UNIQUENESS OF SOLUTIONS FOR AN ELLIPTIC EQUATION MODELING MEMS*

PIERPAOLO ESPOSITO † and NASSIF GHOUSSOUB[‡]

Abstract. We show among other things, that for small voltage, the stable solution of the basic nonlinear eigenvalue problem modelling a simple electrostatic MEMS is actually the unique solution, provided the domain is star-shaped and the dimension is larger or equal than 3. In two dimensions, we need the domain to be either strictly convex or symmetric. The case of a power permittivity profile is also considered. Our results, which use an approach developed by Schaaf [13], extend and simplify recent results by Guo and Wei [7], [8].

Key words. MEMS, Stable solutions, Quenching branch.

AMS subject classifications. 35J60, 35B32, 35D10, 35J20

1. Introduction. We study the effect of the parameter λ , the dimension N, the profile f and the geometry of the domain $\Omega \subset \mathbb{R}^N$, on the question of uniqueness of the solutions to the following elliptic boundary value problem with a singular nonlinearity:

$$\begin{cases} -\Delta u = \frac{\lambda f(x)}{(1-u)^2} & \text{in } \Omega\\ 0 < u < 1 & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
(S)_{\lambda,f}

This equation has been proposed as a model for a simple electrostatic Micro-Electromechanical System (MEMS) device consisting of a thin dielectric elastic membrane with boundary supported at 0 below a rigid ground plate located at height z = 1. See [10, 11]. A voltage – directly proportional to the parameter λ – is applied, and the membrane deflects towards the ground plate and a snap-through may occur when it exceeds a certain critical value λ^* , the pull-in voltage.

In [9] a fine ODE analysis of the radially symmetric case with a constant profile $f \equiv 1$ on a ball B, yields the following bifurcation diagram that describes the L^{∞} -norm of the solutions u – which in this case necessarily coincides with u(0) – in terms of the corresponding voltage λ .

The question whether the diagram above describes realistically the set of all solutions in more general domains and for non-constant profiles, and whether rigorous mathematical proofs can be given for such a description, has been the subject of many recent investigations. See [3, 4, 5, 7, 8].

We summarize in the following two theorems some of the established results concerning Figure 1. First, for every solution u of $(S)_{\lambda,f}$, we consider the linearized operator

$$L_{u,\lambda} = -\Delta - \frac{2\lambda f}{(1-u)^3}$$

^{*}Received August 10, 2008; accepted for publication October 21, 2008.

[†]Dipartimento di Matematica, Università degli Studi "Roma Tre", 00146 Rome, Italy (esposito@mat.uniroma3.it). Research supported by M.U.R.S.T., project "Variational methods and nonlinear differential equations".

[‡]Department of Mathematics, University of British Columbia, Vancouver, B.C. Canada V6T 1Z2 (nassif@math.ubc.ca). Research partially supported by the Natural Science and Engineering Research Council of Canada.

FIG. 1. Plots of u(0) versus λ for profile $f(x) \equiv 1$ defined in the unit ball $B_1(0) \subset \mathbb{R}^N$ with different ranges of N. In the case $N \ge 8$, we have $\lambda^* = 2(3N - 4)/9$.

and its eigenvalues $\{\mu_{k,\lambda}(u); k = 1, 2, ...\}$ (with the convention that eigenvalues are repeated according to their multiplicities). The Morse index $m(u, \lambda)$ of a solution u is the largest k for which $\mu_{k,\lambda}(u)$ is negative. A solution u of $(S)_{\lambda,f}$ is said to be stable (resp., semi-stable) if $\mu_{1,\lambda}(u) > 0$ (resp., $\mu_{1,\lambda}(u) \ge 0$).

A description of the first stable branch and of the higher unstable ones is given in the following.

THEOREM A [3, 4, 5]. Suppose f is a smooth nonnegative function in Ω . Then, there exists a finite $\lambda^* > 0$ such that

- 1. If $0 \leq \lambda < \lambda^*$, there exists a (unique) minimal solution u_{λ} of $(S)_{\lambda,f}$ such that $\mu_{1,\lambda}(u_{\lambda}) > 0$. It is also unique in the class of all semi-stable solutions.
- 2. If $\lambda > \lambda^*$, there is no solution for $(S)_{\lambda,f}$. 3. If $1 \le N \le 7$, then $u^* = \lim_{\lambda \uparrow \lambda^*} u_{\lambda}$ is a solution of $(S)_{\lambda^*,f}$ such that $\mu_{1,\lambda^*}(u^*) =$ 0, and u^* – referred to as the extremal solution of problem $(S)_{\lambda,f}$ – is the unique solution.
- 4. If $1 \leq N \leq 7$, there exists λ_2^* with $0 < \lambda_2^* < \lambda^*$ such that for any $\lambda \in (\lambda_2^*, \lambda^*)$, problem $(S)_{\lambda,f}$ has a second solution U_{λ} with $\mu_{1,\lambda}(U_{\lambda}) < 0$ and $\mu_{2,\lambda}(U_{\lambda}) > 0$. Moreover, at $\lambda = \lambda_2^*$ there exists a second solution $U^* := \lim_{\lambda \downarrow \lambda_2^*} U_{\lambda}$ with

$$\mu_{1,\lambda_2^*}(U^*) < 0 \text{ and } \mu_{2,\lambda_2^*}(U^*) = 0.$$

5. Given a more specific potential f in the form

$$f(x) = \left(\prod_{i=1}^{k} |x - p_i|^{\alpha_i}\right) h(x), \quad \inf_{\Omega} h > 0, \tag{1}$$

with points $p_i \in \Omega$, $\alpha_i \geq 0$, and given u_n a solution of $(S)_{\lambda_n, f}$, we have the equivalence

$$||u_n||_{\infty} \to 1 \quad \Longleftrightarrow \quad m(u_n, \lambda_n) \to +\infty$$

as $n \to +\infty$.

