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1. Introduction. The purpose of this paper is to establish some basic interior

estimates of Cauchy-Schauder type for the heat flow associated with a system X =

{X1, ..., Xm} of C∞
vector fields in R

n
satisfying Hörmander’s finite rank condition

[H]

(1.1) rank Lie[X1, ..., Xm] ≡ n .

Besides from playing an important role in the applications, such estimates

also have an obvious independent interest. Similarly to the classical ones for el-

liptic equations, our results are tailored on the intrinsic geometry of the system

X = {X1, ..., Xm}. We consider the sub-Laplacian associated with X

(1.2) L = −
m

∑

j=1

X∗
j Xj ,

and the corresponding heat operator in R
n+1

(1.3) H = L − ∂

∂t
.

Thanks to Hörmander’s theorem [H], the assumption (1.1) guarantees the hy-

poellipticity of both L and H on their respective domains. Therefore, distributional

solutions of either Lu = f , or Hu = F are C∞
, wherever such are f or F . Using the

basic results in [RS], the existence of a fundamental solution for L and its size esti-

mates were established independently by Sanchez-Calle [SC] and by Nagel, Stein and

Wainger [NSW]. Corresponding Gaussian estimates for the heat kernels were inde-

pendently obtained by Jerison and Sanchez-Calle [JSC] and by Kusuoka and Stroock

[KS1], [KS2]. One should also see [VSC].

To state our main result we define for z = (x, t) ∈ R
n+1

and r > 0 the parabolic

cylinders

Q(z, r) = B(x, r) × (t − r2, t) , Q−
(z, r) = B(x, r) × (t − r2, t − r2

4
) ,
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122 D. DANIELLI AND N. GAROFALO

where we have indicated by B(x, r) = {y ∈ R
n | d(x, y) < r} the metric ball in the

Carnot-Carathéodory (CC) distance associated with X . Slightly abusing the notation

we will write |B(x, r)| for the n-dimensional Lebesgue measure of the ball B(x, r) in

R
n
, and also |Q(z, r)| for the (n + 1)-dimensional Lebesgue measure of the cylinder

Q(z, r) in R
n+1

. We note explicitly that |Q(z, r)| = r2 |B(x, r)|. Here is the main

result in this paper.

Theorem 1.1. Let D ⊂ R
n+1 be an open set and suppose that u solves Hu = 0

in D. There exists Ro > 0, depending on D and X, such that for every zo ∈ D and
0 < r ≤ Ro for which Q(zo, r) ⊂ D, one has for any s, k ∈ N ∪ {0}

sup

Q(zo,r/2)

∣

∣

∣

∣

∂k

∂tk
Xj1Xj2 ...Xjs

u

∣

∣

∣

∣

≤ C

rs+2k

1

|Q(zo, 2r)|

∫

Q(zo,2r)

|u| dξ dτ ,

for some constant C = C(D, X, s, k) > 0. In the above estimate, for every i = 1, ..., s,
the index ji runs in the set {1, ..., m}. When u ≥ 0 in D, then the above estimate can
be replaced by

sup

Q−
(zo,r/2)

∣

∣

∣

∣

∂k

∂tk
Xj1Xj2 ...Xjs

u

∣

∣

∣

∣

≤ C

rs+2k
u(zo) .

Theorem 1.1 generalizes (and contains) the following steady-state Cauchy-

Schauder type estimates which were found in [CGN3].

Theorem 1.2. Let Ω ⊂ R
n be a bounded open set and suppose that Lu = 0

in Ω. There exists Ro > 0, depending on Ω and X, such that for every x ∈ Ω and
0 < r ≤ Ro for which B(x, r) ⊂ Ω, one has for any s ∈ N

|Xj1Xj2 ...Xjs
u(x)| ≤ C

rs
max
B(x,r)

|u|,

for some constant C = C(Ω, X, s) > 0. In the above estimate, for every i = 1, ..., s,
the index ji runs in the set {1, ..., m} .

This result was proved in [CGN3] with a different approach which exploited the

geometry of the level sets of the fundamental solution of the relevant sub-Laplacian.

That approach however does not seem to work in the time-dependent setting of this

paper since one presently lacks some very delicate asymptotic estimates of the relevant

heat kernels. In the special setting of the Heisenberg group H
n

such estimates were

obtained in [GS] using a refined asymptotic analysis of the Fourier integrals involved

in Gaveau’s explicit fundamental solution for the heat equation, see [Ga]. But the

explicit calculations in [GS] are out of question in the general setting of this paper.

We have been able to get around such lack of estimates by: (i) working with intrinsic

parabolic cylinders in which the base is not a Carnot-Carathéodory ball, but rather a

level set of the steady-state fundamental solution. This allows us to construct some

appropriate C∞
cut-off functions, see Lemma 3.2; (ii) mimicking the basic idea in E.

