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EXISTENCE, CLASSIFICATION AND STABILITY ANALYSIS OF

MULTIPLE-PEAKED SOLUTIONS FOR THE GIERER-MEINHARDT

SYSTEM IN R1∗

JUNCHENG WEI† AND MATTHIAS WINTER‡

Abstract. We consider the following Gierer-Meinhardt system in R1:8>>>>><>>>>>: At = ǫ2A
′′
− A +

Ap

Hq
x ∈ (−1, 1), t > 0,

τHt = DH
′′
− H +

Ar

Hs
x ∈ (−1, 1), t > 0,

A
′
(−1) = A

′
(1) = H

′
(−1) = H

′
(1) = 0,

where (p, q, r, s) satisfy

1 <
qr

(s + 1)(p − 1)
< +∞, 1 < p < +∞,

and where ǫ << 1, 0 < D < ∞, τ ≥ 0,

D and τ are constants which are independent of ǫ.

We give a rigorous and unified approach to show that the existence and stability of N−peaked steady-
states can be reduced to computing two matrices in terms of the coefficients D, N, p, q, r, s. Moreover, it
is shown that N−peaked steady-states are generated by exactly two types of peaks, provided their mutual
distance is bounded away from zero.
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1. Introduction. Since the work of Turing [26] in 1952, many models have been es-
tablished and investigated to explore the so-called Turing instability [26]. One of the most
famous models in biological pattern formation is the Gierer-Meinhardt system [11], [16], [17],
which in one dimension can be stated as follows:

(1.1)






At = ǫ2∆A−A+
Ap

Hq
x ∈ (−1, 1), t > 0,

τHt = D∆H −H +
Ar

Hs
x ∈ (−1, 1), t > 0,

A
′
(±1, t) = H

′
(±1, t) = 0,

where (p, q, r, s) satisfy

1 <
qr

(s+ 1)(p− 1)
< +∞, 1 < p < +∞,

and where ǫ << 1, 0 < D <∞, τ ≥ 0,

D and τ are constants which are independent of ǫ.
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Problem (1.1) has been studied by numerous authors. Let us mention several important
results which are related to our present paper.

1) (Existence of symmetric N−peaked steady-state Solutions)

I. Takagi [25] first established the existence of N -peaked steady-state solutions with
peaks centered at

xj = −1 +
2j − 1

N
, j = 1, . . . , N,

for ǫ << 1, ǫ√
D
<< 1.

Such solutions are symmetric and they are obtained from a single spike by reflection.
We call them symmetric N−peaked solution since all the peaks have the same heights.
Takagi’s proof is based on symmetry and the implicit function theorem.

2) (Stability of symmetric N−peaked solutions)

Using matched asymptotic analysis, D. Iron, M. Ward, and J. Wei [15] studied the
stability of the symmetric N -peaked solutions for 0 ≤ τ < τ0 (where τ0 > 0 is independent
of ǫ) and the following results are established (formally):

Result A. There exists a sequence of numbers D1 > D2 > ... > DN > ... (which has been
given explicitly) such that for ǫ << 1: If D < DN , the symmetric N -peaked solutions are
stable, while for D > DN , the symmetric N -peaked solutions are unstable.

In the shadow system case (D = ∞) the existence of single- or N -peaked solutions is
established in [1, 2, 3, 13, 12, 19, 20, 31, 32, 33] and other papers. In the two-dimensional
strong coupling case (D <∞), the existence of 1-peaked solutions is established in [37], and
the stability of N -peaked solutions is studied in [38, 39]. Results similar to Result A are
proved.

3) (Existence of asymmetric N−peaked solutions)
By using the same matched asymptotic analysis in [15], M. Ward and the first author in

[28] discovered that problem (1.1) has asymmetric N−peaked steady-state solutions which
bifurcate off the branch of symmetric N -peaked solutions at D = DN , where DN is given
by Result A. Such asymmetric solutions are generated by two types of peaks – called type
A and type B, respectively. Type A and type B peaks have different heights. They can be
arranged in any given order

ABAABBB...ABBBA...B

to form an N−peaked solution. The existence of such solutions is surprising. It shows that
the solution structure of (1.1) is much more complicated than one would expect. The stability
of such asymmetric N−peaked solutions is also studied in [28], through a formal approach.
We remark that asymmetric patterns can also be obtained for the Gierer-Meinhardt system
on the real line, see [8].

The purpose of of this paper is to provide a rigorous and unified theoretic foun-

dation for the existence and stability of general N−peaked (symmetric or asymmetric)
solutions. In particular, the results of [15] and [28] are rigorously established. Moreover,
we show that if the N peaks are separated, then they are generated by peaks of type A

and type B, respectively. This implies that there are only two kinds of N -peaked patterns:
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symmetric N−peaked solutions constructed in [25] and asymmetric N−peaked patterns
constructed in [28].

The existence proof is based on Liapunov-Schmidt reduction. Stability is proved by first
separating the problem into the case of large eigenvalues which tend to a nonzero limit and
the case of small eigenvalues which tend to zero in the limit ǫ → 0. Large eigenvalues are
then explored by studying nonlocal eigenvalue problems using results of [35] and employing
an idea of Dancer [5]. Small eigenvalues are calculated explicitly by an asymptotic analysis
with rigorous error estimates.

A particular feature of the study of small eigenvalues is that one needs to expand the
eigenfunction up to the order O(ǫ2) term. This step is different from the single interior peak
case [35] and the result is given in Lemma 9.4. We remark that a similar expansion is also
needed in the study of small eigenvalues for single boundary spike solutions (see [4] and
[34]).

We believe that our approach here, combined with the techniques in [15] and [28], can
be very useful in the study of other reaction-diffusion systems as well. With our results we
solve a conjecture which was raised in [18].

It turns out that in the case of symmetric N -peaked solutions for increasing D the first
instability always arises from the small eigenvalues in contrast to the multi-pulses on the
real line [6], [7], [9], where the first instability arises from the large eigenvalues.

In [14] the spectra of asymmetric solutions are studied near the point at which they
bifurcate off a symmetric branch. It is confirmed that all such solutions are unstable in a
neighborhood of the bifurcation point and an explicit expression for the leading order terms
of the critical eigenvalues is derived.

A similar analysis for the Fitzhugh-Nagumo model has been carried out in [22]. We note
also that in [27], H. van der Ploeg used an alternative dynamical systems approach to study
the stability of symmetric spikes.

Before we state our main results in Section 2, we introduce some notation. Let L2(−1, 1)
and H2(−1, 1) be the usual Lebesgue and Sobolev spaces. With the variable w we denote
the unique solution of the following problem:

(1.2)

{
w

′′ − w + wp = 0 in R1,
w > 0, w(0) = maxy∈R w(y), w(y) → 0 as |y| → ∞

In fact, it is easy to see that w(y) can be written explicitly

(1.3) w(y) =

(
p+ 1

2

) 1

p−1
(

cosh

(
p− 1

2
y

))− 2

p−1

.

Let Ω = (−1, 1) and GD(x, z) be the Green’s function of

(1.4)

{
DG

′′

D(x, z) −GD(x, z) + δz(x) = 0 in (−1, 1),

G
′

D(−1, z) = G
′

D(1, z) = 0.

We can calculate explicitly

(1.5) GD(x, z) =

{
θ

sinh(2θ) cosh[θ(1 + x)] cosh[θ(1 − z)], −1 < x < z,
θ

sinh(2θ) cosh[θ(1 − x)] cosh[θ(1 + z)], z < x < 1

where

θ = D−1/2.
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We set

(1.6) KD(|x − z|) =
1

2
√
D
e
− 1√

D
|x−z|

to be the non-smooth part of GD(x, z) and by GD = KD −HD we define the regular part
HD of GD. Note that HD is C∞ in both x and z.

We use the notation e.s.t to denote an exponentially small term of order O(e−d/ǫ) for
some d > 0 in the corresponding norm. By C we denote a generic constant which may
change from line to line.

We shall establish the existence and stability of N−peaked steady-state solutions to
(1.1). The steady-state problem for (1.1) is the following:

(1.7)






ǫ2A
′′ −A+

Ap

Hq
= 0 in (−1, 1),

DH
′′ −H +

Ar

Hs
= 0 in (−1, 1),

A(x) > 0, H(x) > 0, in (−1, 1),

A
′
(−1) = A

′
(1) = H

′
(−1) = H

′
(1) = 0.

Since the 1−peaked interior solution has been well-understood in [15], [21], [35] we will
assume throughout this paper that

(1.8) N ≥ 2.

This paper has the following structure: In Section 2 we introduce our three main hy-
potheses, (H1) – (H3) and state our three main results, Theorem 2.1, Theorem 2.2 and
Theorem 2.3. In Section 3 we study the spectra of a few nonlocal eigenvalue problems on
the real line. In Section 4–6 we prove the existence of multiple-peaked solutions: In Section
4 we construct suitable approximate solutions, in Section 5 we use the Liapunov-Schmidt
method to reduce the existence of solutions to (1.7) to a finite dimensional problem, in
Section 6 we solve this finite-dimensional problem. In Section 7, we completely classify all
possible N -peaked solutions, provided the N peaks are separated. In Section 8 we study
the large eigenvalues of the linearized operator. In Section 9 we study the small eigenvalues
of the linearized operator and give a complete description of their asymptotic behavior in
Lemma 9.1. Finally, in the Appendix we compute the eigenvalues of the two main matrices
explicitly in the case of symmetric N -peaked solutions.

Acknowledgements. The work of JW is supported by an Earmarked Grant of RGC of
Hong Kong. MW thanks the Department of Mathematics at CUHK for their kind hospitality.
We thank Professor M. J. Ward for valuable discussions.

2. Main Results: Existence and Stability. Let −1 < t01 < · · · < t0j < · · · < t0N < 1
be N points in (−1, 1) and w be the unique solution of (1.2).

Put

(2.1) ξǫ :=

(
ǫ

∫

R

wr(z) dz

) p−1

(p−1)(s+1)−qr

.

We introduce several matrices for later use: For t = (t1, ..., tN ) ∈ (−1, 1)N let

(2.2) GD(t) = (GD(ti, tj)).
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Recall that

GD(ti, tj) = KD(|ti − tj |) −HD(ti, tj).

Let us denote ∂
∂ti

as ∇ti . When i 6= j, we can define ∇tiG(ti, tj) in the classical way. When

i = j, KD(|ti − tj |) = KD(0) = 1
2
√

D
is a constant and we define

∇tiGD(ti, ti) := − ∂

∂x
|x=tiH(x, ti).

Similarly, we define

(2.3) ∇ti∇tjGD(ti, tj) =

{
− ∂

∂x
|x=ti

∂
∂y

|y=tiHD(x, y) if i = j,

∇ti∇tjGD(ti, tj) if i 6= j.

Now the derivatives of G are defined as follows:

(2.4) ∇GD(t) = (∇tiGD(ti, tj)), ∇2GD(t) = (∇ti∇tjGD(ti, tj)).

We now have our first assumption:
(H1) There exists a solution (ξ̂01 , . . . , ξ̂

0
N ) of the following equation

(2.5)

N∑

j=1

GD(t0i , t
0
j)(ξ̂

0
j )

qr
p−1

−s = ξ̂0i , i = 1, ..., N.

Next we introduce the following matrix

(2.6) bij = GD(t0i , t
0
j)(ξ̂

0
j )

qr
p−1

−s−1, B = (bij).

Our second assumption is the following:
(H2) It holds that

(2.7)
p− 1

qr − s(p− 1)
6∈ σ(B),

where σ(B) is the set of eigenvalues of B.

Remark 2.1. Since the matrix B is of the form GDD, where GD is symmetric and D is
a diagonal matrix, it is easy to see that the eigenvalues of B are real.

By the assumption (H2) and the implicit function theorem, for t = (t1, ..., tN ) near

t0 = (t01, ..., t
0
N ), there exists a unique solution ξ̂(t) = (ξ̂1(t), ..., ξ̂N (t)) for the following

equation

(2.8)

N∑

j=1

GD(ti, tj)ξ̂j
qr

p−1
−s

= ξ̂i, i = 1, ..., N.

Set

(2.9) H(t) = (ξ̂i(t)δij).

We define the following vector field:

F (t) = (F1(t), ..., FN (t)),
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where

(2.10) Fi(t) =

N∑

l=1

∇tiGD(ti, tl)ξ̂
qr

p−1
−s

l

= −∇tiHD(ti, ti)ξ̂
qr

p−1
−s

i +
∑

l 6=i

∇tiGD(ti, tl)ξ̂
qr

p−1
−s

l , i = 1, . . . , N.

Set

(2.11) M(t) = (ξ̂−1
i ∇tjFi(t)).

Our final assumption concerns the vector field F (t).
(H3) We assume that at t0 = (t01, ..., t

0
N ):

(2.12) F (t0) = 0,

(2.13) det (M(t0)) 6= 0.