It was also shown in [4] that the permittivity profile f can dramatically change the bifurcation diagram, and totally alter the critical dimensions for compactness. Indeed, the following theorem summarizes the result related to the effect of power law profiles.

THEOREM B [4]. Assume Ω is the unit ball B and f in the form

$$f(x) = |x|^{\alpha} h(|x|), \quad \inf_{B} h > 0.$$

Then we have

- 1. If $N \ge 8$ and $\alpha > \alpha_N := \frac{3N-14-4\sqrt{6}}{4+2\sqrt{6}}$, the extremal solution u^* is again a classical solution of $(S)_{\lambda^*,f}$ such that $\mu_{1,\lambda^*}(u^*) = 0$.
- 2. If $N \ge 8$ and $\alpha > \alpha_N := \frac{3N-14-4\sqrt{6}}{4+2\sqrt{6}}$, the conclusion of Theorem A-(4) still holds true.
- 3. On the other hand, if either $2 \le N \le 7$ or $N \ge 8$, $0 \le \alpha \le \alpha_N = \frac{3N 14 4\sqrt{6}}{4 + 2\sqrt{6}}$, for $f(x) = |x|^{\alpha}$ necessarily we have that

$$u^*(x) = 1 - |x|^{\frac{2+\alpha}{3}}, \qquad \lambda^* = \frac{(2+\alpha)(3N+\alpha-4)}{9}$$

The bifurcation diagram suggests the following conjectures:

1. For $2 \leq N \leq 7$ there exists a curve $(\lambda(t), u(t))_{t>0}$ in the solution set

$$\mathcal{V} = \left\{ (\lambda, u) \in (0, +\infty) \times C^1(\bar{\Omega}) : u \text{ is a solution of } (S)_{\lambda, f} \right\}, \qquad (2)$$

starting from (0,0) at t = 0 and going to "infinity": $||u(t)||_{\infty} \to 1$ as $t \to +\infty$, with infinitely many bifurcation or turning points in \mathcal{V} .

- 2. In dimension $N \ge 2$ and for any profile f, there exists a unique solution for small voltages λ .
- 3. For $2 \leq N \leq 7$ there exist exactly two solutions for λ in a small left neighborhhod of λ^* .

Conjectures 1 and 2 have been established for power law profiles in the radially symmetric case [7], and for the case where $f \equiv 1$ and Ω is a suitably symmetric domain in \mathbb{R}^2 [8]. Indeed, in these cases Guo and Wei first show that

 $\lambda_* = \inf\{\lambda > 0 : (S)_{\lambda, f} \text{ has a non-minimal solution}\} > 0,$

and then apply the fine bifurcation theory developed by Buffoni, Dancer and Toland [1] to verify the validity of Conjecture 1 in that case. The fact that $\lambda_* > 0$ then allows them to carry out some limiting argument and to prove that the Morse index of u(t) blows up as $t \to +\infty$, which is crucial for showing that infinitely many bifurcation or turning points occur along the curve. Thanks to Theorem A-(5), we shall be able in Section 2 to show the validity of Conjecture 1 in general domains Ω , by circumventing the need to prove that $\lambda_* > 0$. On the other hand, we shall prove in Section 3 that indeed $\lambda_* > 0$ for a large class of domains, and therefore we have uniqueness for small voltage. Our proofs simplify considerably those of Guo and Wei [7, 8], and extend them to general star-shaped domains Ω and power law profiles $f(x) = |x|^{\alpha}, \alpha \geq 0$.

Conjecture 3 has been shown in [3] in the class of solutions u with $m(u, \lambda) \leq k$, for every given $k \in \mathbb{N}$, and is still open in general.

2. A quenching branch of solutions. The first global result on the set of solutions in general domains was proved by the first author in [3]. By using a degree argument (repeated below), he showed the following result.

THEOREM 2.1. Assume $2 \leq N \leq 7$ and f be as in (1). There exist a sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ and associated solution u_n of $(S)_{\lambda_n,f}$ so that

$$m(u_n, \lambda_n) \to +\infty$$
 as $n \to +\infty$.

We now introduce some notation from Section 2.1 of [1]. Set

$$X=Y=\{u\in C^1(\bar\Omega):\ u=0\ {\rm on}\ \partial\Omega\}\,,\quad U=(0,+\infty)\times\{u\in X:\|u\|_\infty<1\},$$

and define the real analytic function $F : \mathbb{R} \times U \to Y$ as $F(\lambda, u) = u - \lambda K(u)$, where $K(u) = -\Delta^{-1} (f(x)(1-u)^{-2})$ is a compact operator on every closed subset in $\{u \in X : ||u||_{\infty} < 1\}$ and Δ^{-1} is the Laplacian resolvent with homogeneous Dirichlet boundary condition. The solution set \mathcal{V} given in (2) rewrites as

$$\mathcal{V} = \{ (\lambda, u) \in U : F(\lambda, u) = 0 \},\$$

and the projection of \mathcal{V} onto X is defined as

$$\Pi_X \mathcal{V} = \{ u \in X : \exists \lambda \text{ so that } (\lambda, u) \in \mathcal{V} \}.$$

Proof. In view of Theorem $A_{-}(5)$, we have the equivalence

$$\sup_{(\lambda,u)\in\mathcal{V}}\max_{\Omega}u=1\qquad\Longleftrightarrow\qquad \sup_{(\lambda,u)\in\mathcal{V}}m(u,\lambda)=+\infty.$$

Arguing by contradiction, we can assume that

$$\sup_{(\lambda,u)\in\mathcal{V}}\max_{\Omega}u\leq 1-2\delta,\qquad \sup_{(\lambda,u)\in\mathcal{V}}m(u,\lambda)<+\infty$$
(3)

for some $\delta \in (0, \frac{1}{2})$. By Theorem 1.3 in [3] one can find $\lambda_1, \lambda_2 \in (0, \lambda^*)$, $\lambda_1 < \lambda_2$, so that $(S)_{\lambda,f}$ possesses

- for λ_1 , only the (non degenerate) minimal solution u_{λ_1} which satisfies $m(u_{\lambda_1}, \lambda_1) = 0$;
- for λ_2 , only the two (non degenerate) solutions u_{λ_2} , U_{λ_2} satisfying $m(u_{\lambda_2}, \lambda_2) = 0$ and $m(U_{\lambda_2}, \lambda_2) = 1$, respectively.

