
METHODS AND APPLICATIONS OF ANALYSIS. c© 2008 International Press

Vol. 15, No. 2, pp. 205–222, June 2008 006

PARTIAL REGULARITY OF WEAK SOLUTIONS TO MAXWELL’S

EQUATIONS IN A QUASI-STATIC ELECTROMAGNETIC FIELD
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Abstract. We study Maxwell’s equations in a quasi-static electromagnetic field, where the

electrical conductivity of the material depends on the temperature. By establishing the reverse

Hölder inequality, we prove partial regularity of weak solutions to the non-linear elliptic system and

the non-linear parabolic system in a quasi-static electromagnetic field.

Key words. Partial regularity, elliptic systems, parabolic systems.

AMS subject classifications. 35J45, 35J60, 58E20

1. Introduction. In this paper, let Ω be a domain in R
n

with n ≥ 3, and let u(x)
and Hi

(x) for i = 1, ..., n be scalar functions defined on Ω. For any positive integer k,
let Λk(Ω) denote the space of k-forms on Ω. We have the usual exterior derivative d
of forms with d : Λk(Ω) → Λk+1(Ω). Consider a 1-form H =

∑n
i=1

Hi
(x)dxi, which

may be regarded as a connection in differential geometry. We define the curvature F
of the connection H by

F = dH =

∑

i<j

F ijdxi ∧ dxj ,

where F ij
=

∂Hj

∂xi
− ∂Hi

∂xj
(e.g. [9]).

Let ∗ be the Hodge star linear operator which assigns to each k-form on Ω an

(n− k)-form and which satisfies

∗∗ = (−1)
k(n−k).

We have a product 〈·, ·〉 in the k-form space Λk(Ω)

〈a, b〉dx1 ∧ ... ∧ dxn = a ∧ ∗b, |a|2 = 〈a, a〉

for all a, b ∈ Λk(Ω) (e.g. [15]).

By definition, we have

|H |2 = 〈H,H〉 =

n
∑

i=1

(Hi
)
2, |dH |2 = 〈dH, dH〉 =

1

2

n
∑

i,j=1

(F ij
)
2.

Let d∗ be the adjoint operator of d with d∗ = (−1)
n+nk+1∗d∗ : Λk(Ω) → Λk−1(Ω)

and
∫

Ω

〈da, b〉dx =

∫

Ω

〈a, d∗b〉dx

for a ∈ Λk(Ω), b ∈ Λk+1(Ω), where b or a has compact support inside of Ω.
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We consider the following system

(1.1) d∗[σ(u)dH ] = 0 in Ω

(1.2) −△ u = σ(u)|dH |2 in Ω

where σ is a positive function defined on R.

We say that a pair (u,H) is a weak solution to the system (1.1)-(1.2) if u ∈
W 1,q

(Ω) for some q ∈ (1, n
n−1

) and H ∈ W 1,2
(Ω; R

n
), and the pair (u,H) satisfies the

following:
∫

Ω

〈σ(u)dH, dφ〉 dx = 0,

∫

Ω

∇u · ∇ψ dx =

∫

Ω

σ(u)|dH |2ψ dx

for all φ :=
∑n

i=1
φi

(x)dxi for i = 1, ..., n, where φi ∈ C2

0
(Ω; R) and ψ ∈ C2

0
(Ω; R).

Assumption (S). σ(u) is uniformly Hölder continuous in R and there exist two
constants σ1 and σ1 such that

0 < σ1 ≤ σ(u) ≤ σ2.

Uniform Hölder continuity above can be replaced by the assumption of Hölder

continuity of σ(u) (see [1]). Without loss of generality, we assume that Assumption

(S) holds throughout this paper.

In this paper, we prove the partial regularity of the above weak solution to the

system (1.1)-(1.2) in the following:

Theorem A. Let a pair (u,H) be a weak solution to the system (1.1)-(1.2) with
u ∈ W 1,q

(Ω,R) for some q ∈ (1, n
n−1

), H ∈ W 1,2
(Ω; R

n
) and d∗H(x) = 0 for a.e.

x ∈ Ω. Then there exists an open subset Ω0 of Ω such that the solution (u,H) is C1,α

locally in Ω0, and Hn−q1(Ω\Ω0) = 0 for some q1 >
n

n−1
, where Hn−q1 denotes the

(n− q1)-dimensional Hausdorff measure.
The system (1.1)-(1.2) is not elliptic since it is invariant under the gauge trans-

formation (u,H) → (u,H + ∇ξ) for all ξ ∈ W 2,2
(Ω). By a gauge transformation, one

can fix a gauge satisfying

d∗H = divH =

∑

i

∂Hi

∂xi
= 0.

