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Abstract. For a semilinear heat equation admitting blow-up solutions a sufficient condition for

nonexistence of local-in-time solutions are obtained. In particular, it is shown that if an initial data

tends to infinity at space infinity then there is no local-in-time solution. As an application if the

solution blows up at space infinity with least blow-up time, the solution cannot be extendable after

blow-up time.
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1. Introduction and main theorems. We consider the initial value problem

for a semilinear heat equation of the form

{

ut = ∆u+ f(u),
u(x, 0) = u0(x),

x ∈ R
n, t ∈ (0, T ),

x ∈ R
n.

(1)

Here we assume that the nonlinear term f ∈ C1
(R) satisfies the following conditions:

f is positive, nondecreasing and convex in (0,∞) and

∫ ∞

1

ds

f(s)
<∞. (2)

The last condition guarantees that a positive constant solution blows up to infinity

in finite time. A typical example of f is f(u) = eu
, |u|p−1u and u+(log(u+ + 1))

p
for

p > 1, where u+ = max{u, 0}.
We are interested in the problem whether there is a local-in-time solution of (1)

when an initial data u0 grows at the space infinity, for example lim|x|→∞ u0(x) = ∞.

To be precise by a solution u in R
n × [0, T ) of (1) we mean that u ∈ C(R

n ×
[0, T ))∩C2,1

(R
n × (0, T )) satisfies (1). For a given initial data u0 let T ∗

= T ∗
(u0) be

the maximal existence time of the solution. If T ∗
= ∞, the solution exists globally in

time. If there are several solutions with the same initial data, we interpret that T ∗
is

the supremum of all existence times of these solutions. If T ∗ ∈ (0,∞), we often say

that the solution blows up in finite time.

In this paper among other results we shall prove that T ∗
= 0 when the initial

data u0 is growing at the space infinity. In other words there is even no local-in-time

solution. We say this phenomenon T ∗
= 0 an instant blow-up. We are able to prove

that the instant blow-up occurs for more general initial data u0.

Theorem 1. Assume (2) and that u0 ∈ C(R
n
) is nonnegative. Assume that

there are a sequence {xm} ⊂ R
n with |xm| → ∞ as m→ ∞ and a number r > 0 such

that

lim
m→∞

bm = ∞, with bm = inf{u0(x) : |x− xm| ≤ r}. (3)
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Then T ∗
= 0, i.e., the instant blow-up occurs provided that only nonnegative solutions

are considered.

We may relax the assumption (3) so that r = rm depends on m provided that

lim sup
m→∞

bm
r2mf(bm)

< ǫ (4)

with small ǫ > 0, say, 0 < ǫ < ǫ0; the smallness constant ǫ0 depends only on the first

eigenvalue of −∆ in a unit ball with the Dirichlet boundary condition so it depends

only on the space dimension n. Note that this condition is automatically fulfilled

if rm is independent of m by our assumption (2), which in particular says that f
is superlinear. We may relax the assumption on nonnegativity of solution by lower

boundedness of the solution in R
n× [0, T ′

] for any T ′ < T ∗
by a comparison principle

provided that f is C1
in R. The condition (3) is fulfilled when lim|x|→∞ u0(x) = ∞.

Our result applies to an extension problem of the solution after it blows up. For

example it was proved in [5], [6] that the solution w(x, t) blows up at T ∗
= T ∗

(M) > 0

when f(u) = |u|p−1u or eu
and the initial data w0 satisfies lim|x|→∞w0(x) = M > 0.

Moreover, blow-up occurs only at the space infinity. This implies that the profile

function w(x, T ∗
) at at t = T ∗

is continuous (in fact C2
) and positive by a standard

linear regularity theory [4] (which has an elliptic counterpart [7]). As in [5], [6]

lim|x|→∞w(x, T ∗
) = ∞. If we interpret w(x, T ∗

) as a new initial data, because of

Theorem 1 it is impossible to extend the solution for T > T ∗
. We call this phenomenon

non extendable blow-up. This is clearly related to the notion of ‘complete blow-up’

([17], [13]), but it is not the same. If w0 has a direction of mean convergence which

is equivalent to say the solution has a least blow-up time, (i.e., the blow-up time T ∗

agrees with the blow-up time of a spatially constant solution with an initial data

supw0), then the blow-up profile w(x, T ∗
) has a blow-up direction (see [4]). As

remarked in Appendix the w(x, T ∗
) fulfills (3). Thus we always observe the non

extendable blow-up.

For the space infinity blow-up the reader is refereed to papers [11], [8] [5], [6], [16]

[18], [17], [15] and a review paper [4]. There is a nice book [13] for overview of blow

up problems.