Consider a δ -neighborhood \mathcal{V}_{δ} of $\Pi_X \mathcal{V}$:

$$\mathcal{V}_{\delta} := \{ u \in X : \operatorname{dist}_X(u, \Pi_X \mathcal{V}) \le \delta \}.$$

Note that (3) gives that \mathcal{V} is contained in a closed subset of $\{u \in X : ||u||_{\infty} < 1\}$:

$$\mathcal{V}_{\delta} \subset \{ u \in X : \| u \|_{\infty} \le 1 - \delta \}.$$

We can now define the Leray-Schauder degree d_{λ} of $F(\lambda, \cdot)$ on \mathcal{V}_{δ} with respect to zero, since by definition of $\Pi_X \mathcal{V}$ (the set of all solutions) $\partial \mathcal{V}_{\delta}$ does not contain any solution of $(S)_{\lambda,f}$ for any value of λ . Since d_{λ} is well defined for any $\lambda \in [0, \lambda^*]$, by homotopy $d_{\lambda_1} = d_{\lambda_2}$. To get a contradiction, let us now compute d_{λ_1} and d_{λ_2} . Since the only zero of $F(\lambda_1, \cdot)$ in \mathcal{V}_{δ} is u_{λ_1} with Morse index zero, we have $d_{\lambda_1} = 1$. Since $F(\lambda_2, \cdot)$ has in \mathcal{V}_{δ} exactly two zeroes u_{λ_2} and U_{λ_2} with Morse index zero and one, respectively, we have $d_{\lambda_2} = 1 - 1 = 0$. This contradicts $d_{\lambda_1} = d_{\lambda_2}$, and the proof is complete.

We can now combine Theorem A-(5) with the fine bifurcation theory in [1] to establish a more precise multiplicity result. See also [2].

Observe that $\mathcal{A}_0 := \{(\lambda, u_\lambda) : \lambda \in (0, \lambda^*)\}$ is a maximal arc-connected subset of

$$S := \{ (\lambda, u) \in U : F(\lambda, u) = 0 \text{ and } \partial_u F(\lambda, u) : X \to Y \text{ is invertible} \}$$

with $\mathcal{A}_0 \subset S$. Assume that the extremal solution u^* is a classical solution so to have $u^* \in (\overline{S} \cap U) \setminus S$. Assumption (C1) of Section 2.1 in [1] does hold in our case. As far as condition (C2):

$$\{(\lambda, u) \in U : F(\lambda, u) = 0\}$$
 is open in $\{(\lambda, u) \in \mathbb{R} \times X : F(\lambda, u) = 0\},\$

let us stress that it is a weaker statement than requiring U to be an open subset in $\mathbb{R} \times X$. In our case, the map $F(\lambda, u)$ is defined only in U (and not in the whole X), and then condition (C2) does not make sense. However, we can replace it with the new condition (C2):

U is an open set in $\mathbb{R} \times X$,

which does hold in our context. Since (C2) is used only in Theorem 2.3-(iii) in [1] to show that S is open in \overline{S} , our new condition (C2) does not cause any trouble in the arguments of [1].

Since $\partial_u F(\lambda, u)$ is a Fredholm operator of index 0, by a Lyapunov-Schmidt reduction we have that assumptions (C3)-(C5) do hold in our case (let us stress that these conditions are local and U is an open set in $\mathbb{R} \times X$).

Setting $\bar{\lambda} = 0$ and defining the map $\nu : U \to [0, +\infty)$ as $\nu(\lambda, u) = \frac{1}{1-\|u\|_{\infty}}$, conditions (C6)-(C8) do hold in view of the property $\lambda \in [0, \lambda^*]$. Theorem 2.4 in [1] then applies and gives the following.

THEOREM 2.2. Assume u^* a classical solution of $(S)_{\lambda^*,f}$. Then there exists an analytic curve $(\hat{\lambda}(t), \hat{u}(t))_{t\geq 0}$ in \mathcal{V} starting from (0,0) and so that $\|\hat{u}(t)\|_{\infty} \to 1$ as $t \to +\infty$. Moreover, $\hat{u}(t)$ is a non-degenerate solution of $(S)_{\hat{\lambda}(t),f}$ except at isolated points.

By the Implicit Function Theorem, the curve $(\hat{\lambda}(t), \hat{u}(t))$ can only have isolated intersections. If we now use the usual trick of finding a minimal continuum in $\{(\hat{\lambda}(t), \hat{u}(t)) : t \geq 0\}$ joining (0, 0) to "infinity", we obtain a continuous curve $(\lambda(t), u(t))$ in \mathcal{V} with no self-intersections which is only piecewise analytic. Clearly, $\partial_u F(\lambda, u) : X \to Y$ is still invertible along the curve except at isolated points.

Let now $2 \leq N \leq 7$ and f be as in (1). By the equivalence in Theorem A-(5) we get that $m(\lambda(t), u(t)) \to +\infty$ as $t \to +\infty$, and then $\mu_{k,\lambda(t)}(u(t)) < 0$ for t large, for every $k \geq 1$. Since $\mu_{k,\lambda(0)}(u(0)) = \mu_{k,0}(0) > 0$ and u(t) is a non-degenerate solution of $(S)_{\lambda(t),f}$ except at isolated points, we find $t_k > 0$ so that $\mu_{k,\lambda(t)}(u(t))$ changes from positive to negative sign across t_k . Since $\mu_{k+1,\lambda(t)}(u(t)) \geq \mu_{k,\lambda(t)}(u(t))$, we can choose t_k to be non-increasing in k and to have $t_k \to +\infty$ as $k \to +\infty$.