The system (1.1)-(1.2) with d∗H = 0 on Ω is a quasi-linear elliptic system which has a

natural growth structure. When n = 3, Yin in [13], [14] proved the existence of weak

solutions (u,H) to (1.1)-(1.2) with u ∈ W 1,q
(Ω,R), q ∈ (1, n

n−1
), H ∈ W 1,2

(Ω; R
3
)

and divH = 0 in Ω. Moreover, he also proved the regularity of continuous weak

solutions to (1.1)-(1.2). However, he also pointed out that the continuity of the weak

solution is unknown. For n > 3, we have a similar existence result for weak solutions

to the system (1.1)-(1.2) using the same proof as in [13] and [14]. Generally, weak

solutions of non-linear elliptic systems may have singularities by De Giorgi’s example

and Giusti-Miranda’s example (see [8]). Partial regularity theory for weak solutions

of non-linear elliptic systems began around 1968 by Morrey, Giusti-Miranda (e.g. see

[1] or [2]). The reader may refer to an excellent book [1] on the further development of

the general theory of partial regularity. For many cases of quasi-linear elliptic systems
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which have natural growth, e.g. harmonic map equations, one usually assumes that

weak solutions to (1.1)-(1.2) are in the space W 1,2∩L∞
(Ω). From the existence result

for weak solutions, we only know u ∈ W 1,q
(Ω) with q ∈ (1, n

n−1
), we do not know if u

in W 1,2 ∩ L∞
(Ω), so the general theory of non-linear elliptic systems in [1] does not

apply to our system (1.1)-(1.2). Recently, the partial regularity of non-linear elliptic

systems involving forms and maps was studied in [4].

When n = 3, the system (1.1)-(1.2) arises from approximating Maxwell’s equa-

tions in a quasi-stationary electromagnetic field with non-ferromagnetic bodies (e.g.

[11]). In the study of the penetration of a magnetic field in a medium, the electrical

resistance strongly depends on the temperature. By taking the temperature effect into

consideration, the classical Maxwell system in the quasi-static electromagnetic field

can be reduced to the following system (see [11], [13] and [14]):

(1.3) ∂tH + ∇× [σ(u)∇×H ] = 0; (x, t) ∈ Ω × (0, T )

(1.4) ∂tu−△u = σ(u)|∇ ×H |2; (x, t) ∈ Ω × (0, T )

(1.5) divH = 0; (x, t) ∈ Ω × (0, T ),

where H = (H1
(x, t), H2

(x, t), H3
(x, t)) and u(x, t) represent the strength of the mag-

netic field and the temperature respectively, and σ−1
(u) denotes the electrical con-

ductivity of the material. By changing the notation from vector functions to forms,

we can consider the vector function H and its ‘curl’ ∇× H̃ as a 1-form H(x) and its

curvature dH respectively.

Now we generalize the Maxwell systems (1.3)-(1.5) to higher dimensional cases;

i.e n > 3. Let u = u(x, t) and H =
∑

i H
i
(x, t)dxi be a function and a 1-form on

QT = Ω × [0, T ] respectively. Then we consider the following system

(1.6) ∂tH = −d∗[σ(u)dH ]; in QT

(1.7) ∂tu = △u+ σ(u)|dH |2; in QT ,

with d∗H(x, t) = 0 for a. e. (x, t) ∈ QT , where σ is a positive function satisfying

Assumption (S). The weak solution in V 1,0
q (QT ) to system (1.6)-(1.7) is defined in

Section 4.

The second main result of this paper is the following:

Theorem B. Let (u,H) be a weak solution to equations (1.6) and (1.7) with

u ∈ V 1,0
q (QT ) for some q ∈ (1, n+2

n+1
), Hi ∈ V 1,0

2
(QT ; R

n
) for i = 1, ..., n and d∗H = 0

for a. e. (x, t) ∈ QT . Then when n ≥ 3, there exists an open subset Q̃ of QT such

that the solution (u,H) is C1,α in Q̃, and Hn+2−q3(QT \Q̃) = 0 with q3 =
(n+2)p
n+2−2p for

some p > 2, where Hn+2−q3 denotes the Hausdorff measure.

The paper is organized as follows. In Section 2, we prove Caccioppoli’s inequality

for H (Lemma 1) and then obtain Lp
-estimates (Theorem 3) by applying the reverse

Hölder inequality. In Section 3, we prove partial regularity for system (1.1)-(1.2) by

applying Theorem 3. Finally, in Section 4, we establish partial regularity of weak

solutions for the parabolic problem (1.6)-(1.7)using the analogous techniques as in the

elliptic case.
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2. Reverse Hölder inequalities and Lp
-estimates. In this section, we es-

tablish the Caccioppoli inequality for H and the Lp
-estimate.

Let x0 be a point in Ω with BR(x0) ⊂ Ω. For any function f , any 1-form H and

any measurable set A, denote

−

∫

A

f dx =
1

|A|

∫

A

f dx, fx0,R = −

∫

BR(x0)

f dx, (H)x0,R = Hi
x0,Rdxi.

Lemma 1. (Caccioppoli’s inequality for H) Assume that (u,H) is a weak solution
of (1.1)-(1.2) with u ∈ W 1,q, H ∈ W 1,2 and d∗H(x) = 0 for a.e. x ∈ Ω. Then there
exists a constant C such that for any x0 ∈ Ω and ρ,R with ρ < R with BR(x0) ⊂ Ω,

∫

Bρ(x0)

|∇H |2 dx ≤
C

(R − ρ)2

∫

BR(x0)

|H − (H)x0,R|
2 dx.

Proof. Without loss of generality, we assume x0 = 0. Let φ be a smooth cut-off

function with φ = 1 on Bρ, φ = 0 outside BR, |φ| ≤ 1 on BR\Bρ, and |∇φ| ≤ C
R−ρ on

BR\Bρ. Choosing φ2
(H −H0,R) as a test function in (1.1), we have

∫

BR

〈d∗[σ(u)dH ], φ2

(H −H0,R)〉 dx = 0.

