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EXISTENCE OF SOLUTIONS TO THE THREE DIMENSIONAL

BAROTROPIC-VORTICITY EQUATION∗

B. EMAMIZADEH† AND M. H. MEHRABI‡

Abstract. We prove existence of maximizers for a variational problem in R
3
+. Solutions represent

steady geophysical flows over a surface of variable height which is bounded from below.
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1. Introduction. In this paper we prove existence of maximizers for a varia-
tional problem which describes a geophysical flow over a surface of variable height,
bounded from below, such as a seamount in the ocean or a mountain in the at-
mosphere. The basic equation governing such flows is the three dimensional barotropic
vorticity equation given by

[ψ, ζ] = 0,

where [., .] denotes the Jacobian and ψ represents the stream function, −ζ the potential
vorticity given by

−ζ = ∆ψ + h,

where h is the height of the bottom surface.
In [6] and [9] similar problems have been considered in two dimensions. Here, the

problem has been formulated in three dimensions which is more realistic. In addition,
from a technical point of view, due to drastic differences between the fundamental
solutions of −∆ in two and three dimensions the estimates in [6] and [9] are not
applicable. In particular we single out the simple but crucial result stated in Lemma
6 in section 3.

To prove the existence we follow the method proposed by Benjamin [3]. To do
this we begin by considering the variational problem over half spheres. In order to
prove existence of maximizers in this situation we employ the technology extensively
developed by Burton [4,5]. Then using a limiting argument we show that maximizers
for large half spheres indeed are maximizers for the original problem; the radius of
the critical half sphere turns out to be the radius of the smallest two dimensional disc
containing the support of the height function h.

2. Definitions and notations. Henceforth we assume p ∈ (3,∞). The ball
centered at x ∈ R

3 with radius R is denoted BR(x); in particular when the center
is the origin we write BR. For x = (x1, x2, x3) ∈ R

3, we write x̄ = (x1, x2,−x3) and
we define R

3
+ = {x ∈ R

3 : x3 > 0}. For a measurable set A ⊆ R
3, | A | denotes the

three dimensional Lebesgue measure of A. If A is measurable, then x ∈ A is called a
density point of A whenever | Bε(x)

⋂

A |> 0, for all positive ε. The set of all density
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points of A is denoted den(A).
For a measurable function ζ : R

3
+ → R, the strong support or simply the support of ζ

denoted supp(ζ) is defined

supp(ζ) = {x ∈ R
3
+ : ζ(x) > 0}.

If f and g are non-negative measurable functions that vanish outside sets of finite
measure in R

3
+, we say f is a rearrangement of g whenever

| {x ∈ R
3
+ : f(x) ≥ α} |=| {x ∈ R

3
+ : g(x) ≥ α} |,

for every positive α. Let us fix ζ0 ∈ Lp(R3
+) to be a non-negative function vanishing

outside a set of measure 4
3πa

3 for some positive a and ‖ ζ0 ‖p= 1. The set of all
rearrangements of ζ0 on R

3
+ which vanish outside bounded sets is denoted F . The

subset of F containing functions vanishing outside the ball BR is denoted F(R);
henceforth we assume R > a in order to ensure F(R) is non-empty. For a non-
negative ζ ∈ Lp(R3

+) having bounded support, we define the energy functional

Ψ(ζ) =
1

2

∫

R
3
+

ζKζ +

∫

R
3
+

ηζ,

where

Kζ(x) =
1

4π

∫

R
3
+

(

1

| x− y |
+

1

| x− ȳ |

)

ζ(y) dy

and

η(x) =
1

2π

∫

∂R
3
+

1

| x− y |
h(y) dσ(y).

Here h ∈ Lp(∂R
3
+) is a non-negative function with compact support.

Let Brh
be the smallest ball containing supp(h); we assume that

rh > max{a, r∗} (1)

where

r∗ ln
r∗

2
√
e

= 2,

(such r∗ is unique and 1.81e < r∗ < 1.82e) and

h(x1, x2) ≥ c ln | x1x2 |, (2)

almost everywhere in supp(h), where c is some constant given in Lemma 1.
Let us now introduce the following variational problem(P):

sup
ζ∈F

Ψ(ζ) .