To study secondary bifurcations, we will use the gradient structure in the problem.

Setting $(\lambda_k, u_k) := (\lambda(t_k), u(t_k))$, we have that $(\lambda_k, u_k) \notin S$. Choose $\delta > 0$ small so that $||u_k||_{\infty} < 1 - \delta$, and replace the nonlinearity $(1 - u)^{-2}$ with a regularized one:

$$f_{\delta}(u) = \begin{cases} (1-u)^{-2} & \text{if } u \leq 1-\delta, \\ \delta^{-2} & \text{if } u \geq 1-\delta, \end{cases}$$

and the map $F(\lambda, u)$ with the corresponding one $F_{\delta}(\lambda, u)$. We replace X and Y with $H^2(\Omega) \cap H^1_0(\Omega)$ and $L^2(\Omega)$, respectively. The map $F_{\delta}(\lambda, u)$ can be considered as a map from $\mathbb{R} \times X \to Y$ with a gradient structure:

$$\partial_u \mathcal{J}_{\delta}(\lambda, u)[\varphi] = \langle F_{\delta}(\lambda, u), \varphi \rangle_{L^2(\Omega)}$$

for every $\lambda \in \mathbb{R}$ and $u, \varphi \in X$, where $\mathcal{J}_{\delta} : \mathbb{R} \times X \to \mathbb{R}$ is the functional given by

$$\mathcal{J}_{\delta}(\lambda, u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \lambda \int_{\Omega} f(x) G_{\delta}(u) \, dx \,, \qquad G_{\delta}(u) = \int_{0}^{u} f_{\delta}(s) ds \,.$$

Assumptions (G1)-(G2) in Section 2.2 of [1] do hold. We have that $(\lambda(t), u(t)) \in S$ for t close to t_k and $m(\lambda(t), u(t))$ changes across t_k . If $\lambda(t)$ is injective, by Proposition 2.7 in [1] we have that $(\lambda(t_k), u(t_k))$ is a bifurcation point. Then we get the validity of Conjecture 1 as claimed below.

THEOREM 2.3. Assume $2 \leq N \leq 7$ and f be as in (1). Then there exists a continuous, piecewise analytic curve $(\lambda(t), u(t))_{t\geq 0}$ in \mathcal{V} , starting from (0,0) and so that $\|\hat{u}(t)\|_{\infty} \to 1$ as $t \to +\infty$, which has either infinitely many turning points, *i.e.* points where $(\lambda(t), u(t))$ changes direction (the branch locally "bends back"), or infinitely many bifurcation points.

REMARK 2.1. In [7] the above analysis is performed in the radial setting to obtain a curve $(\lambda(t), u(t))_{t\geq 0}$, as given by Theorem 2.3, composed by radial solutions and so that $m_r(\lambda(t), u(t)) \to +\infty$ as $t \to +\infty$, $m_r(\lambda, u)$ being the radial Morse index of a solution (λ, u) . In this way, it can be shown that bifurcation points can't occur and then $(\lambda(t), u(t))_{t\geq 0}$ exhibits infinitely many turning points. Moreover, they can also deal with the case where $N \geq 8$ and $\alpha > \alpha_N$.

3. Uniqueness of solutions for small voltage in star-shaped domains. We address the issue of uniqueness of solutions of the singular elliptic problem

$$\begin{cases} -\Delta u = \frac{\lambda |x|^{\alpha}}{(1-u)^2} \text{ in } \Omega\\ 0 < u < 1 \quad \text{ in } \Omega\\ u = 0 \quad \text{ on } \partial\Omega, \end{cases}$$
(4)

for $\lambda > 0$ small, where $\alpha \ge 0$ and Ω is a bounded domain in \mathbb{R}^N , $N \ge 2$. We shall make crucial use of the following extension of Pohozaev's identity due to Pucci and Serrin [12].

PROPOSITION 3.1. Let v be a solution of the boundary value problem

$$\begin{cases} -\Delta v = f(x, v) \text{ in } \Omega\\ v = 0 \text{ on } \partial \Omega. \end{cases}$$

Then for any $a \in \mathbb{R}$ and any $h \in C^2(\Omega; \mathbb{R}^N) \cap C^1(\overline{\Omega}; \mathbb{R}^N)$, the following identity holds

$$\int_{\Omega} \left[\operatorname{div}(h) F(x, v) - avf(x, v) + \langle \nabla_x F(x, v), h \rangle \right] dx$$
$$= \int_{\Omega} \left[\left(\frac{1}{2} \operatorname{div}(h) - a \right) |\nabla v|^2 - \langle Dh \nabla v, \nabla v \rangle \right] dx + \frac{1}{2} \int_{\partial \Omega} |\nabla v|^2 \langle h, \nu \rangle d\sigma, \qquad (5)$$

where $F(x,s) = \int_0^s f(x,t) dt$.

An application of the method in [13] leads to the following result.

THEOREM 3.1. Let $\Omega \subset \mathbb{R}^N$ be a star-shaped domain with respect to 0. If $N \geq 3$, then for λ small, the stable solution u_{λ} is the unique solution of equation (4).