By Stokes’ formula, we obtain

∫

BR

σ(u)|dH |2φ2 dx = −2

∫

BR

〈σ(u)dH, φdφ ∧ (H −H0,R)〉 dx

≤ ε

∫

BR

|dH |2φ2 dx+
C

(R− ρ)2

∫

BR

|H −H0,R|
2 dx.

Choosing ε to be sufficiently small, we have

(2.1)

∫

BR

|dH |2φ2 dx ≤
C

(R− ρ)2

∫

BR

|H −H0,R|
2 dx

We note

|dH |2 =
1

2

n
∑

i,j=1

(

∂Hi

∂xj
−
∂Hj

∂xi

)2

= |∇H |2 −
n
∑

i,j=1

∂Hi

∂xj

∂Hj

∂xi
.

Since H ∈ W 1,2
, we can approximate it by smooth functions Hk in W 1,2

for
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k = 1, 2, 3, · · · . By Stokes’ formula, we have

∫

BR

|dHk|
2φ2 dx =

∫

BR

|∇Hk|
2φ2 dx−

n
∑

i,j=1

∫

BR

∂Hi
k

∂xj

∂Hj
k

∂xi
φ2 dx

=

∫

BR

|∇Hk|
2φ2 dx+ 2

n
∑

i,j=1

∫

BR

∂Hi
k

∂xj
φ
∂φ

∂xi
[Hj

k − (Hj
k)0,R] dx

+

∫

BR

n
∑

i,j=1

φ2

[Hj
k − (Hj

k)0,R]
∂2Hi

k

∂xj∂xi
dx

=

∫

BR

|∇Hk|
2φ2 dx+ 2

n
∑

i,j=1

∫

BR

∂Hi
k

∂xj
φ
∂φ

∂xi
[Hj

k − (Hj
k)0,R] dx

−

∫

BR

n
∑

i,j=1

∂

∂xj

(

φ2

[Hj
k − (Hj

k)0,R]

) ∂Hi
k

∂xi
dx,

where we note
∂2Hi

k

∂xj∂xi
=

∂2Hi

k

∂xi∂xj
. As k → ∞, it follows from using

∑

i
∂Hi

∂xi
= 0 that

∫

BR

|dH |2φ2 dx =

∫

BR

|∇H |2φ2 dx+ 2

n
∑

i,j=1

∫

BR

∂Hi

∂xj
φ
∂φ

∂xi
[Hj − (Hj

)0,R] dx

Therefore
∫

BR

|∇H |2φ2 dx ≤

∫

BR

|dH |2φ2 dx+
1

2

∫

BR

|∇H |2φ2 dx

+
C

(R− ρ)2

∫

BR

|H − (H)0,R|
2 dx.

Now it follows from (2.1) that

∫

BR

|∇H |2φ2 dx ≤
C

(R − ρ)2

∫

BR

|H − (H)0,R|
2 dx.

This proves our claim.

By the Proposition in [1; Chapter V. Proposition 1.1, page 122-123], we have

Proposition 2. (Reverse Hölder inequalities) Let Ω be an open domain and let
f and g be positive functions. Suppose

−

∫

BR(x0)

gq dx ≤ b

(

−

∫

B2R(x0)

g dx

)q

+ −

∫

B2R(x0)

f q dx+ θ −

∫

B2R(x0)

gq dx

for each x0 ∈ Ω and each R < 1

2
dist (x0, ∂Ω) ∧R0, where R0, b, θ are constants with

b > 1, R0 > 0, 0 ≤ θ < 1. Then g ∈ Lp
loc(Ω) for p ∈ [q, q + ε) and

(

−

∫

BR(x0)

gp dx

)

1/p

≤ c

(

−

∫

B2R(x0)

gq dx

)

1/q

+ c

(

−

∫

B2R(x0)

fp dx

)

1/p

for B2R ⊂ Ω, R < R0, where c and ε are positive constants depending on b, θ, n.
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Theorem 3. (Lp-estimates) Let (u,H) be a weak solution of (1.1)-(1.2) with
u ∈ W 1,q

(Ω,R), H ∈ W 1,2
(Ω,Rn

) and d∗H(x) = 0 for a.e. x ∈ Ω. Then there exists

a small positive constant ε such that H ∈ W 1,p
loc (Ω,Rn

) for some p ∈ (2, 2 + ε). More
precisely,

(2.2)

(

−

∫

BR(x0)

|∇H |p dx

)

1/p

≤ c

(

−

∫

B2R(x0)

|∇H |2 dx

)

1/2

for all x0 ∈ Ω and all R with 2R < R0 with BR0
(x0) ⊂ Ω for some R0 > 0. Moreover

u ∈ W 1,q1

loc with q1 =
np

(2n−p)
> n

n−1
where p > 2 is fixed above.

Proof. By the Sobolev-Poincare inequality, we have

∫

BR

|H − (H)x0,R|
2 dx ≤ CR2+(1− 2

q2
)n

(
∫

BR

|∇H |q2 dx

)

2/q2

for q2 =
2n

n+2
< 2.

Letting ρ = R/2 in Lemma 1, we have

(

−

∫

BR/2(x0)

|∇H |2 dx

)

1/2

≤ C

(

−

∫

BR(x0)

|∇H |q2dx

)

1/q2

.

Applying Proposition 2, there exists a p > 2 such that H ∈ W 1,p
(Ω;Rn

) and (2.2)

holds. Applying the standard Lp
-theory for equation (1.2), we get u ∈ W

2,p/2

loc (Ω; R).

