PARTIAL REGULARITY OF WEAK SOLUTIONS TO MAXWELL'S EQUATIONS IN A QUASI-STATIC ELECTROMAGNETIC FIELD*

MIN-CHUN HONG[†], YOSHIHIRO TONEGAWA[‡] and ALZUBAIDI YASSIN[†]

Delicated to Professor Neil Trudinger on the occasion of his 65th birthday

Abstract. We study Maxwell's equations in a quasi-static electromagnetic field, where the electrical conductivity of the material depends on the temperature. By establishing the reverse Hölder inequality, we prove partial regularity of weak solutions to the non-linear elliptic system and the non-linear parabolic system in a quasi-static electromagnetic field.

Key words. Partial regularity, elliptic systems, parabolic systems.

AMS subject classifications. 35J45, 35J60, 58E20

1. Introduction. In this paper, let Ω be a domain in \mathbb{R}^n with $n \geq 3$, and let u(x)and $H^{i}(x)$ for i = 1, ..., n be scalar functions defined on Ω . For any positive integer k, let $\Lambda_k(\Omega)$ denote the space of k-forms on Ω . We have the usual exterior derivative d of forms with $d: \Lambda_k(\Omega) \to \Lambda_{k+1}(\Omega)$. Consider a 1-form $H = \sum_{i=1}^n H^i(x) dx_i$, which may be regarded as a connection in differential geometry. We define the curvature Fof the connection H by

$$F = dH = \sum_{i < j} F^{ij} dx_i \wedge dx_j,$$

where $F^{ij} = \frac{\partial H^j}{\partial x_i} - \frac{\partial H^i}{\partial x_j}$ (e.g. [9]). Let * be the Hodge star linear operator which assigns to each k-form on Ω an (n-k)-form and which satisfies

$$** = (-1)^{k(n-k)}.$$

We have a product $\langle \cdot, \cdot \rangle$ in the k-form space $\Lambda_k(\Omega)$

$$\langle a, b \rangle dx_1 \wedge \ldots \wedge dx_n = a \wedge *b, \quad |a|^2 = \langle a, a \rangle$$

for all $a, b \in \Lambda_k(\Omega)$ (e.g. [15]).

By definition, we have

$$|H|^2 = \langle H, H \rangle = \sum_{i=1}^n (H^i)^2, \quad |dH|^2 = \langle dH, dH \rangle = \frac{1}{2} \sum_{i,j=1}^n (F^{ij})^2.$$

Let d^* be the adjoint operator of d with $d^* = (-1)^{n+nk+1} * d^* : \Lambda_k(\Omega) \to \Lambda_{k-1}(\Omega)$ and

$$\int_{\Omega} \langle da, b \rangle dx = \int_{\Omega} \langle a, d^*b \rangle dx$$

for $a \in \Lambda_k(\Omega), b \in \Lambda_{k+1}(\Omega)$, where b or a has compact support inside of Ω .

^{*} Received April 6, 2008; accepted for publication June 13, 2008.

[†] Department of Mathematics, University of Queensland, Brisbane, QLD 4702, Australia (hong @maths.uq.edu.au; yassin@maths.uq.edu.au).

[‡] Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan (tonegawa@math. sci.hokudai.ac.jp).

We consider the following system

(1.1)
$$d^*[\sigma(u)dH] = 0 \quad \text{in } \Omega$$

(1.2)
$$-\bigtriangleup u = \sigma(u)|dH|^2 \quad \text{in } \Omega$$

where σ is a positive function defined on \mathbb{R} .

We say that a pair (u, H) is a weak solution to the system (1.1)-(1.2) if $u \in W^{1,q}(\Omega)$ for some $q \in (1, \frac{n}{n-1})$ and $H \in W^{1,2}(\Omega; \mathbb{R}^n)$, and the pair (u, H) satisfies the following:

$$\int_{\Omega} \langle \sigma(u) dH, d\phi \rangle \, dx = 0,$$
$$\int_{\Omega} \nabla u \cdot \nabla \psi \, dx = \int_{\Omega} \sigma(u) |dH|^2 \psi \, dx$$

for all $\phi := \sum_{i=1}^{n} \phi^i(x) dx_i$ for i = 1, ..., n, where $\phi^i \in C_0^2(\Omega; \mathbb{R})$ and $\psi \in C_0^2(\Omega; \mathbb{R})$.

ASSUMPTION (S). $\sigma(u)$ is uniformly Hölder continuous in \mathbb{R} and there exist two constants σ_1 and σ_1 such that

$$0 < \sigma_1 \le \sigma(u) \le \sigma_2.$$

Uniform Hölder continuity above can be replaced by the assumption of Hölder continuity of $\sigma(u)$ (see [1]). Without loss of generality, we assume that Assumption (S) holds throughout this paper.

In this paper, we prove the partial regularity of the above weak solution to the system (1.1)-(1.2) in the following:

THEOREM A. Let a pair (u, H) be a weak solution to the system (1.1)-(1.2) with $u \in W^{1,q}(\Omega, \mathbb{R})$ for some $q \in (1, \frac{n}{n-1})$, $H \in W^{1,2}(\Omega; \mathbb{R}^n)$ and $d^*H(x) = 0$ for a.e. $x \in \Omega$. Then there exists an open subset Ω_0 of Ω such that the solution (u, H) is $C^{1,\alpha}$ locally in Ω_0 , and $\mathcal{H}^{n-q_1}(\Omega \setminus \Omega_0) = 0$ for some $q_1 > \frac{n}{n-1}$, where \mathcal{H}^{n-q_1} denotes the $(n-q_1)$ -dimensional Hausdorff measure.

The system (1.1)-(1.2) is not elliptic since it is invariant under the gauge transformation $(u, H) \rightarrow (u, H + \nabla \xi)$ for all $\xi \in W^{2,2}(\Omega)$. By a gauge transformation, one can fix a gauge satisfying

$$d^*H = \operatorname{div} H = \sum_i \frac{\partial H^i}{\partial x_i} = 0.$$

The system (1.1)-(1.2) with $d^*H = 0$ on Ω is a quasi-linear elliptic system which has a natural growth structure. When n = 3, Yin in [13], [14] proved the existence of weak solutions (u, H) to (1.1)-(1.2) with $u \in W^{1,q}(\Omega, \mathbb{R})$, $q \in (1, \frac{n}{n-1})$, $H \in W^{1,2}(\Omega; \mathbb{R}^3)$ and divH = 0 in Ω . Moreover, he also proved the regularity of continuous weak solutions to (1.1)-(1.2). However, he also pointed out that the continuity of the weak solution is unknown. For n > 3, we have a similar existence result for weak solutions to the system (1.1)-(1.2) using the same proof as in [13] and [14]. Generally, weak solutions of non-linear elliptic systems may have singularities by De Giorgi's example and Giusti-Miranda's example (see [8]). Partial regularity theory for weak solutions of non-linear elliptic systems began around 1968 by Morrey, Giusti-Miranda (e.g. see [1] or [2]). The reader may refer to an excellent book [1] on the further development of the general theory of partial regularity. For many cases of quasi-linear elliptic systems which have natural growth, e.g. harmonic map equations, one usually assumes that weak solutions to (1.1)-(1.2) are in the space $W^{1,2} \cap L^{\infty}(\Omega)$. From the existence result for weak solutions, we only know $u \in W^{1,q}(\Omega)$ with $q \in (1, \frac{n}{n-1})$, we do not know if uin $W^{1,2} \cap L^{\infty}(\Omega)$, so the general theory of non-linear elliptic systems in [1] does not apply to our system (1.1)-(1.2). Recently, the partial regularity of non-linear elliptic systems involving forms and maps was studied in [4].