The reader may wonder whether there is a local-in-time solution with singularity.

We say that u ∈ C([0, T ), L1

loc(R
n
) is a strong L1

loc solution of (1) with an initial data

u0 ∈ L1

loc if all terms in (1) are in C((0, T );L1

loc(R
n
)) and satisfy (1) in distribution

sense. Here L1

loc is a Frechet space equipped with seminorm |h|R =
∫

B(0,R)
|h|(x)dx,

where B(x,R) is an open ball of radius R centered at x. We may replace a solution in

Theorem 1 by a strong L1

loc solution. The strong L1

loc solution may have singularity.

For example if f(u) = up
with p > n/(n − 2) for n ≥ 3 then u(x) = Cp|x|−2/(p−1)

with Cp = 2((n− 2)p− n)/(p− 1)
2

is a stationary strong L1

loc solution of (1).

The proof of Theorem 1 depends on a classical Kaplan’s argument [10] to show

the existence of blow-up which uses principal eigenfunctions of the Laplace operator

with the Dirichlet condition. We give another argument based on the energy principle

developed by Ball [2] and Levine [12] together with a comparison argument. We need

not assume positivity of the solution. We assume that a solution is bounded from

below.

We assume that

there exists δ > 0 such that sf(s) ≥ (2 + δ)

∫ s

0

f(ξ)dξ for s > 0, (5)
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and

(sf(s))1/2

is convex for s > 0,

∫ ∞

1

dξ

(ξf(ξ))1/2

<∞. (6)

Let u0 satisfy that there exists sequence {w0,m}∞m=1
with

w0,m ∈ L∞ ∩H1

0
(B) for m = 1, 2, . . . , (7)

such that for some C ∈ R

u0(x+ xm) ≥ w0,m(x) for x ∈ B, (8)

w0,m(x) = C for x ∈ ∂B, (9)

and

lim
m→∞

{
∫

B

(
∫ w0,m

C

f(s)ds−
|∇w0,m|2

2

)

dx

}

= +∞, (10)

where B = B(0, r) with some r > 0.

We are now in position to state an instant blow-up result under a different setting.

Theorem 2. Assume (2) and that u0 ∈ C(R
n
) is nonnegative. Let f satisfy

(5) and (6). For u0 assume that there exists a sequence {w0,m}∞m=1
with w0,m ∈

L∞ ∩ H1

0
(B) satisfying (8), (9) and (10). Then T ∗

(u0) = 0 under the assumption
that the solution is bounded from below in [0, T ′

] for any T ′ < T ∗
(u0).

Note that the assumption (3) implies the existence of such wm.

The authors were informed of a work Andreucci and Di Benedetto closely related

to our present work. In [1] among other results a sufficient condition on initial data

for nonexistence of a local-in-time nonnegative solution for ut = ∆um
+ up/(1 + |x|)α

with m ≥ 1, p > 1 and α ∈ R. In the case of m = 1 and α = 0 the condition reads

sup

x∈Rn

∫

B(x,1)

u0(y)dy = ∞. (11)

In [1] this is explicitly mentioned for 1 < p < 1 + 2/n. However, their proof is still

valid for all p > 1. By the way their main interest is the existence of solution; for

example they proved the local existence when

sup

x∈Rn

∫

B(x,1)

u0(y)dy <∞

for 1 < p < 1 + 2/n. Our Theorem 1 is included in their results for f(u) = up
.

However, the condition (4) is not included in their result even for f(u) = up
for

p > 1+2/n. In fact, if u0 ≥ bm on B(xm, rm), then limm→∞ bmr
n
m = ∞ is a sufficient

condition for (11). Our condition (4) with f(u) = up
reads limm→∞ r2mb

p−1

m = ∞.

This shows that our condition for p > 1 + 2/n is weaker than their condition.

In [1] they also prove the local existence for p ≥ 1 + 2/n when u0 fulfills

sup

x∈Rn

∫

B(x,1)

uq
0
(y)dy <∞
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for some q > n(p− 1)/2. Our result suggests the nonexistence when u0 satisfies

sup

x∈Rn

∫

B(x,1)

u
n(p−1)/2

0
(y)dy is sufficiently large.

The rest of the paper is organized as follows. In Section 2 we show Theorem 1

by using the argument in [10]. Theorem 2 is proved by the method of [2] and [12]

in Section 3. In Appendix we show that if the solution has a blow-up direction, the

blow-up profile satisfies (3).

2. Eigenfunction method. We begin by recalling a comparison result.

Lemma 2.1 (Comparison). Assume (2) and that f ∈ C1
(R). Let u(x, t) and

v(x, t) be solutions of (1) with initial data u0 and v0 which are continuous in R
n.

