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THE SHARP INTERFACE LIMIT OF A PHASE FIELD MODEL FOR

MOVING CONTACT LINE PROBLEM
∗

XIAO-PING WANG
†

AND YA-GUANG WANG
‡

Abstract. Using method of matched asymptotic expansions, we derive the sharp interface limit

for the diffusive interface model with the generalized Navier boundary condition recently proposed by

Qian, Wang and Sheng in [9, 11] for the moving contact line problem. We show that the leading order

problem satisfies a boundary value problem for a coupled Hale-Shaw and Navier-Stokes equations

with the interface being a free boundary, and the leading order dynamic contact angle is the same

as the static one satisfying the Young’s equation.
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1. Introduction. The modeling of two phase immiscible fluid flow over a solid
surface has been a challenging problem. It was shown in [6] that the classical no-slip
boundary condition leads to nonphysical contact-line singularity, or infinite viscous
dissipation near the moving contact line. The recent discovery of the generalized
Navier boundary condition (GNBC) has resolved this issue with respect to immiscible
flow over flat surfaces, by showing that the continuum calculations based on the new
slip boundary condition can quantitatively reproduce MD simulation results [9, 11].
The GNBC states that the relative slip velocity between the fluid and the solid wall
is proportional to the total tangential stress — the sum of the viscous stress and the
uncompensated Young stress, the latter arises from the deviation of the fluid-fluid
interface from its static configuration. Combining the GNBC with the Cahn-Hilliard
(CH) equation [3], which has been used to formulate a phase-field description of
immiscible two-phase flows [13, 5, 7, 2], and the Navier-Stokes equations, a continuum
hydrodynamic model was proposed by Qian, Wang and Sheng in [9]. The Cahn-
Hilliard free energy is given by

F (φ) =

∫

Ω

{1

2
K|∇φ|2 + f(φ)}dr (1)

Here φ(r) is the phase field, locally defined from φ = (ρ2 − ρ1)/(ρ2 + ρ1), with ρ1 and
ρ2 being the local densities of the two fluid species; f(φ) = u

4
(φ2 − r

u )2 is a double
well potential, in which K, r, and u are parameters that can be determined from the
interfacial thickness ξ =

√

K/u, the interfacial tension γ = 2
√

2r2ξ/3u, and the two

homogeneous equilibrium phases φ± = ±
√

r/u, all measurable in MD simulations.
The two coupled equations of motion are the convection-diffusion equation for the
composition field φ(r) and the Navier-Stokes equation in the presence of the capillary
force density:

∂φ

∂t
+ v · ∇φ = M∇2µ, (2)
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ρ

[

∂v

∂t
+ (v · ∇)v

]

= −∇p + ∇ · σv + µ∇φ + fe, (3)

together with the incompressibility condition ∇ · v = 0. Here µ = δF/δφ is the
chemical potential derived from the CH free energy functional F , M is the mobility
coefficient, ρ is the mass density of the fluid, p is the pressure, σ

v = η
[

(∇v) + (∇v)T
]

is the Newtonian viscous stress tensor with η being the viscosity, µ∇φ is the capillary
force density, and fe is the external force. The boundary conditions at the solid
surface are the impermeability conditions ∂nµ = 0, vn = 0, the relaxational equation
for phases φ:

∂φ

∂t
+ vτ∂τφ = −ΓL(φ), (4)

and the GNBC in continuum differential form:

β(φ)vslip
τ = −η(∂nvτ + ∂τvn) + L(φ)∂τφ. (5)

Here τ denotes the direction tangent to the solid surface (for two-dimensional flows),
n denotes the outward surface normal, Γ is a positive phenomenological parameter,
L(φ) = K∂nφ + ∂γwf(φ)/∂φ with γwf (φ) being the fluid-solid interfacial free energy
per unit area, β(φ) is the slip coefficient which may locally depend on phases φ, and
L(φ)∂τφ is the uncompensated Young stress. The numerical simulations based on
this new model have also shown remarkable agreement with the molecular dynamic
simulations [9, 10], indicating that the new model gives the correct mechanism for the
motion of the contact line. More recently, it is shown in [11] that the GNBC can also
be derived from the principle of minimum energy dissipation, formulated by Onsager
for small perturbations away from equilibrium.