When n = 3, the system (1.1)-(1.2) arises from approximating Maxwell's equations in a quasi-stationary electromagnetic field with non-ferromagnetic bodies (e.g. [11]). In the study of the penetration of a magnetic field in a medium, the electrical resistance strongly depends on the temperature. By taking the temperature effect into consideration, the classical Maxwell system in the quasi-static electromagnetic field can be reduced to the following system (see [11], [13] and [14]):

(1.3)
$$\partial_t H + \nabla \times [\sigma(u)\nabla \times H] = 0; \quad (x,t) \in \Omega \times (0,T)$$

(1.4)
$$\partial_t u - \Delta u = \sigma(u) |\nabla \times H|^2; \quad (x,t) \in \Omega \times (0,T)$$

(1.5)
$$\operatorname{div} H = 0; \qquad (x,t) \in \Omega \times (0,T),$$

where $H = (H^1(x,t), H^2(x,t), H^3(x,t))$ and u(x,t) represent the strength of the magnetic field and the temperature respectively, and $\sigma^{-1}(u)$ denotes the electrical conductivity of the material. By changing the notation from vector functions to forms, we can consider the vector function H and its 'curl' $\nabla \times \tilde{H}$ as a 1-form H(x) and its curvature dH respectively.

Now we generalize the Maxwell systems (1.3)-(1.5) to higher dimensional cases; i.e n > 3. Let u = u(x,t) and $H = \sum_i H^i(x,t) dx_i$ be a function and a 1-form on $Q_T = \Omega \times [0,T]$ respectively. Then we consider the following system

(1.6)
$$\partial_t H = -d^*[\sigma(u)dH]; \text{ in } Q_T$$

(1.7)
$$\partial_t u = \Delta u + \sigma(u) |dH|^2; \text{ in } Q_T,$$

with $d^*H(x,t) = 0$ for a. e. $(x,t) \in Q_T$, where σ is a positive function satisfying Assumption (S). The weak solution in $V_q^{1,0}(Q_T)$ to system (1.6)-(1.7) is defined in Section 4.

The second main result of this paper is the following:

THEOREM B. Let (u, H) be a weak solution to equations (1.6) and (1.7) with $u \in V_q^{1,0}(Q_T)$ for some $q \in (1, \frac{n+2}{n+1})$, $H^i \in V_2^{1,0}(Q_T; \mathbb{R}^n)$ for i = 1, ..., n and $d^*H = 0$ for a. e. $(x,t) \in Q_T$. Then when $n \geq 3$, there exists an open subset \tilde{Q} of Q_T such that the solution (u, H) is $C^{1,\alpha}$ in \tilde{Q} , and $\mathcal{H}^{n+2-q_3}(Q_T \setminus \tilde{Q}) = 0$ with $q_3 = \frac{(n+2)p}{n+2-2p}$ for some p > 2, where \mathcal{H}^{n+2-q_3} denotes the Hausdorff measure.

The paper is organized as follows. In Section 2, we prove Caccioppoli's inequality for H (Lemma 1) and then obtain L^p -estimates (Theorem 3) by applying the reverse Hölder inequality. In Section 3, we prove partial regularity for system (1.1)-(1.2) by applying Theorem 3. Finally, in Section 4, we establish partial regularity of weak solutions for the parabolic problem (1.6)-(1.7)using the analogous techniques as in the elliptic case. 2. Reverse Hölder inequalities and L^p -estimates. In this section, we establish the Caccioppoli inequality for H and the L^p -estimate.

Let x_0 be a point in Ω with $B_R(x_0) \subset \Omega$. For any function f, any 1-form H and any measurable set A, denote

$$\int_{A} f \, dx = \frac{1}{|A|} \int_{A} f \, dx, \quad f_{x_0,R} = \int_{B_R(x_0)} f \, dx, \quad (H)_{x_0,R} = H^i_{x_0,R} dx_i.$$

LEMMA 1. (Caccioppoli's inequality for H) Assume that (u, H) is a weak solution of (1.1)-(1.2) with $u \in W^{1,q}$, $H \in W^{1,2}$ and $d^*H(x) = 0$ for a.e. $x \in \Omega$. Then there exists a constant C such that for any $x_0 \in \Omega$ and ρ , R with $\rho < R$ with $B_R(x_0) \subset \Omega$,

$$\int_{B_{\rho}(x_0)} |\nabla H|^2 \, dx \le \frac{C}{(R-\rho)^2} \int_{B_R(x_0)} |H-(H)_{x_0,R}|^2 \, dx.$$

Proof. Without loss of generality, we assume $x_0 = 0$. Let ϕ be a smooth cut-off function with $\phi = 1$ on B_{ρ} , $\phi = 0$ outside B_R , $|\phi| \leq 1$ on $B_R \setminus B_{\rho}$, and $|\nabla \phi| \leq \frac{C}{R-\rho}$ on $B_R \setminus B_{\rho}$. Choosing $\phi^2(H - H_{0,R})$ as a test function in (1.1), we have

$$\int_{B_R} \langle d^*[\sigma(u)dH], \phi^2(H - H_{0,R}) \rangle \, dx = 0.$$

By Stokes' formula, we obtain

$$\begin{split} \int_{B_R} \sigma(u) |dH|^2 \phi^2 \, dx &= -2 \int_{B_R} \langle \sigma(u) dH, \phi d\phi \wedge (H - H_{0,R}) \rangle \, dx \\ &\leq \varepsilon \int_{B_R} |dH|^2 \phi^2 \, dx + \frac{C}{(R - \rho)^2} \int_{B_R} |H - H_{0,R}|^2 \, dx \end{split}$$

Choosing ε to be sufficiently small, we have

(2.1)
$$\int_{B_R} |dH|^2 \phi^2 \, dx \le \frac{C}{(R-\rho)^2} \int_{B_R} |H-H_{0,R}|^2 \, dx$$

We note

$$|dH|^{2} = \frac{1}{2} \sum_{i,j=1}^{n} \left(\frac{\partial H^{i}}{\partial x_{j}} - \frac{\partial H^{j}}{\partial x_{i}} \right)^{2}$$
$$= |\nabla H|^{2} - \sum_{i,j=1}^{n} \frac{\partial H^{i}}{\partial x_{j}} \frac{\partial H^{j}}{\partial x_{i}}.$$

Since $H \in W^{1,2}$, we can approximate it by smooth functions H_k in $W^{1,2}$ for