Let us now calculate M(t0): Therefore we first compute the derivatives of ξ̂. It is easy

to see that ξ̂(t) is C1 in t and from (2) we can calculate:

∇tj ξ̂i = (
qr

p− 1
− s)

N∑

l=1

GD(ti, tl)ξ̂
qr

p−1
−s−1

l ∇tj ξ̂l +

N∑

l=1

∂

∂tj
(GD(ti, tl))ξ̂

qr
p−1

−s

l .

For i 6= j, we have

∇tj ξ̂i = (
qr

p− 1
− s)

N∑

l=1

GD(ti, tl)ξ̂
qr

p−1
−s−1

l ∇tj ξ̂l + ∇tjGD(ti, tj)ξ̂
qr

p−1
−s

j .

For i = j, we have

∇tj ξ̂i = (
qr

p− 1
− s)

N∑

l=1

GD(ti, tl)ξ̂
qr

p−1
−s−1

l ∇ti ξ̂l +

N∑

l=1

∂

∂ti
(GD(ti, tl))ξ̂

qr
p−1

−s

l

= (
qr

p− 1
− s)

N∑

l=1

GD(ti, tl)ξ̂
qr

p−1
−s−1

l ∇ti ξ̂l + ∇tiGD(ti, ti)ξ̂
qr

p−1
−s

i +

N∑

l=1

∇tiGD(ti, tl)ξ̂
qr

p−1
−s

l ,

since ∂
∂ti
GD(ti, ti) = 2∇tiGD(ti, ti).

Note that

(∇tjGD(ti, tj)) = (∇GD)T .

Therefore if we denote the matrix

(2.14) ∇ξ = (∇tj ξ̂i)
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then we have

(2.15) ∇ξ(t) = (I − (
qr

p− 1
− s)GDH

qr
p−1

−s−1)−1(∇GD)TH
qr

p−1
−s +O(

N∑

j=1

|Fj(t)|).

Let

(2.16) Q = (qij) = ((−θ2ξ̂1+s−
qr

p−1

i +
θ3

2
)δij)

We can compute M(t0) by using (2.15): we note for i 6= j:

∇tj (

N∑

l=1

∇tiGD(ti, tl))ξ̂
qr

p−1
−s

l = (∇tj∇tiGD(ti, tj))ξ̂
qr

p−1
−s

j

and for i = j

∇ti

(
N∑

l=1

∇tiGD(ti, tl)

)
ξ̂

qr
p−1

−s

l

= ∇ti

(
∑

l=1,...,N,l 6=i

∇tiGD(ti, tl)

)
ξ̂

qr
p−1

−s

l − (∇ti∇tiHD(ti, ti))ξ̂
qr

p−1

i

=
1

D

N∑

l=1

GD(ti, tl)ξ̂
qr

p−1
−s

l − (
1

D
KD(0))ξ̂

qr
p−1

−s

i + ∇ti∇tiGD(ti, ti)ξ̂
qr

p−1
−s

i

= θ2ξ̂i −
θ3

2
ξ̂

qr
p−1

−s

i + ∇ti∇tiGD(ti, ti)ξ̂
qr

p−1
−s

i

and hence

(2.17) M(t0) = H−1(∇2GD −Q)H
qr

p−1
−s

+H−1(
qr

p− 1
− s)∇GDH

qr
p−1

−s−1(I − (
qr

p− 1
− s)GDH

qr
p−1

−s−1)−1(∇GD)TH
qr

p−1
−s.

To simplify our notations, we introduce the following matrices

(2.18) P1 := (I + sGDH
qr

p−1
−s−1)−1,

(2.19) P2 := (I − (
qr

p− 1
− s)GDH

qr
p−1

−s−1)−1.

Our first result can be stated as follows:

Theorem 2.1. Assume that assumptions (H1), (H2) and (H3) are satisfied. Then for

ǫ << 1, problem (1.7) has an N -peaked solution which concentrates at tǫ1, . . . , t
ǫ
N , or more

precisely:

(2.20) Aǫ(x) ∼
N∑

j=1

ξ
q

p−1

ǫ (ξ̂j
0
)

q
p−1w(

x − tǫj
ǫ

),
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(2.21) Hǫ(t
ǫ
i) ∼ ξǫξ̂

0
i , i = 1, . . . , N,

(2.22) tǫi → t0i , i = 1, . . . , N.

Remark 2.2. In the case of symmetric N -peaked solutions, conditions (H2) and (H3)
are not needed, as in the construction of solutions one can restrict the function space to the
class of symmetric functions (see for example [25]). Note that for small ǫ (and not only in
the limit ǫ→ 0) the peaks are placed equidistantly.

Remark 2.3. Our results here can be applied to give a rigorous proof for the existence
and stability of N−peaked solutions consisting of peaks with different heights.

In [28], by using matched asymptotic analysis, Ward and the first author constructed
such solutions and studied their stability. We now summarize their main ideas. First (1.7)
is solved in a small interval (−l, l):

(2.23)






ǫ2A
′′ −A+

Ap

Hq
= 0 in (−l, l),

DH
′′ −H +

Ar

Hs
= 0 in (−l, l),

A(x) > 0, H(x) > 0 in (−l, l),

A
′
(−l) = A

′
(l) = H

′
(−l) = H

′
(l) = 0.

Then the single interior symmetric spike solution is considered which was constructed by I.
Takagi [25]. By some simple computations based on (1.4), we have that

(2.24) H(l) ∼ c(D)b(
l√
D

),

where c(D) is some positive constant depending on D only and the function b(z) is given by

(2.25) b(z) :=
tanhα(z)

cosh(z)
, α :=

(p− 1)

qr − (s+ 1)(p− 1)
.

The idea now is that we fix l and try to find another l̄ 6= l such that the following holds

(2.26) b(
l√
D

) = b(
l̄√
D

), 0 < l < l̄ < 1,

which will imply that H(l) ∼ H(l̄). This shows that if there exists a solution to (2.26),
we may match up H(l) and H(l̄). In other words, we may match up solutions of (2.23) in
different intervals.

It turns out that for D small, (2.26) is always solvable. Now (2.26) has to be solved
along with the following interval constraint:

(2.27) N1l +N2 l̄ = 1, N1 +N2 = N.

For a solution l of (2.26) and (2.27) and j = 1, . . . , N we define

(2.28) lj = l or lj = l̄
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where the number of j’s such that lj = l is N1 (and consequently the number of j’s such
that lj = l̄ is N2). We call the small spike with lj = l type A and the large spike with lj = l̄
type B.

Then we choose t0j such that

|t0j − t0j+1| = lj + lj−1, j = 0, ..., N,

where t00 = −1, t0N+1 = 1.
By using matched asymptotics, we now have N1 type A and N2 type B peaks. This ends

our short review of the ideas in [28]. Let us now use Theorem 2.1 to give a rigorous proof
of results of [28]. In order to apply Theorem 2.1, we have to check the three assumptions
(H1), (H2) and (H3).

To this end, let us set

(2.29) ξ̂0j = (2
√
D) tanh (θj), j = 1, ..., N,

where

(2.30) θj =
lj√
D
.

It is difficult to check (H1) directly. Instead we note that G−1
D is a tridiagonal matrix.

(See [15] and [28].) More precisely, we calculate

G−1
D = (aij) = 2

√
D




γ1 β1 0
. . .

. . . 0

β1 γ2 β2
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . βj−1 γj βj 0

. . .
. . .

. . .
. . .

. . .
. . .

0
. . .

. . . 0 βN−1 γN




where

γ1 = coth(θ1 + θ2) + tanh(θ1),

γj = coth(θj−1 + θj) + coth(θj + θj+1), j = 2, . . . , N − 1,

γN = coth(θN−1 + θN ) + tanh(θN ),

βj = −csch(θj + θj+1), j = 1, . . . , N − 1

and θj was defined in (2.30). Note that

(2.31) aij = 2
√
D(βjδi(j−1) + γjδij + βj+1δi(j+1)).

Verifying (2.5) amounts to checking the following identity

(2.32)

N∑

j=1

aij ξ̂
0
j = (ξ̂0i )

qr
p−1

−s,
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which is an easy exercise.
It remains to verify (H2) and (H3).
To this end, we need to know the eigenvalues of B and M. In the same way as for the

matrix GD, one can show that B−1 is a tridiagonal matrix. Even with this piece of infor-
mation, it is almost impossible to obtain an explicit formula for the eigenvalues. Numerical
software for solving eigenvalue problems of large matrices is indispensable. Then (H2) has
to be checked explicitly. Numerical computations in [28] do suggest that assumption (H3)
is always satisfied.

A natural question is the following: Are all N−peaked solutions generated by two types
of peaks as the solutions which were constructed in [28]?

Our next theorem gives an affirmative answer. It completely classifies all N -peaked
solutions, provided that the N peaks are separated.

Theorem 2.2. Suppose that for ǫ sufficiently small, there are solutions (Aǫ, Hǫ) of

(1.7) such that

(2.33) Aǫ(x) ∼
N∑

j=1

ξ
q

p−1

ǫ (ξ̂ǫ
j)

q
p−1w(

x− tǫj
ǫ

),

and

(2.34) Hǫ(t
ǫ
i) ∼ ξǫξ̂

ǫ
i , i = 1, . . . , N,

where ξǫ is given by (2.1),

(2.35) ξ̂ǫ
i → ξ̂0i > 0, tǫi → t0i , t

0
i 6= t0j , i 6= j, i, j = 1, . . . , N.

Then necessarily, we have

(2.36) li := t0i − t0i−1 ∈ {l, l̄}, i = 1, ..., N,

where t00 = −1, l and l̄ satisfy (2.26) and (2.27) with N1 being the number of i’s for which

li = l and N2 being the number of i’s for which li = l̄ (hence N1 +N2 = N).

Theorem 2.2 shows that an N−peaked solution must be generated by exactly two types
of peaks – type A with shorter length l and type B with larger length l̄. This shows that
the solutions constructed in [28] (through a formal approach) exhaust all possible separated
N−peaked solutions. In particular, it shows that there are at most 2N N−peaked solutions.
If the assumptions (H1)–(H3) are met, then there are exactly 2N N−peaked solutions.

Finally, we study the stability of the N−peaked solutions constructed in Theorem 2.1.

Theorem 2.3. Let (Aǫ, Hǫ) be the solutions constructed in Theorem 2.1. Assume that

ǫ << 1.
(1) (Stability) If

(2.37) r = 2, 1 < p < 5 or r = p+ 1, 1 < p < +∞

and furthermore

(2.38)

(
qr

p− 1
− s

)
min

σ∈σ(B)
σ > 1

and

(2.39) σ(M) ⊆ {σ|Re(σ) > 0},
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there exists τ0 > 0 such that (Aǫ, Hǫ) is linearly stable for 0 ≤ τ < τ0.
(2) (Instability) If

(2.40)

(
qr

p− 1
− s

)
min

σ∈σ(B)
σ < 1,

there exists τ0 > 0 such that (Aǫ, Hǫ) is linearly unstable for 0 ≤ τ < τ0.
(3) (Instability) If there exists

(2.41) σ ∈ σ(M), Re(σ) < 0,

then (Aǫ, Hǫ) is linearly unstable for all τ > 0.

Remark 2.4. In the original Gierer-Meinhardt model, (p, q, r, s) = (2, 1, 2, 0) or
(p, q, r, s) = (2, 4, 2, 0). This means that condition (2.37) is satisfied. In the general case,
one has to study a nonlocal eigenvalue problem (Theorem 3.1), which is difficult since the
operator is not self-adjoint. See [5], [40] for progress in this direction.

Remark 2.5. For the stability, we have to assume that 0 ≤ τ < τ0 for some τ0 > 0
which we do not know explicitly. Stability in the case where τ is large has been investigated
in [29] and [30] for symmetric spikes.

For the case of asymmetric spikes, the stability problem with respect to the large eigen-
values remains mainly open. It is expected that there is stability with respect to the large
eigenvalues for some range for D > DN if D is sufficiently close to DN and τ is small enough.

We remark that stability in the case of large τ for the shadow system has been studied
in [5].

Remark 2.6. By Theorem 2.1 and Theorem 2.3, the existence and stability of
N−peaked solutions are completely determined by the two matrices B and M. They are
related to the asymptotic behavior of large eigenvalues which tend to a nonzero limit and
small eigenvalues which tend to zero as ǫ→ 0, respectively. The computations of these two
matrices are by no means easy. We refer to [15] and [28] for exact computations and numer-
ics. For the reader’s convenience, we include in the Appendix A a sketch of the computations
of the eigenvalues of the matrices B and M in the symmetric N−peaked case. Combining
the results here and the computations in [15], the stability of symmetric N−peaked solutions
is completely characterized and the following result is established rigorously.

Theorem 2.4. Let (Aǫ,N , Hǫ,N) be the symmetric N−peaked solutions constructed by

I. Takagi [25]. Assume that ǫ >> 1.
(a) (Stability) Assume that 0 < τ < τ0 for some τ0 small and that

(2.42) r = 2, 1 < p < 5 or r = p+ 1, 1 < p < +∞

and

(2.43) D < DN :=
1

N2(log(
√
α+

√
α+ 1))2

,

where α is given by (2.25), then the symmetric N -peaked solution is linearly stable.

