{-}(x)>-\infty$ and $u_{\infty}(x)=+\infty$ for all $x \in \mathbf{R}$. We suppose that $\liminf _{t \rightarrow \infty} u\left(x_{0}, t\right)<\infty$ for some $x_{0} \in \mathbf{R}$, and will obtain a contradiction.

Define the function u^{-}on $\mathbf{R} \times[0, \infty)$ by

$$
\begin{equation*}
u^{-}(x, t)=\inf \left\{\int_{0}^{t} L[\gamma](s) \mathrm{d} s+u_{0}^{-}(\gamma(0)) \mid \gamma \in \mathrm{AC}([0, t]), \gamma(t)=x\right\} \tag{8}
\end{equation*}
$$

Since $u_{0}^{-} \leq u_{0}$ in \mathbf{R}, we have $u^{-}(x, t) \leq u(x, t)$ for all $(x, t) \in \mathbf{R} \times[0, \infty)$. Note that the function u^{-}satisfies the dynamic programming principle

$$
u^{-}(x, t+s)=\inf \left\{\int_{0}^{t} L[\gamma](r) \mathrm{d} r+u^{-}(\gamma(0), s) \mid \gamma \in \mathrm{AC}([0, t]), \gamma(t)=x\right\}
$$

The term inside the above infimum sign can be $\infty-\infty$, which we agree to mean $+\infty$. Since $u_{0}^{-} \in \mathcal{S}_{H}^{-}$, by Lemma 6 , we have for all $\gamma \in \mathrm{AC}([0, t])$,

$$
u_{0}^{-}(\gamma(t))-u_{0}^{-}(\gamma(0)) \leq \int_{0}^{t} L[\gamma](s) \mathrm{d} s
$$

Consequently, we get

$$
u_{0}^{-}(x) \leq u^{-}(x, t) \quad \text { for all }(x, t) \in \mathbf{R} \times[0, \infty)
$$

This together the dynamic programming principle yields

$$
u^{-}(x, t+s) \geq \inf \left\{\int_{0}^{t} L[\gamma](r) \mathrm{d} r+u_{0}^{-}(\gamma(0)) \mid \gamma \in \mathrm{AC}([0, t]), \gamma(t)=x\right\}=u^{-}(x, t)
$$

for all $x \in \mathbf{R}$ and $t, s \in[0, \infty)$. Thus we see that the function $u^{-}(x, t)$ is non-decreasing in t for any $x \in \mathbf{R}$.

We may assume without any loss of generality that $x_{0}=0$. We choose a constant $C_{1}>0$ so that $\liminf _{t \rightarrow \infty} u(0, t) \leq C_{1}$. By the monotonicity of $u^{-}(0, t)$, we have

$$
u^{-}(0, t) \leq C_{1} \quad \text { for all } t \geq 0
$$

Fix any $R>0$. By the dynamic programming principle and Lemma 4 with $T=$ $C_{R} R+1$, we get for all $(x, t) \in[-R, R] \times[0, \infty)$,

$$
u^{-}(x, t+T) \leq C_{R} T+u^{-}(0, t) \leq C_{R} T+C_{1}
$$

where $C_{R}>0$ is the constant from Lemma 4 . Hence we get

$$
u^{-}(x, t) \leq K_{R} \quad \text { for all }(x, t) \in[-R, R] \times[0, \infty)
$$

where $K_{R}:=C_{R} T+C_{1}$.
Since $u_{0}^{-} \in C^{0+1}(\mathbf{R})$, we have $u^{-} \in C^{0+1}(\mathbf{R} \times[0, \infty))$. Indeed, we fix $R>0$, $x, y \in[-R, R]$ with $x \neq y$, and $t \geq 0$, and observe by using the dynamic programming principle and Lemma 4, with $T>C_{R}|x-y|$, that for all $x, y \in[-R, R]$ and $t \geq 0$,

$$
\begin{equation*}
u^{-}(y, t) \leq u^{-}(y, t+T) \leq u^{-}(x, t)+C_{R} T \tag{9}
\end{equation*}
$$

Thus we have

$$
\left|u^{-}(y, t)-u^{-}(x, t)\right| \leq C_{R}^{2}|x-y| \quad \text { for all } x, y \in[-R, R] \text { and } t \geq 0
$$

On the other hand, using the dynamic programming principle and Lemma 4, we have for $x \in[-R, R]$ and $t, s \in[0, \infty)$,

$$
u^{-}(x, t) \leq u^{-}(x, t+s) \leq u^{-}(x, t)+C_{R} s
$$

and hence $\left|u^{-}(x, t)-u^{-}(x, s)\right| \leq C_{R}|t-s|$ for all $x \in[-R, R]$ and $t, s \in[0, \infty)$. Thus we conclude that $u^{-} \in C^{0+1}(\mathbf{R} \times[0, \infty))$. It is now standard to see that if we set $w(x)=\lim _{t \rightarrow \infty} u^{-}(x, t)$, then $w \in C^{0+1}(\mathbf{R})$ and $w \in \mathcal{S}_{H}(\mathbf{R})$. The monotonicity of the function $u^{-}(x, t)$ in t guarantees that $u_{0}^{-} \leq w$ in \mathbf{R}. Therefore we see that $u_{\infty}(x) \leq w(x)<\infty$ for all $x \in \mathbf{R}$, which is a contradiction.

Proposition 7. (a) $d_{ \pm} \in \mathcal{S}_{H}(\mathbf{R})$. (b) If $x \leq y$, then $d(x, y)=d_{+}(x)-d_{+}(y)$. (c) If $x \geq y$, then $d(x, y)=d_{-}(x)-d_{-}(y)$. (d) The function $d_{+}-d_{-}$is non-increasing on \mathbf{R}.

Proof. (a) Since $d(\cdot, y) \in \mathcal{S}_{H}(\mathbf{R} \backslash\{y\})$ for any $y \in \mathbf{R}$, by the stability of the viscosity property, we see that $d_{ \pm} \in \mathcal{S}_{H}(\mathbf{R})$. (b) Let $x \leq y<z$, and observe that $d(x, z)-d(0, z)=d(x, y)+d(y, z)-d(0, z)$. Hence, sending $z \rightarrow \infty$, we get $d_{+}(x)=$ $d(x, y)+d_{+}(y)$, that is, if $x \leq y$, then $d(x, y)=d_{+}(x)-d_{+}(y)$. (c) An argument parallel
to (b) readily yields $d(x, y)=d_{-}(x)-d_{-}(y)$ for $x \geq y$. (d) Let $x<y$ and observe that $d_{-}(x)-d_{-}(y) \leq d(x, y)=d_{+}(x)-d_{+}(y)$, from which we get $\left(d_{+}-d_{-}\right)(x) \geq$ $\left(d_{+}-d_{-}\right)(y)$.

Proposition 8. We have

$$
u_{0}^{-}(x)=\inf \left\{u_{0}(y)+d(x, y) \mid y \in \mathbf{R}\right\} \quad \text { for all } x \in \mathbf{R} .
$$

Proof. We denote by w the function defined by the right hand side of the above equality. Let $v \in \mathcal{S}_{H}^{-}(\mathbf{R})$ satisfy $v \leq u_{0}$ in \mathbf{R}. Then we have $v(x) \leq v(y)+d(x, y) \leq$ $u_{0}(y)+d(x, y)$ for all $x \in \mathbf{R}$. Hence we get $v(x) \leq w(x)$ and consequently $u_{0}^{-}(x) \leq w(x)$ for all $x \in \mathbf{R}$. On the other hand, if $w\left(x_{0}\right)>-\infty$ for some $x_{0} \in \mathbf{R}$, then we see that $w \in C^{0+1}(\mathbf{R})$ and $w \in \mathcal{S}_{H}^{-}(\mathbf{R})$. It is clear that $w(x) \leq u_{0}(x)$ for all $x \in \mathbf{R}$. Therefore we have $w(x) \leq u_{0}^{-}(x)$ for all $x \in \mathbf{R}$. Thus we have $w(x)=u_{0}^{-}(x)$ for all $x \in \mathbf{R}$.

Let $I \subset \mathbf{R}$ be an interval and $\phi \in \mathcal{S}_{H}^{-}$. We call a function (curve) $\gamma \in C(I)$ an extremal curve on I for ϕ if for any $a, b \in I$, with $a<b$, we have

$$
\begin{equation*}
\gamma \in \operatorname{AC}([a, b]) \quad \text { and } \quad \phi(\gamma(b))-\phi(\gamma(a))=\int_{a}^{b} L[\gamma](s) \mathrm{d} s . \tag{10}
\end{equation*}
$$

We denote by $\mathcal{E}(I, \phi)$ the set of all extremal curves on I for ϕ. When $0 \in I$, for $y \in \mathbf{R}$, we denote by $\mathcal{E}(I, \phi, y)$ the set of those $\gamma \in \mathcal{E}(I, \phi)$ which satisfy $\gamma(0)=y$.