 $k = 1, 2, 3, \cdots$. By Stokes' formula, we have

$$\begin{split} \int_{B_R} |dH_k|^2 \phi^2 \, dx &= \int_{B_R} |\nabla H_k|^2 \phi^2 \, dx - \sum_{i,j=1}^n \int_{B_R} \frac{\partial H_k^i}{\partial x_j} \frac{\partial H_k^j}{\partial x_i} \phi^2 \, dx \\ &= \int_{B_R} |\nabla H_k|^2 \phi^2 \, dx + 2 \sum_{i,j=1}^n \int_{B_R} \frac{\partial H_k^i}{\partial x_j} \phi \frac{\partial \phi}{\partial x_i} [H_k^j - (H_k^j)_{0,R}] \, dx \\ &+ \int_{B_R} \sum_{i,j=1}^n \phi^2 [H_k^j - (H_k^j)_{0,R}] \frac{\partial^2 H_k^i}{\partial x_j \partial x_i} \, dx \\ &= \int_{B_R} |\nabla H_k|^2 \phi^2 \, dx + 2 \sum_{i,j=1}^n \int_{B_R} \frac{\partial H_k^i}{\partial x_j} \phi \frac{\partial \phi}{\partial x_i} [H_k^j - (H_k^j)_{0,R}] \, dx \\ &- \int_{B_R} \sum_{i,j=1}^n \frac{\partial}{\partial x_j} \left(\phi^2 [H_k^j - (H_k^j)_{0,R}] \right) \frac{\partial H_k^i}{\partial x_i} \, dx, \end{split}$$

where we note $\frac{\partial^2 H_k^i}{\partial x_j \partial x_i} = \frac{\partial^2 H_k^i}{\partial x_i \partial x_j}$. As $k \to \infty$, it follows from using $\sum_i \frac{\partial H^i}{\partial x_i} = 0$ that

$$\int_{B_R} |dH|^2 \phi^2 \, dx = \int_{B_R} |\nabla H|^2 \phi^2 \, dx + 2\sum_{i,j=1}^n \int_{B_R} \frac{\partial H^i}{\partial x_j} \phi \frac{\partial \phi}{\partial x_i} [H^j - (H^j)_{0,R}] \, dx$$

Therefore

$$\begin{split} \int_{B_R} |\nabla H|^2 \phi^2 \, dx &\leq \int_{B_R} |dH|^2 \phi^2 \, dx + \frac{1}{2} \int_{B_R} |\nabla H|^2 \phi^2 \, dx \\ &+ \frac{C}{(R-\rho)^2} \int_{B_R} |H-(H)_{0,R}|^2 \, dx. \end{split}$$

Now it follows from (2.1) that

$$\int_{B_R} |\nabla H|^2 \phi^2 \, dx \le \frac{C}{(R-\rho)^2} \int_{B_R} |H-(H)_{0,R}|^2 \, dx.$$

This proves our claim. \Box

By the Proposition in [1; Chapter V. Proposition 1.1, page 122-123], we have

PROPOSITION 2. (Reverse Hölder inequalities) Let Ω be an open domain and let f and g be positive functions. Suppose

$$f_{B_R(x_0)} g^q \, dx \le b \left(f_{B_{2R}(x_0)} g \, dx \right)^q + f_{B_{2R}(x_0)} f^q \, dx + \theta \, f_{B_{2R}(x_0)} g^q \, dx$$

for each $x_0 \in \Omega$ and each $R < \frac{1}{2}$ dist $(x_0, \partial \Omega) \wedge R_0$, where R_0 , b, θ are constants with b > 1, $R_0 > 0$, $0 \le \theta < 1$. Then $g \in L^p_{loc}(\Omega)$ for $p \in [q, q + \varepsilon)$ and

$$\left(f_{B_R(x_0)} g^p \, dx\right)^{1/p} \le c \left(f_{B_{2R}(x_0)} g^q \, dx\right)^{1/q} + c \left(f_{B_{2R}(x_0)} f^p \, dx\right)^{1/p}$$

for $B_{2R} \subset \Omega$, $R < R_0$, where c and ε are positive constants depending on b, θ , n.

THEOREM 3. (L^p -estimates) Let (u, H) be a weak solution of (1.1)-(1.2) with $u \in W^{1,q}(\Omega, \mathbb{R})$, $H \in W^{1,2}(\Omega, \mathbb{R}^n)$ and $d^*H(x) = 0$ for a.e. $x \in \Omega$. Then there exists a small positive constant ε such that $H \in W^{1,p}_{loc}(\Omega, \mathbb{R}^n)$ for some $p \in (2, 2 + \varepsilon)$. More precisely,

(2.2)
$$\left(\oint_{B_R(x_0)} |\nabla H|^p \, dx \right)^{1/p} \le c \left(\oint_{B_{2R}(x_0)} |\nabla H|^2 \, dx \right)^{1/2}$$

for all $x_0 \in \Omega$ and all R with $2R < R_0$ with $B_{R_0}(x_0) \subset \Omega$ for some $R_0 > 0$. Moreover $u \in W_{loc}^{1,q_1}$ with $q_1 = \frac{np}{(2n-p)} > \frac{n}{n-1}$ where p > 2 is fixed above.

Proof. By the Sobolev-Poincare inequality, we have

$$\int_{B_R} |H - (H)_{x_0,R}|^2 \, dx \le C R^{2 + (1 - \frac{2}{q_2})n} \left(\int_{B_R} |\nabla H|^{q_2} \, dx \right)^{2/q_2}$$

for $q_2 = \frac{2n}{n+2} < 2$.

Letting $\rho = R/2$ in Lemma 1, we have

$$\left(f_{B_{R/2}(x_0)} |\nabla H|^2 \, dx\right)^{1/2} \le C \left(f_{B_R(x_0)} |\nabla H|^{q_2} \, dx\right)^{1/q_2}.$$

Applying Proposition 2, there exists a p > 2 such that $H \in W^{1,p}(\Omega; \mathbb{R}^n)$ and (2.2) holds. Applying the standard L^p -theory for equation (1.2), we get $u \in W^{2,p/2}_{loc}(\Omega; \mathbb{R})$. By Sobolev's inequality again, we have $u \in W^{1,\frac{np}{(2n-p)}}$.

3. Proof of Theorem A. In this section, we give a proof of Theorem A.

Let $\Omega(x,\rho) = \Omega \cap B_{\rho}(x)$ and let $p \ge 1$ and $\lambda \ge 0$. At first, let us define the Morrey space $L^{p,\lambda}(\Omega)$ in the following

DEFINITION A. (Morrey spaces) We say that u belongs to $L^{p,\lambda}(\Omega)$ if $u \in L^p(\Omega)$ satisfies

$$\|u\|_{L^{p,\lambda}(\Omega)} = \left\{ \sup_{x_0 \in \Omega, 0 < \rho < \text{diam } \Omega} \rho^{-\lambda} \int_{\Omega(x_0,\rho)} |u|^p \, dx \right\}^{1/p} < +\infty$$

and the Campanato space $\mathcal{L}^{p,\lambda}(\Omega)$

DEFINITION B. (Campanato space) We say that u belongs to $\mathcal{L}^{p,\lambda}(\Omega)$ if $u \in L^p(\Omega)$ satisfies

$$[u]_{p,\lambda} = \left\{ \sup_{x_0 \in \Omega, 0 < \rho < \text{diam }\Omega} \rho^{-\lambda} \int_{\Omega(x_0,\rho)} |u - u_{x_0,\rho}|^p \, dx \right\}^{1/p} < +\infty,$$

where $u_{x_0,\rho} = \frac{1}{|\Omega(x,\rho)|} \int_{\Omega(x,\rho)} u(x) dx$.