Assume that v is bounded in R
n × [0, T ′

) for any T ′ < T . Assume that u is bounded
from below in {Rn × [0, T ′

)} for any T ′ < T . If u0 ≥ v0 in R
n, then u ≥ v in

R
n × (0, T ).

Proof. The proof is based on an maximum principle for a parabolic equation and

is standard (see [9], [3] and [14]). We give it for completeness.

We may assume that v is bounded and continuous in R
n × [0, T ] by taking T

smaller. We may assume that u is continuous in R
n × [0, T ]. Suppose that the

conclusion were false. Then there would exist a point (x̂, ŷ) ∈ R
n × (0, T ) such that

w(x̂, t̂) > 0 for w = v − u. We set

Q = {(x, t) ∈ R
n × (0, T ) : w(x, t) > 0}. (12)

Since u < v in Q and v is bounded, we see that u is bounded in Q since we have

assumed that u is bounded from below. By our assumption Q is a bounded open set

in R
n × (0, T ). Subtracting (1) for u from (1) for v we obtain

wt = ∆w + b(x, t)w in Q

with b(x, t) =
∫

1

0
f ′

(u(x, t) + θ(v(x, t)− u(x, t)))dθ. Since u is bounded in Q, we have

Mv = supQ b <∞. Thus w solves

{

wt ≤ ∆w +Mvw,
w = 0,

(x, t) ∈ Q,
(x, t) ∈ ∂Q.

(13)

We set W (x, t) = e−(Mv+1)tw(x, t) to set

{

Wt ≤ ∆W −W,
W = 0,

(x, t) ∈ Q,
(x, t) ∈ ∂Q.

(14)

(If Q is bounded, we immediately conclude that W cannot take a possible maximum

in Q. However, Q may be unbounded so we modify W .)

We set Wǫ = W − ǫ(|x|2 +At) with A = 2n+ 1 and small ǫ > 0 to be determined

later. It follow that

(∂t − ∆ + 1)Wǫ < 0, (x, t) ∈ Q. (15)

For (x̃, t̃) ∈ Q there exist α > 0 such that W (x̃, t̃) > α. Let ǫ > 0 small enough.

Then we see

Wǫ(x̃, t̃) = W − ǫ(|x̃|2 +At̃) ≥
α

2
> 0 (16)
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as well as w = v − u. We now put R = ǫ−1/2
(supW )

1/2
. It is easily seen that

Wǫ(x, t) < 0 for |x| > R. Since Wǫ is continuous in Q, There exists (x̂, t̂) ∈ B̄R ×
[0, T ) ∩Q such that

Wǫ(x̂, t̂) = sup{Wǫ(x, t) ∈ B̄R × [0, T ] ∩Q}.

It follows that

(Wǫ)t(x̂, t̂) ≥ 0, ∆Wǫ(x̂, t̂) ≤ 0, and Wǫ(x̂, t̂) ≥ 0.

Thus we have

(∂t − ∆ + 1)Wǫ(x̂, t̂) ≥ 0,

and we have a contradiction to (15). We thereby get

w(x, t) ≤ 0,

and u(x, t) ≥ v(x, t).

Proof of Theorem 1. Let {bm}∞m=1
and {xm}∞m=1

be as in Theorem 1 with r = rm
satisfying (4). Set λm > 0 denote the principal eigenvalue of −∆ with Dirichlet

problem in Brm
(0), and let φm(x) ≥ 0 denote the corresponding positive eigenfunction

normalized by
∫

Brm (0)
φm(x)dx = 1. By scaling it is easy to observe that

λm =
c

r2m
(17)

with some c > 0. Define

Gm(t) =

∫

B(xm,rm)

u(x, t)φm(x− xm)dx.

Let nm(x) denote the outward unit normal to B(0, rm) at x ∈ ∂B(0, rm). Integrating

by parts, by the fact that φm = 0 and ∂φm/∂nm ≤ 0 on ∂B(0, rm) with the unit

normal vector nm, and applying Green’s formula and Jensen’s inequality, we obtain

G′
m(t) =

∫

B(xm,rm)

ut(x, t)φm(x− xm)dx

≥

∫

B(xm,rm)

{(∆u(x, t) + f(u(x, t))}φm(x− xm)dx

≥ −λmGm(t) + f(Gm(t)).

Thus, we obtain

G′
m(t) ≥ −λmGm(t) + f(Gm(t)). (18)

Let us consider the system of ordinary differential equations

{

g′m(t) = −λmgm(t) + f(gm(t)),
gm(0) = Gm(0) ≥ bm.