The solution set for (P ) is denoted Σ. Now we can state the main result of this paper
is the following

Theorem. The variational problem (P) is solvable; that is, Σ is not empty.

Moreover, if ζ̂ ∈ Σ and we set ψ̂ = Kζ̂ + η, then ψ̂ satisfies the following partial

differential equation

−∆ψ̂ = φ ◦ ψ̂ + h, (3)

almost everywhere in R
3
+, for some increasing function φ unknown a priori.
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3. Preliminaries. In this section we present some lemmas which will be used
in the proof of the Theorem.

Lemma 1. Suppose ζ ∈ Lp(R3
+) is a non-negative function with compact support.

Then

Kζ(x) ≤ c ‖ ζ ‖p , ∀x ∈ R
3
+. (4)

Proof. We have

Kζ(x) ≤ 1

2π

∫

R
3
+

ζ(y)

| x− y |
dy ≤ 1

2π

∫

Br∗ (x)

ζ̃(y)

| x− y |
dy ,

where ζ̃ is the Schwarz rearrangement of ζ with respect to x and r∗ = (3|supp(ζ)|
4π

)
1
3 .

The second inequality is a consequence of Hardy-Littlewood inequality [8]. Now by
H

..
older’s inequality, we get (4), where

c =
1

2π

(

∫

Br∗ (x)

1

| x− y |p′
dy

)
1
p′

=
2(3 |supp(ζ) |)

1
p′

− 1
3

(4π)
2
3 (3 − p′)

1
p′

, (5)

and p′ is the conjugate exponent of p.

Remark. The constant c evaluated in (5) is the constant used in (2).

Lemma 2. Let q ≥ 1 and let U be a bounded open subset of R
3
+. Then

K : Lp(U) → Lq(U) is a compact linear operator. Moreover, if ζ ∈ Lp(R3
+) vanishes

outside U , then Kζ ∈W 2,p
loc (R3

+) and verifies

−∆u = ζ a.e in R
3
+

and

∂u

∂x3
= 0 on ∂R

3
+.

Proof. From Lemma 1, it readily follows that the map K from Lp(U) into Lq(U)
is well defined. Notice that functions in Lp(U) are interpreted as functions in Lp(R3

+)
which vanish outside U . Now consider ζ ∈ Lp(R3

+), which vanishes outside U. Then
there exists a sequence {ζn} in C∞

0 (R3
+) such that supp(ζn) ⊆ U , and ζn → ζ in

Lp(R3
+), as n→ ∞. We deduce from (4) that

|K(ζn − ζ)(x) |≤ c ‖ ζn − ζ ‖p .

Therefore, Kζn → Kζ, uniformly in R
3
+. Whence

∫

(Kζn)φ→
∫

(Kζ)φ ∀φ ∈ C∞
0 (R3

+). (6)
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On the other hand by [7, lemmas 4.1, 4.2], we have

−∆(Kζn) = ζn .

Thus by applying the Lebesgue dominated convergence theorem, we infer

∫

−∆(Kζn)φ→
∫

ζφ. (7)

Note that,

∫

−∆(Kζn)φ =

∫

(Kζn)(−∆φ) .

From (6) we now deduce

∫

−∆(Kζn)φ→
∫

(Kζ)(−∆φ). (8)

Hence, from (7) and (8), we find

∫

ζφ =

∫

(Kζ)(−∆φ) ,

so

−∆(Kζ) = ζ in D′(R3
+). (9)

Now, by Agmon’s regularity theory [2, theorem 6.1] we infer that Kζ ∈ W 2,p
loc (R3

+).
Therefore equation (9) holds almost everywhere in R

3
+. According to Sobolev embed-

ding theorem [1] in order to show compactness of K it suffices to prove the bounded-
ness of K as a map from Lp(U) into W 1,3(U). To do this, we first show

|∇Kζ(x) |≤ M ‖ζ ‖p ∀x ∈ R
3
+, (10)

where M is a constant independent of x.
We begin with

∇Kζ(x) = − 1

4π

∫

R
3
+

(

x− y

| x− y |3
+

x− ȳ

| x− ȳ |3

)

ζ(y) dy .