E. Levi’s method of the parametrix.

To see that Theorem 1.1 contains Theorem 1.2 it suffices to apply the former

result to the function u(x, t) = u(x), where u(x) solves Lu = 0 in Ω ⊂ R
n
. It is worth

emphasizing that, in contrast with the classical case, in the subelliptic setting any

derivative Xji
u of a solution to Hu = 0 fails to be itself a solution of Hu = 0. Our
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proof of Theorem 1.1 is based on the Gaussian estimates of the heat kernel found in

[JSC], [KS1], [KS2]. In particular, we will assume such estimates in the version which

was obtained in [KS1]. With such basic tool in hands, we will then use arguments

which are reminiscent of the classical ones originated with E. E. Levi’s method of

the parametrix, see [Fr], or also [E]. It is worth mentioning at this point that, in

the special setting of Carnot groups, our arguments combined with the non-isotropic

group dilations, provide a simplified approach to several of the local and global results

available in the literature.

Similarly to its classical ancestor, Theorem 1.1 has many basic consequences. For

instance, one can use it to study the regularity at the boundary for solutions to the

equation Hu = 0 both in cylindrical and non-cylindrical domains in R
n+1

. Basic

applications of the Cauchy-Schauder estimates in the time-independent subelliptic

Dirichlet problem can be found in the works [CGN1], [LU1], [CGN2], [LU2], [CGN3].

In a different direction, such estimates were used in the works [CDG1], [CDG2],

[CDG3]. Theorem 1.1 can also be used to deduce some interesting Cauchy-Liouville

type properties of solutions to parabolic equations such as (1.3).

2. Preliminaries. In R
n
, with n ≥ 3, we consider a system X = {X1, ..., Xm}

of C∞
vector fields satisfying Hörmander finite rank condition. A piecewise C1

curve

γ : [0, T ] → R
n

is called sub-unitary if whenever γ′
(t) exists one has for every ξ ∈ R

n

< γ′
(t), ξ >2 ≤

m
∑

j=1

< Xj(γ(t)), ξ >2 .

We note explicitly that the above inequality forces γ′
(t) to belong to the span of

{X1(γ(t)), ..., Xm(γ(t))}. The sub-unit length of γ is by definition ls(γ) = T . Given

x, y ∈ R
n
, denote by SΩ(x, y) the collection of all sub-unitary γ : [0, T ] → Ω which

join x to y. The Chow-Rashevsky accessibility theorem states that, given a connected

open set Ω ⊂ R
n
, for every x, y ∈ Ω there exists γ ∈ SΩ(x, y), see [Ch], [Ra]. As a

consequence, if we pose

dΩ(x, y) = inf {ls(γ) | γ ∈ SΩ(x, y)},

we obtain a distance on Ω, called the Carnot-Carathéodory distance on Ω, associated

with the system X . When Ω = R
n
, we write d(x, y) instead of dRn(x, y). It is clear

that d(x, y) ≤ dΩ(x, y), x, y ∈ Ω, for every connected open set Ω ⊂ R
n
. In [NSW] it

was proved that for every connected Ω ⊂⊂ R
n

there exist C, ǫ > 0 such that

(2.1) C |x − y| ≤ dΩ(x, y) ≤ C−1 |x − y|ǫ, x, y ∈ Ω,

see also [Be]. This gives d(x, y) ≤ C−1|x − y|ǫ, x, y ∈ Ω, and therefore

i : (R
n, | · |) → (R

n, d) is continuous.

It is easy to see that also the continuity of the opposite inclusion holds [GN1],

hence the metric and the Euclidean topology are compatible.

For x ∈ R
n

and r > 0, we let Bd(x, r) = {y ∈ R
n | d(x, y) < r}. The basic

properties of these balls were established by Nagel, Stein and Wainger in their seminal

paper [NSW]. Denote by Y1, ..., Yl the collection of the Xj ’s and of those commutators

which are needed to generate R
n
. A formal “degree” is assigned to each Yi, namely

the corresponding order of the commutator. If I = (i1, ..., in), 1 ≤ ij ≤ l is a n-tuple of
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integers, following [NSW] we let d(I) =
∑n

j=1
deg(Yij

), and aI(x) = det (Yi1 , ..., Yin
).

The Nagel-Stein-Wainger polynomial is defined by

(2.2) Λ(x, r) =

∑

I

|aI(x)| rd(I), r > 0.

For a given bounded open set U ⊂ R
n
, we let

(2.3) Q = sup {d(I) | |aI(x)| 6= 0, x ∈ U}, Q(x) = inf {d(I) | |aI(x)| 6= 0},

and notice that n ≤ Q(x) ≤ Q. The numbers Q and Q(x) are respectively called the

local homogeneous dimension of U and the homogeneous dimension at x with respect

to the system X .

Theorem 2.1 ([NSW]). For every bounded set U ⊂ R
n, there exist constants

C, Ro > 0 such that, for any x ∈ U , and 0 < r ≤ Ro,

(2.4) C Λ(x, r) ≤ |Bd(x, r)| ≤ C−1

Λ(x, r).