By Sobolev’s inequality again, we have u ∈W 1, np

(2n−p) .

3. Proof of Theorem A. In this section, we give a proof of Theorem A.

Let Ω(x, ρ) = Ω ∩ Bρ(x) and let p ≥ 1 and λ ≥ 0. At first, let us define the

Morrey space Lp,λ
(Ω) in the following

Definition A. (Morrey spaces) We say that u belongs to Lp,λ
(Ω) if u ∈ Lp

(Ω)

satisfies

‖u‖Lp,λ
(Ω)

=

{

sup

x0∈Ω,0<ρ<diam Ω

ρ−λ

∫

Ω(x0,ρ)

|u|p dx

}

1/p

< +∞

and the Campanato space Lp,λ
(Ω)

Definition b. (Campanato space) We say that u belongs to Lp,λ
(Ω) if u ∈ Lp

(Ω)

satisfies

[u]p,λ =

{

sup

x0∈Ω,0<ρ<diam Ω

ρ−λ

∫

Ω(x0,ρ)

|u − ux0,ρ|
p dx

}

1/p

< +∞,

where ux0,ρ =
1

|Ω(x,ρ)|

∫

Ω(x,ρ)
u(x)dx.

Let us recall some results about Morrey and Campanato spaces from [1] and [2].

If there exists a constant A such that |Ω(x, ρ)| ≥ Aρn
for all Ω(x, ρ), the Campanato

space Lp,λ
(Ω) is isomorphic to the Morrey space Lp,λ

(Ω) when 0 ≤ λ < n, and

moreover, when n < λ ≤ n+ p, Lp,λ
(Ω) is isomorphic to the Hölder space C0,α

with

α =
λ−n

p .
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Lemma 4. Let (u,H) be a weak solution to (1.1)-(1.2). Then u is also a weak
solution to the following equation

(3.1) △u = d∗[σ(u)〈dH,H〉],

where

(3.2) 〈dH,H〉 :=

n
∑

i,j=1

F ijHjdxi.

Proof. Taking φH as a test function in (1.1), we obtain

∫

Ω

〈σ(u)dH, d(φH)〉 dx = 0,

where φ is a function with φ ∈ C2

0
(Ω; R). Then by the definition in Section 1, we get

∫

Ω

φσ(u)|dH |2 dx = −

∫

Ω

〈σ(u)dH, dφ ∧H〉 dx

= −

∫

Ω

σ(u)〈
∑

i,j

F ijHjdxi,
∑

m

∂φ

∂xm
dxm〉 dx

= −

∫

Ω

φd∗[σ(u)〈dH,H〉] dx

for all φ ∈ C2

0
(Ω; R), where 〈dH,H〉 is defined in (3.2). This proves our claim.

Now we prove partial regularity of the weak solutions (u,H) to the system (1.1)-

(1.2).

Proof of Theorem A. Under the gauge condition d∗H = 0, we know from the

Hodge theory that

−△H = d∗dH + dd∗H = d∗dH.

Let x0 ∈ Ω with BR0
(x0) ⊂⊂ Ω for some R0 > 0. Let a 1-form H1 ∈ W 1,2

(BR(x0))

be a weak solution of the following Dirichlet problem

(3.3) σ(ux0,R) △H1 = 0, ∀x ∈ BR(x0),

(3.4) H1 −H ∈W 1,2
0

(BR(x0),R
n
).

Then for all ρ < R ≤ R0, we have

∫

Bρ(x0)

|∇H1|
2 dx ≤ C

( ρ

R

)n
∫

BR(x0)

|∇H1|
2 dx.

and therefore for all ρ < R ≤ R0 with some R0 > 0

∫

Bρ(x0)

|∇H |2 dx ≤ C
( ρ

R

)n
∫

BR(x0)

|∇H |2 dx+ C

∫

BR(x0)

|∇(H −H1)|
2 dx.

Let W = H − H1. Using equations (1.1) and (3.3), W is the weak solution of the

following

σ(ux0,R) △W = d∗{[σ(u) − σ(ux0,R)]dH}
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with boundary condition W = 0 on ∂BR(x0). Using W as a test function in the above

equation, we get

(3.5) σ(ux0,R)

∫

BR

|∇W |2 dx = −

∫

BR

〈[σ(u) − σ(ux0,R)]dH, dW 〉 dx.

By the assumption on σ(u), there exists a non-negative, bounded function ω(t) in-

creasing in t, concave, continuous with ω(0) = 0, such that for u, v ∈ R,

(3.6) |σ(u) − σ(v)| ≤ ω(|u− v|q1),

where q1 =
np

2n−p and p is a fixed exponent in (2, 2 + ε) from Theorem 3. Hence we

get from (3.5)-(3.6)

∫

BR(x0)

|∇W |2 dx ≤ C

∫

BR(x0)

ω2

(|u − ux0,R|
q1)|∇H |2 dx.

By the Sobolev-Poincare inequality, we obtain

∫

BR

|u− ux0,R|
q1 dx ≤ CRq1

∫

BR

|∇u|q1 dx.

