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ON THE CONVERGENCE OF SPH METHOD FOR SCALAR

CONSERVATION LAWS WITH BOUNDARY CONDITIONS∗

BACHIR BEN MOUSSA†

Abstract. This paper is the third of a series where the convergence analysis of SPH method
for multidimensional conservation laws is analyzed. In this paper, two original numerical models
for the treatment of boundary conditions are elaborated. To take into account nonlinear effects
in agreement with Bardos, LeRoux and Nedelec boundary conditions ([1], [14]), the state at the
boundary is computed by solving appropriate Riemann problems. The first numerical model is
developed around the idea of boundary forces in surrounding walls, recently initiated in [33] by
Monaghan in his simulation of gravity currents. The second one extends the well-known approach
of ghost particles for plane boundaries to the case of general curved boundaries. The convergence
analysis in L

p
loc (p < ∞) is achieved thanks to the uniqueness result of measure-valued solutions

recently established in [3] for L∞ initial and boundary data.
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1. Introduction. In this paper, we continue the analysis of the meshfree method
SPH (Smoothed Particle Hydrodynamics) for scalar nonlinear conservation laws. We
consider the initial boundary value problem which remains a very challenging question
for developing a mathematical framework to derive fitting and efficient numerical
models with their convergence analysis. In ([4], [6]), this analysis is performed for the
Cauchy problem by providing some new features of the SPH scheme in connection
with finite volume methods. The new hybrid formulation turned out to be well-
adapted for constructing conservative and weak consistent SPH schemes. Regarding
the stability of the resulting scheme, we have developed an original approach making
use of a robust class of upwinding schemes based on approximate Riemann solvers,
instead of the well-known technique employing an artificial viscosity (see [19]) to deal
with shocks. On the light of these new features, we elaborate two numerical models
to treat boundary conditions without compromising the high flexibility of SPH, which
is at the origin of its popularity among the so-called gridless methods.

It is worth indicating that SPH has known since the end of the 1970’s (see [29],
[27] for the pioneer works) a great success through some specific domains of physics as
astronomy and astrophysics, where fluids are mostly contained by their self-gravity.
Thereby, boundary conditions are often considered as vanishing at the infinity and
do not interfere in the effective numerical simulation. By contrast, when dealing
with physical problems restricted to a domain as those we encounter in industrial
applications, commercial codes seem to have been mostly developed since the 1950’s
using finite volume or finite element approaches. This systematic use originates from
the fact that these Eulerian-based methods have known an intensive mathematical
study and are clearly understood. As a result, since the 1980’s, these methods are
increasingly facing multiple difficulties hampering the advances of large-scale numer-
ical simulations of sophisticated problems for which they are not clearly suited. For
example those with multiple phases, which require an additional complex internal
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mathematical modeling to represent these phases. Therefore, a large part of the
overall computational effort is expended on technical details connected with mesh
adaptation and grid generation. Moreover, changes in the domain geometry and/or
topology are more difficult, if not impossible, to accommodate with the existing mesh-
ing techniques. All of these problems make it that, since the 1990’s, the engineering
community is looking on methods which do not involve any mesh at all. Rapidly,
SPH, based on its Lagrangian and mesh-free characteristics, has shown a great ability
and a high potential to handle great many industrial applications for which classical
methods clearly struggle. Since then, the question of developing a solid mathematical
background to reinforce the SPH formalism and particularly to formulate appropri-
ate numerical models to treat boundary conditions, became central. Regarding the
treatement of boundary conditions, two approaches have been proposed to model wall
and free boundaries. The first one models wall boundaries by generating along the
boundary a given set of particles in order to interact with the fluid particles through
the so-called boundary forces that prevent the fluid from passing through the bound-
ary. It is first used by Monaghan [33] in his simulation of gravity currents for nearly
incompressible fluid flow. The second approach employs the so-called ghost particles
generated in a neighborhood of the boundary outside of the physical domain. This
technique is well-known for plane boundaries when approximating specular reflection
boundary conditions. From the physical point of view, the two types of particles are
endowed with similar physical properties to those of the particles that represent the
flow and interact with them in a way such that the necessary boundary conditions
are satisfied. For both approaches, we deal here with general curved boundaries, in
particular we give new treatments of polyhedral boundaries as those encountered in
industrial problems. We develop a mathematical framework for deriving these numer-
ical models by taking into account nonlinear effects and by computing the state at the
boundary by solving appropriate Riemann problems. As far as the stability analysis
near the boundary is concerned, we introduce a nice formulation based on the equilib-
rium property for uniform fields. For a qualitative description of these models in the
frame of Euler equations, we refer to Vila’s paper [45], whereas numerical simulations
in continuum mechanics can be found in the forthcoming paper [8]. We also refer to
Randles and Libersky paper [38] and to the recent book by Lui and Lui [30].

Our second contribution in this paper concerns the convergence analysis of the two
numerical approaches modeling boundary conditions. This analysis is derived by using
the uniqueness result of measure-valued solutions established in [3] with Szepessy for
L∞ initial and boundary data. As showed by Diperna in [13] and by Szepessy in [42],
this convergence follows by proving that the approximate solutions are uniformly
bounded in L∞, weakly consistent with all entropy inequalities and consistent with
the initial data. In regard to the weak consistency with all entropy inequalities,
one needs to show in particular the weak consistency with the boundary integral term
associated to Bardos, LeRoux and Nedelec boundary conditions formulated in [1]. For
that purpose, we introduce a new definition of measure valued solutions in bounded
domains equivalent to the one proposed by Szepessy in [41]. The two definitions
differ as far as the formulation of boundary conditions is concerned. Our formulation
requires less information in terms of measure-valued solutions and turns out to be
well-adapted for the convergence of numerical schemes in bounded domains.

To carry out this program, we start in section 2 with a brief review of SPH method
and show how to adapt Raviart’s standard accuracy results in ([39], [32]) to the case
of bounded domains. We end this section by formulating our two numerical models
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of boundary conditions in the framework of a given boundary data. Section 3 will
be concerned with the derivation of the SPH scheme for scalar nonlinear equations
by taking into account nonlinear effects at the boundary. In section 4, we state the
main convergence result (Theorem 4.1) as well as the uniqueness result of measure-
valued solutions (Theorem 4.4). The remainder of the paper can roughly be seen as
an existence proof of measure- valued solution as weak star limit of the approximate
solutions provided by the SPH scheme.

2. SPH method and boundary conditions. Let Ω be a bounded open set in
IRd with a smooth boundary ∂Ω and an outward unit normal vector n. Consider for
u : Ω × IR+ → IR the following model of scalar nonlinear conservation law

Lau+ divF (u, x, t) = S(u, x, t), (x, t) ∈ Ω × IR+, u(x, t) ∈ IR (1)

with the Bardos, LeRoux and Nedelec ([1], [14]) boundary condition on ∂Ω× IR+, for
all k ∈ IR,

(sgn(u(x̄, t) − k) − sgn(b(x̄, t) − k))(F (u(x̄, t), x̄, t) − F (k, x̄, t)) · n(x̄) ≥ 0, (2)

and the initial condition

u(·, 0) = u0, on Ω, (3)

where F = (F1, ..., Fd) : IR → IRd, divxF (u, x, t) =
d∑

i=1

∂Fi(u(x, t), x, t)/∂xi and

IR+ ≡ (0,∞). The transport operator Lau and its adjoint operator −L∗
a
u (needed

when writing the weak form of (1)) via the usual L2 scalar product are defined by

Lau :=
∂u

∂t
+ div(a(x, t)u). L∗

a
u =

∂u

∂t
+

d∑

i=1

ai(x, t)
∂u

∂xi
:=

d

dt
(u).

In our model equation (1), the advection field a is a given smooth vector, say a ∈
L∞(IR+,W 2,∞(Ω)) together with the boundary condition a(x̄, t).n(x̄) = 0 along the
boundary ∂Ω. These assumptions are very important in our convergence analysis
since one avoids in the limit process the difficult problem related to the behavior
of a regularized non smooth physical advection field (see [46]) which may lead to a
nonlocal dispersive equation. Alternatively, the model equation (1) suggests to treat
the physical advection term by including it in the generic nonlinear flux term F (u, x, t)
with arguments based on entropy admissibility criteria to select the physical solution.
These arguments are well-known in the field of nonlinear conservation laws. By this
strategy, we keep track of all the properties inherited from the physical velocity, in
particular those regarding the boundary conditions. Finally, one emphasizes that, in
the practical SPH formalism, the regularization by convolution of the physical velocity
is of current use for Euler equations. The mathematical analysis of the resulting
scheme is however a very open question.

In what follows, we start with a brief review of the SPH formalism.

2.1. Review of SPH. Historically, SPH was introduced at the end of the sev-
enties by Lucy in [15] and Gingold and Monaghan in [20], as an alternative to classical
methods (based on grid technique) to solve compressible Euler equations. The method
still uses computational nodes called particles destined to be sprinkled through the
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domain, but does not require any pre-specified connectivity of these particles, or lo-
cally regular topological structure as it is needed for traditional meshing. Basically,
the approximate solutions of equation (1) are computed for any time t with respect to
a set denoted by K (K ⊂ ZZd) of moving particles provided by a suitable quadrature
formula (xk(t), wk(t))k∈K

1. In this formula, xk(t), which is the position of the particle
k ∈ K and wk(t) which is its effective weight, are solutions to the following systems
of differential equations

(i)

d

dt
xk = a(xk, t)

xk(0) = x0
k

(ii)

d

dt
wk = div(a(xk , t))wk

wk(0) = w0
k.

