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VISCOSITY APPROXIMATION METHODS FOR EQUILIBRIUM
PROBLEMS AND FIXED POINT PROBLEMS OF NONEXPANSIVE
MAPPINGS AND INVERSE-STRONGLY MONOTONE MAPPINGS*

SHENGHUA WANGHT, HAIYUN ZHOU?#, AND JIANMIN SONG$

Abstract. In this paper, we introduce an iterative scheme by viscosity approximation method
for obtaining a common element of the set of solutions of an equilibrium problem and the set of
fixed points of a nonexpansive mapping and the set of solutions of the variational inequality for
an inverse-strongly monotone mapping in a Hilbert space. We obtain a strong convergence which
improves and extends S. Takahashi and W. Takahashi’s result [S. Takahashi, W. Takahashi, Viscosity
approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math.
Anal. Appl. 331 (2007) 506-515].
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1. Introduction and Preliminaries. Let C' be a nonempty closed convex sub-
set of a real Hilbert H. Let f be a mapping from C into itself. Then, f is called a
contraction on C' if there exists a constant x € (0,1) such that

1f(2) = FW)I < sl —yll, forall z,y € C.

We denote the set of all contractions on C' by IIo. Note that f has a unique fixed
point in C.
Let .S be a mapping from C' into itself, then S is called nonexpansive if

15z = Syl < llz =yl

for all z,y € C. In this paper, we denote the set of fixed points of S by F(.5).
Let F be a bifunction of C' x C into R, where R is the set of real numbers. The
equilibrium problem for F': C x C' — R is to find z € C such that

F(z,y) >0 forallyeC.

For solving above equilibrium problem, assume that F' satisfies the following condi-
tions:
(Al) F(z,z) =0 for all x € C;
(A2) F is monotone, i.e., F(z,y) + F(y,x) <0 for all z,y € C;
(A3) for each z,y,z € C, limy o F(tz + (1 — t)z,y) < F(z,y);
(A4) for each z € C, y — F(z,y) is convex and lower semicontinuous.
The set of solution of the above equilibrium problem is denoted by EP(F). The
following lemmas were given in [2] and [5], respectively.
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LEMMA 1.1 ([2]). Let C be a nonempty closed convex subset of H and let F be a
bifunction of C x C into R satisfies (A1) — (A4). Let r > 0 and x € H. Then, there
exists z € C' such that

1
F(z,9)+ ~(y —2,z—x) >0 forally € C.
T

LEMMA 1.2 ([5]). Assume that F : C x C — R satisfies (A1) — (A4). Forr >0
and x € H, define a mapping T : H — C as follows:

1
Tr(x):{ZEC:F(z,y)—&—;(y—z,z—@ >0,Vy € C}

for all x € H. Then, the following hold:
(1) T is single-valued;
(2) T is firmly nonexpansive, i.e., for any x,y € H,

| Tz — TryHZ <(Trx —Try,x —y);

(4) EP(F) is closed and convez.

Lemma 1.2 shows that for each given z € H, there exists a unique T,(z) € C.
However, it is very hard to find such a z € C' such that

1
Fliz,2y)+-{y—2z,2—x) >0
r

for all y € C, that is, for a given z € H, it is very hard to compute T,(x). In
[5], Combettes and Hirstoaga gave an iterative algorithm to compute T, (x) for a
given x € H. On this problem, the interested readers may refer to [5]. Here, we
give a simple example to compute T} (z) in a Euclidean space. Put H = R? and
C={xeH:|z| <1}. Let F(x,y) = |ly||*> — ||=||* for all x,y € C. Obviously, the
bifunction F satisfies the conditions A(1)—A(4). Taking r = 1, for given z = 0, we
compute

T1(0) ={z € C: F(z,y)+(y — z,2) > 0,Yy € C}.
Note that F(z,y) + (y — z,2) > 0 is equivalent to the inequality
2012l1” < llyll* + (y — 2, 2)

and observe that z = 0 satisfies the above inequality for all y € C. Since T3 is
single-value from Lemma 1.2, we know that 73 (0) = 0.
Let A be a mapping from C' into H, then A is called monotone if

for all z,y € C. However, A is called an a-inverse-strongly monotone mapping if
there exists a positive real number « such that

(x —y, Az — Ay) > oAz — Ay|]?
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for all z,y € C. Let I denote the identity mapping of H, then for all z,y € C' and
A > 0, one has [6]

I(1 = AA)z — (I = AA)y|? < [lz =yl + A\ = 20)|| Az — Ay]|*. (L.1)

Hence, if A € (0,2¢], then I — XA is a nonexpansive mapping of C into H.
If there exists u € C such that

(v—u,Auy >0

for all v € C, then u is called the solution of this variational inequality. The set of all
solutions of the variational inequality is denoted by VI(C, A).