As a consequence, one has with C1 = 2
Q

(2.5) |Bd(x, 2r)| ≤ C1 |Bd(x, r)| for every x ∈ U and 0 < r ≤ Ro.

The numbers C1, Ro in (2.5) will be referred to as the characteristic local para-
meters of U . We notice that (2.5) implies for every x ∈ U , 0 < r ≤ Ro and 0 ≤ t ≤ 1

(2.6) |B(x, tr)| ≥ C1t
Q|B(x, r)| .

Because of (2.2), if we let

(2.7) E(x, r) =
Λ(x, r)

r2
,

then the function r → E(x, r) is strictly increasing. We denote by F (x, ·) the inverse

function of E(x, ·), so that F (x, E(x, r)) = r. Let Γ(x, y) = Γ(y, x) be the positive

fundamental solution of the sub-Laplacian

L =

m
∑

j=1

X∗
j Xj ,

and consider its level sets

Ω(x, r) =

{

y ∈ R
n | Γ(x, y) >

1

r

}

.

The following definition plays a key role in this paper.

Definition 2.2. For every x ∈ R
n, and r > 0, the set

BX(x, r) =

{

y ∈ R
n | Γ(x, y) >

1

E(x, r)

}

will be called the X-ball, centered at x with radius r.
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We note explicitly that

BX(x, r) = Ω(x, E(x, r)), and that Ω(x, r) = BX(x, F (x, r)).

One of the main geometric properties of the X-balls, is that they are equivalent to

the Carnot-Carathéodory balls. To see this, we recall the following important result,

established independently in [NSW], [SC], see also [FSC]. Hereafter, the notation

Xu = (X1u, ..., Xmu) indicates the sub-gradient of a function u, whereas |Xu| =

(
∑m

j=1
(Xju)

2
)

1

2 will denote its length.

Theorem 2.3. Given a bounded set U ⊂ R
n, there exists Ro, depending on U

and on X, such that for x ∈ U, 0 < d(x, y) ≤ Ro, one has for s ∈ N ∪ {0}, and for
some constant C = C(U, X, s) > 0

|Xj1Xj2 ...Xjs
Γ(x, y)| ≤ C−1

d(x, y)
2−s

|Bd(x, d(x, y))| ,(2.8)

Γ(x, y) ≥ C
d(x, y)

2

|Bd(x, d(x, y))| .

In the first inequality in (2.8), one has ji ∈ {1, ..., m} for i = 1, ..., s, and Xji
is

allowed to act on either x or y.

In view of (2.5), (2.8), it is now easy to recognize that, given a bounded set

U ⊂ R
n
, there exists a > 1, depending on U and X , such that

(2.9) B(x, a−1r) ⊂ BX(x, r) ⊂ B(x, ar),

for x ∈ U, 0 < r ≤ Ro. We observe that, as a consequence of (2.4), and of (2.8), one

has

(2.10) C d(x, y) ≤ F

(

x,
1

Γ(x, y)

)

≤ C−1 d(x, y),

for all x ∈ U, 0 < d(x, y) ≤ Ro.

We observe that for a Carnot group G of step k, if g = V1⊕...⊕Vk is a stratification

of the Lie algebra of G, then one has Λ(x, r) = const rQ
, for every x ∈ G and every

r > 0, with Q =
∑k

j=1
j dimVj , the homogeneous dimension of the group G. In this

case Q(x) ≡ Q, see [F], [BLU], [G].

It is important to keep in mind the following basic properties of a Carnot-

Carathéodory space.

Proposition 2.4. (R
n, d) is locally compact. Furthermore, for any bounded set

U ⊂ R
n there exists Ro = Ro(U) > 0 such that the closed balls B̄(xo, R), with xo ∈ U

and 0 < R < Ro, are compact.

Remark 2.5. Compactness of balls of large radii may fail in general, see [GN1].
However, there are important cases in which Proposition 2.4 holds globally, in the
sense that one can take U to coincide with the whole ambient space and Ro = ∞. One
example is that of Carnot groups. Another interesting case is that when the vector
fields Xj have coefficients which are globally Lipschitz, see [GN1], [GN2]. Henceforth,
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for any given bounded set U ⊂ R
n we will always assume that the local parameter Ro

has been chosen so to accommodate Proposition 2.4.

Keeping in mind the applicability of the results in this paper to the study of

the Dirichlet problem, the basic reference on this subject for operators of Hörmander

type remains the pioneer study of Bony [B]. For more recent developments the reader

should consult [CG], [CGN3] and the references therein.

The following basic result was established in [KS1], [KS2], see also [JSC].