(b) (Instability) If

(2.44) D > DN ,

where DN is given by (2.43), then the N -peaked solution is linearly unstable for all τ > 0.

The proof of Theorem 2.4 is given in Appendix A.
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3. Some preliminaries. In this section, we consider a system of nonlocal linear oper-
ators. We first recall

Theorem 3.1. Consider the following nonlocal eigenvalue problem

(3.1) φ
′′ − φ+ pwp−1φ− γ(p− 1)

∫
R
wr−1φ∫
R
wr

wp = αφ.

(1) (Appendix E of [15].) If γ < 1, then there is a positive eigenvalue to (3.1).

(2) (Theorem 1.4 of [35].) If γ > 1 and (2.37) holds then for any nonzero eigenvalue α of

(3.1), we have

Re(α) ≤ −c0 < 0.

(3) If γ 6= 1 and α = 0, then φ = c0w
′
for some constant c0.

In our applications to the case when τ > 0, we have to deal with the situation when the
coefficient γ is a function of τα. Let γ = γ(τα) be a complex function of τα. Let us suppose
that

(3.2) γ(0) ∈ R, |γ(τα)| ≤ C for αR ≥ 0, τ ≥ 0,

where C is a generic constant independent of τ, α. A simple example of σ(τα) satisfying
(3.2) is

σ(τα) =
2√

1 + τα + 1

where
√

1 + τα is the principal branch.
Now we have

Theorem 3.2. Consider the following nonlocal eigenvalue problem

(3.3) φ
′′ − φ+ pwp−1φ− γ(τα)(p − 1)

∫
R
wr−1φ∫
R
wr

wp = αφ,

where γ(τα) satisfies (3.2). Then there is a small number τ0 > 0 such that for τ < τ0,
(1) if γ(0) < 1, then there is a positive eigenvalue to (3.1);

(2) if γ(0) > 1 and (2.37) holds, then for any nonzero eigenvalue α of (3.3), we have

Re(α) ≤ −c0 < 0.

Proof. Theorem 3.2 follows from Theorem 3.1 by a perturbation argument. To make
sure that the perturbation argument works, we have to show that if αR ≥ 0 and 0 < τ < 1,
then |α| ≤ C, where C is a generic constant (independent of τ). In fact, multiplying (3.3)
by φ̄ – the conjugate of φ – and integrating by parts, we obtain that

(3.4)

∫

R

(|φ′ |2 + |φ|2 − pwp−1|φ|2) = −α
∫

R

|φ|2 − γ(τα)(p− 1)

∫
R
wr−1φ∫
R
wr

∫

R

wpφ̄.

From the imaginary part of (3.4), we obtain that

|αI | ≤ C1|γ(τα)|,
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where α = αR +
√
−1αI and C1 is a positive constant (independent of τ). By assumption

(3.2), |γ(τα)| ≤ C and so |αI | ≤ C. Taking the real part of (3.4) and noting that

l.h.s. of (3.4) ≥ C

∫

R

|φ|2 for some C ∈ R,

we obtain that αR ≤ C2, where C2 is a positive constant (independent of τ > 0). Therefore,
|α| is uniformly bounded and hence a perturbation argument gives the desired conclusion.

Next, we consider the following system of linear operators

LΦ := Φ
′′ − Φ + pwp−1Φ

(3.5) −qr(I + sB)−1B(

∫

R

wr−1Φ)(

∫

R

wr)−1wp,

where B is given by (2.6) and

Φ =




φ1

φ2

...
φN


 ∈ (H2(R))N .

Set

(3.6) L0u := u
′′ − u+ pwp−1u, where u ∈ H2(R).

Then using Remark 2.1 the conjugate operator of L under the scalar product in L2(R)
is

L∗Ψ = Ψ
′′ − Ψ + pwp−1Ψ

(3.7) −qrBT (I + sBT )−1(

∫

R

wpΨ)(

∫

R

wr)−1wr−1,

where

Ψ =




ψ1

ψ2

...
ψN


 ∈ (H2(R))N .

We obtain the following

Lemma 3.3. Assume that assumption (H2) holds. Then

(3.8) Ker(L) = X0 ⊕X0 ⊕ · · · ⊕X0,

where

X0 = span
{
w

′
(y)
}

and

(3.9) Ker(L∗) = X0 ⊕X0 ⊕ · · · ⊕X0.
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Proof. Let us first prove (3.8). Suppose

LΦ = 0.

Let us diagonalize B such that

P−1BP = J,

where P is an orthogonal matrix and by Remark 2.1 J has diagonal form, i.e.,

J =




σ1 0
σ2

. . .

0 σN




with suitable real numbers σj , j = 1, 2, . . . , N .
Defining

Φ = P Φ̃

we have

(3.10) Φ̃
′′ − Φ̃ + pwp−1Φ̃ − qr(

∫

R

wr)−1(

∫

R

wr−1(I + sJ)−1JΦ̃)wp = 0.

For l = 1, 2, . . . , N we look at the l-th equation of system (3.10):

Φ̃
′′

l − Φ̃l + pwp−1Φ̃l

(3.11) −qr(
∫

R

wr)−1(
σl

1 + sσl

∫

R

wr−1Φ̃l)w
p = 0.

By Theorem 3.1 (3), the last equation (3.11) tells us that (since by condition (H2) we know
qr σl

1+sσl
6= p− 1)

(3.12) Φ̃l ∈ X0.

Continuing in this way for l = 1, . . . , N , we have

(3.13) Φ̃l ∈ X0, l = 1, . . . , N.

(3.8) is thus proved.
To prove (3.9), we proceed in the same way for L∗.
Using σ(B) = σ(BT ) the l-th equation of the diagonalized system is as follows:

Ψ̃
′′

l − Ψ̃l + pwp−1Ψ̃l

(3.14) −qr(
∫

R

wr)−1 σl

1 + sσl

(

∫

R

wpΨ̃l)w
r−1 = 0.

Multiplying (3.14) by w and integrating over the real line, we obtain

(p− 1 − qr
σl

1 + sσl

)

∫

R

wpΨ̃l = 0,
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which implies that
∫

R

wpΨ̃l = 0,

since qr σl

1+sσl
6= p− 1.

Thus all the nonlocal terms vanish and we have

(3.15) L0Ψ̃l = 0, l = 1, . . . , N.

This implies that Ψ̃l ∈ X0 for l = 1, . . . , N .
As a consequence of Lemma 3.3, we have

Lemma 3.4. The operator

L : (H2(R))N → (L2(R))N

is invertible if it is restricted as follows

L : (X0 ⊕ · · · ⊕X0)
⊥ ∩ (H2(R))N → (X0 ⊕ · · · ⊕X0)

⊥ ∩ (L2(R))N .

Moreover, L−1 is bounded.

Proof. This follows from the Fredholm Alternatives Theorem and Lemma 3.3.

Finally, we study the eigenvalue problem for L:

(3.16) LΦ = αΦ.

We have

Lemma 3.5. Assume that all the eigenvalues of B are real. Then we have:

(1) If
(

qr
p−1 − s

)
minσ∈σ(B) > 1, then for any nonzero eigenvalue of (3.16) we must

have α ≤ −c0 < 0.

(2) If there exists σ ∈ σ(B) such that
(

qr
p−1 − s

)
σ < 1, then there exists a positive

eigenvalue of (3.16).

Proof. Let (Φ, α) satisfy (3.16). Suppose αR ≥ 0 and α 6= 0. Similar to Lemma 3.3, we
diagonalize (3.16)

(3.17) Φ
′′ − Φ + pwp−1Φ − qr(

∫

R

wr)−1(

∫

R

wr−1(I + sJ)−1JΦ)wp = αΦ

and the l-th equation of system (3.17) becomes

Φ
′′

l − Φl + pwp−1Φl − qr
σl

1 + sσl

(

∫

R

wr)−1(

∫

R

wr−1Φl)w
p = αΦl.

(i) By Theorem 3.1 (1) and the fact that

qr

p− 1

σl

1 + sσl

> 1

we conclude that

Φ1 = · · · = ΦN = 0
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or

α ≤ −c0 < 0.

Since by assumption the eigenfunctions are non-vanishing the second alternative holds. (1)
is proved.

(ii) if σl

(
qr

p−1 − s
)
< 1 for some σl ∈ σ(B), then the equation corresponding to σl

becomes

Φ
′′

l − Φl + pwp−1Φl − qr
σl

1 + sσl

(

∫

R

wr)−1(

∫

R

wr−1Φl) = αΦl.

By Theorem 3.1 (2), we know that there exists an eigenvalue α0 > 0 and an eigenfunction
Φ0 such that

L0Φ0 − qr(

∫

R

wr)−1(
σl

1 + sσl

∫

R

wr−1Φ0) = α0Φ0.

Let us take Φl = Φ0 and Φj = 0 for j 6= l. Then (Φ, α) satisfy (3.16). (2) is proved.

4. Study of the approximate solutions. Let −1 < t01 < · · · < t0j < · · · t0N < 1 be N

points satisfying the assumptions (H1) – (H3). Let ξ̂0 = (ξ̂01 , ..., ξ̂
0
N ) be the unique solution

of (2.5). Let

(4.1) t0 = (t01, . . . , t
0
N ).

We now construct an approximate solution to (1.7) which concentrates near these pre-
scribed N points.

Let −1 < t1 < · · · < tj < · · · < tN < 1 be such that t = (t1, . . . , tN ) ∈ Bǫ3/4(t0). Set

(4.2) wj(x) = w

(
x− tj
ǫ

)
,

and

(4.3) r0 =
1

10
(min(t01 + 1, 1 − t0N ,

1

2
min
i6=j

|t0i − t0j |)).

Let χ : R → [0, 1] be a smooth cut-off function such that χ(x) = 1 for |x| < 1 and
χ(x) = 0 for |x| > 2. We now define our approximate solution

(4.4) w̃j(x) = wj(x)χ(
x − tj
r0

).

Then it is easy to see that w̃j(x) satisfies

(4.5) ǫ2w̃
′′

j − w̃j + w̃p
j = e.s.t.

in L2(−1, 1).

Let ξ̂(t) = (ξ̂1, ..., ξ̂N ) be as defined by (H1).
Put

(4.6) wǫ,t(x) =

N∑

j=1

ξ̂
q/(p−1)
j w̃j(x).
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Fix any function A ∈ H2(−1, 1) and define T [A] to be the solution of

(4.7)





DT [A]

′′ − T [A] + cǫ
Ar

(T [A])s
= 0, −1 < x < 1,

T [A]
′
(−1) = T [A]

′
(1) = 0,

where

(4.8) cǫ = (ǫ

∫

R

wr)−1 = ξ
qr

p−1
−s−1

ǫ .

(Recall that ξǫ was first defined in (2.1)). The solution T [A] is unique and positive.
Let A = wǫ,t, where t ∈ Bǫ3/4(t0). Let us now compute

(4.9) τi := T [A](ti).

From (4.7), we have

τi = cǫ

∫ 1

−1

GD(ti, z)
Ar(z)

(T [A](z))s
dz

= cǫǫ

N∑

j=1

ξ̂
qr

p−1

j

∫ 1

−1

GD(ti, z)w̃
r
j (z)τ

−s
j dz(1 +O(ǫ))

= cǫǫ

N∑

j=1

ξ̂
qr

p−1

j τ−s
j

[
GD(ti, tj)

∫ +∞

−∞

wr
j (y) dy +O(ǫ)

]

=

N∑

j=1

GD(ti, tj)ξ̂
qr

p−1

j τ−s
j +O(ǫ) (by (4.8)).

Thus we have obtained the following system of equations:

(4.10) τi =
N∑

j=1

GD(ti, tj)ξ̂
qr

p−1

j τ−s
j +O(ǫ).

Since the matrix

I + s
(
GD(ti, tj)ξ̂

qr
p−1

−s−1

j

)

is clearly nonsingular (note that GD(ti, tj) > 0), by the implicit function theorem and
assumption (H1) the equations (4.10) have a unique solution

τi = ξ̂i +O(ǫ), i = 1, ..., N.