Using the Lp
-estimate (Theorem 3) and the boundedness and concavity of ω, we have

∫

BR(x0)

ω2

(|u − ux0,R|
q1)|∇H |2 dx

≤ C

(

∫

BR(x0)

|∇H |p dx

)

2/p(
∫

BR(x0)

ω
2p

p−2 (|u− ux0,R|
q1) dx

)

p−2

p

≤ C

(

∫

B2R(x0)

|∇H |2 dx

)(

|BR(x0)|
−1

∫

BR(x0)

ω(|u− ux0,R|
q1) dx

)

p−2

p

≤ Cω
p−2

p

(

CRq1−n

∫

BR(x0)

|∇u|q1 dx

)

(
∫

B2R

|∇H |2 dx

)

,

where last inequality comes from the concavity of ω using the Jensen inequality and

the Poincare inequality.

Therefore for all ρ < R < 2R ≤ R0 we have

∫

Bρ(x0)

|∇H |2 dx ≤ C
( ρ

R

)n
∫

B2R(x0)

|∇H |2 dx+

+ Cω
p−2

p

(

CRq1−n

∫

B2R(x0)

|∇u|q1 dx

)

∫

B2R(x0)

|∇H |2 dx

(3.7)

By Theorem 3, u belongs to W 2,p/2
(Ω). Let v ∈ W 2,p/2

(BR(x0)) be a weak solution

of the following Dirichlet problem:

−△ v = 0, in BR(x0),

v|∂BR
= u|∂BR

, x ∈ ∂BR(x0).
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For the harmonic function v, it is easy to see that for ρ ≤ R < 2R ≤ R0, we obtain

∫

Bρ(x0)

|∇v|q1 dx ≤ C(
ρ

R
)
n

∫

BR(x0)

|∇v|q1 dx.

Let w = u− v. Then w ∈W 2,p/2
(BR(x0); R) satisfies

−△ w = σ(u)|dH |2, in BR(x0),

w = 0 on ∂BR(x0).

Then
∫

Bρ(x0)

|∇u|q1 dx ≤ C(
ρ

R
)
n

∫

BR(x0)

|∇u|q1 dx+ C

∫

BR

|∇w|q1 dx.

We rescale

ũ(x) = u(x0 +Rx), w̃(x) = w(x0 +Rx), H̃(x) = H(x0 +Rx) = Hi
(x0 +Rx)dxi.

Then

(3.8) −△ w̃ = σ(u)|dH̃ |2, in B1,

(3.9) w̃ = 0; on ∂B1,

where B1 = B(0, 1) is the unit ball in R
n
. Applying the standard elliptic Lp

-theory

(see [7]) to (3.8)-(3.9), we obtain

(

1

|B1|

∫

B1

|∇2w̃|p/2 dx

)

2/p

≤ C

(

1

|B1|

∫

B1

|∇H̃ |p dx

)

2/p

,

where C is a constant independent of R.

Rescaling back, we have

(

1

|BR(x0)|

∫

BR(x0)

|∇2w|p/2 dx

)

2/p

≤ C

(

1

|BR(x0)|

∫

BR(x0)

|∇H |p dx

)

2/p

,

where C is a constant independent of R. By the Sobolev inequality and using Lp
-

estimates, we see

(

−

∫

BR(x0)

|∇w|q1 dx

)
1

q1

≤ CR

(

−

∫

BR(x0)

|∇2w|p/2 dx

)

2/p

≤ CR1−n

∫

B2R(x0)

|∇H |2 dx.

Therefore for all ρ < R < 2R ≤ R0, we have

∫

Bρ(x0)

|∇u|q1 dx ≤C(
ρ

R
)
n

∫

B2R(x0)

|∇u|q1 dx

+ CRn+q1(1−n)

(

∫

B2R(x0)

|∇H |2 dx

)q1

.

(3.10)
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For any x0 ∈ Ω and r with R0 ≥ r > 0, we denote

Φ(x0, r) = r2−n

∫

Br(x0)

|∇H |2 dx, ξ(x0, r) = rq1−n

∫

Br(x0)

|∇u|q1 dx,

Note that (3.7) and (3.10) also hold for R < ρ < 2R ≤ R0. Then for all τ < 1, we

have

Φ(x0, τR) ≤ C1[1 + ω
p−2

p (C2ξ(x0, R))τ−n
]τ2

Φ(x0, R)

and

ξ(x0, τR) ≤ C1τ
q1ξ(x0, R) + τq1−n

Φ
q1(x0, R)

by using R instead of 2R in (3.7) and (3.10). For any α < 1, choose τ < 1 such that

2C1τ
q1α

= 1.

There exists a small constant ε0 > 0 such that if

ξ(x0, R) + Φ(x0, R) < ε0

for some R < R0, then we have

Φ
q1−1

(x0, R) < τn, ω
p−2

p (C2ξ(x0, R)) < τn

provided that R is less than some R0. Hence

ξ(x0, τR) + Φ(x0, τR) ≤ τ2α
[ξ(x0, R) + Φ(x0, R)].

Therefore by iteration we obtain

ξ(x0, τ
kR) + Φ(x0, τ

kR) ≤ τ2kα
[ξ(x0, R) + Φ(x0, R)] < ε0

In conclusion, if ξ(x0, R) + Φ(x0, 2R) < ε0 for some R < R0, then

ξ(x0, τ
kR) + Φ(x0, τ

kR) ≤ τ2kαε0.

Hence for any ρ < R0, we have

(3.11) ξ(x0, ρ) + Φ(x0, ρ) ≤ C(
ρ

R
)
2α,

where C is a constant independent of ρ and R.