Theorem 2.6. The fundamental solution p(x, t; ξ, τ) = p(x, ξ; t − τ) with singu-
larity at (ξ, τ) satisfies the following size estimates : there exists M = M(X) > 0 and
for every k, s ∈ N ∪ {0}, there exists a constant C = C(X, k, s) > 0, such that

(2.11)
∣

∣

∣

∣

∂k

∂tk
Xj1Xj2 ...Xjs

p(x, t; ξ, τ)

∣

∣

∣

∣

≤ C

(t − τ)s+2k

1

|B(x,
√

t − τ )| exp

(

− Md(x, ξ)2

t − τ

)

,

(2.12) p(x, t; ξ, τ) ≥ C−1

|B(x,
√

t − τ)| exp

(

− M−1d(x, ξ)2

t − τ

)

,

for every x, ξ ∈ R
n, and any −∞ < τ < t < ∞.

3. Proof of Theorem 1.1. In the sequel we fix a point zo = (xo, to) ∈ R
n+1

and consider the following parabolic cylinders

(3.1) Q(zo, r) = B(xo, r) × (to − r2, to) ,

(3.2) Q−
(zo, r) = B(xo, r) × (to − r2, to −

r2

4
).

We will also need cylinders based on the X-balls

(3.3) QX(zo, r) = BX(xo, r) × (to − r2, to) ,

(3.4) Q−
X(zo, r) = BX(xo, r) × (to − r2, to −

r2

4
).

The following basic lemma, which constitutes a generalization of a result obtained

in [CGL] for the case s = 1, is the main motivation for introducing the cylinders

QX(zo, r). If we work with the CC balls B(xo, r) then the existence of a smooth

cut-off function fails since in general only the first derivatives of the CC distance with

respect to the vector fields X1, ..., Xm are bounded, see e.g. [GN2].

Lemma 3.1. For every xo ∈ R
n and r > 0 there exists a function χ ∈

C∞
o (BX(xo, 2r)), 0 ≤ χ ≤ 1, such that χ ≡ 1 on BX(xo, r), and moreover for each

s ∈ N ∪ {0} there exists C = C(X, s) > 0 such that

|Xj1Xj2 ...Xjs
χ| ≤ C

rs
.



INTERIOR CAUCHY-SCHAUDER ESTIMATES FOR THE HEAT FLOW 127

Proof. Let f ∈ C∞
o ([0,∞)), 0 ≤ f ≤ 1, f ≡ 1 on [0, r], supp f ⊂ [0, 2r), and such

that for every s ∈ N one has

(3.5) |f (s)
(σ)| ≤ C(s)

rs
for every σ ∈ [r, 2r] .

We define χ(x) = f(ρxo
(x)). This function clearly possesses the desired support

properties. The estimates for the derivatives of χ along the vector fields X1, ..., Xm

now follow by recurrence from (3.5) and from the following estimates for the regular-

ized distance ρxo

(3.6) |Xj1Xj2 ...Xjs
ρxo

(x)| ≤ C(s)

ρxo
(x)s−1

x 6= xo .

We leave the details to the reader.

Using Lemma 3.1 we now obtain a similar ad hoc result on the parabolic cylinders

QX(zo, r).

Lemma 3.2. For every zo = (xo, to) ∈ R
n+1 and r > 0 there exists a function

ζ ∈ C∞
o

(

BX(xo, 2r) × (to − 4r2, to]
)

,

0 ≤ ζ ≤ 1, such that ζ ≡ 1 on QX(zo, r), and moreover for each s, k ∈ N ∪ {0} there
exists C = C(X, s, k) > 0 such that

(3.7) | ∂k

∂tk
Xj1Xj2 ...Xjs

ζ| ≤ C

rs+2k
.

Proof. We choose a function h ∈ C∞
(R), such that 0 ≤ h ≤ 1, h ≡ 1 on

[to − r2,∞), supp h ⊂ (to − 4r2,∞), and for which one has for every k ∈ N

|h(k)

(t)| ≤ C(k)

r2k
for every t ∈ [to − 4r2, to − r2

] .

We define

ζ(z) = ζ(x, t) = χ(x) h(t) ,

where χ is the function in Lemma 3.1. From the definitions of χ and h it is clear that

ζ ≡ 1 on QX(zo, r). Since

| ∂k

∂tk
Xj1Xj2 ...Xjs

ζ(z)| = |Xj1Xj2 ...Xjs
χ(x)| |h(k)

(t)| ,

the estimate (3.7) follows from the corresponding ones for χ and h.

We will need the following form of Duhamel’s principle.

Proposition 3.3. Let F ∈ C∞
o (R

n × [0,∞)), and define

(3.8) w(z) =

∫ t

0

∫

Rn

p(x, ξ; t − τ) F (ξ, τ) dξ dτ ,
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where p(x, ξ; t− τ) denotes the positive fundamental solution of H with singularity at
(ξ, τ). One has w ∈ C∞

(R
n × (0,∞)), and moreover

(3.9) Hw = − F in R
n × (0, to) , w(x, 0) = 0 , x ∈ R

n .

Proof. Follows along classical lines.

In what follows, given an open set D ⊂ R
n+1

, we indicate with Γ
2,1

(D) the

collection of all continuous functions on D possessing two continuous derivatives with

respect to the vector fields X1, ..., Xm, and one continuous derivative with respect to

the variable t.