For every point z € H, there exists a unique nearest point in C', denoted by Pcz,
such that

[ = Poz|| < [lz —y]

for all y € C. Pg is called the metric projection of H onto C. It is well known that
Pc is a nonexpansive mapping of H onto C and satisfies

(x —y, Pox — Poy) > ||Pox — Peyl?
for all x,y € H. Moreover, for every x € H, one has
(x — Pox,Pcx —y) > 0
for all y € C, which implies that
u€eVI(C,A) & u=Pe(u—Nu), YX>0.

Recently, for obtaining an element of F(S) NV I(C, A), liduka and Takahashi [6]
introduced the following iterative algorithm: x; = x € C and

Tnt1 = Qn + (1 — an)SPo(zy, — MpAxy), n>1

and obtained a strong convergence theorem. On the other hand, for finding the
element of F(S) N EP(F), Takahashi and Takahashi [9] introduced the following
algorithm: z; € H and

Tn

Fun,y) + 2y — thn, iy — 25) >0, Vy € C,
Tpt1 = an f(zn) + (1 — ap)Suy,

for alln > 1. They proved that {x,} and {u,} converge strongly to z € F(S)NEP(F),
where z = Ppsynppr)f(2) if {an} C [0,1] and {r,} C (0,00) satisfy some certain
conditions.

In literatures, many iterative methods for finding the common point of F(S)
and VI(C,A) or EP(F) have been proposed and studied widely. For example, see
[10, 7, 4]. However, the algorithm for approximating the element of the intersection
of F(S), VI(C,A) and EP(F) have not been found in literatures. In order to obtain
the common point of F(S), VI(C, A) and EP(F), we in this paper introduce an
iterative scheme by the viscosity approximation method to find an element z € F(S)N
VI(C,A)NEP(F). Our result improves and extends S. Takahashi and W. Takahashi’s
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result [9]. Using this result, we obtain two corollaries which are connected with
Combettes and Hirstoaga’s result [5].
The following lemmas are useful.

LeMMA 1.3 ([8]). Let {x,} and {w,} be bounded sequences in a Banach space
X and let {B,} be a sequence in [0,1] with 0 < liminf,, . B, < limsup,,_, ., Bn < 1.
Suppose

Tp+1 = 6n$n + (1 - ﬁn)wn

for all integers n > 0 and limsup,,_, o (||wn+1 — Wl — |[Znt1 — znl]) < 0. Then,
lim |w, —z,| = 0.
n—oo

LEMMA 1.4 ([11]). Let {an} be a non-negative real number sequence satisfying
ant1 < (1 —ap)ay +o(ay), n=0,1,2,---
where {a,} C (0,1) is a real number sequence. If Y a, = oo, thenlim, .o a, = 0.

2. Main result.

THEOREM 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let F be a bifunction from C x C to R satisfying (A1) — (A4) and f be a contraction
with coefficient k(0 < k < 1) from C into itself. Let A be an a-inverse-strongly
monotone mapping of C into H and let S be a nonexpansive mapping of C into itself
such that F(S)NEP(F)NVI(C,A) # 0. Suppose x1 = x € C and {x,},{un} are
sequences generated by

{ F(unvy) + %n<y7un7un *xn> >0, Vy S Ca
Tnt1 = An f(@n) + BnZn + Yn(wSun + (1 — p) Po(un — A\ Auy)),

for everyn =1,2,---, where px € [0,1], {r,} C (0,00), {\n} C [a,b] with0 <a<b<
2a and {an},{Bn} and {v,} are sequences in [0, 1] and satisfy o, + Bp + v =1 for
everyn =1,2,---. If {an},{Bn}, {Mn} and {r,}are chosen so that

o0
lim a, =0, Zan =00, 0<liminfg, <limsupg, <1,
n—oo n—oo

n—o00
n=1

lim |[A\,41 — An| =0, liminfr, >0 and lim |r,41 — 1] =0,
n—oo n—oo

n—oo

then {x,} and {u,} converge strongly to the same point z € F(S)NEP(F)NVI(C,A),
where z = Pr(s)nep(r)nvic,a)f(2).

Proof. We proceed with the following steps.
Step 1. {x,} is bounded.

Let Q@ = Pp(s)nep(r)nvi(c,a)- Then Qf is a contraction of C' into itself. In fact,
for all z,y € C, we have ||Qf(x) — Qf ()| < |f(x) — fw)| < kllz —yl||- So, Qf is a

contraction of C into itself. Since C' is complete, there exists a unique element z € C
such that z = Qf(2).
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Let v e F(S)NEP(F)NVI(C,A). Since u,, = T, x,, we have
[un = vll = [T, 20 = T 0] < [lzn —of

for every n =1,2,--- .