Proposition 9. Let $\phi \in \mathcal{S}_{H}$ and $y \in \mathbf{R}$. Then $\mathcal{E}((-\infty, 0], \phi, y) \neq \emptyset$.
We can adapt the proof of [17, Corollary 6.2] to the above lemma. We will not give the details of the proof here, and instead give a key observation:

Lemma 10. Let $\phi \in \mathcal{S}_{H}$ and $t>0$. Then, for any $x \in \mathbf{R}$,

$$
\begin{equation*}
\phi(x)=\inf \left\{\int_{0}^{t} L[\gamma] \mathrm{d} s+\phi(\gamma(0)) \mid \gamma \in \operatorname{AC}([0, t]), \gamma(t)=x\right\} . \tag{11}
\end{equation*}
$$

Proof. Thanks to (A5), we may choose a function $\psi \in C^{0+1}(\mathbf{R})$ and a constant $C>0$ so that $\psi \in \mathcal{S}_{H-C}^{-}$and $\lim _{|x| \rightarrow \infty}(\psi-\phi)(x)=-\infty$. Then, we apply [17, Theorem 1.1], with ϕ_{0} and ϕ_{1} replaced by ϕ and ψ, respectively, to conclude that the solution $u(x, t):=\phi(x)$ of (1)-(2) can be represented as

$$
u(x, t)=\inf \left\{\int_{0}^{t} L[\gamma] \mathrm{d} s+\phi(\gamma(0)) \mid \gamma \in \operatorname{AC}([0, t]), \gamma(t)=x\right\},
$$

which shows that (11) holds true. (In [17, Theorem 1.1], the Hamiltonian $H(x, p)$ is assumed to be strictly convex in p, but this assumption is actually superfluous and can be replaced by our convexity assumption (A3).)

Proposition 11. $\mathcal{A}_{H}=\mathcal{E}_{H}$, where \mathcal{E}_{H} denotes the set of equilibria, that is, $\mathcal{E}_{H}=\{x \in \mathbf{R} \mid L(x, 0)=0\}$.

Lemma 12. Let $y \in \mathbf{R}$ and $\delta>0$. Then we have $y \in \mathcal{A}_{H}$ if and only if

$$
\inf \left\{\int_{0}^{t} L[\gamma] \mathrm{d} s \mid t \geq \delta, \gamma \in \operatorname{AC}([0, t]), \gamma(t)=\gamma(0)=y\right\}=0
$$

We refer to [17, Proposition A.3] (see also [12, 13]) for a proof of the above lemma.
Proof of Proposition 11. Let $z \in \mathcal{A}_{H}$, and we need to show that $L(z, 0) \leq 0$. Fix any $\varepsilon \in(0,1)$. Let $\delta>0$ be a constant to be fixed later on. According to Lemma 12 , for any $n \in \mathbf{N}$ there exists a $\gamma_{n} \in \mathrm{AC}\left(\left[0, T_{n}\right]\right)$, with $T_{n} \geq \delta$, such that $\gamma_{n}(0)=\gamma_{n}\left(T_{n}\right)=z$ and

$$
\int_{0}^{T_{n}} L\left(\gamma_{n}, \dot{\gamma}_{n}\right) \mathrm{d} s<\frac{1}{n}
$$

We claim that we may assume by choosing $\delta>0$ small enough that

$$
\max _{0 \leq s \leq T_{n}}\left|\gamma_{n}(s)-z\right| \leq \varepsilon
$$

To see this, we first consider the case where $\max _{0 \leq s \leq T_{n}}\left(\gamma_{n}(s)-z\right)>\varepsilon$. It is easily seen that there are $0 \leq s_{n}<t_{n} \leq \sigma_{n}<\tau_{n} \leq T_{n}$ such that $\gamma_{n}\left(s_{n}\right)=\gamma_{n}\left(\tau_{n}\right)=z$, $\gamma_{n}\left(t_{n}\right)=\gamma_{n}\left(\sigma_{n}\right)=z+\varepsilon$, and $\gamma_{n}(s) \in(z, z+\varepsilon)$ for all $s \in\left(s_{n}, t_{n}\right) \cup\left(\sigma_{n}, \tau_{n}\right)$. Observe that

$$
0=d(z, z) \leq \int_{0}^{s_{n}} L\left[\gamma_{n}\right] \mathrm{d} s
$$

Similarly we have

$$
\int_{t_{n}}^{\sigma_{n}} L\left[\gamma_{n}\right] \mathrm{d} s \geq 0 \quad \text { and } \quad \int_{\tau_{n}}^{T_{n}} L\left[\gamma_{n}\right] \mathrm{d} s \geq 0
$$

Therefore we get

$$
\frac{1}{n}>\int_{0}^{T_{n}} L\left[\gamma_{n}\right] \mathrm{d} s \geq \int_{s_{n}}^{t_{n}} L\left[\gamma_{n}\right] \mathrm{d} s+\int_{\sigma_{n}}^{\tau_{n}} L\left[\gamma_{n}\right] \mathrm{d} s
$$

We define $\tilde{\gamma}_{n} \in \operatorname{AC}\left(\left[0, \tilde{T}_{n}\right]\right)$, with $\widetilde{T}_{n}:=t_{n}-s_{n}+\tau_{n}-\sigma_{n}$, by setting $\tilde{\gamma}_{n}(s)=\gamma_{n}\left(s+s_{n}\right)$ for $s \in\left[0, t_{n}-s_{n}\right]$ and $\tilde{\gamma}_{n}(s)=\gamma_{n}\left(s+\sigma_{n}-t_{n}+s_{n}\right)$ for $s \in\left[t_{n}-s_{n}, \widetilde{T}_{n}\right]$, and note that

$$
\max _{0 \leq s \leq \widetilde{T}_{n}}\left|\tilde{\gamma}_{n}(s)-z\right|=\varepsilon, \quad \tilde{\gamma}_{n}\left(t_{n}-s_{n}\right)=z+\varepsilon, \quad \text { and } \quad \int_{0}^{\widetilde{T}_{n}} L\left[\tilde{\gamma}_{n}\right] \mathrm{d} s<\frac{1}{n}
$$

By (A1), there exists a constant $C_{\varepsilon}>0$ such that $\varepsilon L(x, \xi) \geq\left(|\xi|-C_{\varepsilon}\right)$ for all $(x, \xi) \in[z-1, z+1] \times \mathbf{R}$. We compute that

$$
\begin{aligned}
2 \varepsilon & =\left|\tilde{\gamma}_{n}\left(t_{n}-s_{n}\right)-\tilde{\gamma}_{n}(0)\right|+\left|\tilde{\gamma}_{n}\left(\widetilde{T}_{n}\right)-\tilde{\gamma}_{n}\left(t_{n}-s_{n}\right)\right| \\
& \leq \int_{0}^{t_{n}-s_{n}}\left|\frac{\mathrm{~d} \tilde{\gamma}_{n}(s)}{\mathrm{d} s}\right| \mathrm{d} s+\int_{t_{n}-s_{n}}^{\widetilde{T}_{n}}\left|\frac{\mathrm{~d} \tilde{\gamma}_{n}(s)}{\mathrm{d} s}\right| \mathrm{d} s \\
& \leq \int_{0}^{\widetilde{T}_{n}}\left(\varepsilon L\left[\tilde{\gamma}_{n}\right]+C_{\varepsilon}\right) \mathrm{d} s<\varepsilon+C_{\varepsilon} \widetilde{T}_{n}
\end{aligned}
$$

Hence we have $\widetilde{T}_{n} \geq \varepsilon / C_{\varepsilon}$. We now fix $\delta=\varepsilon / C_{\varepsilon}$ and observe that $\tilde{\gamma}_{n}(0)=\tilde{\gamma}\left(\widetilde{T}_{n}\right)=z$,

$$
\int_{0}^{\widetilde{T}_{n}} L\left[\tilde{\gamma}_{n}\right] \mathrm{d} s<\frac{1}{n}, \quad \text { and } \quad \max _{0 \leq s \leq \widetilde{T}_{n}}\left|\tilde{\gamma}_{n}(s)-z\right| \leq \varepsilon
$$