Proof. Since u_{λ} is the minimal solution of (4) for $\lambda \in (0, \lambda^*)$, setting $v = u - u_{\lambda}$ equation (4) rewrites equivalently as

$$\begin{cases} -\Delta v = \lambda |x|^{\alpha} g_{\lambda}(x, v) \text{ in } \Omega\\ 0 \le v < 1 - u_{\lambda} \quad \text{ in } \Omega\\ v = 0 \quad \text{ on } \partial\Omega, \end{cases}$$
(6)

where

$$g_{\lambda}(x,s) = \frac{1}{(1 - u_{\lambda}(x) - s)^2} - \frac{1}{(1 - u_{\lambda}(x))^2}.$$
(7)

It then suffices to prove that the solutions of (6) must be trivial for λ small enough. First compute $G_{\lambda}(x, s)$:

$$G_{\lambda}(x,s) = \int_{0}^{s} g_{\lambda}(x,t) dt = \frac{1}{1 - u_{\lambda}(x) - s} - \frac{1}{1 - u_{\lambda}(x)} - \frac{s}{(1 - u_{\lambda}(x))^{2}}$$

Since the validity of the relation

$$\nabla_x \Big(|x|^{\alpha} G_{\lambda}(x,s) \Big) = \alpha |x|^{\alpha-2} x G_{\lambda}(x,s) + |x|^{\alpha} \nabla_x G_{\lambda}(x,s),$$

for $h(x) = \frac{x}{N}$ and $f(x,v) = |x|^{\alpha}g_{\lambda}(x,v)$ we apply the Pohozaev identity (5) to a solution v of (6) to get

$$\lambda \int_{\Omega} |x|^{\alpha} \left[(1 + \frac{\alpha}{N}) G_{\lambda}(x, v(x)) - av(x) g_{\lambda}(x, v(x)) + \langle \nabla_{x} G_{\lambda}(x, v(x)), \frac{x}{N} \rangle \right] dx$$

$$= \int_{\Omega} \left[(\frac{1}{2} - a) |\nabla v|^{2} - \langle D(\frac{x}{N}) \nabla v, \nabla v \rangle \right] dx + \frac{1}{2N} \int_{\partial \Omega} |\nabla v|^{2} \langle x, \nu \rangle \, d\sigma$$
(8)
$$\geq (\frac{1}{2} - a - \frac{1}{N}) \int_{\Omega} |\nabla v|^{2} dx.$$

Since easy calculations show that

$$\frac{G_{\lambda}(x,s)}{g_{\lambda}(x,s)} = \frac{1 - u_{\lambda}(x) - s - \frac{(1 - u_{\lambda}(x) - s)^{2}(1 - u_{\lambda}(x) + s)}{(1 - u_{\lambda}(x))^{2}}}{1 - \frac{(1 - u_{\lambda}(x) - s)^{2}}{(1 - u_{\lambda}(x))^{2}}}$$

and

$$\frac{\nabla_x G_\lambda(x,s)}{g_\lambda(x,s)} = \frac{1 - \frac{(1-u_\lambda(x)-s)^2(1-u_\lambda(x)+2s)}{(1-u_\lambda(x))^3}}{1 - \frac{(1-u_\lambda(x)-s)^2}{(1-u_\lambda(x))^2}} \nabla u_\lambda(x),$$

we obtain

$$\left|\frac{G_{\lambda}(x,s)}{g_{\lambda}(x,s)}\right| \le C_0 |1 - u_{\lambda}(x) - s| \quad \text{and} \quad \left|\frac{\nabla_x G_{\lambda}(x,s)}{g_{\lambda}(x,s)} - \nabla u_{\lambda}\right| \le C_0 |1 - u_{\lambda}(x) - s|^2 |\nabla u_{\lambda}|$$
(9)

for some $C_0 > 0$, provided λ is away from λ^* . Since $u_{\lambda} \to 0$ in $C^1(\bar{\Omega})$ as $\lambda \to 0^+$, for a > 0 from (9) we deduce that for any (x, s) satisfying $|1 - u_{\lambda}(x) - s| \leq \delta$

$$(1 + \frac{\alpha}{N})G_{\lambda}(x,s) - asg_{\lambda}(x,s) + \langle \nabla_{x}G_{\lambda}(x,s), \frac{x}{N} \rangle$$

$$\leq g_{\lambda}(x,s) \Big[C_{0}(1 + \frac{\alpha}{N})\delta - a(1 - u_{\lambda}(x) - \delta) + \langle \nabla u_{\lambda}, \frac{x}{N} \rangle + \frac{C_{0}}{N}\delta^{2} |\nabla u_{\lambda}||x| \Big] \leq 0,$$
(10)

provided δ and λ are sufficiently small (depending on *a*). Since $N \geq 3$, we can pick $0 < a < \frac{1}{2} - \frac{1}{N}$, and then by (8), (10) get that

$$\lambda \int_{\{0 \le v \le 1 - u_{\lambda} - \delta\}} |x|^{\alpha} \left[(1 + \frac{\alpha}{N}) G_{\lambda}(x, v(x)) - av(x) g_{\lambda}(x, v(x)) + \langle \nabla_{x} G_{\lambda}(x, v(x)), \frac{x}{N} \rangle \right] dx$$

$$\geq \left(\frac{1}{2} - a - \frac{1}{N} \right) \int_{\Omega} |\nabla v|^{2} dx \ge C_{s} \left(\frac{1}{2} - a - \frac{1}{N} \right) \int_{\Omega} v^{2} dx \tag{11}$$

for δ and λ sufficiently small, where C_s is the best constant in the Sobolev embedding of $H_0^1(\Omega)$ into $L^2(\Omega)$.

On the other hand, since $G_{\lambda}(x, s)$, $sg_{\lambda}(x, s)$ and $\nabla_x G_{\lambda}(x, s)$ are quadratic with respect to s as $s \to 0$ (uniformly in λ away from λ^*), there exists a constant $C_{\delta} > 0$ such that

$$(1 + \frac{\alpha}{N})G_{\lambda}(x, v(x)) - avg_{\lambda}(x, v(x)) + \langle \nabla_x G_{\lambda}(x, v(x)), \frac{x}{N} \rangle \le C_{\delta}v^2(x)$$
(12)

for $x \in \{0 \le v \le 1 - u_{\lambda} - \delta\}$, uniformly for λ away from λ^* . Combining (11) and (12) we get that

$$C_s\left(\frac{1}{2}-a-\frac{1}{N}\right)\int_{\{0\leq v\leq 1-u_\lambda-\delta\}}v^2dx\leq \lambda C_\delta\int_{\{0\leq v\leq 1-u_\lambda-\delta\}}|x|^{\alpha}v^2dx.$$