409

Let z, = pSu, + (1 — p)t,, where t,, = Po(un, — A\pAuy,), for every n =1,2,--- .

Then, we have

It — vl = |[Po(un — AnAuy,) — Po(v — A Av)||

< ”un — MAu, — (U - )\nAv)”

< lun — |

< lan =l

and
[2n — vl = [[0(Sun —v) + (1 = p)(tn — v

< pllun = ol + (1 = plt, — ol
< pllzn = ol + (1 = p)llan — ol
= ||{En _vHa

for every n =1,2,--- .

Put M = max{||z1 — v||, || f(v) — v||}. Suppose |z, —v|| < M. Then we have

[#n+1 — vl

l[an (f(@n) = v) + Bulzn — ) + nlzn — 0)||

an | f(@n) = vl + Ballzn — vl + vallzn — |

anllf(zn) = fO) + anllf(v) = vl + (1 = an)|an — v
(1 = an(l = K)llzn — vl + an(l — w) 1251 f(v) — o
(1—a,(1—rK)M+ a,(1—rk)M = M.

ININININ I

Noting ||z1 — v|| < M, by mathematical induction, we have ||z,, — v|| < M for all
n € N. Hence, {z,} is bounded and {u,}, {f(zn)}, {zn} and {Au,} are all bounded.

Step 2. lim, o0 ||Znt1 — Znl] = 0.
Since u, = 17, Ty and up 1 =Ty, Tny1, we have
1
F(un,y) + — (Y — tn,up —xy) >0 foralyeC
n

and

F(Un+1, y) +
Tn+1

Putting y = up41 in (2.1) and y = u, in (2.2), we have

1
F(un7 un+1) + 7<Un+1 — Unp, Un — xn> Z 0
n

and
1

F(unJrl»un) + 7<un — Up+1,Un4+1 — xn+1> 2 0
Tn+1

(Y — Upt1,Unt1 — Tpa1) >0 for all yeC.

(2.2)
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Therefore, from (A2) we have

Up — Tp Up+1 — Tn+1
(Unt1 — Un, - ) >0
Tn Tn+1
and hence
Tn
<un+1 — Un, Up — Upt1 + Un+4+1 — Tn — ri(unJrl - xn+1)> 2 0.
n+1

Since {r,} C (0,00), there exists a real number b such that r, > b > 0 for every
n=1,2---. Then, we have

<Un+1 — Un,Tpt+l1 — Tn + (1 — T )(unJrl - xn+1)>

||un+1 _u’ﬂH2 Tnt1

IN A

[unt1 = wnl[{llzn+1 — znll + 11— T::L»l Nun+1 — znga |}
and hence
tns1 — unl| lZnt1 — znll + L|7’n+1 — || tnt1 — Tngal]

S 71“n+1 (23)
< H-TnJrl — iEnH + §|7’n+1 - Tn|La

where L = sup{|ju, — x,| :n=1,2,--- .}.

Putting w,, = %, for every n = 1,2, -, then we obtain

Wnp+1 — Wp
_ Ant1f(@nt )+ V412041 @ f(Zn)+Vn2Zn

1-Bnt1 1—fn

_ omp1(f@ng1)—f(2n)) + ani1f(zn) + Yrnt1(Zng1—2n) 4 dnd1Zn anf(xn)+vnzn
1—Bnt1 1—fBnt1 1—-Bnt1 1—fBn+1 1-0n

_ o 1(f(@nt1)=f(zn)) + ant1f(Zn) + Ynt1(Znt1—2n) 4z — QntiZn

- 1-Bn+1 1—fBn41 1-Bnt1 n 1—Bn+1

_anf(zn) 2, 4 QnZn
—fBn n —Bn
_ an+1(f($n+l)_f($n)) + 'Yn+1(zn+l_zn) + an«l»l(f(ffn)_zn) + an(znf‘f(wn)
1-Bnt1 1—Brt1 1—Brn+1 1-Bn :

By using (2.3) we have

[ttt —tall = [[Po(unsr — Anp1Aunir) — Pol(un — AnAuy)
S ||un+1 - >\n+1Aun+1 - (un - )\nAun)”
- ||un+1 - >\n+1Aun+l - (Un - )\n+1Aun) + ()\n - )\n+1)Aun||
< ||Un+1 — A1 Atn 1 — (U — Ang1Aug)|| + |/\n - )‘n+1|||Aun||
< untr = unll + [ An = Anpa || Aun ||
< ot —zall + %|Tn+1 — 7ol L + [An — Anga ||| Aunll,
for every n =1,2,---. Therefore, we obtain
lzn+1 — znl

||U(Sun+1 = Stun) + (1= p)(tny1 — tn)”