Theorem 3.4. There exists at most one solution u ∈ Γ
2,1

(R
n × (0, T1]) to the

differential inequality

(3.10) u(x, t) Hu(x, t) ≥ 0 (x, t) ∈ R
n × (0, T1) ,

such that u(x, 0) = 0 for x ∈ R
n, and for which

(3.11) |u(x, t)| p(xo, x; 1) ≤ A , x ∈ R
n, 0 < t < T1 ,

for some A > 0, and some xo ∈ R
n. In particular, given φ ∈ C(R

n
), F ∈ C(R

n ×
(0, T1)), there exists a unique solution to the Cauchy problem

(3.12) Hu = F in R
n × (0, T1) , u(x, 0) = φ(x) , x ∈ R

n ,

satisfying the constraint (3.11).

Proof. We introduce the function

(3.13) φ(R)
def
=

∫

Rn

u2

(ξ, R2

) p(x, ξ; T − R2

) dξ , 0 ≤ R <
√

T ,

where x ∈ R
n

is fixed and the number T < T1 will be chosen suitably small in a

moment. We have from (3.11) and the Gaussian estimates (2.11), (2.12) in Theorem

2.6

u2

(ξ, R2

) p(x, ξ; T − R2

) ≤ A2 p(xo, ξ; 1)
−2 p(x, ξ; T − R2

)(3.14)

≤ C3 A2
|B(xo, 1)|2

|B(x,
√

T − R2)|
exp

{

2d(xo, ξ)
2

M

}

exp

{

− Md(x, ξ)2

T − R2

}

.

At this point we choose

(3.15) To < min

{

T1,
M2

4

}

,

and let 0 < T < To. Since the triangle inequality gives

d(xo, ξ)
2 ≤ d(xo, x)

2

+ d(x, ξ)2 + 2 d(xo, x) d(x, ξ) ,
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we obtain from (3.14)

u2

(ξ, R2

) p(x, ξ; T − R2

) ≤ C3 A2
|B(xo, 1)|2

|B(x,
√

T − R2)|
exp

{

2d(xo, x)
2

M

}

(3.16)

× exp

{

2d(x, ξ)2

M
+

4d(xo, x)d(x, ξ)

M

}

exp

{

− Md(x, ξ)2

T

}

.

≤ C3 A2
|B(xo, 1)|2

|B(x,
√

T − R2)|
exp

{

2d(xo, x)
2

M

}

× exp

{

2d(x, ξ)2

M
+

4d(xo, x)d(x, ξ)

M

}

exp

{

− 4d(x, ξ)2

M

}

,

where in the last inequality we have used (3.15). From (3.16) it is clear that if

d(x, ξ) ≥ 4d(xo, x), then

u2

(ξ, R2

) p(x, ξ; T − R2

)

≤ C3 A2
|B(xo, 1)|2

|B(x,
√

T − R2)|
exp

{

2d(xo, x)
2

M

}

exp

{

− d(x, ξ)2

M

}

.

From this estimate we infer that the integral in (3.13) defining φ(R) is absolutely

convergent for any x ∈ R
n

and every 0 < T < To, with To satisfying (3.15).

Differentiating under the integral sign we find

φ′
(R) = 4 R

∫

Rn

u(ξ, R2

) ∂tu(ξ, R2

) p(x, ξ; T − R2

) dξ(3.17)

− 2 R

∫

Rn

u2

(ξ, R2

) ∂tp(x, ξ; T − R2

) dξ .

We now use the self-adjointness of the sub-Laplacian L, and the equation satisfied

by p, which gives for every x, ξ ∈ R
n

and every R ∈ (0,
√

T )

∂tp(x, ξ; T − R2

) = Lξp(x, ξ; T − R2

) .

Substituting the latter equation in the right-hand side of (3.17) we obtain

φ′
(R) = 4 R

∫

Rn

u(ξ, R2

) ∂tu(ξ, R2

) p(x, ξ; T − R2

) dξ(3.18)

− 2 R

∫

Rn

u2

(ξ, R2

) Lξp(x, ξ; T − R2

) dξ .

We now integrate by parts in the second integral in the right-hand side of (3.18).

Using the assumption (3.11) we conclude that

φ′
(R) = 4 R

∫

Rn

u(ξ, R2

) ∂tu(ξ, R2

) p(x, ξ; T − R2

) dξ(3.19)

− 2 R

∫

Rn

Lξ

(

u2

(ξ, R2

)
)

p(x, ξ; T − R2

) dξ .

Observe that

Lξ

(

u2

(·, R2

)
)

(ξ) = 2 u(ξ, R2

) Lu(ξ, R2

) + 2 |Xu(ξ, R2

)|2 .
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Substitution in the latter equation gives

φ′
(R) = − 4 R

∫

Rn

u(ξ, R2

) Hu(ξ, R2

) p(x, ξ; T − R2

) dξ(3.20)

− 4 R

∫

Rn

|Xu(ξ, R2

)|2 p(x, ξ; T − R2

) dξ .