The main purpose of this note is to study the sharp interface limit for the phase
field model presented above. If one chooses K = ǫ and r = u = 1

ǫ , then the interface
thickness is ξ = ǫ, and the two homogeneous equilibrium phases are φ± = ±1. We
assume that the mobility coefficient M and the viscosity η are positive constants
independent of the interface thickness ǫ while the relaxation parameter is assumed to
be Γ = 1

ǫ . The cases that M and η are ǫ dependent will be discussed separately at the
end of the paper. We consider the motion of two phase immiscible fluids in a channel
Ω = {x ∈ IR, 0 ≤ y ≤ L}. The equations (2), (3) and the incompressibility equation
become



















∂tφ
ǫ + (vǫ · ∇)φǫ = M∆µǫ

∂tv
ǫ + (vǫ · ∇)vǫ + ∇pǫ = η∆vǫ + µǫ∇φǫ

∇ · vǫ = 0

(6)

with

µǫ = f ′(φǫ) − ǫ∆φǫ (7)

being the chemical potential. The GNBC and the other boundary conditions at the
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solid boundaries ∂Ω = {y = 0, L} are







































βvǫ
1 + η

∂vǫ
1

∂n = ∂φǫ

∂x (ǫ∂φǫ

∂n +
∂γwf (φǫ

)

∂φ )

vǫ
2

= 0

∂µǫ

∂y = 0

∂φǫ

∂t + vǫ
1

∂φǫ

∂x = − 1

ǫ (ǫ∂φǫ

∂n +
∂γwf (φǫ

)

∂φ )

(8)

where ~n is the unit outward normal vector on ∂Ω, β is the slipping coefficient and is
assumed to be a constant for simplicity.

In the absence of fluid flow and assuming the interface does not intersect with
the physical boundary ∂Ω, the problem (6) is simplified to the classical Cahn-Hilliard

equation for the phase-field φǫ with the boundary conditions ∂φǫ

∂n = 0 and ∂µǫ

∂n = 0
at ∂Ω. The sharp interface limit of this problem is studied by Pego [8] using the
method of matched asymptotic expansion. As the interface thickness vanishes, the
limit behavior of the chemical potential can be described by a boundary value problem
for the Hele-Shaw equation with the interface being a free boundary, and the normal
velocity of the interface is proportional to the jump of the normal derivatives of
the chemical potential on the interface. In [1], Alikakos, Bates and Chen rigorously
justified Pego’s asymptotic analysis under certain conditions.

In this paper, we are interested in the sharp interface limit of two phase fluid sys-
tem (6) with moving contact line (when the interface intersects with physical bound-
ary). Using method of matched asymptotic expansions, we derived the equations that
describe the solution away from the interface Γ0. We also derive the dynamical equa-
tion of the interface and the transmission conditions of outer flows at the interface.
We conclude that the leading profiles satisfy a boundary value problem for the cou-
pled Hale-Shaw and Navier-Stokes equations with the interface being a free boundary,
and the leading order contact angle equals to the static one satisfying the Young’s
equation.

2. The matched asymptotic expansion in the sharp interface limit. We
study the asymptotic behavior of solutions to the problem (6)-(8) in the limit as the
interface thickness ǫ → 0. We denote the domain by ΩT = {t ∈ [0, T ], x ∈ IR, 0 ≤
y ≤ L}, and the interface by Γǫ = {(t, x, y) ∈ ΩT |φǫ(t, x, y) = 0}. Let dǫ(t, x, y) be
the spatial signed distance from (t, x, y) ∈ ΩT to Γǫ, |∇dǫ| = 1 with ∇ denoting the
gradient operator in the spatial variables. Suppose that dǫ(t, x, y) has the expansion

dǫ(t, x, y) =
∑

j≥0

ǫjdj(t, x, y)

then we have |∇d0| = 1, so d0(t, x, y) is the spatial signed distance from the point
(t, x, y) ∈ Ω±

T = {±d0(t, x, y) > 0} to Γ0 = {(t, x, y) ∈ ΩT |d0(t, x, y) = 0}, the sharp
limit of the interface Γǫ.

2.1. The outer expansion. First, we consider the outer expansion away from
the interface in the domains Ω±

T \ Γ0:

(φǫ, µǫ, vǫ, pǫ) =
∑

j≥0

ǫj(φ±
j , µ±

j , v±j , p±j )(t, x, y) (9)
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From the equations in (6), one easily obtain that in the leading order, φ±
0

= ±1,



















∆µ±
0

= 0,

∂tv
±
0

+ (v±
0
· ∇)v±

0
+ ∇p±

0
= η∆v±

0
,

∇ · v±
0

= 0.

(10)

For j ≥ 1, µ±
j satisfies a Poisson equation, and (v±j , p±j ) satisfy linearized incompress-

ible Navier-Stokes equations with a forcing term coming from the capillary force.
The leading order boundary conditions in (8) gives

v±
0,2 = 0, βv±

0,1 + η
∂v±

0,1

∂n
= 0,

∂µ±
0

∂y
= 0 on {y = 0, L}. (11)

To solve the leading order outer solution from (10) and (11), we need to find the
equation of the interface Γ0, and the transmission conditions of µ±

0
and (v±

0
, p±

0
) on

Γ0. These will be derived from the inner expansion near the interface Γ0.