< pllunsr = unll + (1= p)fltnir — tall

< plllTnr — @l + %|Tn+1 —1p|L) + (L= p)(|[zn1 — znl + %|Tn+1 —1p|L)
(1= )[An = Anga |l Aun ||

< lTpgr — 24| +%|rn+1 = Tn|L 4 [An = Mg ||| Aug ||
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and
lwni1 — wnll = |[Tnt1 — @al|
< cani(f @i )+ (@) 04n+1(||f(ﬂﬂn)\|+|\znl\) + Otn(llf(xn)\l-i-llznl\)
- oS \ L ] Ty
Y1l Tng1—Tnl| Yrt1 3 Tns1=TnlL | Yng1|Aa—Ang1 Aun
+ 1—Bn+1 + 1—Brt1 + 1—Bn+1
—NZnt1 — znl
< o (f @i D+ (@)]) Oén+1(||f(mn)\|+|\zn|\) + wn(llf(fn)\l-i'llznl\)
- ‘1 Bn+1 | 1—Bnt1
'Y"+1b Tn41—7Tn|L 'Yn+1|/\ _/\n+lH|AunH
+ 1—fBn41 + 1—fBn41
foreveryn =1,2,--- . Since {f(x,)}, {2} and {Au, } are bounded, and lim,, o o, =
0, limy— o0 [|7nt+1 — mn|l = 0 and lim,, o0 [|An+1 — Anl| = 0, we have
limsup([|[wn+1 — wpl| = [Zn41 — 2nl]) <0
n—oo
According to Lemma 1.3, we obtain lim,, s ||w, —2, || = 0, i.e., lim, l%ﬁnnxnﬂ —

Zn|| = 0. Noting that 0 < liminf,, . 8, < limsup,, .. Bn < 1, we have

lim |41 — 2n] =0. (2.4)

Step 3. lim, o0 ||2n — unl = 0.

First we prove that lim,_,o ||Au, — Av|| = 0 and lim,_, ||ty — tn] = 0.
By using (1.1) we have

[t = vl* = [[Po(un — AnAun) — Po(v — A Av)|?
< lup — AnAu, — (v — A, Av)|?
< g — )12 + M (A — 20) || Ay, — Avl?
< lzn =0l + A (e = 20) | Auy, — Av|?
for every n =1,2,---. Hence we have
[2n+1 = vl?

an (f(zn) = v) + Bp(Tn —v) + Y2 — v)||2

IN I

o | f(zn) = vl* + Ballen — vl + 72 lu(Sun — v) + (1 = @) (tn — v)|1?
+2anﬂn<f(mn) — U, Tn — U> + 2an7n<f(xn) — UV, %p — U> =+ 25n7n||xn - UHQ
< apllf(zn) —vl? + Ballzn — ol +vaplSun — vl + (1 = i lltn —v)|1?
2000 B0 (f (Tn) =, Zn — V) + 20070 (f (T0) — v, 20 — V) + 285 Yn |20 — ,U||2
< apllf(zn) = vl* + Ballzn — vl +vapllzn —of* + (1 = p)va(n —of?
A (An = 20)|| Aty — Av[1?) + 280YnllZn — v||? + 20080 (f (1) — v, 20 — V)
+204n'7n<f( ) U, Zp — U)
= apllf(zn) —v]* + (1 —an)?[[zn — vl + (1 = )y X (An — 20) || Auy, — Av|?
+2anﬂn<f( n) - U> + 2an7n< ( ) Uy Zn — ’U>
< n|\f($n)—v||2+||xn— 12+ (1= w)va (b—2a)||Aun—AUH2
+200 B0 (f (zn) — v, ) + 2070 (f ( n) =V, 2p — V),

ie.,

(1 — pwyna(2a —b)[| Au, — Av|?
< allf(@n) = o* + (lznr — vl + 20 = v (12041 — 20ll)
200 B0 (f () — v, 2 — V) + 200,70 (f (T0) — v, 20 — V),
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for every n =1,2,---.
Noting lim, .o o, = 0, and {z,,}, {f(2n)}, {2} are bounded, by (3.4) we have

lim ||Au, — Av|| = 0. (2.5)

For every n =1,2,---, by computing

It —v|I> = |[|Pc(un — AMAuy,) — Po(v — A\, Av)||?
< {(un — AMpAuy) — (v = A\ Av), t, — v)
= 3{ll(un = AnAuy) = (v = Xy AV)|? + [t — v|1?

_”(un - /\nAun) - ('U - )‘nAU) - (tn - U)HQ}
[ R PRI
= {llun —olI* + lltn — v[I* — [Jun —tal

+2Xn (Ytn — b, Aty — Av) — A2 || Au, — Av|?},

we obtain
[tn — vl|?

llwn — ul]? = [Jun — tal? + 2An (Up — tn, Au, — Av) — A2 || Au,, — Av||?
20 — ul|* = [Jun — tall® + 220 (U — tn, Au, — Av) — A2 || Au, — Av||?.