Let us recall some results about Morrey and Campanato spaces from [1] and [2]. If there exists a constant A such that $|\Omega(x,\rho)| \ge A\rho^n$ for all $\Omega(x,\rho)$, the Campanato space $\mathcal{L}^{p,\lambda}(\Omega)$ is isomorphic to the Morrey space $L^{p,\lambda}(\Omega)$ when $0 \le \lambda < n$, and moreover, when $n < \lambda \le n + p$, $\mathcal{L}^{p,\lambda}(\Omega)$ is isomorphic to the Hölder space $C^{0,\alpha}$ with $\alpha = \frac{\lambda - n}{p}$. LEMMA 4. Let (u, H) be a weak solution to (1.1)-(1.2). Then u is also a weak solution to the following equation

(3.1)
$$\Delta u = d^*[\sigma(u)\langle dH, H\rangle],$$

where

(3.2)
$$\langle dH, H \rangle := \sum_{i,j=1}^{n} F^{ij} H^j dx_i.$$

Proof. Taking ϕH as a test function in (1.1), we obtain

$$\int_{\Omega} \langle \sigma(u) dH, d(\phi H) \rangle \, dx = 0,$$

where ϕ is a function with $\phi \in C_0^2(\Omega; \mathbb{R})$. Then by the definition in Section 1, we get

$$\begin{split} \int_{\Omega} \phi \sigma(u) |dH|^2 \, dx &= -\int_{\Omega} \langle \sigma(u) dH, d\phi \wedge H \rangle \, dx \\ &= -\int_{\Omega} \sigma(u) \langle \sum_{i,j} F^{ij} H^j dx_i, \sum_m \frac{\partial \phi}{\partial x_m} dx_m \rangle \, dx \\ &= -\int_{\Omega} \phi d^* [\sigma(u) \langle dH, H \rangle] \, dx \end{split}$$

for all $\phi \in C_0^2(\Omega; \mathbb{R})$, where $\langle dH, H \rangle$ is defined in (3.2). This proves our claim.

Now we prove partial regularity of the weak solutions (u, H) to the system (1.1)-(1.2).

Proof of Theorem A. Under the gauge condition $d^*H = 0$, we know from the Hodge theory that

$$-\bigtriangleup H = d^*dH + dd^*H = d^*dH.$$

Let $x_0 \in \Omega$ with $B_{R_0}(x_0) \subset \Omega$ for some $R_0 > 0$. Let a 1-form $H_1 \in W^{1,2}(B_R(x_0))$ be a weak solution of the following Dirichlet problem

(3.3)
$$\sigma(u_{x_0,R}) \bigtriangleup H_1 = 0, \forall x \in B_R(x_0),$$

(3.4)
$$H_1 - H \in W_0^{1,2}(B_R(x_0), \mathbb{R}^n).$$

Then for all $\rho < R \leq R_0$, we have

$$\int_{B_{\rho}(x_0)} |\nabla H_1|^2 \, dx \le C \left(\frac{\rho}{R}\right)^n \int_{B_R(x_0)} |\nabla H_1|^2 \, dx.$$

and therefore for all $\rho < R \leq R_0$ with some $R_0 > 0$

$$\int_{B_{\rho}(x_0)} |\nabla H|^2 \, dx \le C \left(\frac{\rho}{R}\right)^n \int_{B_R(x_0)} |\nabla H|^2 \, dx + C \int_{B_R(x_0)} |\nabla (H - H_1)|^2 \, dx.$$

Let $W = H - H_1$. Using equations (1.1) and (3.3), W is the weak solution of the following

$$\sigma(u_{x_0,R}) \bigtriangleup W = d^* \{ [\sigma(u) - \sigma(u_{x_0,R})] dH \}$$

with boundary condition W = 0 on $\partial B_R(x_0)$. Using W as a test function in the above equation, we get

(3.5)
$$\sigma(u_{x_0,R}) \int_{B_R} |\nabla W|^2 \, dx = -\int_{B_R} \langle [\sigma(u) - \sigma(u_{x_0,R})] dH, dW \rangle \, dx.$$

By the assumption on $\sigma(u)$, there exists a non-negative, bounded function $\omega(t)$ increasing in t, concave, continuous with $\omega(0) = 0$, such that for $u, v \in \mathbb{R}$,

(3.6)
$$|\sigma(u) - \sigma(v)| \le \omega(|u - v|^{q_1})$$

where $q_1 = \frac{np}{2n-p}$ and p is a fixed exponent in $(2, 2 + \varepsilon)$ from Theorem 3. Hence we get from (3.5)-(3.6)

$$\int_{B_R(x_0)} |\nabla W|^2 \, dx \le C \int_{B_R(x_0)} \omega^2 (|u - u_{x_0,R}|^{q_1}) |\nabla H|^2 \, dx.$$

By the Sobolev-Poincare inequality, we obtain

$$\int_{B_R} |u - u_{x_0,R}|^{q_1} \, dx \le C R^{q_1} \int_{B_R} |\nabla u|^{q_1} \, dx.$$

Using the L^p -estimate (Theorem 3) and the boundedness and concavity of ω , we have

$$\begin{split} &\int_{B_{R}(x_{0})} \omega^{2} (|u - u_{x_{0},R}|^{q_{1}}) |\nabla H|^{2} dx \\ &\leq C \left(\int_{B_{R}(x_{0})} |\nabla H|^{p} dx \right)^{2/p} \left(\int_{B_{R}(x_{0})} \omega^{\frac{2p}{p-2}} (|u - u_{x_{0},R}|^{q_{1}}) dx \right)^{\frac{p-2}{p}} \\ &\leq C \left(\int_{B_{2R}(x_{0})} |\nabla H|^{2} dx \right) \left(|B_{R}(x_{0})|^{-1} \int_{B_{R}(x_{0})} \omega (|u - u_{x_{0},R}|^{q_{1}}) dx \right)^{\frac{p-2}{p}} \\ &\leq C \omega^{\frac{p-2}{p}} \left(CR^{q_{1}-n} \int_{B_{R}(x_{0})} |\nabla u|^{q_{1}} dx \right) \left(\int_{B_{2R}} |\nabla H|^{2} dx \right), \end{split}$$

where last inequality comes from the concavity of ω using the Jensen inequality and the Poincare inequality.

Therefore for all $\rho < R < 2R \leq R_0$ we have

(3.7)

$$\int_{B_{\rho}(x_{0})} |\nabla H|^{2} dx \leq C \left(\frac{\rho}{R}\right)^{n} \int_{B_{2R}(x_{0})} |\nabla H|^{2} dx + C \omega^{\frac{p-2}{p}} \left(C R^{q_{1}-n} \int_{B_{2R}(x_{0})} |\nabla u|^{q_{1}} dx \right) \int_{B_{2R}(x_{0})} |\nabla H|^{2} dx$$

By Theorem 3, u belongs to $W^{2,p/2}(\Omega)$. Let $v \in W^{2,p/2}(B_R(x_0))$ be a weak solution of the following Dirichlet problem:

$$-\bigtriangleup v = 0, \quad \text{in } B_R(x_0),$$

 $v|_{\partial B_R} = u|_{\partial B_R}, \quad x \in \partial B_R(x_0).$

For the harmonic function v, it is easy to see that for $\rho \leq R < 2R \leq R_0$, we obtain

$$\int_{B_{\rho}(x_0)} |\nabla v|^{q_1} \, dx \le C \left(\frac{\rho}{R}\right)^n \int_{B_R(x_0)} |\nabla v|^{q_1} \, dx.$$

Let w = u - v. Then $w \in W^{2,p/2}(B_R(x_0);\mathbb{R})$ satisfies

$$-\bigtriangleup w = \sigma(u)|dH|^2$$
, in $B_R(x_0)$,
 $w = 0$ on $\partial B_R(x_0)$.