If we now use the hypothesis (3.10), then we conclude from (3.20)

(3.21) φ′
(R) ≤ − 4 R

∫

Rn

|Xu(ξ, R2

)|2 p(x, ξ; T − R2

) dξ ≤ 0 ,

and therefore the function φ(R) is decreasing. In particular, for every 0 < R <
√

T
one has

φ(R) ≤ φ(0) =

∫

Rn

u(ξ, 0)
2 p(x, ξ; T ) dξ = 0 .

Letting R →
√

T in the latter inequality, by the δ-function property of p(x, ξ; ·)
we infer

lim
R→

√
T

φ(R) = u(x, T )
2

= 0 .

By the arbitrariness of x ∈ R
n
, T ∈ (0, To), we conclude that it must be u ≡ 0 in

R
n × (0, To). Repeating the above arguments on successive intervals (To, 2To), etc.,

we finally reach the conclusion u ≡ 0 in R
n × (0, T1).

To prove the second part of the theorem, we observe that by linearity it suffices to

show that if Hu = 0 in R
n × (0, T1), u(x, 0) ≡ 0, and u satisfies the constraint (3.11),

then it must be u ≡ 0 in R
n × (0, T1). This is of course an immediate consequence of

the first part.

We are now ready to establish the main result of this section.

Proof of Theorem 1.1. Without loss of generality we assume that to > 0, and

consider r > 0 such that to − 4r2 > 0. For a given function u ∈ C∞
(R

n+1
) we define

(3.22) v(z)
def
= ζ(z) u(z) ,

where ζ is the cut-off whose existence has been established in Lemma 3.2. One has

(3.23) Hv = u Hζ + ζ Hu + 2 < Xu, Xζ > ,

and also, thanks to the support properties of ζ, we have

(3.24) v(x, 0) = 0 x ∈ R
n .

Suppose that u be a solution to Hu = 0, then we obtain from (3.23)

(3.25) Hv = u Hζ + 2 < Xu, Xζ >
def
= − F in R

n × (0, to) .

We next define

(3.26) w(z) =

∫ t

0

∫

Rn

p(x, ξ; t − τ) F (ξ, τ) dξ dτ ,
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where p(x, ξ; t−τ) is the positive fundamental solution of H with singularity at (ξ, τ).

By Proposition 3.3 we know that w solves the problem

(3.27) Hw = − F in R
n × (0, to) , w(x, 0) = 0 , x ∈ R

n .

Comparing (3.24), (3.25) and (3.27), we see that v and w solve the same Cauchy

problem in the strip R
n × (0, to). Furthermore, by the support properties of ζ we

see that v ∈ L∞
(R

n × (0, to)). On the other hand, by the same reasons we have

F ∈ L∞
(R

n × (0, to)), and the definition of w gives for z = (x, t) ∈ R
n × (0, to))

|w(z)| ≤ ||F ||L∞
(Rn×(0,to))

∫ t

0

∫

Rn

p(x, ξ; t − τ) dξ dτ ≤ to ||F ||L∞
(Rn×(0,to))

,

since

∫

Rn

p(x, ξ; t − τ) dξ = 1 .

Thanks to Theorem 3.4 we can thus conclude that v ≡ w in R
n× (0, to), therefore

v(z) =

∫ t

0

∫

Rn

p(x, ξ; t − τ) F (ξ, τ) dξ dτ .

Assume now that z ∈ QX(zo, r/2). Since ζ(z) = 1, by the support properties of

p(x, ξ; t − τ) and ζ we obtain

u(z) =

∫ to

to−4r2

∫

BX (xo,2r)

p(x, ξ; t − τ) F (ξ, τ) dξ dτ(3.28)

=

∫ to

to−4r2

∫

BX (xo,2r)

p(x, ξ; t − τ) Hζ(ξ, τ) u(ξ, τ) dξ dτ

+ 2

∫ to

to−4r2

∫

BX (xo,2r)

p(x, ξ; t − τ) < Xζ(ξ, τ), Xu(ξ, τ) > dξ dτ .