Therefore we have

IA

[Znt1 — o2
an (f(zn) = v) + Bu(Tn —v) + ynl2n — U)Hz

oz || f(xn) —ol* + By llen — vl + 3 llu(Sun — v) + (1 = @) (tn — v)|1?
+2an6n<f(xn) — U, Tpn — U> + 2an7n<f(xn) —V,%p — U> + QBn’YnH'xn - U||2
< anllf(@n) —ol® + Billen — vl +vapllen — oll* + (1 = i llts — v)II?
+2anﬂn <f(xn) — UV, Tpn — U> + 2an7n<f(xn) —V,2p — U> + 2ﬂn7n‘|xn - '0”2
< apllf(@n) —ol? + Billen — vl + 12 pllen — vl + (1= @)y (llen — ul®
—Ntn, =t || + 220 (U, — tn, Auy, — Av) — A2 || Au,, — Av]]?)
+200Bn (f(n) = v, T = v) + 200790 (f(Tn) = v, 20 — V) + 2BpYnllTn — v[|?
= apllf(zn) —v]* + (1 = an)?[lzn — 02 = (L = p)yallun — ta|?
+20¢nﬂn <f(xn) — U, Tn — U> + 2an7n<f(xn) — U, 2n — U>
+2(1 = )y (A (up — tn, Auy — Av) — A || Auy, — Av|)?)
< apllf(@n) —ol? + llon — ol = (1 = )i llun — tall?
+2an6n<f(xn) —U,Tp — U> + 2an7n<f(xn) —U,2p — ’U>
+2(1 — )2 (A (g — tn, Ay — Av) — X2 || Auy, — Av|)?),
ie.,
(1 — wrpllun — tal®
< anllf(@n) —ol® + (lzn = vll + [lent1 = vI)lzn — 2ptal]
+2anﬂn<f(xn) — U, Tn — 'U> + 2an7n<f(mn) — U, 2n — U>
+2(1 = v A (un — tn, Auy — Av) = A || Auy, — Av|)?),
for every n = 1,2,--- . By using (2.4) and (2.5), then noting lim,, ,~, &, = 0, we have
lim |ju, — t,| = 0. (2.6)
Next we prove that lim, ., ||Zn — uy| = 0. Since
|un — ol = Ty, Zn — TT”U||2
< <Trnxn - Trnv7 LTp — U>

(Up, — v,y — V)
= S(lun =0l + llzn — 0l? = [J2n — ual?),
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we have
lun = vl* < [lzn —vl|* = [lzn — ual®
for every n =1,2,--- . Therefore, we have

lZn 1 — 0|2
lan (f (n) = v) + Bn (T = v) + Yn (20 — V)2

IA I

ozl f(zn) = vl? + Ballen — ol® +valle(Sun —v) + (1 = p) (tn —v)|?
+200 B0 (f (1) — 0,20 — V) 4 20090 ([ (@n) — 0, 20 — V) + 2B, Y0 ll2n — ]2
< apllf(an) —ol® 4 Bhllen — vl? +yapllun —of* 4+ (1 = w)yallts — v[|?
+200, B f () — v, Ty — V) + 2000 (f(T0) — v, 20 — V) + 280 n |20 — v]?
< agllf(zn) = ol® + Ballen — ol? + 2 p(llen — o)* = [|2n — unl?)
+(1 = wyallen = ol* 4+ 2008, (f (2n) — v, 25 — v)
+2an’7n<f(xn) —V,%2n — ’l)> + 2ﬁn7nHwn - U||2
< ai”f(xn) - UHQ + |7 — U”2 - 731#”3371 - unH2 + 200 Bn(f(Tn) — v, 25 — V)

+205n7n<f(xn) —U,2n — U>7
ie.,

YVapllzn —unl? < apllf(@a) = vl + (|2n — vl + 2041 = vl |20 — Tog |
+2anﬁn<f(xn) —U,Tp — U> + 20‘n7n<f(xn) —U,2n — U>7

which implies that

lim ||, — un| = 0. (2.7)
Step 4. lim,_ ||z, — Sz,| = 0 and lim,_, o ||z, — Po(zn, — AAx,)|| = 0, where

lim, 00 A = A € (0, 2a).
Since ||zn, — tu|| < [|xn — un|| + ||un — tn||, by using (2.5) and (2.6) we have

lim ||z, — ta]| = 0. (2.8)

However, since Zp11 — Tn = an(f(2n) — @n) + Yt (Stun — ) + Yo (1 — p) (6 — z5),
we have