Therefore, for λ sufficiently small we conclude that $v \equiv 0$ in $\{0 \leq v \leq 1 - u_{\lambda} - \delta\}$. This implies that $v \equiv 0$ in Ω for sufficiently small λ , and we are done. \Box

We now refine the above argument so as to cover other situations. To this aim, we consider the – potentially empty – set

$$H(\Omega) = \Big\{ h \in \mathcal{C}^1(\bar{\Omega}, \mathbb{R}^N) : \operatorname{div}(h) \equiv 1 \text{ and } \langle h, \nu \rangle \ge 0 \text{ on } \partial\Omega \Big\},\$$

and the corresponding parameter

$$M(\Omega) := \inf \left\{ \sup_{x \in \Omega} \bar{\mu}(h, x) : h \in H(\Omega) \right\},\$$

where

$$\bar{\mu}(h,x) = \frac{1}{2} \sup_{|\xi|=1} \langle (Dh(x) + Dh(x)^T)\xi, \xi \rangle.$$

The following is an extension of Theorem 3.1.

THEOREM 3.2. Let Ω be a bounded domain in \mathbb{R}^N such that $M(\Omega) < \frac{1}{2}$. Then, for λ small the minimal solution u_{λ} is the unique solution of problem (4), provided either $N \geq 3$ or $\alpha > 0$.

Proof. As above, we shall prove that equation (6), with g_{λ} as in (7), has only trivial solutions for λ small. For a solution v of (6) the Pohozaev identity (5) with $h \in H(\Omega)$ yields

$$\begin{split} \lambda \int_{\Omega} |x|^{\alpha} \Big[G_{\lambda}(x,v(x))(1+\alpha \langle \frac{x}{|x|^{2}},h \rangle) - av(x)g_{\lambda}(x,v(x)) + \langle \nabla_{x}G_{\lambda}(x,v(x)),h \rangle \Big] dx \\ &= \int_{\Omega} \Big[(\frac{1}{2}-a)|\nabla v|^{2} - \frac{1}{2} \langle (Dh+Dh^{T})\nabla v,\nabla v \rangle \Big] dx + \frac{1}{2} \int_{\partial\Omega} |\nabla v|^{2} \langle h,\nu \rangle \, d\sigma \end{split}$$
(13)

$$\geq \int_{\Omega} (\frac{1}{2}-a-\bar{\mu}(h,x)) |\nabla v|^{2} \, dx. \end{split}$$

Fix $0 < a < \frac{1}{2} - M(\Omega)$ and choose $h \in H(\Omega)$ such that

$$\frac{1}{2} - a - \sup_{x \in \Omega} \bar{\mu}(h, x) > 0.$$

It follows from (9) that for any (x, s) satisfying $|1 - u_{\lambda}(x) - s| \leq \delta |x|$ there holds

$$G_{\lambda}(x,s)(1+\alpha\langle\frac{x}{|x|^{2}},h\rangle) - avg_{\lambda}(x,s) + \langle\nabla_{x}G_{\lambda}(x,s),h\rangle$$

$$\leq g_{\lambda}(x,s) \left[C_{0}\delta|x| + \alpha C_{0}\delta|h| - a(1-u_{\lambda}-\delta|x|) + \langle\nabla u_{\lambda},h\rangle + C_{0}\delta^{2}|x|^{2}|\nabla u_{\lambda}||h|\right] \leq 0$$
(14)

provided λ and δ are sufficiently small. It then follows from (13) and (15) that

$$\lambda \int_{\{0 \le v \le 1 - u_{\lambda} - \delta |x|\}} |x|^{\alpha} \Big[G_{\lambda}(x, v(x))(1 + \alpha \langle \frac{x}{|x|^2}, h \rangle) -av(x)g_{\lambda}(x, v(x)) + \langle \nabla_x G_{\lambda}(x, v(x)), h \rangle \Big] dx$$
$$\geq (\frac{1}{2} - a - \sup_{x \in \Omega} \bar{\mu}(h, x)) \int_{\Omega} |\nabla v|^2 dx.$$
(15)

On the other hand, there exists a constant $C_{\delta} > 0$ such that

$$\begin{aligned} G_{\lambda}(x,v(x))(1+\alpha\langle\frac{x}{|x|^{2}},h(x)\rangle) &-av(x)g_{\lambda}(x,v(x))+<\nabla_{x}G_{\lambda}(x,v(x)),h(x)>\\ &=\frac{v^{2}(x)}{(1-u_{\lambda}(x)-v(x))(1-u_{\lambda}(x))^{2}}(1+\alpha\langle\frac{x}{|x|^{2}},h(x)\rangle)+\frac{av^{2}(x)[v(x)-2+2u_{\lambda}(x))]}{(1-u_{\lambda}(x)-v(x))^{2}(1-u_{\lambda}(x))^{2}}\\ &+\frac{v^{2}(x)(3-3u_{\lambda}(x)-2v(x))}{(1-u_{\lambda}(x)-v(x))^{2}(1-u_{\lambda}(x))^{3}}<\nabla u_{\lambda}(x),h(x)>\leq C_{\delta}\frac{v^{2}(x)}{|x|^{2}}\end{aligned}$$

for $x \in \{0 \le v \le 1 - u_{\lambda} - \delta |x|\}$, uniformly for λ away from λ^* . If now $N \ge 3$, then Hardy's inequality combined with (15) implies

$$\frac{(N-2)^2}{4} \left(\frac{1}{2} - a - \sup_{x \in \Omega} \bar{\mu}(h, x)\right) \int_{\{0 \le v \le 1 - u_\lambda - \delta |x|\}} \frac{v^2}{|x|^2} dx \le \lambda C_\delta \int_{\{0 \le v \le 1 - u_\lambda - \delta |x|\}} \frac{v^2}{|x|^2} dx.$$