Hence

(4.11) T [A](ti) = ξ̂i + O(ǫ).
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Now let x = ti + ǫy. We calculate for A = wǫ,t:

T [A](x) − T [A](ti) = cǫ

∫ 1

−1

[GD(x, z) −GD(ti, z)]
Ar

(T [A])s
(z) dz

= cǫξ̂
qr

p−1

i

∫ 1

−1

[GD(x, z) −GD(ti, z)]
w̃r

i

(T [A])s
(z) dz

+cǫ
∑

j 6=i

ξ̂
qr

p−1

j

∫ 1

−1

[GD(x, z) −GD(ti, z)]
w̃r

j

(T [A])s
(z) dz

= cǫξ̂
qr

p−1

i

∫ 1

−1

[KD(|x− z|) −KD(|ti − z|)] w̃r
i

(T [A])s
(z) dz

−cǫξ̂
qr

p−1

i

∫ 1

−1

[HD(x, z) −HD(ti, z)]
w̃r

i

(T [A])s
(z) dz

+cǫ
∑

j 6=i

ξ̂
qr

p−1

j

∫ 1

−1

[GD(x, z) −GD(ti, z)]
w̃r

j

(T [A])s
(z) dz (letting z = tj + ǫy)

= ǫ2cǫξ̂
qr

p−1
−s

i

∫ +∞

−∞

[
1

2D
|z| − 1

2D
|y − z|]wr(|z|) dz(1 +O(ǫ|y|))

+ǫξ̂
qr

p−1
−s

i [−y∇tiHD(ti, ti) +O(ǫy2)]

+ǫ
∑

j 6=i

[y∇tiGD(ti, tj)ξ̂
qr

p−1
−s

j +O(ǫy2)]

(4.12)

= ǫ


ξ̂i

qr
p−1

−s
Pi(|y|) − ξ̂i

qr
p−1

−s
y∇tiHD(ti, ti) + y

∑

j 6=i

∇tiGD(ti, tj)ξ̂j
qr

p−1
−s

+O(ǫy2)


 ,

where

(4.13) Pi(|y|) = (

∫

R

wr)−1

∫ +∞

−∞

[
1

2D
|z| − 1

2D
|y − z|]wr(|z|) dz.

Note that Pi is an even function.
Let us now define

(4.14) S[A] := ǫ2A
′′ −A+

Ap

(T [A])q
,
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where T [A] is defined by (4.7). Let us choose A = wǫ,t and compute S[wǫ,t]. In fact,

S[wǫ,t] = ǫ2w
′′

ǫ,t − wǫ,t +
wp

ǫ,t

(T [wǫ,t])q

=

N∑

j=1

ξ̂
q/(p−1)
j (ǫ2w̃

′′

j − w̃j) +
wp

ǫ,t

(T [wǫ,t])q
+ e.s.t.

=


(
∑K

j=1 ξ̂
q/(p−1)
j w̃j)

p

(T [wǫ,t])q
−

K∑

j=1

ξ̂
q/(p−1)
j w̃p

j


+ e.s.t.

(4.15) = E1 + E2 + e.s.t.

in L2(− 1
ǫ
, 1

ǫ
), where

(4.16) E1 =


 (
∑K

j=1 ξ̂
q/(p−1)
j w̃j)

p

(T [wǫ,t](tj))q
−

K∑

j=1

ξ̂
q/(p−1)
j w̃p

j




and

(4.17) E2 =

[
(
∑K

j=1 ξ̂
q/(p−1)
j w̃j)

p

(T [wǫ,t](x))q
−

(
∑K

j=1 ξ̂
q/(p−1)
j w̃j)

p

(T [wǫ,t](tj)q

]
.

For E1 we calculate using (4.11)

(4.18) E1 =
(
∑N

j=1 ξ̂
q/(p−1)
j w̃j)

p

(T [wǫ,t](tj))q
−

N∑

j=1

ξ̂
q/(p−1)
j w̃p

j

=

N∑

j=1

(
ξ̂

qp/(p−1)
j

ξ̂q
j +O(ǫ)

− ξ̂
q/(p−1)
j

)
w̃p

j = O(ǫ)

N∑

j=1

ξ̂
q/(p−1)
j w̃p

j .

Thus we have

(4.19) ‖E1‖L2(−1/ǫ,1/ǫ) = O(ǫ).

For E2 we calculate

E2 = −
N∑

j=1

q
(ξ̂

q/(p−1)
j w̃j)

p

(T [wǫ,t](tj))q+1
(T [wǫ,t](x) − T [wǫ,t](tj))

+O




N∑

j=1

|T [wǫ,t] − T [wǫ,t](tj)|2w̃p
j
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= −
N∑

j=1

qξ̂
q/(p−1)
j w̃p

j

T [wǫ,t] − T [wǫ,t](tj)

T [wǫ,t](tj)
+O(ǫ2y2

N∑

j=1

w̃p
j )

= −ǫ
N∑

j=1

qξ̂
q

p−1
−1

j w̃p
j

{
ξ̂

qr
p−1

−s

j Pj(|y|)

(4.20) −ξ̂
qr

p−1
−s

j y∇tjHD(tj , tj) + y[
∑

l 6=j

∇tjGD(tj , tl)ξ̂
qr

p−1
−s

l ]

}
+O(ǫ2y2

N∑

j=1

w̃p
j ).

This implies that

(4.21) ‖E2‖L2(− 1

ǫ , 1ǫ ) = O(ǫ).

Combining (4.19) and (4.21), we conclude that

(4.22) ‖S[wǫ,t]‖L2(− 1

ǫ , 1

ǫ ) = O(ǫ)

The estimates derived in this section provide the main steps that will make our approach
work in the rest of the paper.

5. The Liapunov-Schmidt Reduction Method. In this section, we use the
Liapunov-Schmidt reduction method to solve the problem

(5.1) S[wǫ,t + v] =

N∑

j=1

βj

dw̃j

dx

for real constants βj and a function v ∈ H2(− 1
ǫ
, 1

ǫ
) which is small in the corresponding

norm, where w̃i is given by (4.4) and wǫ,t by (4.6).
To this end, we need to study the linearized operator

L̃ǫ,t : H2(Ωǫ) → L2(Ωǫ)

defined by

L̃ǫ,t := S
′

ǫ[A]φ = ǫ2φ
′′ − φ+

pAp−1φ

(T [A])q
− q

Ap

(T [A])q+1
(T

′
[A]φ),

where A = wǫ,t, Ωǫ = (− 1
ǫ
, 1

ǫ
), and for a given φ ∈ L2(Ω) we introduce T

′
[A]φ as the unique

solution of

(5.2)

{
D(T

′
[A]φ)

′′ − (T
′
[A]φ) + cǫrA

r−1φ = 0, −1 < x < 1,

(T
′
[A]φ)

′
(−1) = (T

′
[A]φ)

′
(1) = 0.

We define the approximate kernel and co-kernel, respectively, as follows:

Kǫ,t := span

{
dw̃i

dx

∣∣∣∣∣i = 1, . . . , N

}
⊂ H2(Ωǫ),
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Cǫ,t := span

{
dw̃i

dx

∣∣∣∣∣i = 1, . . . , N

}
⊂ L2(Ωǫ),

Recall the definition of the following system of linear operators from (3.5):

LΦ := ∆Φ − Φ + pwp−1Φ

(5.3) −qr(
∫

R

wr−1(I + sB)−1BΦ)(

∫

R

wr)−1wp,

where

Φ =




φ1

φ2

...
φN


 ∈ (H2(R))N .

By Lemma 3.3 we know that

L : (X0 ⊕ · · · ⊕X0)
⊥ ∩ (H2(R))N → (X0 ⊕ · · · ⊕X0)

⊥ ∩ (L2(R))N

is invertible with a bounded inverse.
We will see that this system is a limit of the operator L̃ǫ,t as ǫ→ 0. We also introduce

the projection π⊥
ǫ,t : L2(Ωǫ) → C⊥

ǫ,t and study the operator Lǫ,t := π⊥
ǫ,t ◦ L̃ǫ,t. By letting

ǫ → 0, we will show that Lǫ,t : K⊥
ǫ,t → C⊥

ǫ,t is invertible with a bounded inverse provided ǫ
is small enough. This statement is contained in the following proposition.

Proposition 5.1. There exist positive constants ǭ, δ̄, λ such that for all ǫ ∈ (0, ǭ),
t ∈ ΩN with min(|1 + t1|, |1 − tN |,mini6=j |ti − tj |) > δ̄,

(5.4) ‖Lǫ,tφ‖L2(Ωǫ) ≥ λ‖φ‖H2(Ωǫ).

Furthermore, the map

Lǫ,t = π⊥
ǫ,t ◦ L̃ǫ,t : K⊥

ǫ,t → C⊥
ǫ,t

is surjective.

Proof of Theorem 5.1. This proof follows the method of Liapunov-Schmidt reduction
which was also used in [3], [4], [12], [13], [10], [23], [24], [33] and [36].

Suppose (5.4) is false. Then there exist sequences {ǫk}, {tk}, {φk} with ǫk → 0, tk ∈
ΩN , min(|1 + tk1 |, |1 − tkN |,mini6=j |tki − tkj |) > δ̄, φk = φǫk

∈ K⊥
ǫk,tk , k = 1, 2, . . . such that

‖Lǫk,tkφk‖L2(Ωǫk
) → 0, as k → ∞,(5.5)

‖φk‖H2(Ωǫk
) = 1, k = 1, 2, . . . .(5.6)

We define φǫ,i, i = 1, 2, . . . , N and φǫ,N+1 as follows:

(5.7) φǫ,i(x) = φǫ(x)χ(
x − ti
r0

), x ∈ Ω,

φǫ,N+1(x) = φǫ(x) −
N∑

i=1

φǫ,i(x), x ∈ Ω.
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At first (after rescaling) φǫ,i are only defined on Ωǫ. However, by a standard result they can
be extended to R such that their norm in H2(R) is still bounded by a constant independent
of ǫ and t for ǫ small enough. In the following we will study this extension. For simplicity of
notation we keep the same notation for the extension. Since for i = 1, 2, . . . , N each sequence
{φk

i } := {φǫk,i} (k = 1, 2, . . .) is bounded in H2
loc(R) it has a weak limit in H2

loc(R), and

therefore also a strong limit in L2
loc(R) and L∞

loc(R). Call these limits φi. Then φ =




φ1

φ2

...
φN




solves the system

Lφ = 0.

By Lemma 3.3, φ ∈ Ker(L) = X0 ⊕ · · · ⊕X0. Since φk ∈ K⊥
ǫk,xk

by taking k → ∞ we get

φ ∈ Ker(L)⊥. Therefore, φ = 0.
By elliptic estimates we get ‖φǫk,i‖H2(R) → 0 as k → ∞ for i = 1, 2, . . . , N .
Furthermore, φǫ,N+1 → φN+1 in H2(R), where ΦN+1 satisfies

∆φN+1 − φN+1 = 0 in R.

Therefore we conclude φN+1 = 0 and ‖φk
N+1‖H2(R) → 0 as k → ∞.

This contradicts ‖φk‖H2(Ωǫk
) = 1. To complete the proof of Proposition 5.1 we just

need to show that the operator which is conjugate to Lǫ,t (denoted by L∗
ǫ,t) is injective from

K⊥
ǫ,t to C⊥

ǫ,t. Note that L∗
ǫ,tψ = πǫ,t ◦ L̃∗

ǫ,t with

L̃∗
ǫ,tψ = ǫ2∆ψ − ψ +

pAp−1ψ

(T [A])q
− qT

′
[A](

Apψ

(T [A])q+1
).

The proof for L∗
ǫ,t follows exactly along the same lines as the proof for Lǫ,t and is therefore

omitted.
Now we are in a position to solve the equation

(5.8) π⊥
ǫ,t ◦ Sǫ(wǫ,t + φ) = 0.

Since Lǫ,t|K⊥
ǫ,t

is invertible (call the inverse L−1
ǫ,t ) we can rewrite this as

(5.9) φ = −(L−1
ǫ,t ◦ π⊥

ǫ,t ◦ Sǫ(wǫ,t)) − (L−1
ǫ,t ◦ π⊥

ǫ,t ◦Nǫ,t(φ)) ≡Mǫ,t(φ),

where

(5.10) Nǫ,t(φ) = Sǫ(wǫ,t + φ) − Sǫ(wǫ,t) − S
′

ǫ(wǫ,t)φ

and the operator Mǫ,t is defined by (5.9) for φ ∈ H2(Ωǫ). We are going to show that the
operator Mǫ,t is a contraction on

Bǫ,δ ≡ {φ ∈ H2(Ωǫ)|‖φ‖H2(Ωǫ) < δ}

if δ and ǫ are small enough. We have by (4.22) and Proposition 5.1

‖Mǫ,t(φ)‖H2(Ωǫ) ≤ λ−1(‖π⊥
ǫ,t ◦Nǫ,t(φ)‖L2(Ωǫ)

+
∥∥π⊥

ǫ,t ◦ Sǫ(wǫ,t)
∥∥

L2(Ωǫ)
)
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≤ λ−1C(c(δ)δ + ǫ),

where λ > 0 is independent of δ > 0, ǫ > 0 and c(δ) → 0 as δ → 0. Similarly we show

‖Mǫ,t(φ) −Mǫ,t(φ
′
)‖H2(Ωǫ)

≤ λ−1C(c(δ)δ)‖φ − φ
′‖H2(Ωǫ),

where c(δ) → 0 as δ → 0. If we choose δ = ǫα for α < 1 and ǫ small enough, then Mǫ,t

is a contraction on Bǫ,δ. The existence of a fixed point φǫ,t now follows from the standard
contraction mapping principle and φǫ,t is a solution of (5.9).