YalllStn — x| < Tngr — zull + an ([ f (@)l + l2all) + tn — 20l

for every n =1,2,--- . Noting {f(x,)} and {z,} are bounded, lim,,_,, a, = 0, then
by (2.4) and (2.8) we obtain

lim |z, — Su,| = 0. (2.9)
Since ||un, — Sun|| < [Jun — xn|| + |2n — Suy||, for every n.=1,2,--- , from (2.7) and
(2.9) we obtain

lim |lu, — Su,|| = 0.
Noting

|zn = Szall < [ln — Sunl| + |Sun — Sz
< ||xn78un||+”un7xn”7
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for every n =1,2,---, by (2.7) and (2.9) we have
lim ||z, — Sz,| =0.

Next we prove that lim, . |2, — Po(zn — Ax,)|| = 0. To see this, putting

yn = Po(x, — A\pAxy,), for every n =1,2,--- we have
[Zn —ynll < o0 —tall + [tn — yull
= o —tull + [ Po(un — AnAuyn) — Po(zn — A Axy)||
S ||xn - tn” + Hun - )\nAun - (an - AnfLLrn)”
< ”xn*tn” + Hun*xnny

by (2.7) and (2.8) we obtain
lim ||z, —yn| =0.
Hence,

lim ||z, — Po(z, — Maz,)|| = lim ||z, — Po(x, — A\ Az,)|| = 0.

n—oo

Step 5. limsup,, . (f(2) — 2,2, — 2) <0, where z = Pp(s\nepr)nvic,a)f(2).

Since {z,} is bounded, we may choose a subsequence {z,,} of {z,} such that

limsup(f(z) — z,x, — 2) = lim (f(2) — z, xn, — 2).
As {zy,} is also bounded, we can choose a subsequence {xy, } of {z,} converges
weakly to p. Without loss of generality we may assume that z,,, — p, then we have
p e F(S)NEP(F)NVI(C,A).

First we show p € F(S)NVI(C,A). Since z, — Sz, — 0 and z,, — Po(z, —
AAz,,) — 0, by the demiclosedness principle for nonexpansive mappings, we obtain
p=Spand p= Po(p— AAp), ie,pe F(S)NVI(C,A).

Next we show that p € EP(F). In fact, since lim; o ||Zn, — un,|| = 0, we have
{un,} also converges weakly to p. From |Su, — u,| — 0, we obtain Su,, — p. By
up, =Ty, xpn, we have

1
F(un,y) + T—(y—un,un —x,) >0, VyeC.

n

From (A2), we also have

%(y — Up,y Uy — Tp) = F(y,un)
and hence
(Y = tn,, ;x" ) > F(y, un,).
T

i

Since liminf, . r, > 0,

— 0 and u,, — p, from (A4) we have

F(y,p) <0
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forally € C. Fort withO0<t¢t<landy e C,let yy =ty+ (1 —t)p. Sincey € C
and p € C, we have y; € C and hence F(y;,p) < 0. Therefore, from (Al) and (A4)
we have

Fys,y) < tF(y,y) + (1 —t)F(y,p)
< tF(ye,y).

Noting F'(y¢,y:) = 0 and 0 < ¢t < 1, we have 0 < F(y;,y). From (A3), we have
0 < F(p,y) for all y € C, which implies that p € EP(F). Therefore, p € F(S)N
EP(F)NVI(C,A). Since z = Pp(synepr)nvi(c,a)f(z), we have

limsup,,_, (f(2) — z,2n —2) = lim;_o(f(2) — 2,2n, — 2)
’ = {f(e)=2p—2) <0 (2:10)

Since x,, — Su,, — 0 and z,, — t,, — 0, we have x,, — z,, — 0. Hence, we have

limsup(f(z) — z, 2z, — 2) < 0. (2.11)

n—oo

Step 6. lim,, o ||z, — 2] = 0.

For z = Pp(synep(r)nvi(c,a) f(z), we have

[Znt1 — 22

= ||an<f(xn) _Z)J'_ﬁn(xn_z)'*"}’n(zn_z)HQ

= apllf(zn) = 217 + Ballzn — 2l + V2 ll2n — 211 + 20080 (f (2n) — 2,20 — 2)
200, f(xn) — 2,20 — 2) 4+ 280V (Tn — 2,20 — 2)

< apllf(@a) — 217 + Billen — 2| + 22 ll2n — 2I1° + 28p7mllzs — 2|12
+2an5n"$”xn - 2”2 + 2anﬂn<f(z) — 2, Tn — Z> + 20471771’{”‘%“ - Z||2
+2an’7n<f(z) — Z,%n — Z>