Similarly, if $\min _{0 \leq s \leq T_{n}}\left(\gamma_{n}(s)-z\right)<-\varepsilon$, then we can build a $\tilde{\gamma}_{n} \in \operatorname{AC}\left(\left[0, \widetilde{T}_{n}\right]\right)$, with $\widetilde{T}_{n} \geq \delta$, so that $\tilde{\gamma}_{n}(0)=\tilde{\gamma}_{n}\left(\widetilde{T}_{n}\right)=z$,

$$
\max _{0 \leq s \leq \widetilde{T}_{n}}\left|\tilde{\gamma}_{n}(s)-z\right| \leq \varepsilon, \quad \text { and } \quad \int_{0}^{\widetilde{T}_{n}} L\left[\tilde{\gamma}_{n}\right] \mathrm{d} s<\frac{1}{n}
$$

Thus we may assume by replacing γ_{n} if necessary that $\max _{0 \leq s \leq T_{n}}\left|\gamma_{n}(s)-z\right| \leq \varepsilon$.
Next, let $R>0$ and set

$$
L_{R}(x, \xi)=\max _{|p| \leq R}(\xi p-H(x, p))
$$

Observe that L_{R} is continuous on $\mathbf{R} \times \mathbf{R}, L_{R}(x, \xi) \leq L(x, \xi)$ for all (x, ξ), and $L_{R}(x, \xi) \rightarrow L(x, \xi)$ as $R \rightarrow \infty$ for all (x, ξ). Let ω_{R} be a modulus of the function H on $[z-1, z+1] \times[-R, R]$ and observe that for all $x, y \in[z-1, z+1]$ and $\xi \in \mathbf{R}$,

$$
\left|L_{R}(x, \xi)-L_{R}(y, \xi)\right| \leq \max _{|p| \leq R}|H(x, p)-H(y, p)| \leq \omega_{R}(|x-y|)
$$

We compute that

$$
\begin{aligned}
L_{R}(z, 0) & =L_{R}\left(z, \frac{1}{T_{n}} \int_{0}^{T_{n}} \dot{\gamma}_{n}(t) \mathrm{d} t\right) \leq \frac{1}{T_{n}} \int_{0}^{T_{n}} L_{R}\left(z, \dot{\gamma}_{n}(t)\right) \mathrm{d} t \\
& \leq \frac{1}{T_{n}} \int_{0}^{T_{n}} L_{R}\left(\gamma_{n}(t), \dot{\gamma}_{n}(t)\right) \mathrm{d} t+\omega_{R}\left(\max _{0 \leq t \leq T_{n}}\left|\gamma_{n}(t)-z\right|\right) \\
& \leq \frac{1}{T_{n}} \int_{0}^{T_{n}} L\left(\gamma_{n}(t), \dot{\gamma}_{n}(t)\right) \mathrm{d} t+\omega_{R}\left(\max _{0 \leq t \leq T_{n}}\left|\gamma_{n}(t)-z\right|\right) \\
& <\frac{1}{n T_{n}}+\omega_{R}\left(\max _{0 \leq t \leq T_{n}}\left|\gamma_{n}(t)-z\right|\right) \leq \frac{1}{n \delta}+\omega_{R}(\varepsilon)
\end{aligned}
$$

Sending $n \rightarrow \infty$ and then $\varepsilon \rightarrow+0$, we get $L_{R}(z, 0) \leq 0$, from which we conclude by sending $R \rightarrow \infty$ that $L(z, 0) \leq 0$. The proof is complete.
3. Proof of Theorem 3. This section is devoted to the proof of Theorem 3. We assume all the hypotheses of Theorem 3 in what follows. Let u be the function on $\mathbf{R} \times[0, \infty)$ given by (6) and u^{+}denote the function on \mathbf{R} defined by

$$
u^{+}(x)=\limsup _{t \rightarrow \infty} u(x, t)
$$

Lemma 13. For all $x \in \mathbf{R}$ we have

$$
\begin{align*}
& u^{+}(x)=\lim _{r \rightarrow+0} \sup \left\{u(y, s)\left|s>r^{-1},|y-x|<r\right\}\right. \tag{12}\\
& u_{\infty}(x) \leq \lim _{r \rightarrow+0} \inf \left\{u(y, s)\left|s>r^{-1},|y-x|<r\right\}\right. \tag{13}
\end{align*}
$$

Inequality (13) is a modification of (18) in [15, Lemma 4.1].
Proof. By Lemma 4 and the dynamic programming principle, we get

$$
u(y, t+T) \leq u(x, t)+C_{R} T \quad \text { for all } x, y \in[-R, R], t \geq 0 \text { and } T>C_{R}|x-y|
$$

where $C_{R}>0$ is a constant depending only on R, from which we easily obtain (12) for all $x \in \mathbf{R}$.

Let u^{-}be the function on $\mathbf{R} \times[0, \infty)$ defined by (8). As in the proof of Proposition 2, we have $u^{-} \in C^{0+1}(\mathbf{R} \times[0, \infty)), u^{-} \leq u$ in $\mathbf{R} \times[0, \infty)$, and $u_{\infty}(x)=$ $\lim _{t \rightarrow \infty} u^{-}(x, t)$. Therefore we have

$$
\begin{aligned}
u_{\infty}(x) & =\lim _{r \rightarrow+0} \inf \left\{u^{-}(y, s)\left|s>r^{-1},|y-x|<r\right\}\right. \\
& \leq \lim _{r \rightarrow+0} \inf \left\{u(y, s)\left|s>r^{-1},|y-x|<r\right\}\right.
\end{aligned}
$$

which completes the proof.
In order to show that $u(x, t) \rightarrow u_{\infty}(x)$ uniformly on bounded intervals of \mathbf{R}, due to the above lemma, we only need to prove that $u^{+}(x) \leq u_{\infty}(x)$ for all $x \in \mathbf{R}$. We fix $y \in \mathbf{R}$ and will prove that $u_{0}^{-}(y) \leq u_{\infty}(y)$. By Proposition 9, we may choose a $\gamma \in \mathcal{E}\left((-\infty, 0], u_{\infty}, y\right)$. We first divide our considerations into two cases.

Case 1: $\operatorname{dist}\left(\gamma((-\infty, 0]), \mathcal{A}_{H}\right)=0$ and Case 2: $\left.\operatorname{dist}(\gamma(-\infty, 0]), \mathcal{A}_{H}\right)>0$, where we set $\operatorname{dist}\left(\gamma((-\infty, 0]), \mathcal{A}_{H}\right)=\infty$ when $\mathcal{A}_{H}=\emptyset$. We first treat Case 1 .

Lemma 14. In Case 1, we have $u^{+}(y) \leq u_{\infty}(y)$.
Proof. Since $\gamma((-\infty, 0])$ is an interval and \mathcal{A}_{H} is a closed set (see. e.g., [12, 13, $17])$, it is not hard to see that there exists a $z \in \mathcal{A}_{H}$ such that $\operatorname{dist}(\gamma((-\infty, 0]), z)=0$. Fix such a $z \in \mathcal{A}_{H}$ and set $R=|z|+1$. Let $C_{R}>0$ be the constant from Lemma 4. Fix any $\varepsilon \in(0,1)$, and choose an $r>0$ so that $|\gamma(-r)-z|<\varepsilon$ and $u_{\infty}(z) \leq u_{\infty}(\gamma(-r))+\varepsilon$. By Lemma 4, we may choose a curve $\eta \in \mathrm{AC}([0, \tau])$, with $\tau=C_{R}|z-\gamma(-r)|+\varepsilon$, so that $\eta(0)=z, \eta(\tau)=\gamma(-r)$, and

$$
\int_{0}^{\tau} L[\eta] \mathrm{d} t \leq C_{R} \tau=C_{R}^{2}(|z-\gamma(-r)|+\varepsilon) \leq 2 C_{R}^{2} \varepsilon
$$

In view of Proposition 8 and the variational representation for d, we have

$$
u_{0}^{-}(z)=\inf \left\{\int_{0}^{t} L[\zeta] \mathrm{d} s+u_{0}(\zeta(0)) \mid t>0, \zeta \in \mathrm{AC}([0, t]), \zeta(t)=z\right\}
$$

Hence we may choose a curve $\zeta \in \operatorname{AC}([0, \sigma])$, with $\sigma>0$, so that $\zeta(\sigma)=z$ and

$$
u_{0}^{-}(z)+\varepsilon>\int_{0}^{\sigma} L[\zeta] \mathrm{d} s+u_{0}(\zeta(0))
$$