Note that ξ(x0, R) and Φ(x0, R) are continuous functions of x0. There exits

an open Ω0 ⊂ Ω such that u and H are in C0,α
loc (Ω0) for every α < 1. Moreover,

Ω\Ω0 ⊂ Σ1 ∪ Σ2, where

Σ1 = {x ∈ Ω : lim inf
R→0

+

R2−n

∫

BR(x)

|∇H |2 dx > 0},

Σ2 = {x ∈ Ω : lim inf
R→0

+

Rq1−n

∫

BR(x)

|∇u|q1 dx > 0}.

Moreover, since H ∈ W 1,2
(Ω,Rn

) and u ∈ W 1,q1

loc (Ω, Rn
) with q1 =

np
2n−p for some

p > 2, we have

Hn−q1(Ω\Ω0) = 0

where Hn−q1 denote (n− q1)-Hausdorff measure.
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Next we prove C1,α
-regularity inside Ω0. We assume that x0 ∈ Ω with B2R(x0) ⊂

Ω0. From the above results, we know that u and H are C0,α
(Ω0) for every α < 1 and

Rq1−n

∫

BR(x0)

|∇u|q1 dx ≤ CR2α, R2−n

∫

BR(x0)

|∇H |2 dx ≤ CR2α,

where C is a constant independent of R. Note that H1 is the solution to equations

(3.3)-(3.4). For any ρ and R with ρ < R ≤ R0, we have

∫

Bρ(x0)

|∇H1 − (∇H1)x0,ρ|
2 dx ≤ C

( ρ

R

)n+2

∫

BR(x0)

|∇H1 − (∇H1)x0,ρ|
2 dx.

Repeating the same proof as before (3.7), we get

∫

Bρ(x0)

|∇W |2 dx ≤ Cω
p−2

p

(

CRq1−n

∫

BR(x0)

|∇u|2 dx

)

∫

BR(x0)

|∇H |2 dx

for some p > 2.

Since ω is uniformly Hölder continuous, there exist constants β and C with 0 <
β < 1 such that ω(t) ≤ Ctβ . Therefore

∫

Bρ(x0)

|∇H − (∇H)x0,ρ|
2 dx ≤C

( ρ

R

)n+2

∫

B2R(x0)

|∇H − (∇H)x0,R|
2 dx

+ CRn−2+α[2+β p−2

p
],

where α[2 + β p−2

p ] > 2 by letting α be closing to 1. Then the standard procedure

yields that ∇H is C0,γ
for some 0 < γ < 1. By applying standard PDE theory to

equation (1.2), it is easy to see that ∇u is also locally in C0,γ1

loc (Ω0) for some γ1 > 0.

This proves our claim.

4. Partial regularity for the parabolic system. In this section, we prove

the partial regularity of the weak solutions to system (1.5)-(1.6).

Denote QT = Ω × (0, T ) and let z = (x, t) for x ∈ Ω and t ∈ (0, T ). We recall

some definitions from [9]. Lp,r(QT ) is the Banach space consisting of all measurable

functions on QT with a finite norm

‖u‖p,r,QT
=

(

∫ T

0

(
∫

Ω

|u(x, t)|p dx

)r/p

dt

)

1/r

.

We denote ‖u‖p,QT
= ‖u‖p,p,QT

. The space V 1,0
p (QT ) is the completion of C1

(QT )

with respect to the norm

|u|p;QT
=

{
∫

QT

(|u|p + |∇u|p)dz

}

1/p

.

The space W 2,1
p (QT ) with p ≥ 1 is the Banach space consisting of the elements of

Lp(QT ) having generalized derivatives of the form Dr
tD

s
x with any r and s satisfying

the inequality 2r + s ≤ 2. The norm is defined by

‖u‖
(2)

q,QT
=

2
∑

j=0

〈〈u〉〉
(j)
q,QT
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with

〈〈u〉〉
(j)
p,QT

=

∑

2r+s=j

‖Dr
tD

s
xu‖q,QT

.

We say that a pair (u,H) is a weak solution to equations (1.6)-(1.7) if u ∈
V 1,0

q (QT ) for some q ∈ (1, n
n−1

) and Hi ∈ V 1,0
2

(QT ; R
n
), and the pair (u,H) satisfies

the following:

(4.1)

∫

QT

[〈H, ∂tφ〉 + 〈σ(u)dH, dφ〉] dz = 0,

(4.2)

∫

QT

[− uψt + ∇u · ∇ψ ] dz =

∫

QT

σ(u)|dH |2ψ dz

for all φ :=
∑n

i=1
φi

(x, t)dxi for i = 1, ..., n with d∗H = 0 in QT in the weak sense,

where φi
(x, t) ∈ C2

0
(QT ; R) and ψ(x, t) ∈ C2

0
(QT ; R). The existence of weak solutions

of (4.1)-(4.2) with d∗H = 0 in QT was obtained by Yin in [13] and [14].

For any R > 0, denote QR(z0) = BR(x0) × (t0 −R2, t0 +R2
) with z0 = (x0, t0).

We denote for any function u(x, t)

uz0,R = −

∫

QR(z0)

u(z) dz.

Next, we prove partial regularity of weak solutions to the system (4.1)-(4.2) by

modifying the method for elliptic case of Sections 2-3. The first step towards the

proof of Theorem B is to establish a Caccioppoli’s inequality and Lp
-estimates for

weak solutions to the parabolic system (4.1)-(4.2) by applying the proof of [3] and [6].