(4)

The quadrature formula (x0
k, w

0
k)k∈K defines the initial particle distribution through

the domain Ω. The solutions of the system (i) are the classical characteristic curves
of the field a, whereas those of equation (ii) reflect the evolution of the weights (i.e.
the deformation of the particle distribution) in the change of coordinates. Thereby,
the accuracy of the SPH approximation is first connected to the quadrature rule over
Ω

∫

Ω

g(x)dx ≈
∑

k∈K

wkg(xk). (5)

The available regularity of the field a makes it that this approximation is accurate
for any t > 0, as soon as it is accurate initially and the particles and their weights
move according to (4). In most of practical computations, the particles are initially
distributed on a regular grid (for instance cubic grid) and it is quite easy to find
suitable weights such that the error in (5) is of ”infinite order” (see Raviart [39])
when applied to C∞ functions g that vanish sufficiently rapidly at the infinity. In our
setting, the set K of the initial distribution of particles could be performed by using
finite elements triangulation denoted by PΩ and by considering that the particles are
initially distributed on the center of the elements B0

k ∈ PΩ of this triangulation with
their initial weights w0

k = meas(B0
k). If we denote by Bk(t) (or simply Bk by omiting

the time dependance) the image at time t of the cell B0
k by the vector field a such

that meas(Bk) = wk, then the P 1 finite element approximation gives

|Eh(g)| ≤ C(Ω)h with Eh(g) =
∑

k∈K

Ek(g) :=
∑

k∈K

(∫

Bk

g(x)dx − wkg(xk)

)
. (6)

The SPH method takes advantage of the particle distribution to provide by convolu-
tion, a discrete derivative operator denoted by Dε approximating first derivatives as
follows

∇g ≈ Dεg(x) =
∑

k∈K

wkg(xk)∇ζε(x− xk), ζε(x) = 1/εdζ(x/ε), (7)

where the smooth function ζ is nonnegative with compact support and verifies

(i)

∫

IRd

ζ(x)dx = 1 (ii)

∫

IRd

xiζ(x)dx = 0 (i ∈ 1, . . . , d). (8)

1in the sequel of this paper, we omit the time dependence when there is no ambiguity
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For the conservativity of the SPH scheme, it is convenient to work with a symmetrized
version of Dε denoted by Dε,s (s: refers to this symmetry)

Dε,sg(x) := Dεg(x) − g(x).Dε1(x) (9)

and obtained by substituting the following vanishing error term

g(x).Dε1(x) ≈ g(x)∇1 = 0. (10)

Accuracy results due to Raviart and Mas-Gallic are available in case of Ω = IRd in
([39]) and ([32]). To make use of these results, one needs to restrict the validity of the
approximations of (7) and (10) to the subset of x ∈ Ω such that supp(ζǫ(x−xk)∩∂Ω =
∅ for all k ∈ K. Thus, if one considers the subset Ωκ′

= {y ∈ Ω : distance (y, ∂(Ω)) ≥
κ′ > 2ε}, then, for all ϕ ∈ W 2,∞(Ω) and for all T > 0

‖Dεϕ(x) −Dϕ(x)‖∞ ≤ C(T,Ωκ′

)

(
ε|ϕ|1,∞ +

h

ε2
‖ϕ‖2,∞

)
, ∀x ∈ Ωκ′

. (11)

In particular, this last estimate implies

‖Dε1(x)‖∞ ≤ C(T,Ωκ′

)
h

ε2
, ∀x ∈ Ωκ′

. (12)

Therefore, the combination of (11) and (12) yields

∀x ∈ Ωκ′ ‖Dε,sϕ(x) −Dϕ(x)‖∞ ≤ C(T,Ωκ′

)

(
ε|ϕ|1,∞ +

h

ε2
‖ϕ‖2,∞

)
. (13)

Notice that, on account of the compact support of the cut-off ζ and the regularity of
the field a, a straightforward calculation gives the following estimates

(i) card{k ∈ K ; ‖∇ζε(x− xk)‖ 6= 0} ≤ C(
ε

h
)d (ii) C1h

d ≤ wk ≤ C2h
d

(iii) ‖∇ζε(x− xk)‖ ≤ C

εd+1
(iv)

∑

k∈K

wk ‖∇ζε(x− xk)‖ ≤ C

ε
.

(14)

These estimates will be on a systematic use when evaluating errors terms following
on our SPH scheme of equation (1).

Comments. It is apparent from the estimates (11-13) that in the SPH setting, the
convergence of the approximations (7) and (10) is obtained by letting simultaneously
h → 0, ε → 0 and h/ε2 → 0 (which in the sequel will be denoted by ∆(ε, h) → 0).
This clearly shows that the parameter discretization h has to be taken much smaller
than the smoothing lenght ε, precisely h = o(ε2). As a result, the ratio υ = ε/h
becomes much bigger and tends to infinity. To show the central role of this resulting
scaling υ in the SPH formalism, note that by (14) (i), it provides the appropriate
relatively constant number Nsph of the neighboring particles inside the smoothing
lenght ε of each particle so that the local approximation (7) makes sense. Moreover,
the fact that υ tends to infinity can be seen as a necessary condition to make possible
the passage limit from the discrete SPH model to the continuous fluid flow model.
We refer to [26] for some convergence tests in the simulation of fracture analysis. We
should point out that by (14) (i), Nsph also depends on the space dimension d. So, in
practice, the parameters h and ε have to be chosen such that Nsph is around 25 for
d = 2 computations and 50 in d = 3.
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2.2. Particle formulation of boundary conditions. The question of deriving
an appropriate SPH scheme of equation (1) in unbounded domains is treated in [4].
Since the solution develops singularities in finite time, even with smooth initial data,
the weak formulation of (1) is doubtless the right way to derive well-posed SPH
schemes. Herein for ”nice” test functions, this formulation reads

∫

Ω×IR+

(uL∗
a
ϕ+ F (u, x, t).∇ϕ+ S(u, x, t)ϕ)dxdt

−
∫

∂Ω×IR+

F (u, x, t).nϕdσ(x)dt = 0.

This clearly shows the remaining difficulty we have to deal with, which concerns the
derivation of a suitable particle formulation of the boundary integral term by taking
into account nonlinear effects at the boundary. To motivate the investigation of this
question, recall that in the SPH formalism, the fluid flow is represented by fluid
pseudo-particles. These individual particles interact with one another, moving with
the flow and carrying with them all of the computational information about the fluid.
Fluid properties are then interpolated between the particles. In other words, in the
model equation (1) (see the scheme (26)), the term divF is interpreted as an internal
volume force while the right hand side S acts as an external volume force. Following
these features, one needs to find a way to associate to the boundary contribution
an appropriate volume approximation making relevant the interaction with the fluid
particles and such that the necessary boundary conditions are satisfied. To this end,
two approaches will be analysed. The first one is based on the so-called boundary
particles and boundary forces. It was first used by Monaghan [33] in the simulation
of gravity currents. Here, we deal with the derivation of a mathematical framework
to reinforce the existing approach by extending it use to the numerical modeling
of other types of physical phenomena such as solid friction and multiphase flows.
Moreover, nonlinear effects at the boundary of equation (1) will be taken into account
by solving appropriate Riemann problems. The stability of the resulting numerical
model will be performed by using the equilibrium condition for a uniform field. The
second approach is the well-known approach of ghost particles used to model specular
reflection boundary conditions in case of plane boundaries. Herein, as for boundary
forces approach, we deal with the treatment of general curved boundaries and provide
under the same machinery an efficient numerical model to handle different types of
boundary conditions including free boundaries (see [8]).

In what follows, we first focus on describing these two approaches for a given
boundary data, while the question concerning nonlinear effects at the boundary will
be treated in section 3.

2.2.1. Boundary forces. Let β a regular function of the real variable y ∈ [0, 1],
such that

(i), 0 ≤ β(y), (ii), β(y) = 0, fory ≥ 1, (iii),

∫ 1

0

β(y)dy = 1. (15)

Let also introduce in a neighborhood of ∂Ω, the change of coordinates

Ω ∋ x→ (x̄, y) ∈ ∂Ω × (−κ′, 0)

x̄ = x− yn(x̄), for some κ′ > 0. (16)
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To perform the numerical model of boundary forces, one first considers a finite element
type triangulationE∂Ω of the boundary ∂Ω. To this triangulation, we associate a finite
element interpolation RE(g) of any boundary function g(x̄, t)

RE(g)(x̄, t) =
∑

i∈NE

g(x̄i, t)Ψi(x̄), (17)

where the summation is taken over the degrees of freedom NE (respectively located at
x̄i ∈ ∂Ω, i ∈ NE) of the finite element, associated with the basic polynomial functions
Ψi(x̄). These degrees of freedom, located on the boundary, can be considered either
as boundary particles (moving or fixed particles) or as points of a fixed grid.

On the other hand, take ϕ ∈ C1(Ω × IR+), then the change of variables gives

∫

∂Ω

g(x, t)ϕdσ(x) = lim
κ′→0

∫

∂Ω

∫ 1

0

g(x(x̄, 0), t)β(y)ϕ(x(x̄, κ′y), t)J∂Ω(x̄)dx̄dy

= lim
κ′→0

∫

Ω

g(x(x̄, 0), 0), t)βκ′

(y)ϕ(x, t)J∂Ω(x̄)J(x)dx,

where the kernel βκ′

(y) = 1
κ′
β(y/κ′) and J and J∂Ω are the Jacobian associated with

the changes of coordinates. Consequently, for κ′ sufficiently small,
∫

∂Ω

g(x̄, t)ϕdσ(x) ≈
∫

Ω

g(x̄, t)βκ′

(y)ϕ(x, t)J∂Ω(x̄)J(x)dx.

Therefore, an extension of g(x̄, t) to the whole domain Ω is given by

gκ′(x(x̄, y), t) = g(x(x̄, 0), t)J∂Ω(x̄)J(x(x̄, y))βκ′

(y). (18)

Moreover, if one replaces g(x(x̄, 0), t) by its finite element interpolation (17), one may
write

∫

Ω

gκ′(x, t)ϕdx ≈︸︷︷︸
by(17)

∑

j∈NE

g(x̄j , t)

∫

Ω

J∂Ω(x̄)Ψj(x̄)βκ′

(y)J(x)ϕdx

≈︸︷︷︸
by(5)

∑

k∈K,j∈NE

wkϕkJ(xk)J∂Ω(x̄k)g(x̄j , t)Ψj(x̄k)βκ′

(yk).

In term of external forces acting on the particles k ∈ K, this last formula can be inter-
preted by associating to each boundary particle (or grid point) j, a volume boundary
force field fj(x) at the point x defined by

fj(x(x̄, y)) = J(x)J∂Ω(x̄)g(x̄j)Ψj(x̄)βκ′

(y).

The resulting boundary force acting on each fluid particle k ∈ K moving on the
boundary layer (−κ′, 0) × ∂Ω is then given by

f(x) =
∑

j∈NT

fj(x).