Let $t>r+\tau+\sigma$ and define the curve $\mu \in \mathrm{AC}([-t, 0])$ as follows: we set $T=t-(r+\tau+\sigma)$ and

$$
\mu(s)= \begin{cases}\gamma(s) & \text { for } s \in[-r, 0] \\ \eta(s+r+\tau) & \text { for } s \in(-(r+\tau),-r], \\ z & \text { for } s \in(-(r+\tau+T),-(r+\tau)] \\ \zeta(s+t) & \text { for } s \in[-t,-t+\sigma] \equiv[-t,-(r+\tau+T)]\end{cases}
$$

We compute that

$$
\begin{aligned}
u(y, t) & \leq \int_{-t}^{0} L[\mu] \mathrm{d} s+u_{0}(\mu(-t)) \\
& \leq \int_{-r}^{0} L[\gamma] \mathrm{d} s+\int_{0}^{\tau} L[\eta] \mathrm{d} s+\int_{0}^{T} L(z, 0) \mathrm{d} s+\int_{0}^{\sigma} L[\zeta] \mathrm{d} s+u_{0}(\zeta(0)) \\
& <u_{\infty}(y)-u_{\infty}(\gamma(-r))+2 C_{R}^{2} \varepsilon+u_{0}^{-}(z)+\varepsilon \leq u_{\infty}(y)+2\left(C_{R}^{2}+1\right) \varepsilon
\end{aligned}
$$

where we have used the fact that $u_{0}^{-}(z) \leq u_{\infty}(z) \leq u_{\infty}(\gamma(-r))+\varepsilon$, and conclude that $u^{+}(y) \leq u_{\infty}(y)$.

Now, we turn to Case 2 and begin with a few lemmas.
Lemma 15. Let $c \in \mathbf{R}$. Assume that $d_{+}+c \geq u_{0}^{-}$on \mathbf{R} and $\inf _{\mathbf{R}}\left(d_{+}+c-u_{0}^{-}\right)=0$. Then $\lim _{x \rightarrow \infty}\left(d_{+}(x)+c-u_{0}^{-}(x)\right)=0$.

Proof. Suppose on the contrary that $\limsup _{x \rightarrow \infty}\left(d_{+}(x)+c-u_{0}^{-}(x)\right)>0$ and choose a $\delta>0$ and a sequence $x_{n} \rightarrow \infty$ such that $d_{+}\left(x_{n}\right)+c-u_{0}^{-}\left(x_{n}\right) \geq \delta$ for all $n \in \mathbf{N}$. We show that $d_{+}(x)+c-u_{0}^{-}(x) \geq \delta / 2$ for all $x \in \mathbf{R}$, which is an obvious contradiction to the assumption that $\inf _{\mathbf{R}}\left(d_{+}+c-u_{0}^{-}\right)=0$.

Fix any $x \in \mathbf{R}$, and choose an n so that $x \leq x_{n}$ and then a $y_{n} \in \mathbf{R}$ in view of Proposition 8 so that $u_{0}^{-}\left(x_{n}\right)+\delta / 2>u_{0}\left(y_{n}\right)+d\left(x_{n}, y_{n}\right)$. Noting that $d\left(x, x_{n}\right)=$ $d_{+}(x)-d_{+}\left(x_{n}\right)$, we compute that

$$
\begin{aligned}
u_{0}^{-}(x) & \leq u_{0}\left(y_{n}\right)+d\left(x, y_{n}\right) \leq u_{0}\left(y_{n}\right)+d\left(x, x_{n}\right)+d\left(x_{n}, y_{n}\right) \\
& <u_{0}^{-}\left(x_{n}\right)+\frac{\delta}{2}+d\left(x, x_{n}\right) \leq d_{+}\left(x_{n}\right)+c-\frac{\delta}{2}+d_{+}(x)-d_{+}\left(x_{n}\right) \\
& =d_{+}(x)+c-\frac{\delta}{2}
\end{aligned}
$$

and conclude that $d_{+}(x)+c-u_{0}^{-}(x) \geq \delta / 2$.
Lemma 16. In Case 2, the set $\gamma((-\infty, 0])$ is unbounded.
Proof. On the contrary we suppose that $\gamma((-\infty, 0])$ is bounded. We may choose a sequence $\left\{t_{n}\right\} \subset(-\infty, 0]$ so that $t_{n+1} \leq t_{n}-1$ for all $n \in \mathbf{N}$ and $\left\{\gamma\left(t_{n}\right)\right\}$ is convergent. Set $z:=\lim _{n \rightarrow \infty} \gamma\left(t_{n}\right)$. Observe that as $n \rightarrow \infty$,

$$
\int_{t_{n+1}}^{t_{n}} L(\gamma, \dot{\gamma}) \mathrm{d} t=u_{\infty}\left(\gamma\left(t_{n}\right)\right)-u_{\infty}\left(\gamma\left(t_{n+1}\right)\right) \rightarrow 0
$$

Fix any $n \in \mathbf{N}$. By Lemma 4, there are curves $\eta_{n} \in \mathrm{AC}\left(\left[0, \tau_{n}\right]\right)$ and $\zeta_{n} \in \mathrm{AC}\left(\left[0, \sigma_{n}\right]\right)$, with $\tau_{n}>0$ and $\sigma_{n}>0$, such that $\eta_{n}(0)=\zeta_{n}\left(\sigma_{n}\right)=z, \eta_{n}\left(\tau_{n}\right)=\gamma\left(t_{n+1}\right), \zeta_{n}(0)=$ $\gamma\left(t_{n}\right)$, and

$$
\begin{aligned}
& \int_{0}^{\tau_{n}} L\left[\eta_{n}\right] \mathrm{d} t \leq C_{0}\left|\gamma\left(t_{n+1}\right)-z\right|+\frac{1}{n} \\
& \int_{0}^{\sigma_{n}} L\left[\zeta_{n}\right] \mathrm{d} t \leq C_{0}\left|\gamma\left(t_{n}\right)-z\right|+\frac{1}{n}
\end{aligned}
$$

where $C_{0}>0$ is a constant independent of n. We set $T_{n}=t_{n}-t_{n+1}+\tau_{n}+\sigma_{n}$ and define the curve $\gamma_{n} \in \mathrm{AC}\left(\left[0, T_{n}\right]\right)$ by

$$
\gamma_{n}(t)= \begin{cases}\eta_{n}(t) & \text { for } t \in\left[0, \tau_{n}\right] \\ \gamma\left(t+t_{n+1}-\tau_{n}\right) & \text { for } t \in\left(\tau_{n}, \tau_{n}+t_{n}-t_{n+1}\right] \\ \zeta_{n}\left(t-\left(\tau_{n}+t_{n}-t_{n+1}\right)\right) & \text { for } t \in\left(\tau_{n}+t_{n}-t_{n+1}, T_{n}\right]\end{cases}
$$

Observe that $\gamma_{n}(0)=\gamma_{n}\left(T_{n}\right)=z$ and

$$
\begin{aligned}
\int_{0}^{T_{n}} L\left[\gamma_{n}\right] \mathrm{d} t \leq & u_{\infty}\left(\gamma\left(t_{n}\right)\right)-u_{\infty}\left(\gamma\left(t_{n+1}\right)\right) \\
& +C_{0}\left(\left|\gamma\left(t_{n}\right)-z\right|+\left|\gamma\left(t_{n+1}\right)-z\right|\right)+\frac{2}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

and conclude by Lemma 12 that $z \in \mathcal{A}_{H}$. This is a contradiction.
In what follows we divide our considerations concerning Case 2 into two subcases: Case 2a: $\sup \gamma((-\infty, 0])=\infty$ and Case 2b: $\inf \gamma((-\infty, 0])=-\infty$.
We now deal with Case 2a.
Lemma 17. In Case 2a, we have $[y, \infty) \cap \mathcal{A}_{H}=\emptyset$. Moreover, the function γ is decreasing on $(-\infty, 0]$ and there exists a constant $c \in \mathbf{R}$ such that $u_{\infty}(x)=d_{+}(x)+c$ for all $x \geq y$.

Proof. Since $\sup \gamma((-\infty, 0])=\infty$ and y is in the interval $\gamma((-\infty, 0])$, we see that $[y, \infty) \subset \gamma((-\infty, 0])$ and hence $\operatorname{dist}\left([y, \infty), \mathcal{A}_{H}\right) \geq \operatorname{dist}\left(\gamma((-\infty, 0]), \mathcal{A}_{H}\right)>0$. That is, we have $[y, \infty) \cap \mathcal{A}_{H}=\emptyset$.