On the other hand, when N = 2 the space $H_0^1(\Omega)$ embeds continuously into $L^p(\Omega)$ for every p > 1, and then, by Hölder inequality, for $\alpha > 0$ we get that

$$\int_{\Omega} \frac{v^2}{|x|^{2-\alpha}} \, dx \le \left(\int_{\Omega} |x|^{-(2-\alpha)\frac{p}{p-2}} \, dx \right)^{\frac{p-2}{p}} \left(\int_{\Omega} |v|^p \, dx \right)^{\frac{2}{p}} \le C_{N,\alpha}^{-1} \int_{\Omega} |\nabla v|^2 \, dx$$

provided $(2 - \alpha) \frac{p}{p-2} < 2$, which is true for p large depending on α (see [6] for some very general Hardy inequalities). It combines with (15) to yield

$$C_{N,\alpha}(\frac{1}{2} - a - \sup_{x \in \Omega} \bar{\mu}(h, x)) \int_{\{0 \le v \le 1 - u_{\lambda} - \delta |x|\}} \frac{v^2}{|x|^{2 - \alpha}} dx \le \lambda C_{\delta} \int_{\{0 \le v \le 1 - u_{\lambda} - \delta |x|\}} \frac{v^2}{|x|^{2 - \alpha}} dx$$

In both cases, we can conclude that for λ sufficiently small $v \equiv 0$ for $x \in \{0 \le v \le 1 - u_{\lambda} - \delta |x|\}$, for some $\delta > 0$ small. Since we can assume δ and λ sufficiently small to have

$$1 - u_{\lambda} - \delta |x| \ge \frac{1}{2}$$
 in $\left\{ x \in \Omega : |x| \ge \frac{1}{2} \operatorname{dist}(0, \partial \Omega) \right\}$

we then have

$$v \equiv 0$$
 in $\left\{ x \in \Omega : v(x) \leq \frac{1}{2} \right\} \cap \left\{ x \in \Omega : |x| \geq \frac{1}{2} \operatorname{dist}(0, \partial \Omega) \right\}.$

Since v = 0 on $\partial\Omega$ and the domain $\{x \in \Omega : |x| \ge \frac{1}{2} \operatorname{dist}(0, \partial\Omega)\}$ is connected, the continuity of v gives that

$$v \equiv 0$$
 in $\left\{ x \in \Omega : |x| \ge \frac{1}{2} \operatorname{dist}(0, \partial \Omega) \right\}$

Therefore, the maximum principle for elliptic equations implies $v \equiv 0$ in Ω , which completes the proof of Theorem 3.2.

REMARK 3.1. In [13] examples of dumbell shaped domains $\Omega \subset \mathbb{R}^N$ which satisfy condition $M(\Omega) < \frac{1}{2}$ are given for $N \geq 3$. When $N \geq 4$, there even exist topologically nontrivial domains with this property. Let us stress that in both cases Ω is not starlike, which means that the assumption $M(\Omega) < \frac{1}{2}$ on a domain Ω is more general than being shar-shaped.

The remaining case N=2 and $\alpha=0$, is a bit more delicate. We have the following result.

THEOREM 3.3. If Ω is either a strictly convex or a symmetric domain in \mathbb{R}^2 , then $(S)_{\lambda,1}$ has the unique solution u_{λ} for small λ .

Proof. The crucial point here is the following inequality: for every solution v of (6) there holds

$$\int_{\partial\Omega} |\nabla v|^2 \, d\sigma \ge l(\partial\Omega)^{-1} \left(\int_{\Omega} |\Delta v| \, dx \right)^2.$$

Indeed, we have that

$$\begin{split} \int_{\partial\Omega} |\nabla v|^2 \, d\sigma &\geq l(\partial\Omega)^{-1} \left(\int_{\partial\Omega} |\nabla v| \, d\sigma \right)^2 = l(\partial\Omega)^{-1} \left(\int_{\partial\Omega} \partial_\nu v \, d\sigma \right)^2 \\ &= l(\partial\Omega)^{-1} \left(\int_{\Omega} |\Delta v| \, dx \right)^2, \end{split}$$

where $l(\partial \Omega)$ is the length of $\partial \Omega$. Note that $-\Delta v = \lambda g_{\lambda}(x, v) \geq 0$ for every solution $u_{\lambda} + v$ of $(S)_{\lambda,1}$, in view of the minimality of u_{λ} .

By Lemma 4 in [13] for λ small there exists $x_{\lambda} \in \Omega$ so that

$$\langle \nabla u_{\lambda}(x), x - x_{\lambda} \rangle \le 0 \qquad \forall x \in \Omega.$$
 (16)

In particular, for λ small x_{λ} lies in a compact subset of Ω and, when Ω is symmetric, coincides exactly with the center of symmetries. In both situations, then we have that there exists $c_0 > 0$ so that

$$\langle x - x_{\lambda}, \nu(x) \rangle \ge c_0 \qquad \forall x \in \partial \Omega.$$

We use now the Pohozaev identity (5) with a = 0 and $h(x) = \frac{x - x_{\lambda}}{2}$. For every solution v of (6) it yields

$$\lambda \int_{\Omega} \left[G_{\lambda}(x, v(x)) + \langle \nabla_x G_{\lambda}(x, v(x)), \frac{x - x_{\lambda}}{2} \rangle \right] dx$$

= $\frac{1}{4} \int_{\partial \Omega} |\nabla v|^2 \langle x - x_{\lambda}, \nu \rangle \, d\sigma \ge \frac{c_0}{4} \left(\int_{\Omega} |\Delta v| \, dx \right)^2.$ (17)

Since

$$\nabla_x G_{\lambda}(x,s) = (1 - u_{\lambda}(x) - s)^{-2} \left[1 - \frac{(1 - u_{\lambda}(x) - s)^2 (1 - u_{\lambda}(x) + 2s)}{(1 - u_{\lambda}(x))^3} \right] \nabla u_{\lambda}(x),$$

by (16) we easily see that

$$\langle \nabla_x G_\lambda(x,s), x - x_\lambda \rangle \le 0$$

for λ and δ small, provided (x, s) satisfies $|1 - u_{\lambda}(x) - s| \leq \delta$. Since $G_{\lambda}(x, s)$, $\nabla_x G_{\lambda}(x, s)$ are quadratic with respect to s as $s \to 0$ (uniformly in λ small), there exists a constant $C_{\delta} > 0$ such that

$$G_{\lambda}(x,v(x)) \le C_{\delta}v^2(x)$$
, $\langle \nabla_x G_{\lambda}(x,v(x)), \frac{x-x_{\lambda}}{2} \rangle \le C_{\delta}v^2(x)$

for $x \in \{0 \le v \le 1 - u_{\lambda} - \delta\}$, uniformly for λ small.