= (1 -2ay +aj +260an(l — an))||zn — 2| + o | f(zn) — 2]
2000 (f(2) — 2,20 — 2) + 20070 (f(2) — 2,20 — 2),

max{0, (f(2) — 2,2, — 2)} and 02 = max{0, (f(z) —
>0, for every n =1,2,--- . Hence, we have

for every n = 1,2,--- . Put o}
2,2p — 2)}, then ol > 0 and o

]

Znt1 = 2l < (1= @n)llzn — 21* + ap | f(@n) = 2I* + 20n8n0y, + 2827m07,
where &, = a,(2 — ay, — 26(1 — @y,)). From (2.10) and (2.11), we have

o —0 and o2 — 0.
Therefore, we have
lzns1 = 2[1* < (1 = @n)llzn — 2]|* + 0(Gn).

Since lim,,—, o &, = 0 and Zzozl an = 00, by Lemma 1.4 we have
nh_}rr;o lzn — 2| = 0.

This theorem is complete. O

As direct consequences of Theorem 2.1, we obtain two corollaries.
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COROLLARY 2.2. Let C' be a nonempty closed convex subset of a real Hilbert
space H. Let f be a contraction from C into itself. Let A be an a-inverse-strongly
monotone mapping of C into H and S be a nonexpansive mapping of C into itself such
that F(S)NVI(C,A) # 0. Suppose x1 = x € C and {x,} is a sequence generated by

Tpt1 = an f(2n) + Bnn + Y (uSzn + (1 — ) Po(xn — AnAxy,)),

for every n = 1,2,---, where p € [0,1], {\} C [a,0] with 0 < a < b < 2« and
{an}, {Bn} and {y,} are sequences in [0,1] and satisfy o, + Bn + yn = 1 for every
n=12,--. If {a,},{Bn} and {\,} are chosen so that

o0
lim o, =0, Z ap =00, 0<liminf g, <limsupf, <1land lim |A,11—An| =0,
n—oo ot n—oo — 00 n—o0

then {xn} converges strongly to z € F(S)NVI(C,A), where z = Ppsynvi(c,a)f(2).

Proof. Put F(z,y) = 0 for all 2,y € C and r,, = 1 for all n = 1,2,--- in
Theorem 2.1. Then, we have w, = Pgcx, = z,. So, from Theorem 2.1, the se-
quence {z,} in Corollary 2.2 converges strongly to z € F(S) N VI(C,A), where

z = Ppsynvie,a)f(z). O

COROLLARY 2.3. Let C be a nonempty closed convexr subset of a real Hilbert
space H. Let F be a bifunction from C x C to R satisfying (Al) — (A4) and f be a
contraction from C into itself. Let A be an a-inverse-strongly monotone mapping of
C into H such that EP(F)NVI(C,A) # 0. Suppose x1 = x € C and {z,}, {u,} are
sequences generated by

T'n

{ F(un,y) + -L<y_unyun —xp) >0, Vyed,

Tp+1 = anf(-rn) + ﬁnmn + ’Yn(/lun + (1 - M)PC(un - )\nAun));

for everyn =1,2,---, where px € [0,1], {r,} C (0,00), {\,} C[a,b] with0 <a <b<
2a0 and {an},{Bn} and {v,} are sequences in [0,1] and satisfy a, + Bn +vn =1 for
everyn =1,2,---. If {an},{Bn}, {Mn} and {r,}are chosen so that

o0
lim a, =0, Z an, =00, 0<liminf g, <limsupg, <1,
n—oo —_ n—oo n—00

lim |Apy1— An| =0, liminfr, >0 and lim |r,4q —r,| =0,
then {z,} and u, converge strongly to = € EP(F)n VI(C,A), where z =
Prpmynvic,a)f(z)-

Proof. This conclusion may be directly obtained by putting Sz = z for all x € C
in Theorem 2.1. O

REMARK 2.4. We may obtain Wittmann’s theorem [12] if f(y) = =z for all
y € C, B, =0and p =1 in Corollary 2.2. We also obtain Combettes and Hirstoaga’s
theorem [5] if f is a contraction from H into itself and f(y) = x; = z € H for all
ye€ H, p=1and 3, =1 in Corollary 2.3.
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3. Applications. In this section, we first prove one theorem in a real Hilbert
space H by using Theorem 2.1.

Let C be a closed convex subset of H, and T be a mapping from C to C. T is
called strictly pseudo-contractive if there exists some x with 0 < k < 1 such that

1Tz = Ty|* < llo = yl* + £ (I = Tz — (I - T)y|*

for all z,y € C.
Put A=1-T, where T : C — C is a k-strictly pseudo-contractive mapping.
Then A is a 1;"‘—inverse—strongly monotone mapping [3].