To see that γ is decreasing, we suppose on the contrary that there exist $a<b \leq 0$ such that $\gamma(a) \leq \gamma(b)$. Since $\gamma([a, b])$ is a compact interval and $[y, \infty) \subset \gamma((-\infty, 0])$, we see that there exists an $a^{\prime} \in(-\infty, a]$ such that $\gamma\left(a^{\prime}\right)=\gamma(b)$. Then we have

$$
\int_{a^{\prime}}^{b} L[\gamma] \mathrm{d} t=u_{\infty}(\gamma(b))-u_{\infty}\left(\gamma\left(a^{\prime}\right)\right)=0
$$

which implies that $\gamma\left(a^{\prime}\right) \in \mathcal{A}_{H} \cap[y, \infty)$. This is a contradiction, which ensures that γ is decreasing on $(-\infty, 0]$.

It is now clear that $\gamma((-\infty, 0])=[y, \infty)$. Fix $x \in[y, \infty)$ and choose a (unique) $t_{x} \in(-\infty, 0]$ so that $\gamma\left(t_{x}\right)=x$. We have

$$
\begin{aligned}
d_{+}(y)-d_{+}(x) & \leq \int_{t_{x}}^{0} L[\gamma] \mathrm{d} t \\
& =u_{\infty}(y)-u_{\infty}(x) \leq d(y, x)=d_{+}(y)-d_{+}(x),
\end{aligned}
$$

where the last equality is a consequence of Proposition 7 (b). Therefore we get

$$
u_{\infty}(x)=d_{+}(x)+c, \quad \text { with } c:=u_{\infty}(y)-d_{+}(y) .
$$

Lemma 18. In Case 2a, let $\beta, z \in \mathbf{R}$ be such that $y \leq \beta<z$. Then there exists a curve $\eta \in \mathcal{E}\left((-\infty, \tau], d_{-}, \beta\right)$, with $\tau>0$, such that $\eta(\tau)=z$. Moreover, η is increasing on $[0, \tau]$.

Proof. By Proposition 9, we may choose a $\zeta \in \mathcal{E}\left((-\infty, 0], d_{-}, z\right)$. By continuity, there is a $T>0$ such that $(-\infty, \beta) \cap \zeta([-T, 0])=\emptyset$. We fix such a $T>0$, and will show that that ζ is increasing on $[-T, 0]$. Suppose on the contrary that $\zeta(a) \geq \zeta(b)$ for some $a, b \in[-T, 0]$ satisfying $a<b$. By Proposition 7, we have $d(\zeta(b), \zeta(a))=$ $d_{+}(\zeta(b))-d_{+}(\zeta(a))$ and $d(\zeta(a), \zeta(b))=d_{-}(\zeta(a))-d_{-}(\zeta(b))$. Also, we have

$$
d_{+}(\zeta(b))-d_{+}(\zeta(a))=\int_{a}^{b} L[\zeta] \mathrm{d} s=d_{-}(\zeta(b))-d_{-}(\zeta(a)) \leq d(\zeta(b), \zeta(a))
$$

From these we conclude that

$$
\int_{a}^{b} L[\zeta] \mathrm{d} s=d(\zeta(b), \zeta(a))=-d(\zeta(a), \zeta(b)),
$$

which yields

$$
\begin{aligned}
0 & =d(\zeta(b), \zeta(a))+d(\zeta(a), \zeta(b)) \\
& =\inf \left\{\int_{0}^{t} L[\eta] \mathrm{d} s \mid t \geq b-a, \eta \in \mathrm{AC}([0, t]), \eta(t)=\eta(0)=\zeta(b)\right\}
\end{aligned}
$$

This implies that $\zeta(b) \in \mathcal{A}_{H} \subset(-\infty, y)$, which is a contradiction.
Next, we show that $\beta \in \zeta((-\infty, 0])$. Suppose on the contrary that $\beta \notin \zeta((-\infty, 0])$. Then, since $\zeta((-\infty, 0])$ is an interval and $z \in \zeta((-\infty, 0])$, we infer that $(-\infty, \beta] \cap$ $\zeta((-\infty, 0])=\emptyset$. Therefore, ζ is increasing on $(-\infty, 0]$ and $\inf \zeta((-\infty, 0]) \geq \beta$. Set $\alpha:=\lim _{t \rightarrow-\infty} \zeta(t)$ and note that $\alpha \in[\beta, z)$. Now the proof of Lemma 16 guarantees that $\alpha \in \mathcal{A}_{H}$, which yields a contradiction, $\alpha \in \mathcal{A}_{H} \subset(-\infty, y)$.

We choose a $\tau>0$ so that $\zeta(-\tau)=\beta$ and $(-\infty, \beta) \cap \zeta([-\tau, 0])=\emptyset$. We see immediately that $\zeta([-\tau, 0])=[\beta, z]$ and ζ is increasing on $[-\tau, 0]$. We define the curve $\eta \in \mathcal{E}\left((-\infty, \tau], d_{-}\right)$by $\eta(s)=\zeta(s-\tau)$. The curve η has all the required properties.

Since $u_{0}^{-} \leq u_{0}$ on \mathbf{R}, we have $\liminf _{x \rightarrow \infty}\left(u_{0}(x)-u_{0}^{-}(x)\right) \geq 0$. Because of one of assumptions of Theorem 3, we have only two cases to consider.

Case (i): $\liminf _{x \rightarrow \infty}\left(u_{0}(x)-u_{0}^{-}(x)\right)>0$ and Case (ii): $\lim _{x \rightarrow \infty}\left(u_{0}(x)-u_{0}^{-}(x)\right)=$ 0.

Proposition 19. In Case (i), we have $u^{+}(y) \leq u_{\infty}(y)$.
Proof. We choose a $\delta>0$ so that $\liminf _{x \rightarrow \infty}\left(u_{0}(x)-u_{0}^{-}(x)\right)>\delta$ and then a $\beta>y$ so that $u_{0}(x)-u_{0}^{-}(x)>\delta$ for all $x \geq \beta$. We have

$$
u_{0}^{-}(x) \leq u_{0}^{-}(z)+d(x, z)<u_{0}(z)+d(x, z)-\delta \quad \text { for all } x \in \mathbf{R} \text { and } z \geq \beta
$$

and therefore, by Proposition 8, we get

$$
u_{0}^{-}(x)=\inf _{z \leq \beta}\left(u_{0}(z)+d(x, z)\right) \quad \text { for all } x \in \mathbf{R}
$$

In particular, we have for all $x \geq \beta$,

$$
u_{0}^{-}(x)=\inf _{z \leq \beta}\left(u_{0}(z)+d_{-}(x)-d_{-}(z)\right)=d_{-}(x)+b,
$$

where $b:=\inf _{z \leq \beta}\left(u_{0}(z)-d_{-}(z)\right)$. Since $u_{\infty}(x) \geq u_{0}^{-}(x)$ for all $x \in \mathbf{R}$, we have

$$
d_{+}(x)-d_{-}(x)+c-b \geq 0 \quad \text { for all } x \geq \beta
$$

where c is the constant from Lemma 17.
Fix any $\varepsilon>0$. By the definition of b, we may choose an $\alpha \in(-\infty, \beta]$ so that $b+\varepsilon>u_{0}(\alpha)-d_{-}(\alpha)$. Since $\gamma(0)=y<\beta$ and $\lim _{t \rightarrow-\infty} \gamma(t)=\infty$, we may choose a $\sigma>0$ so that $\gamma(-\sigma)=\beta$. Since $d(\beta, \alpha)=d_{-}(\beta)-d_{-}(\alpha)$, we may choose a $\zeta \in \mathrm{AC}([0, \rho])$, with $\rho>0$, so that $\zeta(0)=\alpha, \zeta(\rho)=\beta$, and

$$
d_{-}(\beta)-d_{-}(\alpha)+\varepsilon>\int_{0}^{\rho} L[\zeta] \mathrm{d} s
$$

Fix any $t>0$ and set $z=\gamma(-t-\sigma)$. In view of Lemma 18, we may choose an $\eta \in \mathcal{E}\left((-\infty, \tau], d_{-}, \beta\right)$, with $\tau>0$, such that $\eta(\tau)=z$. Remark that η is increasing on $[0, \tau]$. Set $T=\min \{\tau, t\}$. We define the function f on $[0, T]$ by $f(s)=\eta(s)-$ $\gamma(s-t-\sigma)$, and observe that $f(0)=\beta-\gamma(-t-\sigma)<\beta-\gamma(-\sigma)=0$ and that if $T=\tau$, then $f(T)=z-\gamma(\tau-t-\sigma)>z-\gamma(-t-\sigma)=0$ and if $T=t$, then $f(T)=\eta(t)-\gamma(-\sigma)>\eta(0)-\beta=0$. By the continuity of f, we may choose a $\lambda \in(0, T)$ so that $f(\lambda)=0$, that is, $\eta(\lambda)=\gamma(\lambda-t-\sigma)$.