Remark 2.1. The finite element approximation (17) is well-fitted when modeling
physical problems as solid friction or when coupling SPH method with Eulerian meth-
ods in such a way that the best aspects of both approaches can be incorporated into a
single model. We refer to [8] for more details.
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2.2.2. Ghost particles. This technique is formulated so that the local conser-
vativity and consistency of the SPH scheme near the boundary are satisfied. These
numerical requirements are achieved by generating outside the domain Ω a set of
particles distribution called ghost particles. The physical properties of these particles
are similar to the ones of fluid particles inside Ω. To formulate this approach,one
needs to construct an appropriate extension Ω̃ ⊂ IRd of the set Ω. In this view, one
considers the local system of coordinates (x̄, y) over ∂Ω×(−κ′, 0). Since the boundary
is assumed to be smooth enough, then there exists a diffeomorphism M which maps
to any point x = x̄− yn(x̄) ∈ ∂Ω × (−κ′, 0) the point

M(x) = x̄+ yn(x̄) ∈ ΩM := ∂Ω × (0, κ′). (19)

Thus, for each particle k ∈ K of position xk ∈ K, sufficiently close to the boundary
∂Ω, one may associate a new particle called ghost particle located at the position
M(xk). To get an appropriate quadrature formula over ΩM , one can take as a weight
of the ghost particle the weight of the particle that it is ghost multiplied by JM (xk)
the Jacobian determinant |det(DM(xk))| at point xk. Thereby, denoting by G the
set of these ghost particles that is

G = card{k ∈ ZZd, xk(t) ∈ ΩM},

one provides a quadrature formula over Ω̃ = Ω ∪ ΩM with its associate quadrature
rule as follows

∫

Ω̃

g(x)dx ≈
∑

k∈K∪G

ω̃k(t)g(xk(t)), (20)

with

ω̃k(t) =

{
ωk(t) if xk ∈ Ω
ωM−1(k)(t)J ◦M−1(xk(t)) if xk ∈ ΩM .

The corresponding discrete derivative operator D̃ε is defined for any g ∈ C1(Ω̃) by

∀x ∈ Ω, D̃εg(x) =
∑

k∈K∪G

ω̃k(t)g(xl)∇ζε(x− xk).

We also define

D̃ε,sg(x) = D̃εg(x) − g(x)D̃ε1(x). (21)

Accuracy results (11-13) can therefore be extended to the whole domain Ω instead of
Ωκ′

.

Remark 2.2. There exists another technique to provide the local conservativity
of SPH method called the semi-analytic approach (see [10]). It is based on the use of
the exact values of the integrals of the shape function and its derivatives outside the
domain Ω instead of generating a new distribution of ghost particles, by computing
the integrals

∫

IRd/Ω

ζε(x− y)dy,

∫

IRd/Ω

∇ζε(x− y)dy.
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For the half-plane or polyhedral boundaries, one may compute these integrals in case
of polynomial shape functions ζ by using formal calculus computer codes such as the
results given by Herand in [18].

Remark 2.3. Note that, in practice, the technique of ghost particles needs the
creation of a ghost particle’s distribution at any time t, so that the number of particles
inside the radius ε is equal to the constant value Nsph for all the particles near the
boundary ∂Ω. However, for the boundary forces’ technique, the boundary particles are
set initially.

3. Weak form of the SPH scheme. In this section, we make use of the results
of the previous section to perform the SPH scheme of equation (1).

3.1. Case of boundary forces. We proceed into three steps. First, we derive
the particle scheme in the interior domain. Secondly, we make use of the upwind
particle scheme developed in ([4]), to fix the problem of the stability of the scheme.
The third step will be devoted to provide the boundary contribution.

Step 1 (The interior domain). Define the adjoint operator D∗
ε,s of Dε,s according

to the L2 discrete scalar product as

(Dε,sϕ,Ψ)h = −
(
ϕ,D∗

ε,sΨ
)
h

(ϕ,Ψ)h :=
∑

i∈K

wiϕi.Ψi. (22)

Consider also the hybrid particle approximation ūh(x, t) introduced in ([4]) in order
to extend finite volume techniques to the particle scheme. It is defined by

ūh(x, t) =
∑

k∈K

ukχBk
(x), (23)

where uk stands for an approximation of the exact solution of problem (1) and χBk
is

the characteristic function of the set Bk. To get the particle scheme of equation (1)
inside Ω, let us take the following weak model (κ = O(κ′))

∫

[0,T ]

[
(ūh,L∗

a(ϕ))h + (F (ūh, x, t), χ
κDε,sϕ)h + (S(ūh, x, t), ϕ)h

]
dt = 0, (24)

where ϕ is a test function and χκ is a suitable regularization of the characteristic
function χ of the domain Ω, for instance

χκ(x(x̄, y)) =





0 0 ≤ y < κ
1/2 + 3(y − 2κ)/(4κ)− (1/4)((y − 2κ)/κ)3 κ ≤ y < 3κ
1 y ≥ 3κ.

(25)

In view of (22) together with an integration by parts with respect to t, one easily
proves that (24) is equivalent to the system of differential equations

∀k ∈ K,
d

dt
(wkuk) + wk(D∗

ε,s)(χ
κF )x=xk

= wkS(uk, xk, t), (26)

where

D∗
ε,s(χ

κF )x=xk
=

∑

l∈K

wn
l (χκ

kF (uk, xk, t)Akl − χκ
l F (ul, xl, t)Alk)
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and the abbreviation Aij = (∇ζε)x=xi
(xi − xj) has been used.

Note that the weak consistency of the resulting numerical scheme (26) is obtained
from (24) by a direct application of the quadrature error (6) and the accuracy result
(13). The global conservativity is however acquired by the use of the derivative
operatorDε,s defined in (9), instead ofDε. Indeed, without the boundary contribution
if we take in the scheme (26), the sum over k ∈ K, then we get

d

dt
(
∑

k∈K

wkuk) +
∑

k∈K

wkD
∗
ε,s(χ

κF )x=xk
=

∑

k∈K

wkS(uk, xk, t). (27)

This is nothing but the discrete equivalent inside Ω of

d

dt

∫

Ω

u(x, t) dx =

∫

Ω

S(u(x, t), x, t) dx, (28)

due to the fact that
∑

k∈K wkD
∗
ε,s(χ

κF )x=xk
= 0. By symmetry, this last point can

be seen by switching the indices k and l in one of the two terms composing it.
Note in passing that the general form of scheme (26) is well-defined for all known

formulations of SPH developed for Euler equations to remedy the problem of particles
distortion. In these formulations, the smoothing length ε is considered as an adaptive
function ε(x) in order to keep the number of particles inside the smoothing radius
ε(xk) for all k ∈ K is equal to a suitable constant valueNsph. For instance, Gather and
Scatter approximations, where respectively in the scheme (26) Aij = (∇ζε(xi))(xi−xj)
and Aij = (∇ζε(xj))(xi −xj) or the symmetric version in which ε = (ε(xi)+ε(xj))/2.
This last formulation is the most popular of them (see [33], [19], [20], [34]).

Step 2 (The upwind particle scheme). As it has already been underlined in ([4],
[6]), the scheme (26) is somehow a generalized finite difference centered scheme, well
known to be unconditionally unstable whenever a time-explicit discretization is used.
To lift this difficulty, we have developed an original approach using nonlinear up-
winding and Riemann approximate solvers well known in the field of finite difference
schemes for nonlinear hyperbolic equations (see for instance [16], [17]). Indeed, the
form of the scheme (26) computing the interaction between any pair of particles (k, l)
along the direction nkl connecting xk with xl, suggests the introduction at the point
xkl = (xk + xl)/2 of the Riemann problem





∂

∂t
(u) +

∂

∂x
(F (u, xkl, t).nkl) = 0, with nkl = Akl/‖Akl‖.

u(x, 0) =

{
uk if x < 0
ul if x > 0.

(29)

Therefore, a suitable approximation of such a problem can be performed by intro-
ducing a 1-dimensional finite difference scheme g in a conservation form associated to
(29). This numerical scheme g is consistent with the nonlinearity F.n(x) and conser-
vative, i.e g(n(x), u, u) = F (u, x, t).n(x) and g(n, u, v) + g(−n, v, u) = 0 respectively.
The corresponding numerical viscosity Q(n(x), u, v) and the incremental coefficient
C(n(x), u, v) are then classically defined by

Q(n(x), u, v) =
F (x, t, u).n(x) − 2g(n(x), u, v) + F (x, t, v).n(x)

v − u
(30)

C(n(x), u, v) =
F (u, x, t).n(x) − g(n(x), u, v)

v − u
.
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Thus, the upwind numerical scheme which consists in finding functions t ∈ IR+ −→
uk(t) ∈ IR, k ∈ K, reads

d

dt
(wkuk) + wk

∑

l∈K

wl

(
χκ

kg(nkl, uk, ul)‖Akl‖ − χκ
l g(nlk, ul, uk)‖Alk‖

)
= wkSk.

As numerical fluxes g for such an upwinding, Lax Friedrich and Godunov schemes are
well-fitted. These schemes are in fact monotone finite difference schemes (see Crandall
and Majda [12] and Kuznetsov and Volosin [25]) which belong to the widest class of
E-schemes (Osher [36]). In the following, we suppose that g is an E-scheme.

Step 3 (The boundary contribution). Let bκ′(x, t) be the extension to Ω of the
boundary data b(x̄, t) according to (18). In our model of boundary forces the boundary
contribution will be computed in the boundary layer [−κ′, 0] × ∂Ω. Thus, for each
particle k ∈ K of position xk moving in [−κ′, 0] × ∂Ω, one considers additionally
to the Riemann problem (29) the following one at xk along the direction ñk (to be
determined a posteriori)





∂

∂t
(v) +

∂

∂x
(F (v, xk, t).ñk) = 0

v(x, 0) =

{
uk if x < 0
bk = bκ′ (xk) if x > 0.

Accordingly, one may use the numerical scheme g to approximate this Riemann prob-
lem. Moreover, for the stability of the scheme, one needs to introduce a function θ(x)
(also to be computed) with supp(θ) ⊂ (−κ′, 0)×∂Ω so that the global upwind scheme
reads

d

dt
(wkuk) + wk

∑

l∈K

wl

(
χκ

kg(nkl, uk, ul)‖Akl‖ − χκ
l g(nlk, ul, uk)‖Alk‖

)

+wkθ(xk)g(ñk, uk, bk) = wkSk.

(31)

Thus, the scheme (31) is well-posed if particularly the equilibrium condition for
a uniform field is satisfied (i.e. with F (u, x, t) = cte and S(u, x, t) = 0). Thus, (31)
reads

d

dt
(wkuk) = 0 =⇒ θkñk = −

∑

l∈K

wl(χ
κ
kAkl − χκ

l Alk) (32)

= −(D∗
ε,sχ

κ)x=xk
≡ −D∗

ε,sχ
κ
k ,

which yields the following suitable choice

ñk = −D∗
ε,sχ

κ
k/‖D∗

ε,sχ
κ
k‖, θk := θ(xk) = ‖D∗

ε,sχ
κ
k‖.