More precisely, we have

Lemma 7. (Caccioppoli’s inequality for parabolic problems) Assume that (u,H)

is a weak solution of (4.1)-(4.2) with the assumptions of Theorem B. Then there exists
a constant C such that for any x0 ∈ QT and any R with 2R ≤ R0 with QR0

(z0) ⊂ QT

for some R0 > 0,

∫

QR(z0)

|∇H |2 dz ≤
C

R2

∫

Q2R(z0)

|H − H̃x0,2R(t)|2 dz.

Proof. Let z0 = (x0, t0) ∈ QT . Let ξ(x) be a function in C∞
0

(B2(x0)) such that

0 ≤ ξ ≤ 1, ξ = 1 in B1(x0) and |∇ξ| ≤ 2. We also denote by ξR the function

ξ2R(x) = ξ( x
R ). As in [6], for a function Hi

(x, t), we define the weighted means of

Hi
(x, t) in B2R(x0) as

H̃i
x0,2R(t) =

∫

B2R(x0)
Hi

(x, t)ξ2
2R dx

∫

B2R(x0)
ξ2
2R(x) dx

Then we define

H̃x0,2R(t) =

∑

i

H̃i
x0,2R(t)dxi.
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Let τ ∈ C∞
(R,R) be a function only in t and satisfy 0 ≤ τ ≤ 1, τ ≡ 1 on [t0 −R2, t0],

τ ≡ 0 on t < t0 − (2R)
2
. By the above choice, we note

(4.3)

∫ t0

t0−4R2

[

∫

B2R(x0)

(Hi −Hi
2R(t))ξ2 dx

]

∂tH̃
i
2R(t)τ2 dt = 0.

Let I
(−∞,t0) be the characteristic function of the interval (−∞, t0). Testing φ =

(H − H̃2R(t))ξ2
2Rτ

2
I
(−∞,t0) and noting (4.3), we have

∫

B(x0,2R)×{t0}

|H − H̃x0,2R(t)|2ξ2τ2 dx +

∫

Q2R(z0)

σ(u)|dH |2ξ2τ2 dz

≤ 2

∫

Q2R(z0)

|H − H̃x0,2R(t)|2ξ2τ∂tτ dz

− 2

∫

Q2R(z0)

σ(u)〈dH, ξdξ ∧ (H − H̃x0,2R(t))〉τ2 dz.

(4.4)

It follows from (4.4) that

∫

QR

|dH |2ξ2τ2 dz ≤
C

R2

∫

Q2R(z0)

|H − H̃x0,2R(t)|2 dz.

A similar argument to Lemma 1 yields

∫ t0

t0−R2

∫

B2R(x0)

|dH |2ξ2 dxτ2 dt

=

∫ t0

t0−R2





∫

B2R(x0)

|∇H |2ξ2 dx−
n
∑

i,j=1

∫

B2R(x0)

∂Hi

∂xj

∂Hj

∂xi
ξ2 dx



 τ2 dt

=

∫ t0

t0−R2

∫

B2R(x0)



|∇H |2ξ2 + 2

n
∑

i,j=1

∂Hi

∂xj
ξ
∂ξ

∂xi
[Hj − H̃j

x0,2R(t)]



 dx τ2 dt

+

∫ t0

t0−R2

∫

B2R(x0)

n
∑

i,j=1

ξ2[Hj − H̃j
x0,2R(t)]

∂2Hi

∂xj∂xi
dx τ2 dt.

By using d∗H = 0, the last term in above identity is zero. This proves our claim.

We have the following Lp
-estimate:

Lemma 8. Let (u,H) be a weak solution to the system (4.1)-(4.2) with the as-
sumptions of Theorem B. Then there exists an exponent p > 2 such that ∇H ∈
Lp

loc(QT ); moreover for all QR(z0) ⊂ Q4R(z0) ⊂ QT we have

−

∫

QR(z0)

|∇H |p dz ≤ C

(

−

∫

Q4R(z0)

|∇H |2 dz

)

p

2

and u ∈W 2,1
p/2;loc(QT ).

For the proof of Lemma 8, the same proof as in [5] gives the desired Lp
-estimate

for H by using the reverse Hölder inequality as in Proposition 3. The fact u ∈
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W 2,1
p/2;loc(QT ) follows from Theorem 9.1 of Chapter IV of [10; pages 341-2].

By a slight modification of arguments in [12] (for the details, see [14]), we have

Lemma 9. Let (u,H) be a weak solution to the system (4.1)-(4.2) with the as-
sumptions of Theorem B. Then for all QR(z0) ⊂ Q2R(z0) ⊂ QT , we have

∫

QR(z0)

|H −HR,z0
|2 dz ≤ CR2

∫

Q2R(z0)

|∇H |2 dz.

Now we complete the proof of Theorem B.

Proof of Theorem B. For any z0 ∈ QT , choose R0 with QR0
(z0) ⊂ QT . Let

SR(z0) be the parabolic boundary of QR(z0) defined by

SR = BR(x0, t0 −R2

) ∪ [∂BR(x0) × (t0 −R2, t0 +R2

)].

Let a 1-form H1 ∈ V 1,0
2

(QR(z0)) be the weak solution of the following parabolic

problem:

(4.5) ∂tH1 = σ(uz0,R) △H1, in QR(z0),

(4.6) H1|SR(z0)
= H |SR(z0)

, on SR(z0).