We define $\mu \in \mathrm{AC}([-(t+\sigma+\rho), 0])$ by

$$
\mu(s)= \begin{cases}\gamma(s) & \text { for } s \in[\lambda-(t+\sigma), 0] \\ \eta(s+t+\sigma) & \text { for } s \in[-(t+\sigma), \lambda-(t+\sigma)] \\ \zeta(s+t+\sigma+\rho) & \text { for } s \in[-(t+\sigma+\rho),-(t+\sigma)]\end{cases}
$$

Observe that $\mu(0)=y$ and $\mu(-(t+\sigma+\rho))=\zeta(0)=\alpha$, and compute that

$$
\begin{aligned}
& \int_{-(t+\sigma+\rho)}^{0} L[\mu] \mathrm{d} s+u_{0}(\mu(-(t+\sigma+\rho))) \\
& =\int_{0}^{\rho} L[\zeta] \mathrm{d} s+\int_{0}^{\lambda} L[\eta] \mathrm{d} s+\int_{\lambda-(t+\sigma)}^{0} L[\gamma] \mathrm{d} s+u_{0}(\alpha) \\
& <d_{-}(\beta)-d_{-}(\alpha)+\varepsilon+d_{-}(\eta(\lambda))-d_{-}(\eta(0)) \\
& +d_{+}(\gamma(0))-d_{+}(\gamma(\lambda-(t+\sigma)))+u_{0}(\alpha) \\
& =d_{+}(y)+d_{-}(\eta(\lambda))-d_{+}(\eta(\lambda))+u_{0}(\alpha)-d_{-}(\alpha)+\varepsilon \\
& <d_{+}(y)+d_{-}(\eta(\lambda))-d_{+}(\eta(\lambda))+b+2 \varepsilon
\end{aligned}
$$

As noted above, we have

$$
d_{+}(\eta(\lambda))-d_{-}(\eta(\lambda))+c-b \geq 0
$$

and therefore

$$
u(y, t+\sigma+\rho)<d_{+}(y)+c+2 \varepsilon=u_{\infty}(y)+2 \varepsilon
$$

from which we conclude that $u^{+}(y) \leq u_{\infty}(y)$.
The switch-back construction of μ in the proof above is adapted from [16].
Proposition 20. In Case (ii), we have $u^{+}(y) \leq u_{\infty}(y)$.
Proof. Fix any $\varepsilon>0$. By assumption, there exists an $R>y$ such that if $x \geq R$, then $u_{0}(x) \leq u_{0}^{-}(x)+\varepsilon$. Since $\lim _{t \rightarrow-\infty} \gamma(t)=\infty$, there exists a $T>0$ such that if $t \geq T$, then $\gamma(-t) \geq R$. Fix any $t \geq T$ and compute that

$$
\begin{aligned}
u(y, t) & \leq \int_{-t}^{0} L[\gamma] \mathrm{d} s+u_{0}(\gamma(-t)) \leq u_{\infty}(y)-u_{\infty}(\gamma(-t))+u_{0}^{-}(\gamma(-t))+\varepsilon \\
& \leq u_{\infty}(y)-u_{\infty}(\gamma(-t))+u_{\infty}(\gamma(-t))+\varepsilon=u_{\infty}(y)+\varepsilon
\end{aligned}
$$

From this we conclude that $u_{\infty}(y) \leq u_{0}^{-}(y)$.
We may treat Case 2b by an argument parallel to the above, to conclude that $u^{+}(y) \leq u_{\infty}(y)$. The proof of Theorem 3 is now complete.
4. Concluding remarks. We first discuss two examples in connection with Theorem 3 and Proposition 2. Barles-Souganidis [5] gave a simple example of Hamiltonian H and initial data u_{0} for which convergence (5) does not hold. In the example H and u_{0} are given, respectively, by $H(p)=|p+1|-1$ and $u_{0}(x)=\sin x$ for $p, x \in \mathbf{R}$. The solution u of (1)-(2) is then given by $u(x, t):=\sin (x-t)$, for which (5) does not hold with any asymptotic solution $v(x)-c t$, and all assumptions (A1)-(A6) are satisfied. Noting that $H(p) \leq 0$ if and only if $p \in[-2,0]$, we see that $d_{+}(x)=-2 x$ and $d_{-}(x)=0$ for all $x \in \mathbf{R}$ and that $\mathcal{A}_{H}=\emptyset$. Also, it is easily seen that $u_{0}^{-}(x)=\inf _{y \in \mathbf{R}}\left(u_{0}(y)+d(x, y)\right)=-1$ and $u_{\infty}(x)=-1$ for all $x \in \mathbf{R}$. Hence we have $u_{\infty}(x)=d_{-}(x)-1$ for all $x \in \mathbf{R}, \liminf _{x \rightarrow-\infty}\left(u_{0}-u_{0}^{-}\right)(x)=0$, and $\lim \sup _{x \rightarrow-\infty}\left(u_{0}-u_{0}^{-}\right)(x)=2$. These explicitly violate one of assumptions of Theorem 3.

Lions-Souganidis [20] examined the following Hamilton-Jacobi equation $\frac{1}{2}|D v|^{2}-$ $f(x)=0$ in \mathbf{R}, where f is given by $f(x)=2+\sin x+\sin \sqrt{2} x$. Note that $f(x)>0$ for all $x \in \mathbf{R}$ and $\inf _{\mathbf{R}} f=0$. The Lagrangian L of $H(x, p):=\frac{1}{2}|p|^{2}-f(x)$ is given by $L(x, \xi)=\frac{1}{2}|\xi|^{2}+f(x)$ and satisfies $L(x, \xi)>0$ for all (x, ξ), which implies that $\mathcal{A}_{H}=\emptyset$. The function d, d_{+}, and d_{-}are given, respectively, by

$$
d(x, y)=\left|\int_{y}^{x} \sqrt{2 f(s)} \mathrm{d} s\right|, \quad d_{+}(x)=-\int_{0}^{x} \sqrt{2 f(s)} \mathrm{d} s, \quad \text { and } \quad d_{-}(x)=-d_{+}(x)
$$

Consider the evolution equation $u_{t}+H(x, D u)=0$ together with initial data $u_{0}(x) \equiv 0$. We write u for the solution of this problem as usual. It is easy to see that $u_{0}^{-}(x)=$ $\inf _{y \in \mathbf{R}} d(x, y)=0$ and $u_{\infty}(x)=+\infty$ for all $x \in \mathbf{R}$. Proposition 2 ensures that $\lim _{t \rightarrow \infty} u(x, t)=\infty$ for all $x \in \mathbf{R}$ and u does not "converge" to any asymptotic solution in this case.

Next we discuss two existing convergence results in light of Theorem 3. In [17], the Cauchy problem for (3), with $\Omega=\mathbf{R}^{n}$, are treated and, in addition to (A1)-(A6), it is there assumed that there exist functions $\phi_{0}, \sigma_{0} \in C\left(\mathbf{R}^{n}\right)$ such that $H\left[\phi_{0}\right] \leq-\sigma_{0}$ in \mathbf{R}^{n} and $\lim _{|x| \rightarrow \infty} \sigma_{0}(x)=\infty$. Most of results in [17] are concerned with solutions u of (3) with $\Omega=\mathbf{R}^{n}$ for which $u_{\infty}(x) \geq \phi_{0}(x)-C_{0}$ for all x and for some constant $C_{0} \in \mathbf{R}$.