We have thus proved

Lemma 5.2. There exist ǫ > 0 δ > 0 such that for every pair of ǫ, t with 0 < ǫ < ǫ
and t ∈ ΩN , 1 + t1 > δ, 1 − tN > δ, 1

2 |ti − tj | > δ there is a unique φǫ,t ∈ K⊥
ǫ,t satisfying

Sǫ(wǫ,t + φǫ,t) ∈ Cǫ,t. Furthermore, we have the estimate

(5.11) ‖φǫ,t‖H2(Ωǫ) ≤ Cǫα,

where α < 1.

Remark 5.1. By one more iteration, it can actually be shown that

(5.12) ‖φǫ,t‖H2(Ωǫ) ≤ Cǫ.

6. The reduced problem. In this section we solve the reduced problem and prove
our main existence result given by Theorem 2.1.

By Lemma 5.2, for every t ∈ Bǫ3/4(t0), there exists a unique solution φǫ,t ∈ K⊥
ǫ,t such

that

(6.1) S[wǫ,t + φǫ,t] = vǫ,t ∈ Cǫ,t.

Our idea is to find tǫ = (tǫ1, . . . , t
ǫ
N ) near t0 such that also

(6.2) S[wǫ,tǫ + φǫ,tǫ ] ⊥ Cǫ,tǫ

(and therefore S[wǫ,tǫ + φǫ,tǫ ] = 0).
To this end, we let

Wǫ,i(t) := ǫ−1(ξ̂i)
1− q

p−1

∫ 1

−1

S[wǫ,t + φǫ,t]
dw̃i

dx
dx,

Wǫ(t) := (Wǫ,1(t), ...,Wǫ,N (t)) : Bǫ3/4(t0) → RN .

Then Wǫ(t) is a map which is continuous in t and our problem is reduced to finding a
zero of the vector field Wǫ(t).

Let us now calculate Wǫ(t).
We calculate:

Wǫ,i(t) = ǫ−1(ξ̂i)
1− q

p−1

∫ 1

−1

S[wǫ,t + φǫ,t]
dw̃i

dx



142 J. WEI AND M. WINTER

= ǫ−1(ξ̂i)
1− q

p−1

∫ 1

−1

S[wǫ,t]
dw̃i

dx

+ǫ−1(ξ̂i)
1− q

p−1

∫ 1

−1

S
′

ǫ[wǫ,t]φǫ,t

dw̃i

dx

+ǫ−1(ξ̂i)
1− q

p−1

∫ 1

−1

Nǫ(φǫ,t)
dw̃i

dx

= I1 + I2 + I3,

where I1, I2 and I3 are defined by the last equality.
The computation of I3 is the easiest: note that by Taylor expansion for (5.10), the first

term in the expansion of Nǫ is quadratic in φǫ,t. So

(6.3) I3 = O(ǫ).

We will now compute I1 and I2. The result will be that I1 is the leading term and
I2 = O(ǫ).

For I1, we have

I1 = ǫ−1(ξ̂i)
1− q

p−1

∫ 1

−1

(E1 + E2)
dw̃i

dx
dx = ǫ−1(ξ̂i)

1− q
p−1

∫ 1

−1

E2
dw̃i

dx
dx+O(ǫ),

where E1 and E2 were defined in (4.16) and (4.17), respectively, using that E1 is an even
function.

We calculate by (4.20)

ǫ−1(ξ̂i)
1− q

p−1

∫ 1

−1

E2
dw̃i

dx
dx

= −q[
N∑

j=1

∇tiGD(ti, tj)ξ̂
qr

p−1
−s

j ]

∫

R

ywp(y)w
′
(y) dy +O(ǫ)

= (
q

p+ 1

∫

R

wp+1)[
N∑

j=1

∇tiGD(ti, tj)ξ̂
qr

p−1
−s

j ] +O(ǫ).

Thus we have

(6.4) I1 =
q

p+ 1

∫

R

wp+1(y)dy[

N∑

j=1

∇tiGD(ti, tj)ξ̂
qr

p−1
−s

j ] +O(ǫ).

For I2 we calculate

ǫ(ξ̂i)
q

p−1
−1I2 =

∫ 1

−1

S
′
[wǫ,t](φǫ,t)

dw̃i

dx
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=

∫ 1

−1

[
ǫ2∆φǫ,t − φǫ,t +

pwp−1
ǫ,t φǫ,t

(T [wǫ,t])q
− q

wp
ǫ,t

(T [wǫ,t])q+1
(T

′
[wǫ,t]φǫ,t)

]
dw̃i

dx

=

∫ 1

−1

[
ǫ2∆

dw̃i

dx
− dw̃i

dx
+
dw̃i

dx

pwp−1
ǫ,t

(T [wǫ,t])q

]
φǫ,t

−q
∫ 1

−1

wp
ǫ,t

(T [wǫ,t])q+1
(T

′
[wǫ,t]φǫ,t)

dw̃i

dx

=

∫ 1

−1

(
p
ξ̂q
i w̃

p−1
i

(T [wǫ,t])q
− pw̃p−1

i

)
φǫ,t

dw̃i

dx

−q
∫ 1

−1

wp
ǫ,t

(T [wǫ,t])q+1
(T

′
[wǫ,t]φǫ,t)

dw̃i

dx
= O(ǫ2),

since

‖( pξ̂
q
i w̃

p−1
i

(T [wǫ,t])q
− pw̃p−1

i )φǫ,t‖L2(Ωǫ) = O(ǫ),

‖φǫ,t‖H2(Ωǫ) = O(ǫ),

T
′
[wǫ,t](φǫ,t)(ti) = O(ǫ),

T
′
[wǫ,t](φǫ,t)(ti + ǫy) − T

′
[wǫ,t](φǫ,t)(ti) = O(ǫ2|y|).

Combining I1 and I2, we have

Wǫ,i(t) =
q

p+ 1

∫

R

wp+1 ×
[

N∑

j=1

∇tiGD(ti, tj)ξ̂
qr

p−1
−s

j

]
+O(ǫ)

=
q

p+ 1

∫

R

wp+1Fi(t) +O(ǫ),

where Fi(t) was defined in (2.10).
By our assumption (H3), at t0, we have F (t0) = 0 and

det(∇t0F (t0)) 6= 0.

Therefore we have Wǫ(t) = −c1H(t0)M(t0)(t− t0) +O(|t− t0|2 + ǫ), where c1 is given
by

(6.5) c1 = − q

p+ 1

∫

R

wp+1.
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Then Brouwer’s fixed point theorem shows that for ǫ << 1 there exists a tǫ such that
Wǫ(t

ǫ) = 0 and tǫ ∈ Bǫ3/4(t0).
Thus we have proved the following proposition.

Proposition 6.1. For ǫ sufficiently small there exist points tǫ with tǫ → t0 such that

Wǫ(t
ǫ) = 0.

Remark 6.1. A more detailed computation reveals that

(6.6) |tǫ − t0| = O(ǫ).

Finally, we prove Theorem 2.1.

Proof of Theorem 2.1. By Proposition 6.1, there exists tǫ → t0 such that Wǫ(t
ǫ) = 0.

In other words, S[wǫ,tǫ + φǫ,tǫ ] = 0. Let Aǫ = ξ
q

p−1

ǫ (wǫ,tǫ + φǫ,tǫ), Hǫ = ξǫT [wǫ,tǫ + φǫ,tǫ ].
By the Maximum Principle, Aǫ > 0, Hǫ > 0. Moreover (Aǫ, Hǫ) satisfies all the properties
of Theorem 2.1.

7. Classifying the N−peaked solutions: proof of Theorem 2.2. Let (Aǫ, Hǫ) be
a solution of (1.7) satisfying (2.33) and (2.34). We now show that (Aǫ, Hǫ) is generated
exactly by two types of peaks, that is, we prove Theorem 2.2. First we make the following
scaling

Aǫ = ξ
q

p−1

ǫ Âǫ, Hǫ = ξǫĤǫ

where ξǫ is defined at (2.1). Hence (Âǫ, Ĥǫ) satisfies

(7.1)





ǫ2∆Âǫ − Âǫ +

Âp
ǫ

Ĥ
q
ǫ

= 0,−1 < x < 1,

D∆Ĥǫ − Ĥǫ + cǫ
Âr

ǫ

Ĥs
ǫ

= 0,−1 < x < 1,

where cǫ is defined in (4.8).
Now (2.33) and (2.34) imply that

(7.2) Âǫ ∼
N∑

j=1

(ξ̂ǫ
j)

q
p−1w(

x − tǫj
ǫ

), Ĥǫ(t
ǫ
j) = ξ̂ǫ

j .

Letting ǫ→ 0, we assume that

ξ̂ǫ
j → ξ̂0j , tǫj → t0j , j = 1, ..., N.

We see that Ĥǫ → h0(x) where h0(x) satisfies

(7.3)

{
D∆h0 − h0 +

∑N
j=1(ξ̂

0
j )

qr
p−1

−sδ(x− t0j ) = 0, −1 < x < 1,

h
′

0(−1) = h
′

0(1) = 0.

In other words, we have

(7.4) h0(x) =

N∑

j=1

(ξ̂0j )
qr

p−1
−sGD(x, t0j ).
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Since h0(t
0
j) = ξ̂0j , j = 1, . . . , N , we have from (7.4) that (ξ̂01 , ..., ξ̂

0
N ) must satisfy the following

identity:

(7.5)
N∑

j=1

GD(t0i , t
0
j)(ξ̂

0
j )

qr
p−1

−s = ξ̂0i , i = 1, ..., N.

This is the same as (2.5).
Define

Ãǫ,j = Âǫχ(
x− t0j
r̃0

)

where r̃0 is a very small number. Then Ãǫ,j is supported in the interval Iǫ
j = (−r̃0+tǫj, r̃0+tǫj).

We may choose r̃0 so small that Iǫ
i ∩ Iǫ

j = ∅ for i 6= j. Then

Âǫ =

N∑

j=1

Ãǫ,j + e.s.t.

Now we multiply the first equation in (7.1) by Ã
′

ǫ,j and integrate over (−1, 1). We obtain

0 =

∫ 1

−1

[(
Âǫ

p

Ĥǫ

q )Ã
′

ǫ,j − (
Âp

ǫ

Ĥq
ǫ

)
′
Ãǫ,j]

= −2

∫

Iǫ
j

(
Âp

ǫ

Ĥq
ǫ

)
′
Âǫ + e.s.t.

= −2

∫

Iǫ
j

[
pÂp

ǫ Â
′

ǫ

Ĥq
ǫ

− qÂp+1
ǫ Ĥ

′

ǫ

Ĥq+1
ǫ

] + e.s.t.

(7.6) =
q(p+ 2)

p+ 1

∫

Iǫ
j

Âp+1
ǫ

Ĥq+1
ǫ

Ĥ
′

ǫ + e.s.t.

By the equation for Ĥǫ, we have that

Ĥǫ(x) = cǫ

∫ 1

−1

GD(x, z)
Âr

ǫ

Ĥs
ǫ

and thus for x ∈ Iǫ
j ,

Ĥǫ(x) =

N∑

k=1

GD(x, tǫk)(ξ̂ǫ
k)

qr
p−1

−s +O(ǫ)

and

(7.7) Ĥ
′

ǫ(t
ǫ
j) =

N∑

k=1

∇tǫ
j
GD(tǫj , t

ǫ
k)(ξ̂ǫ

k)
qr

p−1
−s +O(ǫ).
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Substituting (7.7) into (7.6) and using (7.2), we obtain the following identity

(7.8)

N∑

k=1

∇tǫ
j
GD(tǫj , t

ǫ
k)(ξ̂ǫ

k)
qr

p−1
−s = o(1)

and hence

(7.9)

N∑

k=1

∇t0j
GD(t0j , t

0
k)(ξ̂0k)

qr
p−1

−s = 0, j = 1, ..., N,

which is the same as (2.12).
Note that by the expression for h0 in (7.4), (7.9) is equivalent to the following

(7.10) h
′

0(t
0
j+) + h

′

0(t
0
j−) = 0, j = 1, ..., N,

where h
′

0(t
0
j+) is the right-hand derivative of h0 at t0j and h

′

0(t
0
j−) is the left-hand derivative

of h0 at t0j . On the other hand, from the equation for h0, we have that

(7.11) D(h
′

0(t
0
j+) − h

′

0(t
0
j−)) = −(ξ̂0j )

qr
p−1

−s, j = 1, ..., N.

Solving (7.10) and (7.11), we have that

(7.12) h
′

0(t
0
j+) = −h′

0(t
0
j−) = − 1

2D
(ξ̂0j )

qr
p−1

−s < 0, j = 1, ..., N.