Then

$$\int_{B_{\rho}(x_0)} |\nabla u|^{q_1} \, dx \le C(\frac{\rho}{R})^n \int_{B_R(x_0)} |\nabla u|^{q_1} \, dx + C \int_{B_R} |\nabla w|^{q_1} \, dx.$$

We rescale

$$\tilde{u}(x) = u(x_0 + Rx), \tilde{w}(x) = w(x_0 + Rx), \tilde{H}(x) = H(x_0 + Rx) = H^i(x_0 + Rx)dx_i.$$

Then

(3.8)
$$-\bigtriangleup \tilde{w} = \sigma(u) |d\tilde{H}|^2, \quad \text{in } B_1,$$

(3.9)
$$\tilde{w} = 0; \text{ on } \partial B_1,$$

where $B_1 = B(0,1)$ is the unit ball in \mathbb{R}^n . Applying the standard elliptic L^p -theory (see [7]) to (3.8)-(3.9), we obtain

$$\left(\frac{1}{|B_1|} \int_{B_1} |\nabla^2 \tilde{w}|^{p/2} \, dx\right)^{2/p} \le C \left(\frac{1}{|B_1|} \int_{B_1} |\nabla \tilde{H}|^p \, dx\right)^{2/p},$$

where C is a constant independent of R.

Rescaling back, we have

$$\left(\frac{1}{|B_R(x_0)|} \int_{B_R(x_0)} |\nabla^2 w|^{p/2} \, dx\right)^{2/p} \le C \left(\frac{1}{|B_R(x_0)|} \int_{B_R(x_0)} |\nabla H|^p \, dx\right)^{2/p},$$

where C is a constant independent of R. By the Sobolev inequality and using L^p -estimates, we see

$$\left(\oint_{B_R(x_0)} |\nabla w|^{q_1} \, dx \right)^{\frac{1}{q_1}} \leq CR \left(\oint_{B_R(x_0)} |\nabla^2 w|^{p/2} \, dx \right)^{2/p}$$
$$\leq CR^{1-n} \int_{B_{2R}(x_0)} |\nabla H|^2 \, dx.$$

Therefore for all $\rho < R < 2R \leq R_0$, we have

(3.10)
$$\int_{B_{\rho}(x_{0})} |\nabla u|^{q_{1}} dx \leq C(\frac{\rho}{R})^{n} \int_{B_{2R}(x_{0})} |\nabla u|^{q_{1}} dx + CR^{n+q_{1}(1-n)} \left(\int_{B_{2R}(x_{0})} |\nabla H|^{2} dx \right)^{q_{1}}.$$

For any $x_0 \in \Omega$ and r with $R_0 \ge r > 0$, we denote

$$\Phi(x_0,r) = r^{2-n} \int_{B_r(x_0)} |\nabla H|^2 \, dx, \quad \xi(x_0,r) = r^{q_1-n} \int_{B_r(x_0)} |\nabla u|^{q_1} \, dx,$$

Note that (3.7) and (3.10) also hold for $R < \rho < 2R \le R_0$. Then for all $\tau < 1$, we have

$$\Phi(x_0, \tau R) \le C_1 [1 + \omega^{\frac{p-2}{p}} (C_2 \xi(x_0, R)) \tau^{-n}] \tau^2 \Phi(x_0, R)$$

and

$$\xi(x_0, \tau R) \le C_1 \tau^{q_1} \xi(x_0, R) + \tau^{q_1 - n} \Phi^{q_1}(x_0, R)$$

by using R instead of 2R in (3.7) and (3.10). For any $\alpha < 1$, choose $\tau < 1$ such that

$$2C_1\tau^{q_1\alpha} = 1.$$

There exists a small constant $\varepsilon_0 > 0$ such that if

$$\xi(x_0, R) + \Phi(x_0, R) < \varepsilon_0$$

for some $R < R_0$, then we have

$$\Phi^{q_1-1}(x_0, R) < \tau^n, \quad \omega^{\frac{p-2}{p}}(C_2\xi(x_0, R)) < \tau^n$$

provided that R is less than some R_0 . Hence

$$\xi(x_0, \tau R) + \Phi(x_0, \tau R) \le \tau^{2\alpha} [\xi(x_0, R) + \Phi(x_0, R)].$$

Therefore by iteration we obtain

$$\xi(x_0, \tau^k R) + \Phi(x_0, \tau^k R) \le \tau^{2k\alpha} [\xi(x_0, R) + \Phi(x_0, R)] < \varepsilon_0$$

In conclusion, if $\xi(x_0, R) + \Phi(x_0, 2R) < \varepsilon_0$ for some $R < R_0$, then

$$\xi(x_0, \tau^k R) + \Phi(x_0, \tau^k R) \le \tau^{2k\alpha} \varepsilon_0.$$

Hence for any $\rho < R_0$, we have

(3.11)
$$\xi(x_0, \rho) + \Phi(x_0, \rho) \le C(\frac{\rho}{R})^{2\alpha},$$

where C is a constant independent of ρ and R.

Note that $\xi(x_0, R)$ and $\Phi(x_0, R)$ are continuous functions of x_0 . There exits an open $\Omega_0 \subset \Omega$ such that u and H are in $C_{loc}^{0,\alpha}(\Omega_0)$ for every $\alpha < 1$. Moreover, $\Omega \setminus \Omega_0 \subset \Sigma_1 \cup \Sigma_2$, where

$$\Sigma_1 = \{ x \in \Omega : \liminf_{R \to 0^+} R^{2-n} \int_{B_R(x)} |\nabla H|^2 \, dx > 0 \},$$

$$\Sigma_2 = \{ x \in \Omega : \liminf_{R \to 0^+} R^{q_1 - n} \int_{B_R(x)} |\nabla u|^{q_1} \, dx > 0 \}.$$

Moreover, since $H \in W^{1,2}(\Omega, \mathbb{R}^n)$ and $u \in W^{1,q_1}_{loc}(\Omega, \mathbb{R}^n)$ with $q_1 = \frac{np}{2n-p}$ for some p > 2, we have

$$\mathcal{H}^{n-q_1}(\Omega \backslash \Omega_0) = 0$$

where \mathcal{H}^{n-q_1} denote $(n-q_1)$ -Hausdorff measure.

Next we prove $C^{1,\alpha}$ -regularity inside Ω_0 . We assume that $x_0 \in \Omega$ with $B_{2R}(x_0) \subset \Omega_0$. From the above results, we know that u and H are $C^{0,\alpha}(\Omega_0)$ for every $\alpha < 1$ and

$$R^{q_1-n} \int_{B_R(x_0)} |\nabla u|^{q_1} \, dx \le C R^{2\alpha}, \quad R^{2-n} \int_{B_R(x_0)} |\nabla H|^2 \, dx \le C R^{2\alpha},$$

where C is a constant independent of R. Note that H_1 is the solution to equations (3.3)-(3.4). For any ρ and R with $\rho < R \leq R_0$, we have

$$\int_{B_{\rho}(x_0)} |\nabla H_1 - (\nabla H_1)_{x_0,\rho}|^2 \, dx \le C \left(\frac{\rho}{R}\right)^{n+2} \int_{B_R(x_0)} |\nabla H_1 - (\nabla H_1)_{x_0,\rho}|^2 \, dx.$$

Repeating the same proof as before (3.7), we get

$$\int_{B_{\rho}(x_0)} |\nabla W|^2 \, dx \le C \omega^{\frac{p-2}{p}} \left(C R^{q_1 - n} \int_{B_R(x_0)} |\nabla u|^2 \, dx \right) \int_{B_R(x_0)} |\nabla H|^2 \, dx$$

for some p > 2.