An integration by parts gives

2

∫ to

to−4r2

∫

BX (xo,2r)

p(x, ξ; t − τ) < Xζ(ξ, τ), Xu(ξ, τ) > dξ dτ

(3.29)

= 2

m
∑

j=1

∫ to

to−4r2

∫

∂BX (xo,2r)

p(x, ξ; t − τ) Xjζ(ξ, τ) < Xj, νξ > u(ξ, τ) dξ dτ

− 2

∫ to

to−4r2

∫

BX (xo,2r)

< Xp(x, ξ; t − τ), Xζ(ξ, τ) > u(ξ, τ) dξ dτ

− 2

m
∑

j=1

∫ to

to−4r2

∫

BX (xo,2r)

p(x, ξ; t − τ) XjXjζ(ξ, τ) u(ξ, τ) dξ dτ ,

where in the first integral in the right-hand side of (3.29) we have denoted by νξ

the spacial component of the outer unit normal to the smooth manifold ∂BX(xo, 2r).
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Since Xζ ≡ 0 on ∂BX(xo, 2r) × (to − 4r2, to), the above integral vanishes, and after

substituting (3.29) into (3.28) we obtain for z ∈ QX(zo, r/2)

(3.30) u(z) =

∫

QX(zo,2r)

K(x, ξ; t − τ) u(ξ, τ) dξ dτ ,

where

K(x, ξ; t − τ) = p(x, ξ; t − τ) Hζ(ξ, τ) − 2 < Xp(x, ξ; t − τ), Xζ(ξ, τ) >

(3.31)

− 2 p(x, ξ; t − τ)

m
∑

j=1

XjXjζ(ξ, τ)

= p(x, ξ; t − τ)







∂ζ

∂τ
+

m
∑

j=1

XjXjζ − <
−→

divX, Xζ >







(ξ, τ)

− 2 < Xp(x, ξ; t − τ), Xζ(ξ, τ) > ,

where we have denoted

−→

divX = (divX1, ..., divXm). Recalling that ζ ≡ 1 on QX(zo, r),
and that p(x, ξ; t − τ) ≡ 0 when τ ≥ t, we see that for every fixed z = (x, t) ∈
QX(zo, r/2), the integral in (3.30) is actually performed on the region

(3.32)

[

QX(zo, 2r) \ QX(zo, r)

]

∩ {(ξ, τ) ∈ R
n+1 | τ < t} .

This observation will be important in the sequel. First of all, we can differentiate

the right-hand side of (3.30) under the integral sign to obtain

sup

QX (zo,r/2)

| ∂k

∂tk
Xj1Xj2 ...Xjs

u|(3.33)

≤
∫

QX(zo,2r)

| ∂k

∂tk
Xj1Xj2 ...Xjs

K(x, ξ; t − τ)| |u(ξ, τ)| dξ dτ .

In what follows, to simplify the notation we will indicate with Xsf the derivative

Xj1Xj2 ...Xjs
f of a function f . Also, we write ∂tf , instead of ∂f/∂t. Leibniz rule

gives

∂k
t Xs

(fg) =

k
∑

i=0

s
∑

l=0

(

k
i

) (

s
l

) (

∂k−i
t Xs−lf

)(

∂i
tX

lg

)

.

Applying this formula to (3.31) we find

∂k
t XsK

(3.34)

=

k
∑

i=0

s
∑

l=0

(

k
i

) (

s
l

) (

∂k−i
t Xs−lp

)(

∂i
tX

l

{

∂ζ

∂τ
+

m
∑

j=1

XjXjζ − <
−→

divX, Xζ >

})

+ 2

m
∑

j=1

k
∑

i=0

s
∑

l=0

(

k
i

)(

s
l

)(

∂k−i
t Xs−lXjp

)(

∂i
tX

lXjζ

)

= I(x, t; ξ, τ) + II(x, t; ξ, τ) .
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Substituting (3.34) in (3.33) we recognize that, in order to complete the proof of

the theorem, it will suffice to establish to estimate

∫

QX (zo,2r)

|I(x, t; ξ, τ)| |u(ξ, τ)| dξ dτ +

∫

QX (zo,2r)

|II(x, t; ξ, τ)| |u(ξ, τ)| dξ dτ

(3.35)

≤ C

r2k+s

1

|QX(zo, 2r)|

∫

QX (zo,2r)

|u(ξ, τ)| dξ dτ ,

for some constant C = C(X, s, k) > 0. We will prove that, in fact, each of the two

terms in (3.35) is bounded by the quantity in the right-hand side. Also, since these

two terms are similar we will only estimate one of them. Keeping in mind (3.32) we

obtain from Lemma 3.2

∫

QX (zo,2r)

|I(x, t; ξ, τ)| |u(ξ, τ)| dξ dτ(3.36)

≤
k

∑

i=0

s
∑

l=0

(

k
i

) (

s
l

)

C(k, i, s, l)

r2i+l+2

×
∫

[QX (zo,2r)\QX(zo,r)]∩{τ<t}

∣

∣

∣

∣

∂k−i
t Xs−lp(x, ξ; t − τ)

∣

∣

∣

∣

|u(ξ, τ)| dξ dτ .

We now break the integral in the right-hand side of (3.36) in two pieces

∫

[QX(zo,2r)\QX(zo,r)]∩{τ<t}

∣

∣

∣

∣

∂k−i
t Xs−lp(x, ξ; t − τ)

∣

∣

∣

∣

|u(ξ, τ)| dξ dτ(3.37)

≤
∫

[QX (zo,2r)\QX(zo,r)]∩{to−r2<τ<t}

∣

∣

∣

∣

∂k−i
t Xs−lp(x, ξ; t − τ)

∣

∣

∣

∣

|u(ξ, τ)| dξ dτ

∫

[QX(zo,2r)\QX(zo,r)]∩{to−4r2<τ<to−r2}

∣

∣

∣

∣

∂k−i
t Xs−lp(x, ξ; t − τ)

∣

∣

∣

∣

|u(ξ, τ)| dξ dτ

= I ′ + I ′′ .