We restrict ourselves to the case when $n=1$, and assume that (A1)-(A6) hold, that there exist functions $\phi_{0}, \sigma_{0} \in C(\mathbf{R})$ having the properties described above, and that $u_{\infty}(x) \geq \phi_{0}(x)-C_{0}$ for all x and for some constant $C_{0} \in \mathbf{R}$. We show as a consequence of Theorem 3 that convergence (7) holds. The first thing to note is that if $\sup \mathcal{A}_{H}<\infty$, then $d_{+}(x)-\phi_{0}(x) \rightarrow-\infty$ as $x \rightarrow \infty$. Indeed, assuming that $\mathcal{A}_{H} \subset(-\infty, \beta)$ for some $\beta \in \mathbf{R}$, for any $\gamma \in \mathcal{E}\left((-\infty, 0], d_{+}, \beta\right)$, we see, as in the proof of Lemma 18, that γ is decreasing on $(-\infty, 0]$ and $\gamma(s) \rightarrow \infty$ as $s \rightarrow-\infty$. Moreover, for $t>0$, we get

$$
d_{+}(\gamma(0))-d_{+}(\gamma(-t))=\int_{-t}^{0} L[\gamma] \mathrm{d} s \geq \phi_{0}(\gamma(0))-\phi_{0}(\gamma(-t))+\int_{-t}^{0} \sigma_{0}(\gamma(s)) \mathrm{d} s
$$

Since $\int_{-t}^{0} \sigma_{0} \mathrm{~d} s \rightarrow \infty$ as $t \rightarrow \infty$, we conclude that $\left(\phi_{0}-d_{+}\right)(x) \rightarrow \infty$ as $x \rightarrow \infty$. Similarly, if $\inf \mathcal{A}_{H}>-\infty$, then we have $\left(d_{-}-\phi_{0}\right)(x) \rightarrow \infty$ as $x \rightarrow-\infty$. These observations guarantee that, under our current hypotheses, there is no possibility that either $u_{\infty}(x)=d_{+}(x)+c_{+}$for all $x>r$ and for some constants c_{+}and $r \in \mathbf{R}$, or $u_{\infty}(x)=d_{-}(x)+c_{-}$for all $x<r$ and for some constants c_{-}and $r \in \mathbf{R}$. Now, Theorem 3 ensures that convergence (7) holds.

Let us consider the Cauchy problem (1)-(2) in the case where the functions $H(x, p)$ in x and u_{0} are periodic with period 1 . In addition to (A1)-(A6), we assume as in [15] (see also [5]) that there exists a function $\omega_{0} \in C\left([0, \infty)\right.$) satisfying $\omega_{0}(0)=0$ and $\omega_{0}(r)>0$ for all $r>0$ such that for all $(x, p) \in \mathbf{R}^{2}$ satisfying $H(x, p)=0$ and for all $\xi \in D_{2}^{-} H(x, p)$ and $q \in \mathbf{R}$, if $\xi q>0$, then

$$
\begin{equation*}
H(x, p+q) \geq \xi q+\omega_{0}(\xi q) \tag{14}
\end{equation*}
$$

Note that if $v \in \mathcal{S}_{H}^{-}$(resp., $v \in \mathcal{S}_{H}$), then $v(\cdot+1) \in \mathcal{S}_{H}^{-}$(resp., $\left.v(\cdot+1) \in \mathcal{S}_{H}\right)$. Hence, by the definition of u_{0}^{-}and u_{∞}, we infer that u_{0}^{-}and u_{∞} are periodic with period 1. Note also by the periodicity of $H(x, p)$ in x that $d(x+1, y+1)=d(x, y)$ for all $x, y \in \mathbf{R}$. In order to apply Theorem 3, we assume that $\sup \mathcal{A}_{H}<\infty$ and $u_{\infty}(x)=d_{+}(x)+c_{+}$for all $x \geq R$ and for some constants $c_{+}, R \in \mathbf{R}$. By the above periodicity of d, we deduce that $\mathcal{A}_{H}=\emptyset$ and $u_{\infty}(x)=d_{+}(x)+c_{+}$for all $x \in \mathbf{R}$.

Fix any $y \in \mathbf{R}$ and choose a $\gamma \in \mathcal{E}\left((-\infty, 0], d_{+}, y\right)$. As in the proof of Lemma 18, we see that γ is decreasing on $(-\infty, 0]$ and $\sup \gamma((-\infty, 0])=\infty$. We may choose a $\tau>0$ so that $\gamma(-\tau)=y+1$. We extend $\left.\dot{\gamma}\right|_{(-\tau, 0]}$ to \mathbf{R} by periodicity and integrating the resulting periodic function, we may assume that $\gamma(t-\tau)=\gamma(t)+1$ for all $t \in \mathbf{R}$.

We assume that

$$
0=\liminf _{x \rightarrow \infty}\left(u_{0}-u_{0}^{-}\right)(x)<\limsup _{x \rightarrow \infty}\left(u_{0}-u_{0}^{-}\right)(x)
$$

(Otherwise, by Theorem 3, we know that $u^{+}(y) \leq u_{\infty}(y)$.) By the periodicity of u_{0}^{-}and u_{∞}, we have $\min _{[x, x+1)}\left(u_{0}-u_{0}^{-}\right)=0$ for all $x \in \mathbf{R}$. Moreover we have $\min _{s \in[t, t+\tau)}\left(u_{0}-u_{0}^{-}\right)(\gamma(-s))=0$ for all $t \in \mathbf{R}$.

It has been proved in [15] that there exist a constant $\delta>0$ and a non-decreasing function $\omega \in C([0, \infty))$ satisfying $\omega(0)=0$ such that for any $0 \leq \varepsilon \leq \delta$, we have

$$
\begin{equation*}
\int_{-t /(1+\varepsilon)}^{0} L\left[\gamma_{\varepsilon}\right] \mathrm{d} s \leq u_{\infty}\left(\gamma_{\varepsilon}(0)\right)-u_{\varepsilon}\left(\gamma_{\varepsilon}(-t /(1+\varepsilon))+t \varepsilon \omega(\varepsilon)\right. \tag{15}
\end{equation*}
$$

where $\gamma_{\varepsilon}(s):=\gamma((1+\varepsilon) s)$ for all $s \in \mathbf{R}$.
We fix any $t \geq \tau / \delta$. Choose a $\sigma \in[t, t+\tau)$ so that $\left(u_{0}-u_{0}^{-}\right)(\gamma(-\sigma))=0$ and then an $\varepsilon \geq 0$ so that $\frac{\sigma}{1+\varepsilon}=t$. Note that $\varepsilon=\frac{\sigma}{t}-1=\frac{\sigma-t}{t} \leq \frac{\tau}{t} \leq \delta$. Therefore, by (15), we get

$$
\begin{aligned}
\int_{-t}^{0} L\left[\gamma_{\varepsilon}\right] \mathrm{d} s & \leq u_{\infty}\left(\gamma_{\varepsilon}(0)\right)-u_{\infty}\left(\gamma_{\varepsilon}(-t)\right)+\sigma \varepsilon \omega(\varepsilon) \\
& \leq u_{\infty}(y)-u_{\infty}(\gamma(-\sigma))+\frac{\sigma \tau}{t} \omega\left(\frac{\tau}{t}\right) \\
& \leq u_{\infty}(y)-u_{\infty}(\gamma(-\sigma))+\frac{\tau(t+\tau)}{t} \omega\left(\frac{\tau}{t}\right) \\
& \leq u_{\infty}(y)-u_{0}^{-}(\gamma(-\sigma))+\tau(1+\delta) \omega\left(\frac{\tau}{t}\right),
\end{aligned}
$$

and furthermore

$$
\begin{aligned}
u(y, t) & \leq \int_{-t}^{0} L\left[\gamma_{\varepsilon}\right] \mathrm{d} s+u_{0}\left(\gamma_{\varepsilon}(-t)\right) \\
& \leq u_{\infty}(y)-u_{0}^{-}(\gamma(-\sigma))+u_{0}(\gamma(-\sigma))+\tau(1+\delta) \omega\left(\frac{\tau}{t}\right) \\
& =u_{\infty}(y)+\tau(1+\delta) \omega\left(\frac{\tau}{t}\right)
\end{aligned}
$$

Thus we obtain $u^{+}(y) \leq u_{\infty}(y)$. Similarly, if we assume that $\inf \mathcal{A}_{H}>-\infty$ and $u_{\infty}(x)=d_{-}(x)+c_{-}$for all $x \geq R$ for some constant $c_{-}, R \in \mathbf{R}$ and also that $0=$ $\lim \inf _{x \rightarrow-\infty}\left(u_{0}-u_{0}^{-}\right)(x)<\lim \sup _{x \rightarrow-\infty}\left(u_{0}-u_{0}^{-}\right)(x)$, then we get $u^{+}(y) \leq u_{\infty}(y)$. These observations and Theorem 3 guarantee that convergence (7) holds.

We continue to consider the Cauchy problem (1)-(2), where the functions $H(\cdot, p)$ and u_{0} are periodic with period 1 . Now we assume in addition to (A1)-(A6) that there exists a function $\omega_{0} \in C([0, \infty))$ satisfying $\omega_{0}(0)=0$ and $\omega_{0}(r)>0$ for all $r>0$ such that for all $(x, p) \in \mathbf{R}^{2}$ satisfying $H(x, p)=0$ and for all $\xi \in D_{2}^{-} H(x, p)$ and $q \in \mathbf{R}$, if $\xi q<0$, then

$$
\begin{equation*}
H(x, p+q) \geq \xi q+\omega_{0}(|\xi q|) . \tag{16}
\end{equation*}
$$

We will show that convergence (7) holds under these hypotheses, which seems to be a new observation.