Therefore

|∇Kζ(x) |≤ 1

4π

∫

R
3
+

(

1

| x− y |2
+

1

| x− ȳ |2

)

ζ(y) dy

≤
1

2π

∫

R
3
+

1

| x− y |2
ζ(y) dy

≤ 1

2π

∫

Br∗ (x)

1

| x− y |2
ζ̃(y) dy ,
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where ζ̃ and r∗ are the same as in the proof of Lemma 1.
Now, by H

..
older’s inequality, we obtain (10), where

M =
2(3 |supp(ζ) |)

1
p′

− 2
3

(4π)
1
3 (3 − 2p′)

1
p′

.

This implies that

‖ ∇Kζ ‖L3(U) ≤M ‖ ζ ‖p |U | 13 .

Also, from (4), we have

‖ Kζ ‖L3(U) ≤ c ‖ ζ ‖p |U | 13 .

Therefore

‖ Kζ ‖W 1,3(U) ≤ C ‖ ζ ‖p .

So K is bounded as desired. Finally, by calculation, we have

∂Kζ

∂x3
= 0 on ∂R

3
+,

as desired.
The next lemma has been proved in [4].

Lemma 3. If F(R)ω denotes the weak closure of F(R) in Lp(BR), then F(R)ω

is convex and weakly sequentially compact.

In order to prove the existence part of the Theorem, we first consider the following
truncated variational problem (PR):

sup
ζ∈F(R)

Ψ(ζ).

We denote the solution set of (PR) by ΣR. We show that (PR) is solvable. To do this
we need the following result, which is a simple variation of [5, Lemma 2.15].

Lemma 4 Let g ∈ Lp′(BR) and denote by Lα(g) the level set of g at height α;

that is,

Lα(g) = {x ∈ BR : g(x) = α}.

Let I : Lp(BR) → R be the linear functional defined by

I(ζ) =

∫

BR

ζ g .

If ζ̂ is a maximizer of I relative to F(R)ω and if

|Lα(g) ∩ supp(ζ̂) |= 0 ,

for every α ∈ R, then ζ̂ ∈ F(R) and

ζ̂ = φR ◦ g ,
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almost everywhere in BR, for some increasing function φR.

Remark. In Lemma 4, by redefining ζ̂ on a set of zero measure on BR, if
necessary, we can make the conclusion to hold everywhere in BR.

Lemma 5. The variational problem (PR) is solvable. Moreover if ζ̂R ∈ ΣR, then

ζ̂R = φR ◦ (Kζ̂R + η) ,

almost everywhere in BR for some increasing function φR .

Proof. By Lemma 2 we have −∆η = h; hence using elliptic regularity theory it
follows that η ∈ W 2,p

loc (R3
+), thus η ∈ C(R3

+), by the Sobolev embedding theorem. Note
that Ψ is the summation of a quadratic and a linear functional; that is, Ψ = Q+ L.
By Lemma 2, Q is weakly sequentially continuous. Also since η is continuous, it
follows that L is also weakly sequentially continuous. This proves that Ψ is weakly
sequentially continuous on Lp(BR). Since F(R)ω is weakly sequentially compact, by
Lemma 3, it follows that Ψ has a maximizer relative to F(R)ω, say ζ̃. Fix ζ ∈ F(R)ω,
by convexity of F(R)ω, see Lemma 3, it follows that for any t ∈ [0, 1], ζ̃ + t(ζ − ζ̃) ∈
F(R)ω. Next using the first variation of Ψ at ζ̃ we get

Ψ(ζ̃ + t(ζ − ζ̃) − Ψ(ζ̃) = t < Ψ′(ζ̃), ζ − ζ̃ > +o(t) ,

as t→ 0+ ; here < , > stands for the pairing between Lp(BR) and its dual, and Ψ′(.)
stands for the derivative. Since ζ̃ is a maximizer we infer

< Ψ′(ζ̃), ζ − ζ̃ >≤ 0 .