For all ρ < R ≤ R0, we have

∫

Qρ(z0)

|∇H |2 dz ≤ C
( ρ

R

)n+2

∫

QR(z0)

|∇H |2 dz + C

∫

QR(x0)

|∇W |2 dz

with W = H −H1. By a similar proof as in Section 3, we have

∫

QR(z0)

|∇W |2 dz ≤ Cω
p−2

p

(

CR−n

∫

Q4R(z0)

|u− uz0,R|
p/2 dz

)

∫

Q2R(z0)

|∇H |2 dz.

Let v ∈W 2,1
p/2

(QR(z0)) be a weak solution of

∂tv = △v, in QR(z0),

v|SR(z0)
= u|SR(z0)

, on SR(z0).

Then for all ρ < R ≤ R0, we have

∫

Qρ(z0)

|∂tu|
p/2 dz ≤ C(

ρ

R
)
n+2

∫

QR(z0)

|∂tu|
p/2 dz + C

∫

QR(z0)

|∂tw|
p/2 dz

and

∫

Qρ(z0)

|∇u|p/2 dz ≤ C(
ρ

R
)
n+2

∫

QR(z0)

|∇u|p/2 dz + C

∫

QR(z0)

|∇w|p/2 dz,

where w = u− v satisfies

∂tw = △w + σ(u)|dH |2, in QR(z0),

w = 0 on SR(z0).
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Since |∇H |2 is locally in Lp/2,p/2
(QT ), we have from Theorem 9.1 of [10; Chapter IV]

and Lemma 8 that

∫

QR(z0)

(

|∇2w|p/2

+ |∂tu|
p/2

)

dz ≤ C

∫

QR(z0)

|∇H |p dz

≤ CRn+2

(

−

∫

Q4R(z0)

|∇H |2 dx

)p/2

.

(4.7)

By the Sobolev inequality and using Lp
-estimates in (4.7), we know

∫

QR(z0)

|∇w|p/2 dz ≤ CRp/2

∫

QR(z0)

|∇2w|p/2 dz

≤ CRn+2−
p

2
(n+1)

(

∫

Q4R(z0)

|∇H |2 dx

)p/2

.

By a version of the Sobolev-Poincare inequality, we have

(4.8)
∫

QR(z0)

|u− uz0,R|
p/2 dz ≤ C

[

Rp/2

∫

QR(z0)

|∇u|p/2 dz +Rp

∫

QR(z0)

|∂tu|
p/2 dz

]

.

For any z0 ∈ QT and r with Qz0,r ⊂ QT , we denote

Φ(z0, r) = r−n

∫

Qr(z0)

|∇H |2 dz, ξ(z0, r) = r−n−2+p/2

∫

Qr(z0)

|∇u|p/2 dz,

η(z0, r) = r−n−2+p

∫

Qr(z0)

|∂tu|
p/2. dz.

Then for all τ < 1, we have

Φ(z0, τR) ≤ C1[1 + ω
p−2

p (C2[ξ(z0, R) + η(z0, R)])τ−(n+2)τ2

Φ(x0, R),

ξ(z0, τR) ≤ C1τ
2ξ(x0, R) + τ

p

2
−(n+2)

Φ
p

2 (x0, R)

and

η(z0, τR) ≤ C1τ
pη(z0, R) + τp−(n+2)

Φ
p

2 (z0, R).

If there exists a constant ε0 such that Φ(z0, r)+ξ(z0, r)+η(z0, r) < ε0 for some r ≤ R0,

then a similar iteration step as in Section 3 yields

φ(z0, ρ) + ξ(z0, ρ) + η(z0, ρ) ≤ Cρ2α

for all α < 1 and ρ ≤ r ≤ R0. Using the Sobolev inequality (4.8) and Lemma 9, we

obtain through the Campanato space that u(x, t) and H(x, t) are Hölder continuous

in α locally in Q̃ where Q̃ is an open subset of QT . A similar argument as in Section

3 yields that u(x, t) and H(x, t) are also in C1,γ
loc (Q̃) for some γ < 1.

Since u is in W 2,1
p/2;loc(QT ), we have ∇u ∈ Lq3,q3;loc(QT ), q3 =

(n+2)p
n+2−2p by the

parabolic type Sobolev inequality (see [10; Lemma 3.3, page 80 ]). Moreover, Hölder’s
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inequality gives

ξ(z0, R) ≤

(

Rq3−n−2

∫

Qz0,R

|∇u|q3 dz

)

p

2q3

.

We have QT \Q̃ ⊂ Σ1 ∪ Σ2 ∪ Σ3 where

Σ1 = {z0 ∈ QT : lim inf
R→0

+

R−n

∫

Qz0,R

|∇H |2 dz > 0},

Σ2 = {z0 ∈ QT : lim inf
R→0

+

Rq3−n−2

∫

Qz0,R

|∇u|q3 dz > 0},

and

Σ3 = {z0 ∈ QT : lim inf
R→0

+

Rp−n−2

∫

Qz0,R

|∂tu|
p/2 dz > 0}.

Sine ∇H ∈ L2;loc(QT ,R
n
) and ∂tu ∈ Lp/2

(QT ,R
n
), we have

Hn+2−q3(QT \Q̃) = 0,

where Hn+2−q3 denotes (n+2− q3)-Hausdorff measure. This proves our claim.
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