Since on two-dimensional domains

$$\left(\int_{\Omega} |v|^p \, dx\right)^{\frac{1}{p}} \le C_p \int_{\Omega} |\Delta v| \, dx$$

for every $p \ge 1$ and $v \in W^{2,1}(\Omega)$ so that v = 0 on $\partial\Omega$, we get that

$$\lambda \int_{\Omega} \langle \nabla_x G_\lambda(x, v(x)), \frac{x - x_\lambda}{2} \rangle \, dx \le \lambda C_\delta \int_{\Omega} v^2 \, dx \le \lambda C_\delta C_2^2 \left(\int_{\Omega} |\Delta v| \, dx \right)^2.$$
(18)

As far as the term with $G_{\lambda}(x, v(x))$, fix $b \in (0, 1)$ and split Ω as the disjoint union of $\Omega_1 = \{v \leq b\}$ and $\Omega_2 = \{v > b\}$. On Ω_1 we have that

$$\lambda \int_{\Omega_1} G_{\lambda}(x, v(x)) \, dx \le \lambda C_{\delta} \int_{\Omega} v^2 \, dx \le \lambda C_{\delta} C_2^2 \left(\int_{\Omega} |\Delta v| \, dx \right)^2$$

provided λ and δ are small to satisfy $b \leq 1 - u_{\lambda} - \delta$ in Ω_1 . Since for λ small

$$\frac{G_{\lambda}(x,s)^2}{g_{\lambda}(x,s)} \leq C \quad \forall \ b \leq s \leq 1,$$

we have that

$$\begin{split} \lambda \int_{\Omega_2} G_\lambda(x, v(x)) \, dx &\leq \lambda D_1 \int_{\Omega} |v(x)|^{\frac{3}{2}} g_\lambda^{\frac{1}{2}}(x, v(x)) \, dx \\ &\leq \lambda D_2 \left(\int_{\Omega} |v|^3 \, dx \right)^{\frac{1}{2}} \left(\int_{\Omega} g_\lambda(x, v(x)) \, dx \right)^{\frac{1}{2}} \\ &\leq \lambda^{\frac{1}{2}} D_3 \left(\int_{\Omega} |\Delta v| \, dx \right)^2 \end{split}$$

for some positive constants D_1 , D_2 and D_3 . So we get that

$$\lambda \int_{\Omega} G_{\lambda}(x, v(x)) \, dx \le \left(\lambda C_{\delta} C_2^2 + \lambda^{\frac{1}{2}} D_3\right) \left(\int_{\Omega} |\Delta v| \, dx\right)^2. \tag{19}$$

Inserting (18)-(19) into (17) finally we get that

$$\left(2\lambda C_{\delta}C_{2}^{2}+\lambda^{\frac{1}{2}}D_{3}-\frac{c_{0}}{4}\right)\left(\int_{\Omega}\left|\Delta v\right|\,dx\right)^{2}\geq0,$$

and then $v \equiv 0$ for λ small.

REFERENCES

- B. BUFFONI, E.N. DANCER AND J.F. TOLAND, The sub-harmonic bifurcation of Stokes waves, Arch. Ration. Mech. Anal., 152:3 (2000), pp. 241–271.
- [2] E.N. DANCER, Infinitely many turning points for some supercritical problems, Ann. Mat. Pura Appl., 178:4 (2000), pp. 225–233.
- P. ESPOSITO, Compactness of a nonlinear eigenvalue problem with a singular nonlinearity, Commun. Contemp. Math., 10:1 (2008), pp. 17–45.
- [4] P. ESPOSITO, N. GHOUSSOUB AND Y. GUO, Compactness along the branch of semi-stable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math., 60:12 (2007), pp. 1731–1768.
- N. GHOUSSOUB AND Y. GUO, On the partial differential equations of electrostatic MEMS devices: stationary case, SIAM J. Math. Anal., 38:5 (2006/2007), pp. 1423–1449.
- [6] N. GHOUSSOUB AND A. MORADIFAM, On the best possible remaining term in the improved Hardy inequality, Proc. Nat. Acad. Sci., 105:37 (2008), pp. 13746–13751.
- [7] Z. GUO AND J. WEI, Infinitely many turning points for an elliptic problem with a singular nonlinearity, J. Lond. Math. Soc. (2), to appear.
- [8] Z. GUO AND J. WEI, Asymptotic behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity, Commun. Pure Appl. Anal., 7:4 (2008), pp. 765–786.
- [9] D.D. JOSEPH AND T.S. LUNDGREN, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73), pp. 241–269.

- [10] J.A. PELESKO, Mathematical modeling of electrostatic MEMS with tailored dielectric proper-ties, SIAM J. Appl. Math., 62:3 (2001/2002), pp. 888–908.
- [11] J.A. PELESKO AND D.H. BERNSTEIN, Modeling MEMS and NEMS. Chapman & Hall/CRC, Boca Raton, FL, 2003.
- [12] P. PUCCI AND J. SERRIN, A general variational identity, Indiana Univ. Math. J., 35:3 (1986),
- pp. 681–703. [13] R. SCHAAF, Uniqueness for semilinear elliptic problems: supercritical growth and domain geometry, Adv. Differential Equations, 5:10-12 (2000), pp. 1201–1220.

P. ESPOSITO AND N. GHOUSSOUB