Therefore,

θ(x) =

{ ‖D∗
ε,sχ

κ(x)‖ if x ∈ [−κ′, 0] × ∂Ω

0 elsewhere.

To show the weak consistency with the boundary integral term in the model (31), one
may take for simplicity the case of symmetry shaped function ζ(x) (i.e. Akl = −Alk).
Thus, on the one hand, the accuracy result (11) gives

−(D∗
ε,sχ

κ)(x) −→
∆(h,ε)→0

∇(1 − χκ)(x), in L∞
loc(Ω). (33)
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On the other hand, one replaces the numerical flux g(ñk, uk, bk) by its expression from
(30) and take the contribution coming from the boundary forces, then a straightfor-
ward calculation using (33) and the quadrature rule (6) gives (with the choice κ′ = 3κ)

lim
κ′→0

lim
∆(h,ε)→0

−
( ∑

k∈K

wkϕkF (bκ′(xk, t), xk, t)D
∗
ε,sχ

κ
k

)

= lim
κ′→0

∫

Ω

F (bκ′(x, t), x, t)∇(1 − χκ)(x)ϕ(x)dx =

∫

∂Ω

F (b, x, t).n ϕ dσ(x).

(34)

Note however that, due to the non smoothness of the hybrid particle approxima-
tion ūh, the evaluation of the other terms requires more sophisticated arguments.
These arguments use the concept of measure-valued solutions and the convergence
for measures in the weak topology σ(Mb, Cc) (Mb denotes the set of bounded Radon
measures).

In the sequel, to make the reading easier, we consider that the cut off function
ζ(x) is symmetric, in which case the scheme (31) reads

d

dt
(wkuk) + wk

∑

l∈K

wl(χ
κ
k + χκ

l )g(nkl, uk, ul)‖Akl‖ + wkθ(xk)g(ñk, uk, bk) = wkSk.

Moreover, for the convenience, one may replace the average (χκ
k +χκ

l )/2 by the value
χκ(xkl) at the mean point xkl denoted by χκ

kl to get

d

dt
(wkuk) + wk

∑

l∈K

wlχ
κ
kl2g(nkl, uk, ul)‖Akl‖ + wkθ(xk)g(ñk, uk, bk) = wkSk. (35)

Finally, using the forward Euler scheme in time, we get the following algorithm

(i) u0
k =

1

meas(Bk)

∫

Bk

u(x, 0)dx

(ii) ũn+1
k = un

k − τn2
∑

l∈K

wn
l χ

κ
klg(nkl, u

n
k , u

n
l )‖An

kl‖

−τn(θn
k g(ñk, u

n
k , b

n
k ) − Sn

k )

(iii)
wn+1

k

wn
k

un+1
k = ũn+1

k .

(36)

In the above algorithm, the position and the effective weight of any particle k ∈ K
are computed by integrating in (4) the system (i) and the equation (ii) i.e.

xn
k = xk(tn) wn

k = w(xk(tn)). (37)

In particular, we have the following relation connecting wn+1
k with wn

k

wn+1
k = wn

k exp(

∫ tn+1

tn

div(a(xk(t), t)dt) := wn
kDa

n
k . (38)

Remark 3.1. One emphasizes that our analysis can be done for the general
case of an adaptive smoothing length ε(x) subject to a slight adaptation of Raviart’s
approximation results (11) (see [39], [32]), together with the additional bound C1 ≤
ε(x)/ε0 ≤ C2. For more details on the derivation of these approximation results, we
refer to [26] or [7].
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3.2. Case of ghost particles. Equipped with the quadrature formula over Ω̃
(20) and the diffeomorphism M (19) defined in section 2.2.2, one may extend the flux
F (u, x, t) and the boundary data b(x, t) outside to Ω in ΩM = ∂Ω × (0, κ′) in the
following appropriate way

ΩM ∋ x = x̄+ yn(x̄) −→
{

F (u, x, t) = F (u,M−1(x), t)

b(x, t) = b(x̄, t),
(39)

with M−1(x) = x̄− yn(x̄) ∈ ∂Ω × (−κ′, 0).
Let also denote by D̃∗

ε,s the adjoint operator associated to D̃ε,s provided by (21)

in which the scalar product (22) is taken over Ω̃. For the wellposedness of the model
below, we also take ūh(x, t) = b(x, t) for x ∈ ΩM . So, the particle model of (1) using
the ghost particles’ approach is given by

∫

[0,T ]

[
(ūh,L∗

aϕ)h −
(
D̃∗

ε,sF (ūh, x, t) − S(ūh, x, t), ϕ
)

h

]
dt = 0. (40)

An integration by parts with respect to t shows that this model consists in finding
the sequence t −→ uk for all k ∈ K solution of the system of differential equations

d

dt
(wkuk) + wk

∑

l∈K

wl(F (uk, xk, t) + F (ul, xl, t))Akl (41)

+ wk

∑

l∈G

w̃l(F (uk, xk, t) + F (bl, xl, t))Akl = wkSk. (42)

In this scheme, the term in the right-hand side of (41) represents the SPH formulation
of divF in the interior domain while the term in the left-hand side of (42) provides
the suitable volume formulation associated with the boundary contribution F.n in the
weak sense (see Appendix A for the proof of this last fact in case of smooth solutions).

Using the numerical scheme g introduced in the previous case, then the upwind
particle scheme may be written

d

dt
(wkuk) + wk

∑

l∈K

wl2g(nkl, uk, ul)‖Akl‖ (43)

+ wk

∑

l∈G

w̃l2g(nkl, uk, bl)‖Akl‖ = wkSk. (44)

Hence, using an explicit-time discretization, the numerical particle scheme is then
given by

(i) u0
k =

1

meas(Bk)

∫

Bk

u(x, 0)dx

(ii)′ ũn+1
k = un

k − τn2
∑

l∈K

wn
l g(nkl, u

n
k , u

n
l )‖An

kl‖

−τn
∑

l∈G

w̃n
l 2g(nkl, u

n
k , b

n
l )‖An

kl‖ + τnSn
k

(iii)
wn+1

k

wn
k

un+1
k = ũn+1

k ,

(45)

where the positions and the effective weights (xn
k , w

n
k ) of the fluid particles k ∈ K are

computed by (37) and (38).
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4. Statement of the main results. We are now ready to state the convergence
results of the two approximate solutions given by the schemes (36) and (45). To that
purpose, let us denote by τ+ = maxtn≤T τ

n and τ− = mintn≤T τ
n and by (FS) and

(DFS) the following assumptions

(FS)
F ∈ [C(IR × Ω × IR+)]d, F (u, ., .) ∈ [C1(Ω × IR+)]d

S ∈ C(IR× Ω × IR+),

(DFS) F i(0, ., .), ∂xj
F i(0, ., .), S(0, ., .) ∈ L1(Ω × IR+). for 1 ≤ i, j ≤ d.

Theorem 4.1. Assume that the assumptions (FS) and (DFS) hold and that the
flux F and S are Lipschitz with respect to u uniformly on (x, t). Suppose also that the
initial and boundary data (u0, b) belong to L∞(Ω) × L∞(∂Ω × IR+). Let ūh(x, t) be
approximate solutions of (1), defined by (23) and computed either by the scheme (36)
or by (45). Suppose in addition that κ′ = O(ε) and that the following CFL condition
is satisfied for some constant β, 0 < β < 1

τ+ = (1 − β) Sup
|u|,|v|≤C0

k,l∈K

ε

| C(nkl, u, v) |
, (46)

where the constant C0 = C(T, ‖u0‖∞, ‖b‖∞). Then ūh(x, t) converges in Lp
loc(Ω×IR+)

(for 1 ≤ p < ∞) towards u, the unique weak entropy solution of (1) in Otto’s sense

[37], when ∆(ε, h) → 0,
ε

√
τ−

→ 0 and κ′ → 0.

In this convergence result, the additional assumption ε = o(
√
τ−) is used to get

the suitable control of the global dissipation of the scheme (see [4] for more details in
case Ω = IRd).

The proof of this theorem will be given in the case of boundary forces. The case of
ghost particles can be done in a similar way (see [6] for the detailed proof). For both
cases, the proof is based on the use of the concept of measure valued solutions (based
on Young measures) and their uniqueness for equation (1). To define this concept
of solutions for equation (1), let us consider, by the end of this section (for an easy
presentation), that the transport field a ≡ 0, since it does not play here any special
role, except involving additional terms that can be included in the flux F .

Definition 4.2. A Young measure ν, with its trace γν (see lemma 1.1 in
[41]), is a measure solution to problem (1-3) if for any entropy-entropy flux pair
(η(u), ~(u, x, t)) such that ∂uH

i(u, x, t) = η′(u)∂uF
i(u, x, t) and for all nonnegative

test function ϕ ∈ C1
c (Ω × IR+),

∫

Ω×IR+

{〈νx,t(λ), η(λ)〉∂tϕ+ 〈νx,t(λ), ~(λ, x, t)〉∇xϕ} dxdt

+

∫

Ω×IR+

〈νx,t(λ),
∑

i=1,d

(∂xi(Hi(λ, x, t)) − η′(λ)∂xiF i(λ, x, t))〉ϕdxdt

+

∫

Ω×IR+

〈νx,t(λ), η′(λ)S(λ, x, t)〉ϕdxdt

−
∫

∂Ω×IR+

〈γνs,t(λ), B(λ, b, s, t)〉.n(s)ϕ(s, t)dsdt ≥ 0,

(47)
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and with

lim
t→0+

∫

Ω

〈ν(x,t)(λ), |λ − u0(x)|〉dx = 0. (48)

The boundary entropy flux is defined by

B(λ, b, s, t) = ~(b(s, t), s, t) − η′(b(s, t))(F (b(s, t), s, t) − F (λ, s, t)). (49)

Remark 4.3. Note that the well-known boundary formulation introduced by Bar-
dos, LeRoux and Nedelec in [1] using the Kruskov entropy |.−c| can be recovered from
the above one (49) by taking η′(.) = sgn(.− c) to get

B(λ, b, s, t) = sgn(b − c)(F (λ, s, t) − F (c, s, t)).