Since h0 satisfies Dh
′′

0 = h0 > 0 in each interval (t0j−1, t
0
j), j = 2, ..., N , we see that there

exists a unique point sj−1 ∈ (t0j−1, t
0
j) such that h

′

0(sj−1) = 0. Since h
′

0(−1) = 0, by using
symmetry, we see that

(7.13)
sj−1 + sj

2
= t0j , j = 1, ..., N,

where we take s0 = −1, sN = 1. Let 2lj = sj − sj−1, j = 1, ..., N . Note that on each interval

(−lj + t0j , lj + t0j ), h0 satisfies D∆h0 − h0 + (ξ̂0j )
qr

p−1
−sδ(t− t0j) = 0 with Neumann boundary

conditions at both ends. Thus from (1.4) it is easy to see that

(7.14) (ξ̂0j )
qr

p−1
−s−1 = 2

√
Dtanh(

lj√
D

), j = 1, ..., N,

(7.15) h0(lj) =
ξ̂0j

cosh(
lj√
D

)
.

Since h0 is continuous on (−1, 1), we have

(7.16) h0(l1) = h0(l2) = ... = h0(lN ).

Using (7.14) and (7.15), we see that (7.16) is equivalent to

(7.17) b(
l1√
D

) = b(
l2√
D

) = ... = b(
lN√
D

),

where the function b was defined in (2.25). Suppose without loss of generality that l1 ≤ l2,
then we take l1 = l and (7.17) implies that l2 ∈ {l, l̄} and that lj ∈ {l, l̄} for j = 2, ..., N .
Thus l must satisfy (2.26) and (2.27).

This finishes the proof of Theorem 2.2.

Remark 7.1. The proof of Theorem 2.2 implies that if t0 = (t01, ..., t
0
N ) satisfies (H1)

and (2.12), then necessarily, we have t0j − t0j−1 = lj ∈ {l, l̄}. That is, there are at most 2N

solutions satisfying (H1)–(H3).
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8. Stability Analysis: Large Eigenvalues. In this section, we study the eigenvalues
with λǫ → λ0 6= 0 as ǫ→ 0 (or, more precisely, with nonzero accumulation points).

We need to analyze the following eigenvalue problem

L̃ǫ,tǫφǫ = ǫ2φ
′′

ǫ − φǫ +
pAp−1

ǫ φǫ

(T [Aǫ])q
− q

Ap
ǫ

(T [Aǫ])q+1
ψǫ

(8.1) = λǫφǫ,

where ψǫ satisfies

(8.2) Dψ
′′

ǫ − ψǫ + rcǫ
Ar−1

ǫ

(T [Aǫ])s
φǫ − scǫ

Ar
ǫ

(T [Aǫ])s+1
ψǫ = τλǫψǫ.

Here λǫ is some complex number, Aǫ = wǫ,tǫ + φǫ,tǫ with tǫ determined in Section 6.
In this section, we study the large eigenvalues, i.e., we assume that there exists c > 0

with |λǫ| ≥ c > 0 for ǫ small. If Re(λǫ) ≤ −c, we are done.(Since then λǫ is a stable large
eigenvalue.) Therefore we may also assume that Re(λǫ) ≥ −c.

We first present the analysis of (8.1), (8.2) for the case τ = 0. At the end, we shall
explain how we proceed if τ > 0 and is small.

By (8.2) we have

(8.3) ψǫ = T
′
[Aǫ](φǫ).

First of all, since we are concerned only with those eigenvalues such that Re(λǫ) ≥ −c,
we see that by following the same argument as in the proof as (2) of Theorem 3.2, we have
that |λǫ| ≤ C for some positive constant C (independent of ǫ > 0).

Recall the definition of φǫ,j given in (5.7).
From (8.1) and the facts that Re(λǫ) ≥ −c and that wǫ,tǫ has exponential decay, we

have that

φǫ =
K∑

j=1

φǫ,j + e.s.t.

Then we extend φǫ,j to a function defined on R1 such that

‖φǫ,j‖H1(R1) ≤ C‖φǫ,j‖H1(Ωǫ), j = 1, . . . ,K.

Without loss of generality we may assume that ‖φǫ‖ǫ = ‖φǫ‖H1(Ωǫ) = 1. Then ‖φǫ,j‖ǫ ≤ C.
By taking a subsequence of ǫ, we may also assume that φǫ,j → φj as ǫ → 0 in H1(R) for
j = 1, . . . ,K.

Sending ǫ→ 0 with λǫ → λ0, this implies (as in Section 5)

LΦ = ∆Φ − Φ + pwp−1Φ

(8.4) −qr(I + sB)−1B(

∫

R

wr−1BΦ)(

∫

R

wr)−1wp = λ0Φ,

where

Φ =




φ1

φ2

...
φN


 ∈ (H2(R))N .



148 J. WEI AND M. WINTER

Then we have

Theorem 8.1. Let λǫ be an eigenvalue of (8.1) and (8.2) such that Re(λǫ) > −c for

some c > 0.
(1) Suppose that (for suitable sequences ǫn → 0) we have λǫn → λ0 6= 0. Then λ0 is an

eigenvalue of the problem (NLEP) given in (8.4).

(2) Let λ0 6= 0 with Re(λ0) > 0 be an eigenvalue of the problem (NLEP) given in (8.4).

Then for ǫ sufficiently small, there is an eigenvalue λǫ of (8.1) and (8.2) with λǫ → λ0 as

ǫ→ 0.

Proof. (1) of Theorem 8.1 follows by asymptotic analysis similar to Section 5.
To prove (2) of Theorem 8.1, we follow the argument given in Section 2 of [5], where

the following eigenvalue problem was studied:

(8.5)

{
ǫ2∆h− h+ pup−1

ǫ h− qr
s+1+τλǫ

R
Ω

ur−1

ǫ hR
Ω

ur
ǫ
up

ǫ = λǫh in Ω,

h = 0 on ∂Ω,

where uǫ is a solution of the single equation

{
ǫ2∆uǫ − uǫ + up

ǫ = 0 in Ω,
uǫ > 0 in Ω, uǫ = 0 on ∂Ω.

Here 1 < p < n+2
n−2 if n ≥ 3 and 1 < p < +∞ if n = 1, 2, qr

(s+1)(p−1) > 1 and Ω ⊂ Rn is a

smooth bounded domain. If uǫ is a single interior peak solution, then it can be shown ([35])
that the limiting eigenvalue problem is a NLEP

(8.6) ∆φ− φ+ pwp−1φ− qr

s+ 1 + τλ0

∫
RN w

r−1φ∫
RN wr

wp = λ0φ

where w is the corresponding ground state solution in Rn:

∆w − w + wp = 0, w > 0 in Rn, w = w(|y|) ∈ H1(Rn).

Dancer in [5] showed that if λ0 6= 0, Re(λ0) > 0 is an unstable eigenvalue of (8.6), then
there exists an eigenvalue λǫ of (8.5) such that λǫ → λ0.

We now follow his idea. Let λ0 6= 0 be an eigenvalue of problem (8.4) with Re(λ0) > 0.
We first note that from the equation for ψǫ, we can express ψǫ in terms of φǫ (as in (8.3)).
Now we rewrite (8.1) as follows:

(8.7) φǫ = −Rǫ(λǫ)

[
pAp−1

ǫ φǫ

Hq
ǫ

− qAp
ǫ

Hq+1
ǫ

ψǫ

]
,

where Rǫ(λǫ) is the inverse of −∆ + (1 + λǫ) in H2(R) (which exists if Re(λǫ) > −1 or
Im(λǫ) 6= 0), and ψǫ = T

′

ǫ [Aǫ](φǫ) is given by (8.2). The important thing is that Rǫ(λǫ) is
a compact operator if ǫ is sufficiently small. The rest of the argument follows in the same
way as in [5]. For the sake of limited space, we omit the details here.

We now study the stability of (8.1), (8.2) for large eigenvalues explicitly and prove (2.38)
and (2.40) of Theorem 2.3.

Suppose now that we have

(8.8)

(
qr

p− 1
− s

)
min

σ∈σ(B)
σ < 1,
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by Theorem 3.1 (1), there exists a positive eigenvalue of (8.4) and thus by Theorem 8.1,
there exists an eigenvalue λǫ of (8.1) and (8.2) such that Re(λǫ) > c0 for some positive
number c0 > 0. This implies that (Aǫ, Hǫ) is unstable.

Suppose now that

(8.9)

(
qr

p− 1
− s

)
min

σ∈σ(B)
σ > 1,

and (2.37) is satisfied, then by Theorem 3.1 (2), we know that for any nonzero eigenvalue
λ0 of L we have

Re(λ0) < c0 < 0 for some c0 > 0.

So by Theorem 8.1, for ǫ small enough all nonzero large eigenvalues of (8.1), (8.2) all have
strictly negative real parts. We conclude that in this case all eigenvalues λǫ of (8.1), (8.2),
for which |λǫ| ≥ c > 0 holds, satisfy Re(λǫ) ≤ −c < 0 for ǫ small enough. They are all
stable.

Finally we comment that when τ 6= 0 and τ is small, we use Theorem 3.2 to conclude.
In this case, the matrix B will have to be replaced by a matrix Bτλǫ which depends on τλǫ.
(In fact, one just replaces the Green’s function GD by the following Green’s function:

(8.10) D∆G− (1 + τλǫ)G+ δz = 0, G
′
(±1, z) = 0).

It is easy to check that the new matrix will have eigenvalues satisfying (3.2). The rest follows
in the same way as before.

In conclusion, we have finished the study of large eigenvalues. It remains to study small
eigenvalues only.

In the next section we shall study the eigenvalues λǫ which tend to zero as ǫ→ 0.

9. Stability Analysis: Small Eigenvalues. We now study small eigenvalues for (8.1)
and (8.2). Namely, we assume that λǫ → 0 as ǫ→ 0.

Let

(9.1) w̄ǫ = wǫ,tǫ + φǫ,tǫ , H̄ǫ = T [wǫ,tǫ + φǫ,tǫ ],

where tǫ = (tǫ1, . . . , t
ǫ
N ).

After scaling, the eigenvalue problem (8.1), (8.2) becomes

(9.2) ǫ2∆φǫ − φǫ +
pw̄p−1

ǫ

H̄q
ǫ

φǫ − q
w̄p

ǫ

H̄q+1
ǫ

ψǫ = λǫφǫ,

(9.3) D∆ψǫ − ψǫ + cǫr
Ār−1

ǫ

H̄s
ǫ

φǫ − scǫ
Ār

ǫ

H̄s+1
ǫ

ψǫ = λǫτψǫ.

where cǫ is given by (4.8).
We take τ = 0 for simplicity. As τλǫ << 1 the results in this section are also valid for τ

finite. As we shall prove, the small eigenvalues are of the order O(ǫ2). Unlike in the single
interior peak case [35], we need to expand the eigenfunction up to the order O(ǫ) term.
(Such an expansion is also needed in the study of boundary spikes for the shadow system
(see [4] and [34].))
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Let us define

(9.4) w̃ǫ,j(x) = χ(
x− tǫj
r0

)w̄ǫ(x), j = 1, ..., N,

where χ(x) and r0 are given in (4.3) and (4.4). Similarly as in Section 5, we define

Knew
ǫ,tǫ := span {w̃′

ǫ,j|j = 1, . . . , N} ⊂ H2(Ωǫ),

Cnew
ǫ,tǫ := span {w̃′

ǫ,j|j = 1, . . . , N} ⊂ L2(Ωǫ).

Then it is easy to see that

(9.5) w̄ǫ(x) =

N∑

j=1

w̃ǫ,j(x) + e.s.t.

Note that w̃ǫ,j(x) ∼ ξ̂
q

p−1

j w(
x−tǫ

j

ǫ
) in H2

loc(−1, 1) and w̃ǫ,j satisfies

ǫ2∆w̃ǫ,j − w̃ǫ,j +
(w̃ǫ,j)

p

H̄q
ǫ

+ e.s.t. = 0

Thus w̃
′

ǫ,j :=
dw̃ǫ,j

dx
satisfies

(9.6) ǫ2∆w̃
′

ǫ,j − w̃
′

ǫ,j +
p(w̃ǫ,j)

p−1

(H̄ǫ)q
w̃

′

ǫ,j − q
w̃p

ǫ,j

(H̄ǫ)q+1
H̄

′

ǫ + e.s.t. = 0.

Let us now decompose

(9.7) φǫ = ǫ

N∑

j=1

aǫ
jw̃

′

ǫ,j + φ⊥ǫ

with complex numbers aǫ
j , (the factor ǫ is for scaling), where

φ⊥ǫ ⊥ Knew
ǫ,tǫ .

Suppose that ‖φǫ‖H2(Ωǫ) = 1. Then |aǫ
j | ≤ C.