We argue as in the previous result and thus assume that $\sup \mathcal{A}_{H}<\infty$ and $u_{\infty}(x)=d_{+}(x)+c_{+}$for all $x>R$ and for some constants $c_{+}, R \in \mathbf{R}$. We then observe that $\mathcal{A}_{H}=\emptyset$ and $u_{\infty}(x)=d_{+}(x)+c_{+}$for all $x \in \mathbf{R}$ and that $\lim _{\inf }^{x \rightarrow \infty}{ }_{x}\left(u_{0}-u_{0}^{-}\right)(x)<$ $\lim \sup _{x \rightarrow \infty}\left(u_{0}-u_{0}^{-}\right)(x)$. Fix any $y \in \mathbf{R}$ and choose a $\gamma \in \mathcal{E}\left(\mathbf{R}, d_{+}, y\right)$ so that $\gamma(t-\tau)=\gamma(t)+1$ for all $t \in \mathbf{R}$ and for some constant $\tau>0$. A careful review of [15, Lemmas 3.1, 3.2, Proposition 3.4] reveals that there exist a constant $\delta \in(0,1)$ and a non-decreasing function $\omega \in C([0, \infty))$ satisfying $\omega(0)=0$ such that for any $0 \leq \varepsilon \leq \delta$ and $t>0$, we have

$$
\begin{equation*}
\int_{-t /(1-\varepsilon)}^{0} L\left[\eta_{\varepsilon}\right] \mathrm{d} s \leq u_{\infty}\left(\eta_{\varepsilon}(0)\right)-u_{\infty}\left(\eta_{\varepsilon}(-t /(1-\varepsilon))+t \varepsilon \omega(\varepsilon)\right. \tag{17}
\end{equation*}
$$

where $\eta_{\varepsilon}(s):=\gamma((1-\varepsilon) s)$ for all $s \in \mathbf{R}$.
As before we fix any $t \geq \tau / \delta$ and choose a $\sigma \in(t-\tau, t]$ so that $\left(u_{0}-u_{0}^{-}\right)(\gamma(-\sigma))=$ 0 and then an $\varepsilon \geq 0$ so that $\frac{\sigma}{1-\varepsilon}=t$. Note that $\varepsilon=1-\frac{\sigma}{t}=\frac{t-\sigma}{t} \leq \frac{\tau}{t} \leq \delta$. Hence by (17) we get

$$
\begin{aligned}
\int_{-t}^{0} L\left[\eta_{\varepsilon}\right] \mathrm{d} s & \leq u_{\infty}\left(\eta_{\varepsilon}(0)\right)-u_{\infty}\left(\eta_{\varepsilon}(-t)\right)+\sigma \varepsilon \omega(\varepsilon) \\
& \leq u_{\infty}(y)-u_{\infty}(\gamma(-\sigma))+\frac{\sigma \tau}{t} \omega\left(\frac{\tau}{t}\right) \\
& \leq u_{\infty}(y)-u_{0}^{-}(\gamma(-\sigma))+\tau \omega\left(\frac{\tau}{t}\right),
\end{aligned}
$$

and consequently

$$
\begin{aligned}
u(y, t) & \leq \int_{-t}^{0} L\left[\eta_{\varepsilon}\right] \mathrm{d} s+u_{0}\left(\eta_{\varepsilon}(-t)\right) \\
& \leq u_{\infty}(y)-u_{0}^{-}(\gamma(-\sigma))+u_{0}(\gamma(-\sigma))+\tau \omega\left(\frac{\tau}{t}\right) \\
& =u_{\infty}(y)+\tau \omega\left(\frac{\tau}{t}\right),
\end{aligned}
$$

from which we get $u^{+}(y) \leq u_{\infty}(y)$. Similarly, if we assume that $\inf \mathcal{A}_{H}>-\infty$ and $u_{\infty}(x)=d_{-}(x)+c_{-}$for all $x \geq R$ for some constants $c_{-}, R \in \mathbf{R}$ and also that $0=$ $\liminf _{x \rightarrow-\infty}\left(u_{0}-u_{0}^{-}\right)(x)<\lim \sup _{x \rightarrow-\infty}\left(u_{0}-u_{0}^{-}\right)(x)$, then we get $u^{+}(y) \leq u_{\infty}(y)$. Theorem 3 now guarantees that convergence (7) holds.

For possible relaxations of the periodicity of $H(\cdot, p)$ and u_{0} in the above convergence results, we refer to $[15]$ as well as $[6$, Théorème 1].

REFERENCES

[1] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, with appendices by Maurizio Falcone and Pierpaolo Soravia, Systems \& Control: Foundations \& Applications. Birkhäuser Boston, Inc., Boston, MA, 1997.
[2] G. Barles, Asymptotic behavior of viscosity solutions of first Hamilton Jacobi equations, Ricerche Mat., 34 (1985), pp. 227-260.
[3] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques \& Applications (Berlin), 17, Springer-Verlag, Paris, 1994.
[4] G. Barles and J.-M. Roquejoffre, Ergodic type problems and large time behaviour of unbounded solutions of Hamilton-Jacobi equations, Comm. Partial Differential Equations, 31 (2006), pp. 1209-1225.
[5] G. Barles and P. E. Souganidis, On the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 31 (2000), pp. 925-939.
[6] G. Barles and P. E. Souganidis, Some counterexamples on the asymptotic behavior of the solutions of Hamilton-Jacobi equations, C. R. Acad. Sci. Paris Ser. I Math., 330 (2000), pp. 963-968.
[7] M. G. Crandall, H. Ishit, and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), pp. 1-67.
[8] A. Davini and A. Siconolfi, A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 38 (2006), pp. 478-502.
[9] A. Fathi, Théorème KAM faible et théorie de Mather pour les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I, 324 (1997), pp. 1043-1046.
[10] A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), pp. 267-270.
[11] A. Fathi, Weak KAM theorem in Lagrangian dynamics, to appear.
[12] A. Fathi and A. Siconolfi, Existence of C^{1} critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), pp. 363-388.
[13] A. Fathi and A. Siconolfi, PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians, Calc. Var. Partial Differential Equations, 21 (2005), pp. 185-228.
[14] Y. Fujita, H. Ishil, and P. Loreti, Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space, Indiana Univ. Math. J., 55 (2006), pp. 1671-1700.
[15] N. ICHIHARA AND H. Ishir, Asymptotic solutions of Hamilton-Jacobi equations with semiperiodic Hamiltonians, Comm. Partial Differential Equations, 93 (2008), pp. 784-807.
[16] N, Ichihara and H Ishir, Long-time behavior of solutions of Hamilton-Jacobi equations with convex and coercive Hamiltonians, to appear in Arch. Ration. Mech. Anal., (DOI) 10.1007/s 00205-008-0170-0.
[17] H. Ishil, Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean n space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), pp. 231-266.
[18] S. N. Kružkov, Generalized solutions of nonlinear equations of the first order with several independent variables. II, (Russian) Mat. Sb. (N.S.), 72 (114)(1967), pp. 108-134.
[19] P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, Vol. 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982.
[20] P. L. Lions and P. E. Souganidis, Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting, Comm. Pure Appl. Math., 56 (2003), pp. 15011524.
[21] H. Mitake, Asymptotic solutions of Hamilton-Jacobi equations with state constraints, Appl. Math. Optim., 58 (2008), pp. 393-410.
[22] H. Mitake, The large-time behavior of solutions of the Cauchy-Dirichlet problem of HamiltonJacobi equations, NoDEA Nonlinear Differential Equations Appl, 15 (2008), pp. 347-362.
[23] G. Namah and J.-M. Roquejoffre, Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations, Commun. Partial Differential Equations, 24 (1999), pp. 883893.
[24] J.-M. Roquejoffre, Convergence to steady states or periodic solutions in a class of HamiltonJacobi equations, J. Math. Pures Appl. (9), 80 (2001), pp. 85-104.

[^0]: *Received March 3, 2008; accepted for publication March 13, 2008.
 \dagger Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan (naoyuki@hiroshima-u.ac.jp). Supported in part by Grant-in-Aid for Young Scientists, No. 19840032, JSPS.
 \ddagger Department of Mathematics, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 169-8050, Japan (hitoshi.ishii@waseda.jp). Supported in part by Grant-in-Aid for Scientific Research, No. 18204009, JSPS.