However, the inequality (47) is not well-defined with the Kruskov entropy-entropy flux
pair

(
|λ− c|, q(λ, c, x, t) = sgn(λ− c)(F (λ, x, t) − F (c, x, t))

)
. (50)

This comes from the fact that for example the term

〈νx,t(λ), η′(λ)S(λ, x, t)〉 = 〈νx,t(λ), sgn(λ− c)S(λ, x, t)〉

is not well-defined for discontinuous functions. To remedy this problem, we consider
a regularized entropy-entropy flux pair (ηδ(λ − c), Hδ(λ, c, x, t) of (50) provided by
regularizing the sgn function

sgnδ(x) =





1 if x ≥ δ
x
δ if − δ < x < δ
−1 if x ≤ −δ

(ηδ)
′

(λ− c) = sgnδ(λ − c),

then

Hδ(λ, c, x, t) =

∫ λ

c

η
′

δ(v)∂vF (v, x, t)dv = qδ(λ, c, x, t) + qδ
r(λ, c, x, t),

with

qδ(λ, c, x, t) = sgnδ(λ − c)(F (λ, x, t) − F (c, x, t))

qδ
r(λ, c, x, t) =

∫ λ

c

(
sgnδ(v − c) − sgnδ(λ− c)

)
∂vF (v, x, t)dv.

Moreover, a direct computation proves that

|qδ
r(λ, c, x, t)| ≤ Cδ. (51)

Thus

(ηδ(λ− c), Hδ(λ, c, x, t) −→ (|λ− c|, q(λ, c, x, t)) a.e in Ω × IR+.



44 B. BEN MOUSSA

Theorem 4.4. Assume that (u0, b) belongs to L∞(Ω) × L∞(∂Ω × IR+), that the
assumption (FS) holds and that ν and σ are Young measure solutions to (1-3), in the
sense of definition (4.2), then, the inequality

∂t

∫

Ω

〈νx,t(λ) ⊗ σx,t(µ), |λ− µ|〉dx

≤ −
∫

Ω

〈νx,t(λ) ⊗ σx,t(µ), sgn(λ − µ)(S(λ, x, t) − S(µ, x, t))〉dx

holds in the distribution sense on IR+. If, in addition, ν and σ satisfy the same initial
condition (48) and S is Lipschitz with respect to u ∈ IR uniformly on (x, t), then there
exists a unique solution u ∈ L∞(Ω × IR+) such that

νy = σy = δu(y), for a.e. y ∈ Ω × IR+

and u is the unique weak entropy solution to (1-3) in the sense of Otto [37].

Recall that the measure tensor product νy ⊗ σy is defined for all g ∈ C(IR2) by

〈νy ⊗ σy , g(λ, µ)〉 ≡
∫

IR

∫

IR

g(λ, µ)dνy(λ)dσy(µ).

This uniqueness result is established in [3] in case where F (u, x, t) = f(u) and
S(u, x, t) = 0. The proof of the present general result is a slight adaptation of the one
of the previous case combined with Gronwall lemma. The main difficulty lies in the
treatment of boundary conditions, which is completely fulfilled in [3].

We next give an equivalent definition to (4.2) which is well-fitted for the analysis
of the scheme (36) since it requires less information than (4.2) for the weak formulation
of boundary conditions. The proof of this equivalence is postponed to the end of the
paper (Appendix B).

Definition 4.5. A Young measure ν is a measure solution to problem (1-3) if
and only if

(In the interior domain) For any entropy-entropy flux pair (η(u), ~(u, x, t)) and
∀ϕ ∈ C1

c (Ω × IR+)

Mη(νx,t, ϕ) ≥ 0, (52)

with

Mη(νx,t, ϕ) :=

∫

Ω×IR+

{〈νx,t(λ), η(λ)〉∂tϕ+ 〈νx,t(λ), ~(λ, x, t)〉∇xϕdxdt+

+

∫

Ω×IR+

〈νx,t(λ),
∑

i=1,d

(
∂xiHi(λ, x, t) − η′(λ)∂xiF i(λ, x, t)

)
〉ϕdxdt

+

∫

Ω×IR+

〈νx,t(λ), S(λ, x, t)〉ϕdxdt +

∫

Ω

〈νx,t(λ), η(λ)〉ϕ(x, 0)dx.

(The weak formulation of boundary conditions) There exists a Radon measure
ϑs,t ∈ Mb(∂Ω × IR+) such that ∀ϕ ≥ 0 ∈ C1

c (Ω̄ × IR+), ∀ c ∈ IR

lim
δ→0

Mηδ

(νx,t, ϕ) −
∫

∂Ω×IR+

sgn(b − c)ϕ(s, t) dϑs,t

+

∫

∂Ω×IR+

F (c, x, t).nsgn(b− c)ϕdσ(x)dt ≥ 0.

(53)



SPH METHOD AND BOUNDARY CONDITIONS 45

One emphasizes that the crucial point making this formulation equivalent to
Szepessy’s one (47), is the existence of the term sgn(b− c) in the weak formulation of
both boundary terms (see Appendix B for the proof).

The remainder of the paper can be seen as an existence proof of a measure valued
solution of equation (1) in the sense of definition (4.5). This existence follows by
proving that ūh, provided either by the scheme (36) or (45), are uniformly bounded
in L∞ (section 6), weakly consistent with all entropy inequalities in the sense of
definition (4.5), and finally consistent with the initial data (section 7). To this end,
one needs to derive in the next section some preliminary properties of the particle
scheme.

5. Basic properties of the upwind SPH scheme and entropy production.

In connection with finite volume schemes ([2], [11], [22]), we have obtained in [4] a new
interpretation of the hybrid particle scheme (36) in terms of one-dimensional finite
difference schemes, as a sum of convex decomposition up to some additional terms
(see (64) below). This interpretation allows us to get a suitable discrete maximum
principle result yielding the derivation of the L∞ stability of ūh.

For sake of clarity, when there is no ambiguity, we will use the notations for any
function G(u, x, t)

Gn
k,kl = G(un

k , xkl, t
n), Gn

k,l = G(un
k , xl, t

n), Gūh
= G(ūh, x, t).

5.1. Properties of the upwind particle scheme. Define the positive constant
λn

k by

λn
k =

τn

∆xn
k

, ∆xn
k =

1

θn
k +

∑

l∈K

Γn
kl

,

{
Γn

kl = 2wn
l χ

κ
kl‖Akl‖

θn
k = ‖(D∗

ε,sχ
κ)n

k‖.
(54)

Let also recall the numerical three point scheme which is purely one-dimensional,
introduced in [4], defining the interaction between any pair (k, l) of particles

un+1,l
k = un

k − λn
k (g(nkl, u

n
k , u

n
l ) − Fn

k,kl.nkl) ≡W (λn
k , u

n
k , u

n
l ). (55)

Define in a similar way the interaction with boundary forces by

un+1,f
k = un

k − λn
k (g(ñk, u

n
k , b

n
k) − Fn

k,k.ñk). (56)

So, to get the appropriate convex form of the scheme, one needs to find some positive

constants αl,n
k , αk,n

k with
∑

l∈K

αl,n
k + αf,n

k = 1 such that the scheme (ii) in (36) could

be written as

ũn+1
k =

∑

l∈K

αl,n
k un+1,l

k + αf,n
k un+1,f

k + τn
(
Sn

k − Gn
k − Bn

k

)
. (57)

Indeed, as in [4], a straightforward computation using the following choice

αf,n
k =

θn
k

θn
k +

∑

l∈K

Γn
kl

, αl,n
k =

Γn
kl

θn
k +

∑

l∈K

Γn
kl

,
(58)
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proves that (36) and (57) are equivalent if and only if

Bn
k = Fn

k,k

∑

l∈K

wn
l 2χκ

klAn
kl

= Fn
k,k(D∗

ε,sχ
κ)n

k + Fn
k,k

∑

l∈K

wn
l (2χκ

kl − χκ
k − χκ

l )An
kl

:= Fn
k,k(D∗

ε,sχ
κ)n

k + Fn
k,kR(χκ)n

k

(59)

Gn
k =

∑

l∈K

wn
l 2χκ

klF
n
k,klAn

kl

= (∂∗ε,sχ
κFūh

)n
k +

∑

l∈K

wn
l

(
2χκ

klF
n
k,kl − χκ

kF
n
k,k − χκ

l F
n
k,l

)
An

kl

:= (∂∗ε,sχ
κFūh

)n
k + R(χκFūh

)n
k .

The discrete partial derivative term ∂∗ε,s(χ
κFūh

)n
k in the last equality denotes the

adjoint operator associated with ∂ε,s(χ
κFūh

)n
k according to (22). The latter one is

nothing but the SPH approximation of the partial derivative


 ∑

i=1,d

∂xi [χκ(x)F (ūh, x, t
n)]




x=xn
k

,

while the generic remainder R(.)n
k is defined for any smooth function g by

R(g)n
k =

∑

l∈K

wn
l (2g(xn

kl) − g(xn
k ) − g(xn

l ))An
kl. (60)

To get the final form of the decomposition (57), we claim that

Bn
k + Gn

k = χκ
k∂

∗
ε,s(Fūh

)n
k + N (χκF )n

k with lim
∆(ε,h)→0

N (χκF )n
k = 0.

Indeed, on the one hand, a direct computation gives for any smooth functions f and
g that

D∗
ε,s(fg) = fD∗

ε,sg + gD∗
ε,sf + Ξ(f, g), (61)

with

Ξ(f, g)(x) =
∑

l∈K

wl(g(x) − g(xl)(f(x) − f(xl))∇ζε(x − xl) − 2g(x)f(x)Dε1(x).

Thus, the estimate (12) and the bounds (14) imply that

|Ξ(f, g)(x)| ≤ C(ε+ h/ε2).

On the other hand, successive applications of Taylor expansion in [xk, xkl] and [xl, xkl]
combined with the bounds (14) yield the following bounds

‖R(χκ)n
k‖ ≤ Cε ‖R(χκFūh

)n
k‖ ≤ Cε. (62)
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Consequently, the combination of (61) applied to χκ and Fūh
and (62) ends the proof

of the claim with

N (χκF )n
k = R(χκF )n

k + Fn
k,k.R(χκ)n

k + Ξ(χκ, Fūh
). (63)

Hence, the identity (57) reads

ũn+1
k =

∑

l∈K

αl,n
k un+1,l

k + αf,n
k un+1,f

k + τn
(
Sn

k − χκ
k∂

∗
ε,s(Fūh

)n
k + N (χκF )n

k

)
. (64)

To make appear the CFL condition (46), one first needs to rewrite the schemes
(55) and (56) in terms of the incremental coefficient C(nkl, u

n
k , u

n
l ) defined in (30).