THEOREM 3.1. Let C be a closed convex subset of a real Hilbert space H. Let F
be a bifunction from C x C to R satisfying (A1) — (A4) and f be a contraction from
C into itself. Let S be an nonexpansive mapping of C into itself and T be a k-strictly
pseudo-contractive mapping of C into itself such that F(S) N EP(F)N F(T) # (.
Suppose x1 = x € C and {x,}, {u,} are given by

{ F(tn, y) + 7=y = tn, tn — ) >0, Vy € C,
Tpy1 = A f(Tn) + Brnon + Yo (Sun + (1 — ) (1 — Ap)un — A Tuy))

for everyn =1,2,---, where p € [0,1], {r,} C (0,00), {\,} C[a,b] with0 <a <b<
1—k and {an}, {Bn} and {vn} are sequences in [0,1] and satisfy an + Bn + 70 =1
for everyn=1,2,---. If {an},{Bn}, {An} and {r,}are chosen so that

oo
lim a, =0, Z an, =00, 0<liminf g, <limsupg, <1,
n— o0 ot n— o0 n—oo

lim |Ap41— An| =0, liminfr, >0 and lim |r,41 —r,| =0,
n—oo n—oo n—oo

then {zn} and {u,} converge strongly to z € F(S) N EP(F) N F(T), where z =
PrsynepFynrr) f(2).

Proof. Put A=1—T. Then Ais a 15"—irwerse—strongly monotone mapping. We
have F(T) = VI(C, A) and P (u, — A\pAuy) = (1 — A\p)u, + Ay Tuy. So, by Theorem

2.1, we obtain the desired result. O

Next we consider the problem of finding a minimizer of a continuously Fréchet
differentiable convex function in a Hilbert space H. Let g be a continuously Fréchet
differentiable convex function on H and let \/g be the gradient of g. It is known
that if 7g is 1/a-Lipschitz continuous, then /g is a-inverse—strongly monotone [1].
Moreover, we also obtain from the convexity and Fréchet differentiability of g that

VI(H,vg) = (vg)~'(0),

where (7g)7'(0) = {z € H : g(z) = mingen g(y)}. So, if letting F = 0 and
A = (7g)~1(0) in Theorem 2.1, then the iterative scheme in Theorem 2.1 converges
strongly to z € F(S) N (s7g)~1(0), which is a solution of the unconstrained optimiza-
tion problem for the convex function g. Based on this idea, we give the following
theorem:

THEOREM 3.2. Let H be a real Hilbert space and let f be a contraction from H
into itself. Let g be a continuously Fréchet differentiable convex function on H and
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assume that 7g s 1/a-Lipschitz continuous. Let S be a nonexpansive mapping of
H into itself such that F(S) N (s7g)~1(0) # 0. Suppose x1 = x € H and {z,} is a
sequence generated by

Tn+1 = O‘nf(xn) + BnTn + Yn (ST, + (1 - N)(xn — AV 97n)),

for every m = 1,2,---, where p € [0,1], {\} C [a,b] with 0 < a < b < 2« and
{anh, {Bn} and {y,} are sequences in [0,1] and satisfy o, + Brn + vn = 1 for every
n=12---. If{an},{Bn} and {\,} are chosen so that

oo
lim «, =0, g ap =00, 0<liminf 8, <limsupf, <1land lim |A,11—A,| =0,
n—o00 1 n— o0 n—s00 n—o00

—

then {xyn} converges strongly to z € F(S)N(79)~*(0), where z = Pp(g)n(gg)-1(0)f (2)-

Proof. Put F(xz,y) =0for all z,y € C and r, =1 for alln = 1,2,--- in Theorem
2.1. Then, noting that /g is a-inverse-strong monotone and (v7¢)~1(0) = VI(H, vg),
this conclusion may be directly obtained by Theorem 2.1. O

REMARK 3.3. If ¢ is just a convex and lower semicontinuous function defined on
a nonempty closed convex subset C of H, we can also obtain the optimal solution of
g by the result of this paper. Denote by A the set of solutions of the optimization
problem

{ mingt o

z e C.

We define the bifunction F' by F(x,y) = g(y) — g(x) and denote by EP(F') the set of
solutions of the following equilibrium problem, that is to find x € C such that

F(z,y) >0, VyeC.

Obviously, F(z,y) satisfies the conditions A(1)—A(4) and EP(F) = A. Therefore,
from Corollary 2.3 we know that the following iterative algorithm

Fup,y) +(y — tn,un — x,) 20, Yy € C,
Tp4+1 = anf(xn) + ﬁnmn + YnlUn

for any initial guess x1 € C and all n > 1, converges strongly to a solution z = P4 f(z)
of optimization problem (3.1), where {«a,}, {8.} and {v,} satisfy the conditions in
Corollary 2.3.
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