(19)
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Define Tgm
= sup{t ≥ 0 : gm(t) < ∞} and TGm

= sup{t ≥ 0 : Gm(t) < ∞}. Since

Gm ≥ gm, we obtain Tgm
≥ TGm

. If rm is a constant so that λm = λ is depend of m,

then

Tgm
≤

∫ ∞

bm

dξ

−λξ + f(ξ)
→ 0 as m→ ∞.

This implies that TGm
→ 0 asm→ ∞. In particular for sufficiently largem, TGm

< T .

This is a contradiction since u is continuous in R
n × [0, T ).

We shall discuss the case that rm → 0 as m → ∞ satisfying (4). Consider the

solutions of (1) with the initial data bm. The maximal existence time of the solution

denoted by T ∗
(bm) is estimated as

T ∗
(bm) =

∫ ∞

bm

dξ

f(ξ)
.

Note that limm→∞ T ∗
(bm) = 0. Consider the formula;

T ∗
(bm)

Tgm

=

∫ ∞

bm
dξ/f(ξ)

∫ ∞

bm
dξ/(−λmξ + f(ξ))

. (20)

From (4) we may assume that there exist m0 ≥ 0 such that

bm
r2mf(bm)

< ǫ

for m ≥ m0. From (17) we see that

λmbm < cǫf(bm).

Since f satisfies (2), we get

λmξ < cǫf(ξ) (21)

for ξ ≥ bm. Substituting (21) for (20), we have

T ∗
(bm)

Tgm

> 1 − cǫ

for m ≥ m0. Thus we obtain

lim
m→∞

T ∗
(bm)

Tgm

> 1 − cǫ > 0.

Noting that limm→∞ T ∗
(bm) = 0, we see that limm→∞ Tgm

= 0. Again we get

TGm
→ 0 as m→ ∞ which is a contradiction.

Remark 2.2. So far we did not use Lemma 2.1. Even if we consider the sign
changing solution for the nonnegative initial data, by comparison (Lemma 2.1) it must
be nonnegative provided that it is bounded from below in R

n × [0, T ′
] for any T ′ < T .
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3. Energy method. In this section, we prove Theorem 2. We may assume that

C = 0 in (8), (9) and (10).

For m = 1, 2, . . ., we consider a problem:







(wm)t = ∆wm + f(wm),
wm(x, 0) = w0,m(x),
wm = 0

x ∈ B, t > 0,
x ∈ B,
x ∈ ∂B,

(22)

where w0,m ∈ L∞ ∩H1

0
(B) satisfies (8), (9) and (10), and B = B(0, 1)

By comparison in B we have

u(x+ xm, t) ≥ wm(x, t) in B

for m = 1, 2, . . .. Put

φm(t) =

∫

B

w2

m(x, t)dx (23)

and

Em(t) =

∫

B

(

|∇w|2

2
−

∫ w

0

f(ξ)dξ

)

dx. (24)

The ideas of the proof of next two lemmas are standard and go back to [2] and

[12]. We give it for completeness.

Lemma 3.1 (Monotonicity of energy). Let Em(t) be as in (24). Then

E′
m(t) ≤ 0.

Proof. From the proof of [13, Lemma 17.5] and the fact that

d

dt

(
∫ w

0

f(ξ)dξ

)

= f(w)wt,

we get

E′
m(t) = −

∫

B

w2

t (x, t)dx ≤ 0.

Lemma 3.2 (Differential inequality for L2 norm). Define φm and Em in
(23) and (24). Then

φ′m(t) ≥ −2Em(0) + cg(φm(t))

with g(ξ) = (ξf(ξ))1/2 and c = c(δ), where δ is defined in (5).

Proof. Differentiating (23) with respect to t and multiplying 1/2, we have

1

2
φ′m(t) =

∫

B

wwtdx

=

∫

B

w(∆w + f(w))dx

=

∫

B

(−|∇w|2 + wf(w))dx
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From (5) we obtain

1

2
φ′m(t) ≥

∫

B

(

−|∇w|2 + δwf(w) + 2

∫ w

0

f(ξ)dξ

)

dx

= −2Em(t) +

∫

B

δwf(w)dx.

From Lemma 3.1 and the fact that g(ξ) = (ξf(ξ))1/2
is convex, we have

1

2
φ′m(t) ≥ −2E(0) + cg

(
∫

B

w2dx

)

= −2E(0) + cg(φm)

by Jensen’s inequality, where c = δ|B|.