To estimate I ′ we observe that since t < to we can majorize

I ′ ≤
∫

[QX (zo,2r)\QX(zo,r)]∩{t−r2<τ<t}

∣

∣

∣

∣

∂k−i
t Xs−lp(x, ξ; t − τ)

∣

∣

∣

∣

|u(ξ, τ)| dξ dτ(3.38)

≤
∫ t

t−r2

∫

ar<d(x,ξ)<4ar

∣

∣

∣

∣

∂k−i
t Xs−lp(x, ξ; t − τ)

∣

∣

∣

∣

|u(ξ, τ)| dξ dτ ,

where in the second integral we have used (2.9).

Theorem 2.6 implies

∣

∣

∣

∣

∂k−i
t Xs−lp(x, ξ; t − τ)

∣

∣

∣

∣

≤ C(k, i, s, l)

(t − τ)
k−i+ s−l

2

1

|B(x,
√

t − τ )| exp

(

− Md(x, ξ)2

t − τ

)

.

(3.39)

We now observe that when τ > t − r2
we have from (2.6)

(3.40) |B(x,
√

t − τ )| ≥ C1

(
√

t − τ

r

)Q

|B(x, r)| .
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Inserting (3.40) into (3.39) we find that when τ > t − r2
and ar < d(x, ξ) < 4ar

∣

∣

∣

∣

∂k−i
t Xs−lp(x, ξ; t − τ)

∣

∣

∣

∣

≤ C(k, i, s, l, C1)

(t − τ)
k−i+ s−l+Q

2

rQ

|B(x, r)| exp

(

− Ma2r2

t − τ

)

.(3.41)

Substitution of (3.41) in (3.38) leads to the estimate

I ′ ≤ C(k, i, s, l, C1)
rQ

|B(x, r)| sup

t−r2<τ<t

{

1

(t − τ)
k−i+ s−l+Q

2

exp

(

− Ma2r2

t − τ

)}

(3.42)

×
∫

QX(zo,2r)

|u(ξ, τ)| dξ dτ .

≤ rQ

|B(x, r)|
C′

(X, k, i, s, l)

r2(k−i)+s−l+Q

∫

QX (zo,2r)

|u(ξ, τ)| dξ dτ .

=
C′

(X, k, i, s, l)

r2(k−i)+s−l

1

|B(x, r)|

∫

QX (zo,2r)

|u(ξ, τ)| dξ dτ .

To estimate I ′′ we observe that, since (x, t) ∈ QX(zo, r/2), on the region of

integration we have 4r2 > t − τ > 3/4r2
. Therefore, on such region the following

estimate is a direct, and trivial, consequence of (3.39)

∣

∣

∣

∣

∂k−i
t Xs−lp(x, ξ; t − τ)

∣

∣

∣

∣

≤ C′′
(k, i, s, l)

r2(k−i)+s−l

1

|B(x,
√

3

2
r)|

.(3.43)

By (2.5) we conclude

(3.44) I ′′ ≤ C′
(X, k, i, s, l)

r2(k−i)+s−l

1

|B(x, r)|

∫

QX(zo,2r)

|u(ξ, τ)| dξ dτ .

Combining (3.42), (3.44) with (3.37), and inserting the resulting inequality into

(3.36) we conclude

∫

QX (zo,2r)

|I(x, t; ξ, τ)| |u(ξ, τ)| dξ dτ(3.45)

≤ C(X, s, k)

r2k+s

1

r2|BX(xo, 2r)|

∫

QX (zo,2r)

|u(ξ, τ)| dξ dτ .

By analogous arguments, one obtains the following estimate

∫

QX (zo,2r)

|II(x, t; ξ, τ)| |u(ξ, τ)| dξ dτ(3.46)

≤ C(X, s, k)

r2k+s

1

r2|BX(xo, 2r)|

∫

QX (zo,2r)

|u(ξ, τ)| dξ dτ .

This completes the proof of the theorem.
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of Rellich and Poincaré domains, Rend. Sem. Mat. Univ. Pol. Torino, 4, 54 (1993),

pp. 361–386.

[CDG2] L. Capogna, D. Danielli & N. Garofalo, The geometric Sobolev embedding for vector

fields and the isoperimetric inequality, Comm. Anal. and Geom., 2 (1994), pp. 201–

215.

[CDG3] L. Capogna, D. Danielli & N. Garofalo, Subelliptic mollifiers and a basic pointwise
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to Pde’s, Birkhäuser, book in preparation.

[GN1] N. Garofalo & D.M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-
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