Secondly, on account of (14), one may show that there exist some constants C, C−

and C+, depending only on the velocity field a and the kernel ζ such that

(i) 0 ≤ θn
k ≤ C/ε, (ii) C−

τ−
ε

≤ λn
k ≤ C+

τ+
ε
. (65)

5.2. Entropy production. In practice, we require that, for any convex entropy
function η, there exists a numerical entropy flux ~(n, u, v) satisfying similar require-
ments as the flux g i.e.

(i) ~(n(x), u, u) = H(u, x, t).n(x) (ii) ~(n, u, v) = −~(−n, v, u),

where H is an entropy flux associated with (F, η), such that ∂uH
i = η′(u)∂uF

i.
Moreover, such an entropy-entropy flux pair (η,H) verifies a certain entropy inequal-
ity. Since we have an E-scheme, the incremental coefficient C(n, u, v) is positive.
Therefore, by using the three point scheme (55), it follows from Proposition 3.3 in
[2] (the (x, t) dependence is omitted below) that for the entropy-entropy flux pair
(η = u2, H),

η(W (λ, u, v)) − η(u) + λ[~(n, u, v) −H(u)n] ≤ −β
2
| u− v |2 (C(n, u, v))2λ2, (66)

provided the CFL condition λQ ≤ 1 − β is satisfied. Note however that (66) is valid
for any entropy-entropy flux pair if we take β = 0, in which case, we have

~(n, u, v) −H(u).n ≤ η′(u)(g(n, u, v) − F (u).n). (67)

Moreover, in view of treating the boundary contribution, a straightforward calcula-
tions proves that for η = ηc = |u− c| the inequality (67) is equivalent to

sgn(v − c)(g(u, v) − F (c)) ≤ ~c(u, v) ≤ sgn(u− c)(g(u, v) − F (c)). (68)

Let us now turn to the derivation of the entropy dissipation corresponding to our
hybrid particle scheme.

In the interior domain: The inequality (66) reads

η(un+1,l
k ) − η(un

k ) + λn
k (~(nkl, u

n
k , u

n
l ) −Hn

k,kl.nkl)

≤ −β
2
| uk − ul |2 (C(nkl, u

n
k , u

n
l ))2(λn

k )2.
(69)
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By adding and substituting appropriate terms, this last inequality reads

η(un+1,l
k ) − η(un

k ) +
λn

k

2
(Hn

k,k +Hn
l,l)nkl − λn

kH
n
k,kl.nkl

≤ −λ
n
k

2
(2~(nkl, u

n
k , u

n
l ) − (Hn

k,kl +Hn
l,lk)nkl)

−λ
n
k

2
(Hn

k,kl +Hn
l,lk −Hn

k,k −Hn
l,l).nkl −

β

2
| uk − ul |2 (C(nkl, u

n
k , u

n
l ))2(λn

k )2.

Multiplying this last inequality by αl,n
k , summing it over (l ∈ K) and using (54) and

(58), we then get

∑

l∈K

αl,n
k (η(un+1,l

k ) − η(un
k )) + τnD∗

ε,s(χ
κHūh

)n
k

−τn∂∗ε,s(χ
κHūh

)n
k ≤ R(χκH)n

k −
∑

i=1,3

(µi
h,ε)

n
k

−
∑

l∈K

τnwn
l λ

n
k | un

k − un
l |2 (C(nkl, u

n
k , u

n
l ))2‖Akl‖,

(70)

where the remainder R(χκH)n
k is defined according to (60) and the above measure

terms are given by

(µ1
h,ε)

n
k = τn

∑

l∈K

wn
l χ

κ
kl[2~(nkl, u

n
k , u

n
l ) − (Hn

k,kl −Hn
l,lk).nkl]‖Akl‖,

(µ2
h,ε)

n
k = τn

∑

l∈K

wn
l χ

κ
kl[(H

n
k,kl +Hn

l,lk) − (Hn
k,k +Hn

l,l))]Akl,

(µ3
h,ε)

n
k = τn

∑

l∈K

wn
l

(
(χκ

kl − χκ
k)Hn

k,k + (χκ
kl − χκ

l )Hn
l,l

)
Akl.

The boundary contribution: In a similar way, by using the three point scheme (56)
and the entropy inequality (66), one gets

αf,n
k [η(un+1,f

k ) − η(un
k )] + τnθn

k ~(ñk, u
n
k , b

n
l ) − τnHn

k,k.D
∗
ε,s(χ

κ)n
k

≤ τnHn
k,k.R(χκ)n

k − β

2
τnθn

k | uk − bl |2 (C(ñk, uk, bk))2(λn
k ).

(71)

The resulting interaction: Combining the two inequalities (70) and (71), and using
the identity (61), it yields

∑

l∈K

αl,n
k (η(un+1,l

k ) + αf,n
k (η(un+1,f

k ) − η(un
k )

+D∗
ε,s(χ

κHūh
)n
k − τnχκ

k(∂∗ε,sHūh
)n
k + τnθn

k ~(ñk, u
n
k , b

n
k )

≤ τnN (χκ, H)n
k −

∑

i=1,3

(µi
h,ε)

n
k − β∆n

k (u),

(72)

where the remainder N (χκ, H)n
k is defined according to (63) and

∆n
k (u) = 2

∑

l∈K

τnwn
l λ

n
k | un

k − un
l |2 (C(nkl, u

n
k , u

n
l ))2‖Akl‖

+2τnθn
kλ

n
k | un

k − bnk |2 (C(ñk, uk, bk))2.

(73)
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So, by using successively the convexity inequaliy of η, the new form (64), the inequality

η(u + v) ≤ η(u) + vη
′

(u + v) together with Jensen’s inequality, we then obtain the
final form of the entropy inequality

η(ũn+1
k ) − η(un

k ) +D∗
ε,s(χ

κHūh
)n
k + τnθn

k ~(ñk, u
n
k , b

n
k )

−τn (χκ
k(∂ε,sHūh

)n
k − η′(un

k ) (Sn
k − χκ

k∂ε,s(Fūh
)n
k ))

≤ −
∑

i=1,5

(µi
h,ε)

n
k − β∆n

k (u),

(74)

where the additional measure terms are defined by

(µ4
h,ε)

n
k = τn(η′(ũn+1

k ) − η′(un
k ))

(
Sn

k − χκ
kD

x
ε,s(Fūh

)n
k

)

(µ5
h,ε)

n
k = τn

(
N (χκ, H)n

k − η′(ũn+1
k )N (χκ, F )n

k

)
.

6. L∞ Stability and weak BV estimate. Let us denote by the sequence vn+1
k

the convex part in the scheme (64) i.e.

vn+1
k =

∑

l∈K

αl,n
k un+1,l

k + αf,n
k un+1,f

k .

Proposition 6.1. Assume that (u0, b) ∈ L∞(Ω)×L∞(∂Ω× IR+) and ūh(x, t) is
computed by the scheme (36-38) with E-fluxes, then for any T > 0, provided the time
step τn satisfies the CFL condition (46), we successively have

(i) min
i∈K

j∈Ne

(un
i , b

n
j ) ≤ vn+1

k ≤ max
i∈K

j∈Ne

(un
i , b

n
j )

(ii) ‖ūh(., t)‖∞ ≤ K∞ := C(T, ‖u0‖∞, ‖b‖∞)

(iii)
∑

k∈K

n; tn≤T

wn
k ∆n

k (u) ≤ Cβ ≡ 1

β
×

(
‖u0‖2

L2 + C(T, ‖u0‖∞, ‖b‖∞)
)
,

(75)

where the local dissipation term ∆n
k (u) is given by (73).

Proof of proposition 6.1.
. L∞ stability: Rewriting the schemes (55) and (56) by means of the in-

cremental coefficient C given by (30), then the CFL condition (46) implies that

un+1,l
k ∈ I(un

k , u
n
l ) and un+1,f

k ∈ I(un
k , b

n
l ) with

I(f, g) := {w;w = θf + (1 − θ)g, θ ∈ [0, 1]}.
Therefore, the inequality (i) follows directly. To prove the L∞ stability, consider the
increasing function v −→ G(v, T ) defined by

G(v, T ) = max
|u|≤v

x∈Ω,t≤T

(‖∂xF (u, x, t)‖ + ‖F (u, x, t)‖ + ‖S(u, x, t)‖) ,

and start with the new form of the scheme (64). Thus, using successively the estimates
(13) and (63), we find that

|un+1
k | ≤ wn

k

wn+1
k

×
(
‖un‖∞ + ‖b‖∞ + τnG(‖un‖∞, T )C(1 + ε+

h

ε2
)

)
.
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Take Ca = ‖diva‖∞ exp(‖diva‖∞T ) then, the identity (38) yields wn
k/w

n+1
k ≤ (1 +

Caτ
n) and consequently,

|un+1
k | ≤ (1 + Caτ

n) ×
(
‖un‖∞ + ‖b‖∞ + τnG(‖un‖∞, T )C(1 + ε+

h

ε2
)

)
. (76)

Next, as in [4], define the sequence vn by




v0 = ‖u0‖∞,
vn+1 + ‖b‖∞ = (1 + Caτ

n)

(
vn + ‖b‖∞ + τnG(vn, T )C(1 + ε+

h

ε2
)

)
.

By construction, ‖un‖∞ ≤ vn and from the inequality (76) we infer that

vn+1 − vn

τn
≤ C(Ca, T )(vn + ‖b‖∞) + C(1 + ε+

h

ε2
)G(vn, T )

≡ φ(vn).

Let Φ(v) :=

∫ v

v0

1

φ(x)
dx ; Φ is a smooth and increasing function, its converse function

also. We easily get that : Φ(vn+1) ≤ (tn+1−t0)+Φ(v0) and the following L∞ estimate
holds

‖un‖∞ ≤ Φ−1
(
(tn − t0) + Φ(v0)

)
.

Weak BV estimate (iii): Take the inequality (74) with β 6= 0 and η(u) = u2/2, then
the multiplication by wn

k and the summation over k ∈ K yield
∑

k∈K

wn
k

[
η(ũn+1

k ) − η(un
k ) +D∗

ε,s(χ
κHūh

)n
k + τnθn

k ~(ñk, u
n
k , b

n
k )

]

−τn
∑

k∈K

wn
k (χκ

k(∂ε,sHūh
)n
k − η′(un

k ) (Sn
k − χκ

k∂ε,s(Fūh
)n
k ))

≤ −
∑

i=1,5

∑

k∈K

wn
k (µi

h)n
k − β

∑

k∈K

wn
k ∆n

k (u).