Since ω is uniformly Hölder continuous, there exist constants β and C with $0 < \beta < 1$ such that $\omega(t) \leq Ct^{\beta}$. Therefore

$$\int_{B_{\rho}(x_{0})} |\nabla H - (\nabla H)_{x_{0},\rho}|^{2} dx \leq C \left(\frac{\rho}{R}\right)^{n+2} \int_{B_{2R}(x_{0})} |\nabla H - (\nabla H)_{x_{0},R}|^{2} dx + CR^{n-2+\alpha[2+\beta\frac{p-2}{p}]},$$

where $\alpha[2 + \beta \frac{p-2}{p}] > 2$ by letting α be closing to 1. Then the standard procedure yields that ∇H is $C^{0,\gamma}$ for some $0 < \gamma < 1$. By applying standard PDE theory to equation (1.2), it is easy to see that ∇u is also locally in $C^{0,\gamma_1}_{loc}(\Omega_0)$ for some $\gamma_1 > 0$. This proves our claim.

4. Partial regularity for the parabolic system. In this section, we prove the partial regularity of the weak solutions to system (1.5)-(1.6).

Denote $Q_T = \Omega \times (0,T)$ and let z = (x,t) for $x \in \Omega$ and $t \in (0,T)$. We recall some definitions from [9]. $L_{p,r}(Q_T)$ is the Banach space consisting of all measurable functions on Q_T with a finite norm

$$||u||_{p,r,Q_T} = \left(\int_0^T \left(\int_\Omega |u(x,t)|^p \, dx\right)^{r/p} \, dt\right)^{1/r}.$$

We denote $||u||_{p,Q_T} = ||u||_{p,p,Q_T}$. The space $V_p^{1,0}(Q_T)$ is the completion of $C^1(Q_T)$ with respect to the norm

$$|u|_{p;Q_T} = \left\{ \int_{Q_T} (|u|^p + |\nabla u|^p) dz \right\}^{1/p}.$$

The space $W_p^{2,1}(Q_T)$ with $p \ge 1$ is the Banach space consisting of the elements of $L_p(Q_T)$ having generalized derivatives of the form $D_t^r D_x^s$ with any r and s satisfying the inequality $2r + s \le 2$. The norm is defined by

$$||u||_{q,Q_T}^{(2)} = \sum_{j=0}^2 \langle \langle u \rangle \rangle_{q,Q_T}^{(j)}$$

with

$$\langle \langle u \rangle \rangle_{p,Q_T}^{(j)} = \sum_{2r+s=j} \| D_t^r D_x^s u \|_{q,Q_T}.$$

We say that a pair (u, H) is a weak solution to equations (1.6)-(1.7) if $u \in V_q^{1,0}(Q_T)$ for some $q \in (1, \frac{n}{n-1})$ and $H^i \in V_2^{1,0}(Q_T; \mathbb{R}^n)$, and the pair (u, H) satisfies the following:

(4.1)
$$\int_{Q_T} \left[\langle H, \partial_t \phi \rangle + \langle \sigma(u) dH, d\phi \rangle \right] \, dz = 0,$$

(4.2)
$$\int_{Q_T} \left[-u\psi_t + \nabla u \cdot \nabla \psi \right] dz = \int_{Q_T} \sigma(u) |dH|^2 \psi dz$$

for all $\phi := \sum_{i=1}^{n} \phi^{i}(x,t) dx_{i}$ for i = 1, ..., n with $d^{*}H = 0$ in Q_{T} in the weak sense, where $\phi^{i}(x,t) \in C_{0}^{2}(Q_{T};\mathbb{R})$ and $\psi(x,t) \in C_{0}^{2}(Q_{T};\mathbb{R})$. The existence of weak solutions of (4.1)-(4.2) with $d^{*}H = 0$ in Q_{T} was obtained by Yin in [13] and [14].

For any R > 0, denote $Q_R(z_0) = B_R(x_0) \times (t_0 - R^2, t_0 + R^2)$ with $z_0 = (x_0, t_0)$. We denote for any function u(x, t)

$$u_{z_0,R} = \oint_{Q_R(z_0)} u(z) \, dz.$$

Next, we prove partial regularity of weak solutions to the system (4.1)-(4.2) by modifying the method for elliptic case of Sections 2-3. The first step towards the proof of Theorem B is to establish a Caccioppoli's inequality and L^p -estimates for weak solutions to the parabolic system (4.1)-(4.2) by applying the proof of [3] and [6]. More precisely, we have

LEMMA 7. (Caccioppoli's inequality for parabolic problems) Assume that (u, H)is a weak solution of (4.1)-(4.2) with the assumptions of Theorem B. Then there exists a constant C such that for any $x_0 \in Q_T$ and any R with $2R \leq R_0$ with $Q_{R_0}(z_0) \subset Q_T$ for some $R_0 > 0$,

$$\int_{Q_R(z_0)} |\nabla H|^2 \, dz \le \frac{C}{R^2} \int_{Q_{2R}(z_0)} |H - \tilde{H}_{x_0, 2R}(t)|^2 \, dz.$$

Proof. Let $z_0 = (x_0, t_0) \in Q_T$. Let $\xi(x)$ be a function in $C_0^{\infty}(B_2(x_0))$ such that $0 \leq \xi \leq 1, \xi = 1$ in $B_1(x_0)$ and $|\nabla \xi| \leq 2$. We also denote by ξ_R the function $\xi_{2R}(x) = \xi(\frac{x}{R})$. As in [6], for a function $H^i(x, t)$, we define the weighted means of $H^i(x, t)$ in $B_{2R}(x_0)$ as

$$\tilde{H}^{i}_{x_{0},2R}(t) = \frac{\int_{B_{2R}(x_{0})} H^{i}(x,t)\xi_{2R}^{2} \, dx}{\int_{B_{2R}(x_{0})} \xi_{2R}^{2}(x) \, dx}$$

Then we define

$$\tilde{H}_{x_0,2R}(t) = \sum_i \tilde{H}^i_{x_0,2R}(t) dx_i.$$

Let $\tau \in C^{\infty}(\mathbb{R}, \mathbb{R})$ be a function only in t and satisfy $0 \leq \tau \leq 1$, $\tau \equiv 1$ on $[t_0 - R^2, t_0]$, $\tau \equiv 0$ on $t < t_0 - (2R)^2$. By the above choice, we note

(4.3)
$$\int_{t_0-4R^2}^{t_0} \left[\int_{B_{2R}(x_0)} (H^i - H^i_{2R}(t))\xi^2 \, dx \right] \partial_t \tilde{H}^i_{2R}(t)\tau^2 \, dt = 0.$$

Let $\mathbb{I}_{(-\infty,t_0)}$ be the characteristic function of the interval $(-\infty,t_0)$. Testing $\phi = (H - \tilde{H}_{2R}(t))\xi_{2R}^2\tau^2\mathbb{I}_{(-\infty,t_0)}$ and noting (4.3), we have