2.2. The inner expansion. We now study the asymptotic behavior of solutions
(φǫ, µǫ, vǫ, pǫ) to the problem (6)-(8) in a neighborhood of the interface Γ0, and derive
equations for inner layer profiles.

In a small neighborhood of Γ0, consider inner expansion of the following form:

(φǫ, µǫ, vǫ, pǫ) = (φ̃ǫ, µ̃ǫ, ṽǫ, p̃ǫ)(t, x, y,
dǫ(t, x, y)

ǫ
) (12)

where

(φ̃ǫ, µ̃ǫ, ṽǫ, p̃ǫ) =
∑

j≥0

ǫj(φj , µj , vj , pj)(t, x, y, ξ) (13)

with ξ = dǫ

ǫ , and (φj , µj , vj , pj) goes to a limit exponentially when ξ → ±∞.
As in [4], we requiring the following matching conditions for the inner and outer

expansions:

∑

j≥0

ǫjφj(t, x, y,
dǫ

ǫ
) ≈

∑

j≥0

ǫjφ±
j (t, x, y).

Therefore, we have

{

limξ→±∞ φ0(t, x̄, ȳ, ξ) = φ±
0

(t, x̄, ȳ)

limξ→±∞(φ1(t, x̄, ȳ, ξ) − (φ±
1

+ ξ∇d0 · ∇φ±
0

)(t, x̄, ȳ)) = 0
(14)

for all fixed (t, x̄, ȳ) ∈ Γ0, which implies

lim
ξ→±∞

∂ξφ
1(t, x̄, ȳ, ξ) = (∇d0 · ∇)φ±

0
(t, x̄, ȳ). (15)

Similar matching conditions hold for (µ0, µ1), (v0, v1) and (p0, p1) with some obvious
changes of notations.
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Inserting the ansatz (12) into the equations in (6), we easily obtain

φ̃ǫ
ξξ + ǫ(∆dǫφ̃ǫ

ξ + 2(∇dǫ · ∇)φ̃ǫ
ξ) − ((φ̃ǫ)3 − φ̃ǫ) + ǫ2∆φ̃ǫ + ǫµ̃ǫ = 0 (16)

Mµ̃ǫ
ξξ + ǫ

{

M(∆dǫ + 2(∇dǫ · ∇))µ̃ǫ
ξ − (∂td

ǫ + (ṽǫ · ∇)dǫ)φ̃ǫ
ξ

}

+ǫ2(M∆µ̃ǫ − ∂tφ̃
ǫ − (ṽǫ · ∇)φ̃ǫ) = 0 (17)

ηṽǫ
ξξ − ǫ

{

(∂td
ǫ + (ṽǫ · ∇)dǫ)ṽǫ

ξ − η(∆dǫ + 2∇dǫ · ∇)ṽǫ
ξ + (p̃ǫ

ξ − µ̃ǫφ̃ǫ
ξ)∇dǫ

}

= ǫ2(∂tṽ
ǫ + (ṽǫ · ∇)ṽǫ + ∇p̃ǫ − η∆ṽǫ − µ̃ǫ∇φ̃ǫ) (18)

(ṽǫ
ξ · ∇)dǫ + ǫ∇ · ṽǫ = 0 (19)

From the leading order term of (17), it follows immediately that

µ0, v0 are independent of ξ. (20)

From the zero-th order of the equations (17)(18), and the inner-outer matching con-
ditions (14) we deduce that the outer solutions µ±

0
and v±

0
are continuous across the

interface Γ0. The leading order term in equation (16) gives the inner layer profile

{

φ0

ξξ = (φ0)3 − φ0

φ0|ξ=0 = 0, limξ→±∞ φ0 = ±1
(21)

which uniquely determines φ = φ0(ξ) being independent of (t, x, y).
On the other hand, from the next order term of (17) we have

(∂td
0 + v0 · ∇d0)φ0

ξ = M(µ1

ξξ + ∆d0µ0

ξ + 2∇d0 · ∇µ0

ξ). (22)

Integrating the equation (22) with respect to ξ over (−∞, +∞) and using the
matching condition (15) for µ1, we deduce the evolution equation for the interface
Γ0 = {d0(t, x, y) = 0}:

∂td
0 + v+

0
· ∇d0 =

M

2
∇d0 · [∇µ0]. (23)

Furthermore, from (16) we know that φ1(t, x, y, ξ) satisfies the problem

{

φ1

ξξ − (3(φ0)2 − 1)φ1 = −µ0 − ∆d0φ0

ξ

φ1(t, x, y, 0) = 0, φ1(t, x, y, ·) ∈ L∞(IR).
(24)

The solvability condition for φ1 gives

∫

IR

(µ0 + ∆d0φ0

ξ)φ
0

ξdξ = 0 (25)

which implies

µ±
0

(t, x, y) = −σ

2
∆d0 on Γ0

where σ =
∫

IR
(φ0

ξ(ξ))
2dξ. Here we have used (20).
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From the next order term in (18), we know that (v1, p0)(t, x, y, ξ) satisfy:

{

ηv1

ξξ = (p0

ξ − µ0φ0

ξ)∇d0

v1

ξ · ∇d0 = 0
(26)

which implies

p0

ξ − µ0φ0

ξ = 0 on Γ0. (27)

Integrating in ξ over (−∞, +∞) gives

[p0] = −σ∆d0, on Γ0, (28)

where [·] denotes the jump of a related function on Γ0.
From the second equation in (26) and the matching condition (14) for v1, it follows

(∇d0 · ∇)v±
0
· ∇d0 = 0. (29)

Now, let us derive the leading order contact angle condition for Γ0 = {x = X(t, y)}
at {y = 0}. Take the inner expansion of GNBC in (8), we obtain from the O(ǫ−1)
order that

(∂yd0∂ξφ
0 − ∂γwf

∂φ
(φ0))φ0

ξ = 0

at Γ0 ∩ {y = 0}. Again, integrating in ξ over (−∞, +∞) gives Young’s equation:

cosα0 =
γ− − γ+

σ
(30)

where α0 = cos−1(−∂yd0)|y=0,L is the angle between the sharp interface Γ0 =

{d0(t, x, y) = 0} and the x−axis at {y = 0, L}, σ =
∫

+∞

−∞
(∂ξφ

0)2dξ and γ± = γwf(±1).
From the leading order inner expansion of the relaxation boundary condition

given in (8), we have that at Γ0 ∩ {y = 0},

(∂td
0 + v+

0,1∂xd0)∂ξφ
0 = ∂yd0∂ξφ

0 − ∂γwf (φ0)

∂φ
= 0

which implies

∂td
0 + v+

0,1∂xd0 = 0, ∇d0 · [∇µ0] = 0, at Γ0 ∩ {y = 0}. (31)

2.3. The leading order behavior. We now summarize the results obtained
from the inner and outer expansions. The leading profiles of the outer solutions,
(φ±

0
, µ±

0
, v±

0
, p±

0
) satisfy the following Hele-Shaw equations coupled with the incom-

pressible Navier-Stokes equations with a free boundary Γ0:































φ±
0

= ±1

∆µ±
0

= 0

∂tv
±
0

+ (v±
0
· ∇)v±

0
+ ∇p±

0
= η∆v±

0

∇ · v±
0

= 0

(32)
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The boundary conditions for µ±
0

, v±
0

are

∂µ±
0

∂y
= 0, v±

0,2 = 0, βv±
0,1 + η

∂v±
0,1

∂n
= 0, (33)

at the solid boundaries {y = 0, L}, and

µ±
0

= −σ

2
∆d0, [v0] = 0, (∇d0 · ∇)v±

0
· ∇d0 = 0, [p0] = −σ∆d0 (34)

at the interface Γ0. The dynamics of the interface is given by

∂td
0 + (v+

0
· ∇)d0 =

M

2
∇d0 · [∇µ0] (35)

with the contact angle at the boundary being specified by the Young’s equation

cosα0 =
γ− − γ+

σ

where σ =
∫

IR
(φ0

ξ(ξ))
2dξ and γ± = γwf(±1). Moreover, at the boundary we have

∂td
0 + v+

0,1∂xd0 = 0. (36)

Remark. (1) The velocity of the interface is not only determined by the local
flow velocity v0 but also determined by the normal jump of the gradient of the chem-
ical potential which is related to the interfacial mean curvature and surface tension
through (34).
(2). Let α1 be the leading error between the dynamic angle αǫ and the static one α0

as given by the Young’s equation. From the generalized Navier boundary conditions
given in (8), we can deduce that

α1 = − 1

σ sinα0

∫ ∞

−∞

(
∂2γwf (φ0(ξ))

∂φ2
φ1 − cosα0∂ξφ

1)φ0

ξ(ξ)dξ (37)

at Γ0 ∩{y = 0}, where φ1(t, x, y, ξ) is the O(ǫ)−order profile of the inner layer, which
is determined by the problem (24). So, the leading angle error α1 depends on the
structure of the inner layer on the interface. The detail derivation of the formula (37)
will be presented in [14].
(3) In [14], we have also studied the problem (6) for the case that the mobility co-
efficient M depends on the interface thickness ǫ. When M is of the order O(ǫγ) for
certain 0 < γ < 1, we show that the leading profiles of the outer solutions satisfy the
same free boundary problem for the Hele-Shaw equations coupled with the incom-
pressible Navier-Stokes equations given above. But the interface dynamic equation
(35) is replaced by

∂td
0 + (v+

0
· ∇)d0 = 0, on Γ0. (38)

In this case, the interface Γ0 moves with the flow speed.
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