Similarly, we can decompose

(9.8) ψǫ = ǫ

N∑

j=1

aǫ
jψǫ,j + ψ⊥

ǫ ,

where ψǫ,j satisfies

(9.9) D∆ψǫ,j − ψǫ,j + cǫr
w̄r−1

ǫ

H̄s
ǫ

w̃
′

ǫ,j − scǫ
w̄r

ǫ

H̄s+1
ǫ

ψǫ,j = 0

and ψ⊥
ǫ satisfies

(9.10) D∆ψ⊥
ǫ − ψ⊥

ǫ + cǫr
w̄r−1

ǫ

H̄s
ǫ

φ⊥ǫ − scǫ
w̄r

ǫ

H̄s+1
ǫ

ψ⊥
ǫ = 0.
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Both (9.9) and (9.10) are solved with Neumann boundary conditions.
Substituting the decompositions of φǫ and ψǫ into (9.2) we have

qǫ
N∑

j=1

aǫ
j

(
(w̃ǫ,j)

p

H̄q+1
ǫ

H̄
′

ǫ −
(w̄ǫ)

p

H̄q+1
ǫ

ψǫ,j

)

+ǫ2∆φ⊥ǫ − φ⊥ǫ +
pw̄p−1

ǫ

H̄q
ǫ

φ⊥ǫ − q
w̄p

ǫ

H̄q+1
ǫ

ψ⊥
ǫ − λǫφ

⊥
ǫ + e.s.t.

(9.11) = λǫ


ǫ

N∑

j=1

aǫ
jw̃

′

ǫ,j


 .

Let us first compute

I4 := qǫ

N∑

j=1

aǫ
j

(
(w̃ǫ,j)

p

H̄q+1
ǫ

H̄
′

ǫ −
(w̄ǫ)

p

H̄q+1
ǫ

ψǫ,j

)

= qǫ
N∑

j=1

aǫ
j

(
(w̃ǫ,j)

p

H̄q+1
ǫ

(H̄
′

ǫ − ψǫ,j)

)
− qǫ

N∑

j=1

aǫ
j

∑

k 6=j

(w̃ǫ,k)p

H̄q+1
ǫ

ψǫ,j + e.s.t.

= qǫ

N∑

j=1

aǫ
j

(w̃ǫ,j)
p

H̄q+1
ǫ

[
−ψǫ,j + H̄

′

ǫ

]

−q
N∑

j=1

∑

k 6=j

aǫ
kǫψǫ,k

w̃p
ǫ,j

H̄q+1
ǫ

.

We can rewrite I4 as follows

(9.12) I4 = −qǫ
N∑

j=1

N∑

k=1

aǫ
k

w̃p
ǫ,j

H̄q+1
ǫ

(
ψǫ,k − H̄

′

ǫδjk

)
+ e.s.t..

Let us also put

(9.13) L̃ǫφ
⊥
ǫ := ǫ2∆φ⊥ǫ − φ⊥ǫ +

pw̄p−1
ǫ

H̄q
ǫ

φ⊥ǫ − q
pw̄p

ǫ

H̄q+1
ǫ

ψ⊥
ǫ

and

(9.14) aǫ := (aǫ
1, ..., a

ǫ
N)T .

Multiplying both sides of (9.11) by w̃
′

ǫ,l and integrating over (−1, 1), we obtain

r.h.s. = ǫλǫ

N∑

j=1

aǫ
j

∫ 1

−1

w̃
′

ǫ,jw̃
′

ǫ,l
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(9.15) = λǫa
ǫ
l ξ̂

2q
p−1

l

∫

R

(w
′
(y))2 dy (1 +O(ǫ))

and

l.h.s. = (−qǫ
N∑

j=1

N∑

k=1

aǫ
k

∫ 1

−1

w̃p
ǫ,j

H̄q+1
ǫ

(
ψǫ,k − H̄

′

ǫδjk

)
w̃

′

ǫ,l

+

∫ 1

−1

q
w̃p

ǫ,l

H̄q+1
ǫ

(H̄
′

ǫφ
⊥
ǫ )

−
∫ 1

−1

q
w̃p

ǫ,l

H̄q+1
ǫ

(ψ⊥
ǫ w

′

ǫ,l))(1 + o(1))

= (J1,l + J2,l + J3,l)(1 + o(1)),

where Ji,l, i = 1, 2, 3 are defined by the last equality.
We define the vectors

(9.16) Ji = (Ji,1, ..., Ji,N )T , i = 1, 2, 3.

The following is the key lemma.

Lemma 9.1. We have

(9.17)

J1 = c1ǫ
2H

2q
p−1

−1
[
(∇2GD −Q)H

qr
p−1

−s − s∇GDH
qr

p−1
−s−1P1(∇GD)TH

qr
p−1

−s
]
aǫ + o(ǫ2),

(9.18) J2 = o(ǫ2),

and

(9.19) J3 = c1ǫ
2H

2q
p−1

−1

[
qr

p− 1
∇GDH

qr
p−1

−s−1P2(∇GD)TH
qr

p−1
−s

+s∇GDH
qr

p−1
−s−1 qr

p− 1
P1GDH

qr
p−1

−s−1P2(∇GD)TH
qr

p−1
−s

]
aǫ + o(ǫ2),

where c1 is given by (6.5) and P1 and P2 are defined by (2.18) and (2.19), respectively. Recall

that GD are H are introduced in (2.2) and (2.9), respectively, and aǫ is given in (9.14).

By Lemma 9.1, Theorem 2.3 can be proved. Indeed, note that

s∇GDH
qr

p−1
−s−1P1(∇GD)TH

qr
p−1

−s

−s∇GDH
qr

p−1
−s−1 qr

p− 1
P1GDH

qr
p−1

−s−1P2(∇GD)TH
qr

p−1
−s

= s∇GDH
qr

p−1
−s−1P1

(
I − qr

p− 1
GDH

qr
p−1

−s−1P2

)
(∇GD)TH

qr
p−1

−s
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(9.20) = s∇GDH
qr

p−1
−s−1P2(∇GD)TH

qr
p−1

−s.

Combining the estimates for J1, J2 and J3 and using (9.20), we have

l.h.s. = J1 + J2 + J3 = c1ǫ
2H

2q
p−1

−1

×
(

(∇2GD −Q)H
qr

p−1
−s + (

qr

p− 1
− s)∇GDH

qr
p−1

−s−1P2(∇GD)TH
qr

p−1
−s

)
aǫ + o(ǫ2)

= c1ǫ
2H

2q
p−1M(tǫ)aǫ + o(ǫ2).

Comparing with r.h.s. we have

(9.21) c1ǫ
2H

2q
p−1M(tǫ)aǫ + o(ǫ2) = λǫH

2q
p−1 aǫ

∫

R

(w
′
(y))2 dy (1 +O(ǫ)).

Equation (9.21) shows that the small eigenvalues λǫ of (9.2) are

λǫ ∼ ǫ2c2σ(M(t0)),

where c2 = c1R
R

(w′)2
< 0. This shows that if all the eigenvalues of M(t0) are positive, then

the small eigenvalues are stable. On the other hand, if M(t0) has a negative eigenvalue,
then we can construct eigenfunctions and eigenvalues to make the system unstable.

This proves Theorem 2.3.
Lemma 9.1 follows from the following series of lemmas.
We first study the asymptotic behavior of ψǫ,j.

Lemma 9.2. We have

(9.22) ((ψǫ,k − H̄
′

ǫδkl)(t
ǫ
l )) = −H

qr
p−1

−s∇GDPT
1 +O(ǫ).

Proof. Note that for l 6= k, we have

(ψǫ,k − H̄
′

ǫδkl)(t
ǫ
l ) = ψǫ,k(tǫl )

= cǫr

∫ 1

−1

GD(tǫl , z)
w̄r−1

ǫ

H̄s
ǫ

w̃
′

ǫ,k dz − cǫs

∫ 1

−1

GD(tǫl , z)
w̄r

ǫ

H̄s+1
ǫ

ψǫ,k dz

(9.23) = −∇tǫ
k
GD(tǫk, t

ǫ
l )ξ̂

qr
p−1

−s

k − s

N∑

m=1

GD(tǫl , t
ǫ
m)ψǫ,k(tǫm)ξ̂

qr
p−1

−(s+1)
m +O(ǫ).

Next we compute ψǫ,l − H̄
′

ǫ near tǫl :

H̄ǫ(x) = cǫ

∫ 1

−1

GD(x, z)
w̄r

ǫ

H̄s
ǫ

= cǫ

∫ +∞

−∞

KD(|z|)
w̃r

ǫ,l

H̄s
ǫ

(x+ z)dz − cǫ

∫ 1

−1

HD(x, z)
w̃r

ǫ,l

H̄s
ǫ

dz
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+cǫ
∑

k 6=l

∫ 1

−1

GD(x, z)
w̃r

ǫ,k

H̄s
ǫ

.

So

H̄
′

ǫ = cǫ

∫ +∞

−∞

KD(|z|)(r
w̃r−1

ǫ,l

H̄s
ǫ

(x+ z))dz − cǫ

∫ 1

−1

HD(x, z)r
w̃r−1

ǫ,l

H̄s
ǫ

dz

+cǫ
∑

k 6=l

∫ 1

−1

GD(x, z)r
w̃r−1

ǫ,k

H̄s
ǫ

dz

−scǫ
∫ 1

−1

GD(x, z)
w̄r

ǫ

H̄s+1
ǫ

H̄
′

ǫdz.

Thus

H̄
′

ǫ − ψǫ,l = −scǫ
∫ 1

−1

KD(|x− z|)
w̃r

ǫ,l

H̄s+1
ǫ

H̄
′

ǫ

−cǫ
∫ 1

−1

∇xHD(x, z)
w̃r

ǫ,l

H̄s
+ cǫ

∑

k 6=l

∫ 1

−1

∇xGD(x, z)
w̃r

ǫ,k

H̄s
ǫ

−(−cǫ
∫ 1

−1

HD(x, z)
rw̃r

ǫ,l

H̄s
w̃

′

ǫ,l − cǫs

∫ 1

−1

GD(x, z)
w̄r

ǫ

H̄s+1
ǫ

ψǫ,l).

Therefore we have,

H̄
′

ǫ(t
ǫ
l ) − ψǫ,l(t

ǫ
l ) = −cǫ

∫ 1

−1

∇tǫ
l
H(tǫl , z)

w̃r
ǫ,l

H̄s
+ cǫ

∑

k 6=l

∫ 1

−1

∇tǫ
l
G(tǫl , z)

w̃r
ǫ,k

H̄s
ǫ

−∇tǫ
l
HD(tǫl , t

ǫ
l )ξ̂

qr
p−1

−s

l − s

N∑

k=1

GD(tǫl , t
ǫ
k)ξ̂

qr
p−1

−(s+1)

k ψǫ,l(t
ǫ
k) +O(ǫ)

(9.24) = −∇tǫ
l
HD(tǫl , t

ǫ
l )ξ̂

qr
p−1

−s

l − s

N∑

k=1

GD(tǫl , t
ǫ
k)ξ̂

qr
p−1

−(s+1)

k ψǫ,l(t
ǫ
k) +O(ǫ).

Solving the equations (9.23) and (9.24), we have (9.22).
Similar to Lemma 9.2, we have

Lemma 9.3. We have

(9.25) (ψǫ,k − H̄
′

ǫδlk)(tǫl + ǫy) − (ψǫ,k − H̄
′

ǫδlk)(tǫl )

= −ǫy
[
∇tǫ

l
∇tǫ

k
GD(tǫl , t

ǫ
k) − qlkδlk

]
ξ̂

qr
p−1

−s

k



EXISTENCE AND STABILITY ANALYSIS 155

−ǫys
N∑

m=1

∇tǫ
l
GD(tǫl , t

ǫ
m)ψǫ,k(tǫm)ξ̂

qr
p−1

−(s+1)
m +O(ǫ2y2)

where qlk is defined at (2.16).

We next study the asymptotic expansion of φ⊥ǫ . Let us first denote

(9.26) φ1
ǫ,j =

N∑

l=1

(
q

p− 1
ξ̂

q
p−1

−1

l ∇tǫ
j
ξ̂lw̃ǫ,l

)
, φ1

ǫ := ǫ

N∑

j=1

aǫ
jφ

1
ǫ,j .

Then we have

Lemma 9.4. For ǫ sufficiently small, we have

(9.27) ‖φ⊥ǫ − φ1
ǫ‖H2(−1/ǫ,1/ǫ) = O(ǫ2).

Proof. Before we prove Lemma 9.4, we first obtain a relation between ψ⊥
ǫ and φ⊥ǫ . Note

that similar to the proof of Proposition 5.1, L̃ǫ is invertible from (Knew
ǫ )⊥ to (Cnew

ǫ )⊥. By
Lemma 9.2 and the fact that L̃ǫ is invertible, we deduce that

(9.28) ‖φ⊥ǫ ‖H2(− 1

ǫ , 1ǫ ) = O(ǫ).

Let us decompose

(9.29) φ̃ǫ,j =
φ⊥ǫ
ǫ
χ(
x− tǫj
r0

).

Then

φ⊥ǫ = ǫ

N∑

j=1

φ̃ǫ,j + e.s.t.