(77)

Notice that, switching the indices k and l and using that Akl = −Alk together with
the identity ~(nkl, u

n
k , u

n
l ) = −~(nlk, u

n
l , u

n
k ), one deduces

∑

k∈K

wn
kD

∗
ε,s(χ

κHūh
)n
k = 0 =

3∑

i=1

|
∑

k∈K

wn
k (νi

h)n
k | .

Moreover, adding and substituting the term
∑

k∈K wn+1
k η(un+1

k ) and summing up the
inequality (77) over tn ≤ T = tN , we find that

∑

k∈K

(wN
k |uN

k |2 − w0
k|u0

k|2) + β
∑

k∈K

n; tn≤T

wn
k ∆n

k (u) +
∑

i=4,5

∑

k∈K

wn
k (µi

h)n
k

≤
∑

k∈K

n; tn≤T

τnwn
k

(
χκ

k(∂∗ε,sHūh
)n
k − un

k

(
Sn

k − χk
κ∂

∗
ε,s(Fūh

)n
k

))

+
∑

k∈K

n; tn≤T

τnwn
k θ

n
k ~(ñk, u

n
k , b

n
k) +

∑

k∈K

n; tn≤T

(wn+1
k |un+1

k |2 − wn
k |ũn+1

k |2)

≡ R2 +R3 +R4.

(78)
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Thus, straightforward computations using successively the identities (36) (iii)
and (38), the Lipschitz continuity of the numerical flux ~(n, u, v), the fact that
supp(θ(x)) ⊂ ∂Ω × [0, κ′] together with the estimates (11-13) and (65) (ii) imply
the following estimates

|R2| + |R3| ≤ C(T, ε, h/ε2, κ′/ε, ‖u0‖∞, ‖b‖∞), |R4| ≤ C(T,
κ′

ε
, ‖ūh‖L2). (79)

On the other hand, since η(u) = u2/2, we have

η′(ũn+1
k ) − η′(un

k ) = ũn+1
k − un

k ,

therefore, in view of (36) (ii), the combination of the bounds (14) and (62) with the
CFL condition (46) gives

∑

i=4,5

|
∑

k∈K

wn
k (µi

h)n
k |≤ C(T, ε, ‖u0‖∞, ‖b‖∞). (80)

By taking the results (79) and (80) into account, the inequality (78) yields the weak
estimate (75) (iii).

7. Proof of Theorem 4.1. The proof of this theorem will be split into three
steps. In the first step, we derive the global weak entropy formulation of the scheme
(36), while the last two steps are devoted to the existence proof of a measure-valued
solution in the sense of the definition (4.5).

First step: Weak entropy form of the scheme. In connection with the discrete
scalar product used in (22), we are going to use the following notation whenever a
time integration is added

(g, f)h,T =
∑

{n, tn
≤T}

k∈K

wn
k g

n
k f

n
k =

∫

QT

g(x, t)f(x, t)dxdt + Eh,T (gf), (81)

where QT = Ω × [0, T ] and Eh,T (gf) denotes the resulting quadrature error. Thus,
we have

Proposition 7.1. For all nonnegative test function ϕ ∈ C1
c (Ω̄ × IR+), the ap-

proximate solutions ūh defined by (23) and computed by the scheme (36)-(38) satisfy

Mη(δūh(x,t), χ
κ, ϕ) − Γ(ϕ)κ′

h,T ≥
∑

i=1,7

< µi
h,ε, ϕ >QT

+
∑

m=1,4

Rh,ε
m

≡ < µh,ε, ϕ >QT
, (82)

where

Mη(δūh(x,t),a, χ
κ, ϕ) :=

∫

Ω×IR+

[η(ūh)L∗
a
(ϕ) + χκ~(ūh, x, t).Dε,sϕ] dxdt

+

∫

Ω×IR+

[(
η(ūh) − η

′

(ūh)ūh

)
div(a(x, t)

]
ϕdxdt

+

∫

Ω×IR+

χκ
(
∂∗ε,sHūh

− η
′

(ūh)∂∗ε,sFūh

)
ϕdxdt

+

∫

Ω×IR+

η
′

(ūh)Sūh
ϕdxdt+

∫

Ω

η(ūh(x, 0))ϕ(x, 0)dx,

Γ(ϕ)κ′

h,T =
∑

{n, tn
≤T}

k∈K

τnwn
k θ

n
k ~(ñk, u

n
k , b

n
k )ϕn

k ,
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while the right hand side < µh,ε, ϕ >QT
will be made precise below.

Proof of proposition 7.1. As in [4], start with the inequality (74) for all convex
entropy η (i.e. β = 0), multiply it by ϕn

kw
n
k and take the double sum over {n, tn ≤ T }

and k ∈ K, on the one hand. On the other hand, making an integration by parts and
using that Akl = −Alk together with the notation (81), one gets

−
∑

{n, tn
≤T}

k∈K

ϕn
kw

n
k

(
η(ũn+1

k ) − η(un
k )

)
+

(
~(ūh, x, t), χ

κDε,sϕ
)

h,T
(83)

+
(
ϕ, χκ(∂∗ε,s(Hūh

)n
k − η′(ūh)(χκ

k∂
∗
ε,s(Fūh

)n
k − Sūh

)
)

h,T

− Γ(ϕ)κ′

h,T ≤
5∑

i=1

< µi
h,ε, ϕ >QT

,

where the right hand side is given by

< µ1
h,ε, ϕ >QT

= −
∑

{n, tn
≤T}

(k,l)∈K2

τnwn
kw

n
l χ

κ
kl(ϕ

n
k − ϕn

l )[~(nkl, u
n
k , u

n
l ) −Hn

kl.nkl]‖Akl‖

< µ2
h,ε, ϕ >QT

= −
∑

{n, tn
≤T}

(k,l)∈K2

τnwn
kw

n
l χ

κ
kl

(
ϕn

k − ϕn
l

)
(Hn

l −Hn
l,lk).Akl

< µ3
h,ε, ϕ >QT

=
∑

{n, tn
≤T}

(k,l)∈K2

τnwn
k τ

nwn
kw

n
l (ϕn

k − ϕn
l )(χκ

kl − χκ
k)Hn

k .Akl

< µ4
h,ε, ϕ >QT

= −
∑

{n, tn
≤T}

k∈K

τnwn
kϕ

n
k (η′(ũn+1

k ) − η′(un
k ))

[
−χκ

k∂
∗
ε,s(Fūh

)n
k + Sn

k

]

< µ5
h,ε, ϕ >QT

= −
∑

{n, tn
≤T}

k∈K

τnwn
kϕ

n
k

(
N (χκ, H)n

k − η′(ũn+1
k )N (χκ, F )n

k

)
.

Let us now denote by D the first term in the left hand side of (83) ; then, one
establishes with similar arguments as before (see [4] for the detailed proof) that

D ≥
(
η(ūh),L∗

a
ϕ
)

h,T
+

(
η(ūh), ϕ

)
h

+
((

η(ūh) − η
′

(ūh)ūh

)
diva, ϕ

)
h,T

+ < µ6
h,ε + µ7

h,ε, ϕ >QT
,

(84)

where the above measure terms are defined as follows

< µ6
h,ε, ϕ >QT

= −
∑

n, tn
≤T

k∈K

[
ωn+1

k η(un+1
k ) − ωn

k η(u
n
k )

]
(ϕn+1

k − ϕn
k )

< µ7
h,ε, ϕ >QT

=

=
∑

n, tn
≤T

k∈K

ϕn
k

[
(η

′

(un+1
k )ũn+1

k − η(ũn+1
k )) − (η

′

(un
k )un

k − η(un
k ))

] (
ωn+1

k − ωn
k

)
.
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Thus, the combination of the inequalities (84) and (83) yields

(
η(ūh),L∗

a
ϕ
)

h,T
+

(
η(ūh) − η

′

(ūh)ūhdiva, ϕ
)

h,T

+
(
Hūh

, χκDε,sϕ
)

h,T
+

(
ϕ, χκ∂∗ε,s(Hūh

) − η′(ūh)(χκ∂∗ε,s(Fūh
) − Sūh

)
)

h,T

−(µ0
h,ε, ϕ)κ′

h,T +
(
η(ūh), ϕ

)
h
≤

7∑

i=1

< µi
h,ε, ϕ >QT

.

(85)

Finally, the desired inequality (82) follows by using the decomposition in (81) and

denoting by Rh,ε
i for i ∈ {1, ..4} the corresponding quadrature error terms on QT and

on Ω for the initial data

Rh,ε
1 = Eh,T

(
η(ūh)L∗

a
ϕ+ (η(ūh) − η

′

(ūh)ūh)ϕdiva
)
, Rh,ε

2 = Eh,T
(
Hūh

χκDε,sϕ
)

Rh,ε
3 = Eh,T

(
ϕ(χκ∂∗ε,sHūh

− η′(ūh)(χκ∂∗ε,sFūh
− Sūh

))
)
, Rh,ε

4 = Eh
(
η(ūh)ϕ

)
.

Second step: Derivation of (47). On account of the L∞ stability result of ūh

(75) (ii) and following [43] and [13], one can extract a subsequence {ūhj
} with an

associated Young measure-valued mapping ν(·) : Ω × IR+ → Prob([−K∞,K∞]) (see
(75) (ii) for the value of the constant K∞), such that

lim
∆(h,ε)−→0

κ′−→0

Mη(δūh(x,t),a, χ
κ, ϕ) = Mη(νx,t,a, ϕ), (86)

where Mη(νx,t,a, ϕ) is given by

Mη(νx,t,a, ϕ) :=

∫

Ω×IR+

{〈νx,t(λ), η(λ)〉L∗
a
(ϕ) + 〈νx,t(λ), ~(λ, x, t)〉∇xϕdxdt

+

∫

Ω×IR+

〈νx,t(λ),
(
η(λ) − η

′

(λ)λ
)
〉div(a(x, t))ϕdxdt

+

∫

Ω×IR+

〈νx,t(λ),
∑

i=1,d

(
∂xiHi(λ, x, t) − η′(λ)∂xiF i(λ, x, t)

)
〉ϕdxdt

+

∫

Ω×IR+

〈νx,t(λ), S(λ, x, t)〉ϕdxdt +

∫

Ω

〈νx,t(λ), η(λ)〉ϕ(x, 0)dx.