Therefore ζ̃ is a maximizer for the linear functional < Ψ′(ζ̃), . >, relative to F(R)ω .
Since Ψ′(ζ̃) can be identified with Kζ̃ + η ∈ Lp′(BR), it follows that ζ̃ is a maximizer
of
∫

BR
ζ(Kζ̃ + η) relative to ζ ∈ F(R)ω . From Lemma 2 we obtain

−∆(Kζ̃ + η) = ζ̃ + h .

Thus the level sets of Kζ̃ + η on supp(ζ̃) are negligible , by [7, Lemma 7.7]. Whence
we can apply Lemma 4 to deduce that ζ̃ ∈ F(R) and

ζ̃ = φ ◦ (Kζ̃ + η) ,

almost everywhere in BR for some increasing function φ; in particular ζ̃ ∈ ΣR . Now
consider ζ̂R ∈ ΣR. Since Ψ is weakly sequentially continuous, it follows that ζ̂R
maximizes Ψ relative to F(R)ω . Next by applying the first variation argument above
we can similarly prove existence of an increasing function φR such that

ζ̂R = φR ◦ (Kζ̂R + η) ,

almost everywhere in BR.

Lemma 6. Let γ =
∫

∂R
3
+
h . Then γ > 4πc rh.

Proof. By the hypotheses on rh and h, that’s (1) and (2), we have

γ =

∫ ∫

x2
1+x2

2≤r2
h

h(x1, x2) dx1dx2 ≥ c

∫ ∫

x2
1+x2

2≤r2
h

ln | x1x2 | dx1dx2
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= c

∫ 2π

0

∫ rh

0

r ln r2 | sin θ cos θ | drdθ

= c

∫ 2π

0

r2h ln rh −
1

2
r2h +

1

2
r2h(− ln 2 + ln | sin 2θ |)dθ

= 2cπr2h(ln rh − 1

2
) − cπr2h ln 2 +

c

2
r2h

∫ 2π

0

ln | sin 2θ | dθ

= 2cπr2h ln
rh√
2e

+
c

2
r2h

∫ 2π

0

ln | sin θ | dθ = 2cπr2h ln
rh√
2e

+
c

2
r2h

(

∫ π
2

0

ln sin θdθ +

∫ π

π
2

ln sin θdθ +

∫ 3π
2

π

ln(− sin θ)dθ +

∫ 2π

3π
2

ln(− sin θ)dθ

)

= 2cπr2h ln
rh√
2e

+
c

2
r2h

(

4

∫ π
2

0

ln sin θdθ

)

= 2cπr2h ln
rh√
2e

+
c

2
r2h(−2π ln 2) = 2cπr2h ln

rh
2
√
e
> 4πc rh.

Lemma 7. Let R > rh and ζ̂R ∈ ΣR, then supp(ζ̂R) ⊆ Brh
, modulo a set of zero

measure.

Proof. Suppose the assertion is false. Then there exist sequences {Rn}, {xn} and

{ζ̂Rn
} := {ζ̂n} such that

(1) Rn → ∞
(2) ζ̂n ∈ ΣRn

(3) xn ∈ den(supp(ζ̂n)) and ‖xn ‖R
3
+
→ ∞, where ‖ . ‖R

3
+

denote the usual Euclidean

norm in R
3
+. Without loss of generality we may assume that ‖xn ‖R

3
+
= Rn and {Rn}

is increasing; moreover we may assume that Rn > rh . Let us set ψn := Kζ̂n + η, and
estimate Kζ̂n(xn) :

Kζ̂n(xn) ≤ 1

2π

∫

R
3
+

1

|xn − y |
ζ̂n(y) dy =

1

2π

∫

Brh

1

|xn − y |
ζ̂n(y) dy+

1

2π

∫

R
3
+−Brh

1

|xn − y |
ζ̂n(y) dy ≤ 1

2π
‖ ζ̂n ‖1,Brh

1

Rn − rh
+ c . (11)

Now we estimate η(xn) :

η(xn) =
1

2π

∫

∂R
3
+

1

|xn − y |
h(y) dσ(y) ≤ γ

2π

1

Rn − rh
. (12)
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From (11) and (12) we obtain

ψn(xn) ≤ c+
1

2π
‖ ζ̂n ‖1,Brh

1

Rn − rh
+

γ

2π

1

Rn − rh
. (13)

Notice that since rh > a , we can find a sequence {yn} in Brh
such that yn 6∈

den(supp(ζ̂n)). Now, we estimate ψn(yn) from below.