(4.4)

$$\int_{B(x_{0},2R)\times\{t_{0}\}} |H - \tilde{H}_{x_{0},2R}(t)|^{2} \xi^{2} \tau^{2} dx + \int_{Q_{2R}(z_{0})} \sigma(u) |dH|^{2} \xi^{2} \tau^{2} dz \\
\leq 2 \int_{Q_{2R}(z_{0})} |H - \tilde{H}_{x_{0},2R}(t)|^{2} \xi^{2} \tau \partial_{t} \tau dz \\
- 2 \int_{Q_{2R}(z_{0})} \sigma(u) \langle dH, \xi d\xi \wedge (H - \tilde{H}_{x_{0},2R}(t)) \rangle \tau^{2} dz.$$

It follows from (4.4) that

$$\int_{Q_R} |dH|^2 \xi^2 \tau^2 \, dz \le \frac{C}{R^2} \int_{Q_{2R}(z_0)} |H - \tilde{H}_{x_0, 2R}(t)|^2 \, dz.$$

A similar argument to Lemma 1 yields

$$\begin{split} &\int_{t_0-R^2}^{t_0} \int_{B_{2R}(x_0)} |dH|^2 \xi^2 \, dx \tau^2 \, dt \\ &= \int_{t_0-R^2}^{t_0} \left(\int_{B_{2R}(x_0)} |\nabla H|^2 \xi^2 \, dx - \sum_{i,j=1}^n \int_{B_{2R}(x_0)} \frac{\partial H^i}{\partial x_j} \frac{\partial H^j}{\partial x_i} \xi^2 \, dx \right) \tau^2 \, dt \\ &= \int_{t_0-R^2}^{t_0} \int_{B_{2R}(x_0)} \left(|\nabla H|^2 \xi^2 + 2 \sum_{i,j=1}^n \frac{\partial H^i}{\partial x_j} \xi \frac{\partial \xi}{\partial x_i} [H^j - \tilde{H}^j_{x_0,2R}(t)] \right) \, dx \, \tau^2 \, dt \\ &+ \int_{t_0-R^2}^{t_0} \int_{B_{2R}(x_0)} \sum_{i,j=1}^n \xi^2 [H^j - \tilde{H}^j_{x_0,2R}(t)] \frac{\partial^2 H^i}{\partial x_j \partial x_i} \, dx \, \tau^2 \, dt. \end{split}$$

By using $d^*H = 0$, the last term in above identity is zero. This proves our claim. We have the following L^p -estimate:

LEMMA 8. Let (u, H) be a weak solution to the system (4.1)-(4.2) with the assumptions of Theorem B. Then there exists an exponent p > 2 such that $\nabla H \in L^p_{loc}(Q_T)$; moreover for all $Q_R(z_0) \subset Q_{4R}(z_0) \subset Q_T$ we have

$$\oint_{Q_R(z_0)} |\nabla H|^p \, dz \le C \left(\oint_{Q_{4R}(z_0)} |\nabla H|^2 \, dz \right)^{\frac{p}{2}}$$

and $u \in W^{2,1}_{p/2;loc}(Q_T)$.

For the proof of Lemma 8, the same proof as in [5] gives the desired L^p -estimate for H by using the reverse Hölder inequality as in Proposition 3. The fact $u \in$ $W_{p/2;loc}^{2,1}(Q_T)$ follows from Theorem 9.1 of Chapter IV of [10; pages 341-2].

By a slight modification of arguments in [12] (for the details, see [14]), we have

LEMMA 9. Let (u, H) be a weak solution to the system (4.1)-(4.2) with the assumptions of Theorem B. Then for all $Q_R(z_0) \subset Q_{2R}(z_0) \subset Q_T$, we have

$$\int_{Q_R(z_0)} |H - H_{R,z_0}|^2 \, dz \le CR^2 \int_{Q_{2R}(z_0)} |\nabla H|^2 \, dz.$$

Now we complete the proof of Theorem B.

Proof of Theorem B. For any $z_0 \in Q_T$, choose R_0 with $Q_{R_0}(z_0) \subset Q_T$. Let $S_R(z_0)$ be the parabolic boundary of $Q_R(z_0)$ defined by

$$S_R = B_R(x_0, t_0 - R^2) \cup [\partial B_R(x_0) \times (t_0 - R^2, t_0 + R^2)].$$

Let a 1-form $H_1 \in V_2^{1,0}(Q_R(z_0))$ be the weak solution of the following parabolic problem:

(4.5)
$$\partial_t H_1 = \sigma(u_{z_0,R}) \bigtriangleup H_1, \text{ in } Q_R(z_0),$$

(4.6)
$$H_1|_{S_R(z_0)} = H|_{S_R(z_0)}, \text{ on } S_R(z_0).$$

For all $\rho < R \leq R_0$, we have

$$\int_{Q_{\rho}(z_0)} |\nabla H|^2 \, dz \le C \left(\frac{\rho}{R}\right)^{n+2} \int_{Q_R(z_0)} |\nabla H|^2 \, dz + C \int_{Q_R(x_0)} |\nabla W|^2 \, dz$$

with $W = H - H_1$. By a similar proof as in Section 3, we have

$$\int_{Q_R(z_0)} |\nabla W|^2 \, dz \le C \omega^{\frac{p-2}{p}} \left(CR^{-n} \int_{Q_{4R}(z_0)} |u - u_{z_0,R}|^{p/2} \, dz \right) \int_{Q_{2R}(z_0)} |\nabla H|^2 \, dz.$$

Let $v \in W^{2,1}_{p/2}(Q_R(z_0))$ be a weak solution of

$$\partial_t v = \triangle v, \quad \text{in } Q_R(z_0),$$

 $v|_{S_R(z_0)} = u|_{S_R(z_0)}, \text{ on } S_R(z_0).$

Then for all $\rho < R \leq R_0$, we have

$$\int_{Q_{\rho}(z_{0})} |\partial_{t}u|^{p/2} dz \leq C \left(\frac{\rho}{R}\right)^{n+2} \int_{Q_{R}(z_{0})} |\partial_{t}u|^{p/2} dz + C \int_{Q_{R}(z_{0})} |\partial_{t}w|^{p/2} dz$$

and

$$\int_{Q_{\rho}(z_0)} |\nabla u|^{p/2} \, dz \le C(\frac{\rho}{R})^{n+2} \int_{Q_R(z_0)} |\nabla u|^{p/2} \, dz + C \int_{Q_R(z_0)} |\nabla w|^{p/2} \, dz,$$

where w = u - v satisfies

$$\partial_t w = \Delta w + \sigma(u) |dH|^2$$
, in $Q_R(z_0)$,
 $w = 0$ on $S_R(z_0)$.