Suppose that

(9.30) φ̃ǫ,j → φj in H1.

Let

Φ0 = (φ1, ..., φN )T .

Then we have by the equation for ψ⊥
ǫ (similar to the proof of Lemma 9.2):

ψ⊥
ǫ (tǫj) = ǫ

N∑

k=1

cǫr

∫ 1

−1

GD(tǫj , z)
w̄r−1

ǫ

H̄s
ǫ

φ̃ǫ,k dz

−cǫs
∫ 1

−1

GD(tǫj , z)
w̄r

ǫ

H̄s+1
ǫ

ψ⊥
ǫ dz + e.s.t.

= −ǫr
N∑

k=1

GD(tǫj , t
ǫ
k)ξ̂

q(r−1)

p−1
−s

k

∫
R
wr−1φk∫
R
wr
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(9.31) −s
N∑

k=1

GD(tǫj , t
ǫ
k)ψ⊥

ǫ (tǫk)ξ̂
qr

p−1
−(s+1)

k +O(ǫ2).

Hence

(9.32) (ψ⊥
ǫ (tǫ1), ..., ψ

⊥
ǫ (tǫN ))T = −ǫrP1GDH

q(r−1)

p−1
−s

∫
R
wr−1Φ0∫
R
wr

+O(ǫ2).

Substituting (9.32) into (9.11) and using Lemma 8.2, we have that in the limit Φ0

satisfies

∆Φ0 − Φ0 + pwp−1Φ0

−qrH
q

p−1
−1P1GDH

q(r−1)

p−1
−s

∫
R
wr−1Φ0∫
R
wr

wp

+qH
q

p−1
−1P1(∇GD)TH

qr
p−1

−sa0wp = 0

where

a0 = lim
ǫ→0

aǫ.

So

Φ0 = − q

p− 1

(
I − qr

p− 1
H

q
p−1

−1P1GDH
q(r−1)

p−1
−s

)−1

H
q

p−1
−sP1(∇GD)TH

qr
p−1

−sa0w

= − q

p− 1
H

q
p−1

−1

(
I − (

qr

p− 1
− s)GDH

qr
p−1

−s−1

)−1

(∇GD)TH
qr

p−1
−sa0w

(9.33) = − q

p− 1
H

q
p−1

−1P2(∇GD)TH
qr

p−1
−sa0w.

Now we compare Φ0 with φ1
ǫ . By definition

φ1
ǫ = ǫ

N∑

k=1

aǫ
k

N∑

m=1

(
q

p− 1
ξ̂

q
p−1

−1
m ∇tǫ

k
ξ̂mw̃ǫ,m

)

(9.34) = ǫ

N∑

m=1

q

p− 1
ξ̂

q
p−1

−1
m

[
N∑

k=1

(∇tǫ
k
ξ̂ma

ǫ
k)

]
w̃ǫ,m.

On the other hand

φ⊥ǫ = ǫ

N∑

j=1

φ̃ǫ,j + e.s.t.
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(9.35) = ǫ

N∑

j=1

φj(
x− tǫj
ǫ

) +O(ǫ2).

Using (9.33) and (2.15), and comparing (9.34) and (9.35), we obtain (9.27).
From Lemma 9.4, we have that

(9.36) (ψ⊥
ǫ (tǫ1), ..., ψ

⊥
ǫ (tǫN ))T = ǫ

qr

p− 1
P1GDH

qr
p−1

−s−1P2(∇GD)TH
qr

p−1
−s +O(ǫ2)

and

ψ⊥
ǫ (tǫj + ǫy) − ψ⊥

ǫ (tǫj)

= −ǫ2yr
N∑

k=1

∇tǫ
j
GD(tǫj , t

ǫ
k)ξ̂

q(r−1)

p−1
−s

k

∫
R
wr−1φk∫
R
wr

(9.37) −sǫy
N∑

k=1

∇tǫ
j
GD(tǫj , t

ǫ
k)ψ⊥

ǫ (tǫk)ξ̂
qr

p−1
−(s+1)

k +O(ǫ3y2).

Finally we prove the key lemma – Lemma 9.1.

Proof of Lemma 9.1. The computation of J2 follows from Lemma 9.3: In fact, since
H̄

′

ǫ = o(1),

J2,l = −qǫ
N∑

k=1

aǫ
k

∫ 1

−1

w̃p
ǫ,l

H̄q+1
ǫ

(
ψǫ,k − H̄

′

ǫδlk

)
w̃

′

ǫ,l + e.s.t.

= −qǫ
N∑

k=1

aǫ
k

∫ 1

−1

w̃p
ǫ,l

H̄q+1
ǫ

(
[ψǫ,k(x) − H̄

′

ǫ(x)δlk] − [ψǫ,k(tǫl ) − H̄
′

ǫ(t
ǫ
l )δlk]

)
w̃

′

ǫ,l + o(ǫ2)

= qǫ2
∫

R

(ywpw
′
(y))dy × ξ̂

2q
p−1

−1

l

N∑

k=1

[
∇tǫ

l
∇tǫ

k
GD(tǫl , t

ǫ
k)ξ̂

qr
p−1

−s

k + s

N∑

m=1

∇tǫ
l
GD(tǫl , t

ǫ
m)ψǫ,k(tǫm)ξ̂

qr
p−1

−(s+1)
m

]
aǫ

k + o(ǫ2)

which, by Lemma 9.2, proves (9.17).
(9.18) follows from Lemma 9.4 and the fact that at tǫj

H̄ǫ(t
ǫ
j) = ξ̂j +O(ǫ2), H̄

′

ǫ(t
ǫ
j + ǫy) − H̄

′

ǫ(t
ǫ
j) = ǫ× odd function +O(ǫ2).

It remains to prove (9.19):

J3 = −
∫ 1

−1

q
w̃p

ǫ,l

H̄q+1
ǫ

(ψ⊥
ǫ w

′

ǫ,l)
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= −
∫ 1

−1

q
w̃p

ǫ,l

H̄q+1
ǫ

(ψ⊥
ǫ (tǫl )w

′

ǫ,l)

−
∫ 1

−1

q
w̃p

ǫ,l

H̄q+1
ǫ

(ψ⊥
ǫ (x) − ψ⊥

ǫ (tǫl ))w
′

ǫ,l

= −
∫ 1

−1

q
w̃p

ǫ,l

H̄q+1
ǫ

(ψ⊥
ǫ (x) − ψ⊥

ǫ (tǫl ))w
′

ǫ,l + o(ǫ2).

Now (9.19) follows from (9.33), (9.36) and (9.37).

10. Appendix A: Computation of the Eigenvalues of B and M and the proof

of Theorem 2.4 . In this appendix, we give a sketch of the computations of the eigenvalues
of B and M in the case of symmetric N -peaked solutions. Then Theorem 2.4 follows from
Theorem 2.3. For more detailed computations, we refer the reader to [15] and [28].

We need to consider the three matrices GD,∇GD and ∇2GD.
Recall that

t0j = −1 +
2j − 1

N
, j = 1, ..., N, θ =

1√
D
.

By definition, it is easy to compute

GD =
θ

sinh(2θ)
(aij), ∇GD =

θ2

sinh(2θ)
(bij), ∇2GD =

θ3

sinh(2θ)
(cij),

where

(10.1) aij =

{
cosh(θ(1 + t0i )) cosh(θ(1 − t0j)), if i ≤ j;

cosh(θ(1 − t0i )) cosh(θ(1 + t0j)), if i > j,

(10.2) bij =






sinh(θ(1 + t0i )) cosh(θ(1 − t0j)), if i < j;

1
2 sinh(2θt0i ), if i = j;

− sinh(θ(1 − t0i )) cosh(θ(1 + t0j)), if i > j,

and

(10.3) cij =






− sinh(θ(1 + t0i )) sinh(θ(1 − t0j)), if i < j;

− sinh(θ(1 + t0i )) sinh(θ(1 − t0i )) + 1
2 sinh(2θ), if i = j;

− sinh(θ(1 − t0i )) sinh(θ(1 + t0j)), if i > j,

In the symmetric N−peaked case, ξ̂01 = ξ̂02 = ... = ξ̂0N = ξ̂0. Hence

H = ξ̂0I.

One can compute ξ̂0 explicitly

(10.4) ξ̂
qr

p−1
−s−1

0 = 2
tanh( θ

N
)

θ
.
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Hence

(10.5) Q = (
θ3

2
− θ3

2 tanh( θ
N

)
)I.

The following three observations make the computation easier:
Observation I: G−1

D is a tridiagonal matrix. More precisely, we have

(10.6) G−1
D =

√
D




d1 f1 0
. . . 0

f1 e1 f1 0
. . .

. . .
. . .

. . .
. . .

. . .

. . . 0 f1 e1 f1

0
. . . 0 f1 d1




where

d1 = coth(2θ/N) + tanh(θ/N), e1 = 2 coth(2θ/N), f1 = −csch(2θ/N).

Since G−1
D is a symmetric tridiagonal matrix, we can easily compute the eigenvalues and

eigenvectors of GD as follows:

(10.7) λj = θ(e1 + 2f1 cos(
π(j − 1)

N
))−1, j = 1, ..., N,

qt
1 =

1√
N

(1, ..., 1),

qt
j = (q1,j , ..., qN,j), j = 2, ..., N,

ql,j =

√
2

N
(cos(

π(j − 1)

N
(l − 1

2
)), j = 2, ..., N, l = 1, ..., N.

In summary, if we take

P1 = (q1, ...,qN ),

then we have

(10.8) P−1
1 GDP1 =




λ1 0 0
. . . 0

0 λ2 0
. . . 0

. . . 0 λj 0
. . .

. . .
. . .

. . .
. . .

. . .

0
. . . 0 0 λN




.

Observation II: (∇2GD − θ3

2 I)
−1 is a tridiagonal matrix. That is
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(10.9) (∇2GD − θ3

2
I)−1 = −θ−3




d2 f1 0
. . . 0

f1 e1 f1
. . . 0

. . . f1 e1 f1
. . .

. . .
. . .

. . .
. . .

. . .

0
. . . 0 f1 d2




where

d2 = coth(2θ/N) + coth(θ/N).

Since ∇2GD − θ3

2 I is a symmetric tridiagonal matrix, we can easily compute the eigenvalues
and eigenvectors of ∇2GD as follows:

(10.10) µj =
θ3

2
− θ3(e1 + 2f1 cos(

π(j − 1)

N
))−1, j = 2, ..., N,

µ1 =
θ3

2
− θ3(e1 − 2f1)

−1,

vt
1 =

1√
N

(1,−1, 1, ..., (−1)N+1),

vt
j = (v1,j , ..., vN,j), j = 2, . . . , N,

vl,j =

√
2

N
(sin(

π(j − 1)

N
(l − 1

2
)), j = 2, ..., N, l = 1, ..., N.

Thus, if we take

P2 = (v1, ...,vN ),

then we have

(10.11) P−1
2 ∇2GDP2 =




µ1 0 0
. . . 0

0 µ2 0
. . . 0

. . . 0 µj 0
. . .

. . .
. . .

. . .
. . .

. . .

0
. . . 0 0 µN




.

The last observation makes the connection between ∇GD and the other two matrices
GD and ∇2GD.
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Observation III:

(10.12) P−1
2 ∇GDP1 =




ν1 0 0
. . . 0

0 ν2 0
. . . 0

. . . 0 νj 0
. . .

. . .
. . .

. . .
. . .

. . .

0
. . . 0 0 νN




where

(10.13) νj = csch (2θ/N) sin(π(j − 1)/N)λj , j = 1, ..., N.

Now let

s̃ = s− qr

p− 1
, γ̃ = ξ̂−s̃−1

0 .

Then by (10.8), (10.11) and (10.12), we have that the eigenvalues of M are given by

mj = µj − q0 − s̃γ̃ν2
j (1 + s̃γ̃λj)

−1, j = 1, ..., N,

where µj is given in (10.10), νj is given in (10.13), and

q0 =
θ3

2
− θ3

2 tanh( θ
N

)
.

For stability, we need

(10.14) −s̃γ̃ min
j=1,...,N

λj > 1

and

(10.15) min
j=1,...,N

mj > 0.

The first condition (10.14) gives us the following criterion (see [15]):

(10.16) D < D1
N ≡ 1

θ2N,1

, θN,1 ≡ N

2
log[a+

√
a2 − 1],

where a = 1 + [1 + cos( π
N

)]( qr
p−1 − s− 1)−1.

The second condition (10.15) gives us another critical threshold (see [15]):

(10.17) D < D2
N ≡ 1

θ2N,2

, θN,2 ≡ N log[
√
β +

√
β + 1],

where β ≡ ( qr
p−1 − (1 + s))−1.

It is easy to see that D1
N > D2

N . Thus we obtain the stability of symmetric N−peaked
solution for D < DN ≡ D2

N and instability of symmetric N−peaked solutions for D > DN .
(Note that the estimates for small eigenvalues involve no τ .)

This proves Theorem 2.4.
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