Kζ̂n(yn) ≥ 1

4π

∫

R
3
+

1

|yn − y |
ζ̂n(y) dy =

1

4π

∫

Brh

1

|yn − y |
ζ̂n(y) dy+

1

4π

∫

R
3
+−Brh

1

|yn − y |
ζ̂n(y) dy ≥

1

4π
‖ ζ̂n ‖1,Brh

1

2rh
+

1

4π
(‖ζ0 ‖1 − ‖ ζ̂n ‖1,Brh

)
1

Rn + rh
. (14)

Also,

η(yn) =
1

2π

∫

∂R
3
+

1

|yn − y |
h(y) dσ(y) ≥

γ

2π

1

2rh
. (15)

Therefore, from (14) and (15), we have

ψn(yn) ≥ 1

4π
‖ ζ̂n ‖1,Brh

1

2rh
+

1

4π
(‖ζ0 ‖1 − ‖ ζ̂n ‖1,Brh

)
1

Rn + rh
+

γ

2π

1

2rh
. (16)

Therefore, from (13)and (16) we drive

ψn(xn) − ψn(yn) ≤ c+
1

2π
‖ ζ̂n ‖1,Brh

1

Rn − rh
+

γ

2π

1

Rn − rh

− 1

4π
‖ ζ̂n ‖1,Brh

1

2rh
− 1

4π
(‖ζ0 ‖1 − ‖ ζ̂n ‖1,Brh

)
1

Rn + rh
− γ

2π

1

2rh
.

Thus

lim sup
n→∞

(ψn(xn) − ψn(yn)) ≤ c−
γ

4πrh
< 0 . (17)

Where in the last inequality we have used Lemma 6. From (17)we infer existence of
n0 ∈ N for which

ψn0(xn0 ) − ψn0(yn0) < 0 . (18)

However, from Lemma 4, and the Remark following it, there exists φn0 , an increasing
function, such that

ζ̂n0 = φn0 ◦ ψn0 ,

everywhere in BRn0
. Therefore, ψn0 attains its largest values over den(supp(ζ̂n0)), so

(18) is false. Hence we are done.

Remark. From Lemma 7 it readily follows that Σ = Σrh
.
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4. Proof of Theorem. The existence part of the Theorem follows from Lemma
7 and the remark following it. Now consider ζ̂ ∈ Σ. Since ζ̂ ∈ Σrh

, it follows that

ζ̂ = φrh
◦ ψ, (19)

almost everywhere in Brh
, where ψ = Kζ̂ + η , thanks to Lemma 5. Note that to

derive (3) we only need to modify φrh
in order to have a similar functional equation

as (19) to hold throughout R
3
+. Since φrh

is an increasing function, we obtain

supp(ζ̂) = {x ∈ Brh
: ψ ≥ λ} , (20)

modulo a set of zero measure, where λ is a positive constant. On the other hand for
|x |≥ 2rh, we derive the following estimate

ψ(x) ≤ ‖ ζ̂ ‖1 +γ

π | x |
.

Thus, there exists R′ > rh such that

ψ(z) <
λ

2
, (21)

provided z ∈ R
3
+ −BR′ . Finally, since ζ̂ ∈ ΣR′ we can apply Lemma 5 once again to

deduce the existence of another increasing function, say φ′, such that

ζ̂ = φ′ ◦ ψ , (22)

almost everywhere in BR′ . We now define

φ(t) =

{

φ′(t) if t ≥ λ
0 if t < λ

Therefore by applying (20), (21) and (22) we obtain ζ̂ = φ ◦ψ , almost everywhere in
R

3
+, as desired. Now using Lemma 2 and the fact that

−∆η = h ,

almost everywhere in R
3
+, we derive (3). This completes the proof of the Theorem.
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