Since $|\nabla H|^2$ is locally in $L^{p/2,p/2}(Q_T)$, we have from Theorem 9.1 of [10; Chapter IV] and Lemma 8 that

$$\int_{Q_R(z_0)} \left(|\nabla^2 w|^{p/2} + |\partial_t u|^{p/2} \right) dz \le C \int_{Q_R(z_0)} |\nabla H|^p dz \\ \le C R^{n+2} \left(\oint_{Q_{4R}(z_0)} |\nabla H|^2 dx \right)^{p/2}.$$

By the Sobolev inequality and using L^p -estimates in (4.7), we know

$$\begin{split} \int_{Q_R(z_0)} |\nabla w|^{p/2} \, dz &\leq C R^{p/2} \int_{Q_R(z_0)} |\nabla^2 w|^{p/2} \, dz \\ &\leq C R^{n+2-\frac{p}{2}(n+1)} \left(\int_{Q_{4R}(z_0)} |\nabla H|^2 \, dx \right)^{p/2}. \end{split}$$

By a version of the Sobolev-Poincare inequality, we have (4.8)

$$\int_{Q_R(z_0)} |u - u_{z_0,R}|^{p/2} \, dz \le C \left[R^{p/2} \int_{Q_R(z_0)} |\nabla u|^{p/2} \, dz + R^p \int_{Q_R(z_0)} |\partial_t u|^{p/2} \, dz \right].$$

For any $z_0 \in Q_T$ and r with $Q_{z_0,r} \subset Q_T$, we denote

$$\begin{split} \Phi(z_0,r) &= r^{-n} \int_{Q_r(z_0)} |\nabla H|^2 \, dz, \quad \xi(z_0,r) = r^{-n-2+p/2} \int_{Q_r(z_0)} |\nabla u|^{p/2} \, dz, \\ \eta(z_0,r) &= r^{-n-2+p} \int_{Q_r(z_0)} |\partial_t u|^{p/2} \, dz. \end{split}$$

Then for all $\tau < 1$, we have

$$\Phi(z_0, \tau R) \le C_1 [1 + \omega^{\frac{p-2}{p}} (C_2[\xi(z_0, R) + \eta(z_0, R)]) \tau^{-(n+2)} \tau^2 \Phi(x_0, R),$$

$$\xi(z_0, \tau R) \le C_1 \tau^2 \xi(x_0, R) + \tau^{\frac{p}{2} - (n+2)} \Phi^{\frac{p}{2}}(x_0, R)$$

and

$$\eta(z_0, \tau R) \le C_1 \tau^p \eta(z_0, R) + \tau^{p - (n+2)} \Phi^{\frac{p}{2}}(z_0, R).$$

If there exists a constant ε_0 such that $\Phi(z_0, r) + \xi(z_0, r) + \eta(z_0, r) < \varepsilon_0$ for some $r \leq R_0$, then a similar iteration step as in Section 3 yields

$$\phi(z_0, \rho) + \xi(z_0, \rho) + \eta(z_0, \rho) \le C \rho^{2\alpha}$$

for all $\alpha < 1$ and $\rho \leq r \leq R_0$. Using the Sobolev inequality (4.8) and Lemma 9, we obtain through the Campanato space that u(x,t) and H(x,t) are Hölder continuous in α locally in \tilde{Q} where \tilde{Q} is an open subset of Q_T . A similar argument as in Section In a locally in Q where Q is an open subset of Q_T . A similar argument as in Section 3 yields that u(x,t) and H(x,t) are also in $C_{loc}^{1,\gamma}(\tilde{Q})$ for some $\gamma < 1$. Since u is in $W_{p/2;loc}^{2,1}(Q_T)$, we have $\nabla u \in L_{q_3,q_3;loc}(Q_T)$, $q_3 = \frac{(n+2)p}{n+2-2p}$ by the

parabolic type Sobolev inequality (see [10; Lemma 3.3, page 80]). Moreover, Hölder's

inequality gives

$$\xi(z_0, R) \le \left(R^{q_3 - n - 2} \int_{Q_{z_0, R}} |\nabla u|^{q_3} \, dz \right)^{\frac{p}{2q_3}}.$$

We have $Q_T \setminus \tilde{Q} \subset \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ where

$$\Sigma_1 = \{ z_0 \in Q_T : \liminf_{R \to 0^+} R^{-n} \int_{Q_{z_0,R}} |\nabla H|^2 \, dz > 0 \},$$

$$\Sigma_2 = \{ z_0 \in Q_T : \liminf_{R \to 0^+} R^{q_3 - n - 2} \int_{Q_{z_0,R}} |\nabla u|^{q_3} \, dz > 0 \},$$

and

$$\Sigma_3 = \{ z_0 \in Q_T : \liminf_{R \to 0^+} R^{p-n-2} \int_{Q_{z_0,R}} |\partial_t u|^{p/2} \, dz > 0 \}.$$

Sine $\nabla H \in L_{2;loc}(Q_T, \mathbb{R}^n)$ and $\partial_t u \in L_{p/2}(Q_T, \mathbb{R}^n)$, we have

$$\mathcal{H}^{n+2-q_3}(Q_T \setminus \tilde{Q}) = 0,$$

where \mathcal{H}^{n+2-q_3} denotes $(n+2-q_3)$ -Hausdorff measure. This proves our claim.

REFERENCES

- M. GIAQUINTA, Mutilple integrals in the calculus of variations and nonlinear elliptic systems, Princeton Uviversity Press, 1983.
- M. GIAQUINTA, Mutilple integrals in the calculus of variations and nonlinear elliptic systems, Birkhäuser, Basel, 1993.
- M. GIAQUINTA AND E. GIUSTI, Partial regularity for the solutions to nonlinear parabolic systems, Ann. Mat. Pura. Appl., 47 (1973), pp. 253-266.
- M. GIAQUINTA AND M.-C. HONG, Partial regularity of minimizers of a functional ivolving forms and maps, Nonlinear differ. equ. appl., 11 (2004), pp. 469–490.
- M. GIAQUINTA AND G. MODICA, Regularity results for some classes of higher order non-linear elliptic systems, J. Reine Angew. Math., 311/312 (1979), pp. 145–169.
- M. GIAQUINTA AND M. STRUWE, On the partial regularity weak solutions of non-linear parabolic systems, Math. Z, 179 (1982), pp. 437–451.
- [7] D. GILBARG AND N. S. TRUDINGER, Elliptic differential equations of second order, Springer-Verlag, 1983.
- [8] E. GIUSTI AND M, MIRANDA, Sulla regolarita delle soluzioni deboli di una class di sistemi ellittici quasilinerari, Arch. Rat. Mech. Anal., 31 (1968), pp. 173–184.
- [9] J. JOST, Nonliear methods in Riemannian and Kählerian Geometry, Birkhäuser, Basel, 1988.
- [10] O. A. LADYZHENSKAYA, V. A. SOLONNIKOV AND N. N. URAL'CEVA, *Linear and quasilinear equa*tions of parabolic type, Tanslations of Mathematical Monographs 23. Providence, Rhode Island: American Mathematical Society, 1968.
- [11] L. D. LANDAU AND E.M. LIFSHITZ, *Electrodynamics of Continuous Media*, Pergmon Press, 1960.
- [12] M. STRUWE, On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems, Manuscripta Math., 35 (1981), pp. 125–145.
- [13] H-M YIN, Global solutions of Maxwell's equations in an electromagnetic field with a temperature dependent electrical conductivity, European journal of Applied Mathematics, 5 (1994), pp. 57–64.
- [14] H-M YIN, Regularity of solutions to Maxwell's system in quasi-stationary electromagnetic fields and application, Commun. in Partial Differential Equations, 22 (1997), pp. 1029–1053.

220

[15] F. W. WARNER, Foundations of Differentiable Manifolds and Lie Groups, Birkhäuser, Basel, 1988.