Lemma 3.3. Assume that g ∈ C[0,∞) is positive, nondecreasing and convex in
[0,∞). Assume that

∫ ∞

1
dξ/g(ξ) ≤ C < ∞. Then there exists a sequence {ηm}∞m=1

such that limm→∞ ηm = ∞ and

lim
m→∞

∫ ∞

1

dξ

ηm + g(ξ)
= 0.

Proof. Assume that

lim
m→∞

∫ ∞

1

dξ

ηm + g(ξ)
≥ ǫ > 0.

Then for any M > 1

lim
m→∞

∫ ∞

M

dξ

ηm + g(ξ)
≥
ǫ

2
or lim

m→∞

∫ M

1

dξ

ηm + g(ξ)
≥
ǫ

2
.

However, for any ǫ > 0 we can take M > 1 large enough such that

lim
m→∞

∫ ∞

M

dξ

g(ξ)
<
ǫ

2
.

Thus we obtain

lim
m→∞

∫ ∞

M

dξ

ηm + g(ξ)
≤ lim

m→∞

∫ ∞

M

dξ

g(ξ)
<
ǫ

2
.

On the other hand, for any M > 1

∫ M

1

dξ

ηm + g(ξ)
=

∫ M

1

g(ξ)

ηm + g(ξ)
·
dξ

g(ξ)
≤

g(M)

ηm + g(M)

∫ M

1

dξ

g(ξ)

≤
Cg(M)

ηm + g(M)
→ 0 as m→ 0.

Thus we have

lim
m→∞

∫ M

1

dξ

ηm + g(ξ)
<
ǫ

2
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for any M > 1. We thereby have a contradiction. Thus we obtain

lim
m→∞

∫ ∞

1

dξ

ηm + g(ξ)
= 0.

Proof of Theorem 2. By Lemma 2.1 we may assume that u is nonnegative. From

Lemma 3.2 we have

φ′m(t) ≥ −2Em(0) + cg(φm(t)).

If Em(0) < 0 and φm(0) > 0, then there exist a constant Tm > 0 such that

limt→Tm
φm(t) = ∞, and

Tm ≤

∫ ∞

φm(0)

dξ

−2Em(0) + cg(ξ)
.

From (10) we see that

lim
m→∞

Em(0) = −∞.

Thus from Lemma 3.3 we obtain

lim
m→∞

Tm = 0.

Since u ≥ 0, by a comparison in B we have T ∗ ≤ Tm. This implies T ∗
(u0) = 0.

4. Appendix. In this section we shall show that if u0 is a profile at blow-up

having a blow-up direction in the sense of [6] and continuous, then (3) is fulfilled. We

consider the solution w of the initial value problem (1) with an initial data w0 having

a direction ψ ∈ Sn−1
of means convergence in [4]. One of equivalent definitions reads:

there exists a positive constant M such that 0 ≤ w0 ≤M and

inf
x∈B(xm,rm)

(w0(x) −Mm) ≥ 0

with sequences {rm}∞m=1
⊂ (0,∞), {xm}∞m=1

⊂ R
n
, and {Mm}∞m=1

satisfying rm →
∞, Mm → M as m → ∞. It turns out that this condition is equivalent to say that

the solution has a least blow-up time (see [16], [4]).

From [16, Theorem 1.5] and [4, Theorem 3.2] the solution w satisfies that for each

R > 0

lim
m→∞

sup

x∈B(xm,R)

(v(t) − w(x, t)) = 0, (25)

where v is a solution of (1) with an initial data M , and the solution w has a blow-

up direction at t = T . In other words there exist a direction ψ ∈ Sn−1
, sequences

{xm}∞m=1
and {tm}∞m=1

such that xm/|xm| → ψ and w(xm, tm) → ∞ as m→ ∞.

If we let u0(x) = w(x, T ∗
) = limt→T∗ w(x, t) with T ∗

= T ∗
(M), then u0 has a

blow-up direction.

Lemma 4.1. Assume that w0 ∈ C(R
n
) has a direction of mean convergence. Let

w be the solution of (1) with an initial data w0. Then the blow-up profile u0(x) =

w(x, T ∗
) fulfills the assumption (3) of Theorem 1.
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Proof. From (25) we see that there exists a sequence {(xm, tm)}∞m=1
satisfying

tm → T ∗
as m→ ∞ such that

lim
m→∞

{

sup

x∈B(xm,R)

(v(tm) − u(x, tm))

}

= 0.

Thus, since limm→∞ v(tm) = ∞, we have

lim
m→∞

{

inf
x∈B(xm,R)

u(x, tm)

}

= ∞

for any x ∈ B(0, R). We set bm = infx∈B(xm,R)
u(x, tm). Then u0(x) = w(x, T ∗

)

satisfies (3).
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