Moreover, the combination of the bounds (14), the approximation results (6) and
(13) together with the available regularity of χκ, ϕ and the flux H with respect to
the space variable, implies

lim
∆(h,ε)−→0

∑

i=2,7

| < µi
h,ε, ϕ >QT

| = lim
∆(h,ε)−→0

∑

m=1,4

|Rh,ε
m | = 0. (87)

We recall that the main difficulty encountered in [4] lies in the evaluation of the
dissipative term < µ1

h,ε, ϕ >. We have then proved that

lim inf
∆(ε,h)→0

ε√
τ−

→0

< µ1
h,ε, ϕ >≥ 0. (88)
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The proof of this last inequality combines similar arguments as those used in (87)
together with the weak BV estimate (iii) in (75), the inequality (67) and the following
suitable decomposition (used in order to control the sign of the difference ϕn

k − ϕn
l

with quantities that go to zero as ε→ 0 )

ϕn
k − ϕn

l = (ϕn
k − ϕn

l +A−B)︸ ︷︷ ︸
−Cε≤.....≤0

+ (B −A)︸ ︷︷ ︸
0≤.....≤Cε

with

A = inf
k∈K

inf
x∈B(xk,Cε)

(ϕ(x, t) − ϕ(xk, t)), B = sup
k∈K

sup
x∈B(xk,Cε)

(ϕ(x, t) − ϕ(xk, t)).

By contrast, in the present convergence, we still have to deal with the evaluation of
the volume approximation (µ0

κ′,ε, ϕ)h,T which needs a more careful treatment. With
this end in view, note that on account of the estimate (65)(i) and the fact that
supp(θ(x)) ⊂ ∂Ω× [0, κ′] together with the Lipschitz continuity of the numerical flux
~, we arrive at

| Γ(ϕ)κ′

h,T |≤ Cmeas(∂Ω)(‖ūh‖∞, ‖b‖∞)
κ′

ε
. (89)

This clearly shows the boundedness of this term according to the assumption κ′ =
O(ε).

Let us now denote by

ϑκ′

h,ε(x, t) = θ(x)~(n̄(x), ūh(x, t), bκ′(x, t)), ϕ̄ = ϕ(x(x̄, 0), t),

thus, one may write

Γ(ϕ)κ′

h,T =︸︷︷︸
by(81)

∑

{n, tn
≤T}

k∈K

χBk
χ[tn,tn+1[〈ϑκ′

h,ε, ϕ〉 + Eh,T (ϑκ′

h,εϕ)

=

∫

Ω×IR+

ϑκ′

h,ε(x, t)ϕdxdt + Eh,T (ϑκ′

h,εϕ)

=

∫

Ω×IR+

ϑκ′

h,ε(x, t)
(
ϕ̄+ (ϕ− ϕ̄)

)
dxdt+ Eh,T (ϑκ′

h,εϕ)

=︸︷︷︸
by(16)

∫

∂Ω×IR+

(∫ 3κ

0

ϑκ′

h,ε(x(x̄, y), t)J(x̄, y)dy

)

︸ ︷︷ ︸
≡ϑ̄κ′

h,ε
(x̄,t)

ϕ̄(x̄, t)dx̄dt

(90)

+

∫

Ω×IR+

ϑκ′

h,ε(x, t)(ϕ − ϕ̄)dxdt + Eh,T (ϑκ′

h,εϕ)

=

∫

∂Ω×IR+

ϑ̄κ′

h,ε(x̄, t)ϕ̄(x̄, t)dx̄dt

+

∫

Ω×IR+

ϑκ′

h,ε(x, t)(ϕ − ϕ̄)dxdt + Eh,T (ϑκ′

h,εϕ).

Denote by R(ϑκ′

h,ε, ϕ− ϕ̄) the second integral term in the above inequality. Thus,
the quadrature error (5) with similar arguments used in (89) implies

(i) | Eh,T (ϑκ′

h,εϕ) |≤ C
h

ε
, (ii) | R(ϑκ′

h,ε, ϕ− ϕ̄) |≤ Cκ′ × κ′

ε
. (91)
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The assumption h = o(ε2) (in particular h = o(ε)), together with (91) (i) and (89)
yield that the sequence ϑκ′

h,ε ∈ L1(Ω × [0, T ]). Moreover, on account of (91) (ii), the

sequence ϑ̄κ′

h,ε is bounded in ∈ L1(∂Ω× [0, T ]). Thus, there exists a subsequence which

still is denoted by ϑ̄κ′

h,ε converging to some bounded Radon measure ϑ(x̄, t) for the
topology σ(Mb, Cc) i.e.

∫

∂Ω×IR+

ϑ̄κ′

h,ε(x̄, t)ϕ̄(x̄, t)dx̄dt −→
∆(h,ε)−→0

κ′−→0

〈ϑ(x̄, t), ϕ̄〉, ∀ϕ̄ ∈ Cc(∂Ω × [0, T ]). (92)

Consequently,

Γ(ϕ)κ′

h,T −→
∆(h,ε)−→0

κ′−→0

〈ϑ(x̄, t), ϕ̄〉, ∀ϕ̄ ∈ Cc(∂Ω × [0, T ]). (93)

In view of the results (86-88) and the above limit, the inequality (82) implies

Mη(νx,t,a, ϕ) − 〈ϑ(x̄, t), ϕ̄〉 ≥ 0.

Therefore, the inequality (47) follows by taking ϕ ∈ C1
c (Ω × IR+).

Third step: Derivation of (53). Take (ηδ, Hδ) defined in Remark (4.3) as an
entropy-entropy flux pair (η,H) in (82) and denote by ~δ the numerical flux associated
with the flux Hδ, then one first applies the inequality (68) to get

~δ(n, u, v) ≥ qδ
r(u, c, x, t).n+ sgnδ(v − c)(g(n, u, v) − F (c, x, t).n), (94)

with

qδ
r(u, c, x, t) =

∫ u

c

(
sgnδ(w − c) − sgnδ(u− c)

)
∂wF (w, x, t)dw.

Secondly, as before, denoting by ψδ = ϕ sgnδ(b − c) and

ϑκ′

h,ε(x, t) = θ(x)g(n̄(x), ūh(x, t), bκ′(x, t)), ψ̄δ = ψδ(x(x̄, 0), t),

one may write

Γ(ϕ)κ′

h,T ≤︸︷︷︸
by(94)

Γ(ϕ)κ′,δ
h,T︸ ︷︷ ︸

see below

−
(
sgnδ(bκ′ − c)F (c, x, t)D∗

ε,sχ
κ, ϕ

)
h,T

+
(
qδ
r(ūh, c, x, t)D

∗
ε,sχ

κ, ϕ
)

h,T

=︸︷︷︸
by(81)

Γ(ϕ)κ′,δ
h,T −

∫

Ω×IR+

F (c, x, t)ψδ∇(1 − χκ)dxdt

+

∫

Ω×IR+

qδ
r(ūh, c, x, t)ϕ∇(1 − χκ)dxdt (95)

+ Eh,T
(
F (c, x, t)∇(1 − χκ)ψδ

)

+ Eh,T
(
qδ
r(ūh, c, x, t)∇(1 − χκ)ϕ

)
,
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with

Γ(ϕ)κ′,δ
h,T :=

∑

k∈K

τnwn
kϕ

n
kθ

n
k sgnδ(b

n
k − c)g(ñk, u

n
k , b

n
k)

=︸︷︷︸
as in (90)

∫

∂Ω×IR+

ϑ̄κ′

h,ε(x̄, t)ψ̄δdx̄dt+ Eh,T (ϑκ′

h,εψδ)

+R(ϑκ′

h,ε, ψδ − ψ̄δ).

So that, as in the previous step, one deduces that there exists a bounded Radon
measure ϑ(x̄, t) such that

Γ(ϕ)κ′,δ
h,T −→

∆(h,ε)−→0

κ′−→0

〈ϑ(x̄, t), sgnδ(b− c)ϕ̄〉, ∀ϕ̄ ∈ Cc(∂Ω × [0, T ]). (96)

On the other hand, since we have in the weak star limit that

lim
∆(ε,h)→0

qδ
r(ūh, c, x, t) = 〈νx,t, q

δ
r(λ, c, x, t)〉,

then, by using the following splitting

qδ
r(ūh, c, x, t) = 〈νx,t, q

δ
r(λ, c, x, t)〉 + (qδ

r(ūh, c, x, t) − 〈νx,t, q
δ
r(λ, c, x, t)〉),

together with the fact that κ′ = O(κ) and Szepessy’s weak trace limit (Lemma 1.1 in
[41]), one gets

lim
∆(ε,h)→0

κ′→0

∫

Ω×IR+

qδ
r(ūh)ϕ∇(1 − χκ)dxdt =

∫

∂Ω×IR+

〈γνx,t, q
δ
r(λ)〉ϕdσ(x)dt. (97)

We also have

lim
κ′→0

∫

Ω×IR+

F (c, x, t)ψδ∇(1 − χκ)dxdt =

∫

∂Ω×IR+

sgnδ(b− c)F (c, x, t)ϕdσ(x)dt.

(98)
In view of the results (96-98), the inequality (95) yields

lim
∆(ε,h)→0

κ′→0

(Γ(ϕ)κ′

h,T ≤
∫

∂Ω×IR+

sgnδ(b− c)ϕ dϑ(σ(x), t)

−
∫

∂Ω×IR+

sgnδ(b − c)F (c, x, t)ϕdσ(x)dt

+

∫

∂Ω×IR+

〈γνx,t, q
δ
r(λ, c, x, t)〉ϕdσ(x)dt.

(99)

On account of the results (86-88) with η = ηδ and the bound (51), the inequality
(82) gives

Mηδ
c (νx,t,a, ϕ) −

∫

∂Ω×

sgnδ(b− c)ϕ dϑ(σ(x), t)

+

∫

∂Ω×

sgnδ(b− c)F (c, x, t)ϕdσ(x)dt ≥ Cδ‖ϕ‖∞.
(100)

By letting δ → 0 and using Lebesgue’s theorem, the proof of (53) is completed.
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Appendix A. Denoting by Fi = F (b(xi, t), xi, t) (with b a smooth function on
Ω̄), one has to evaluate the term

Kh,ε =
∑

(k,l)∈(K×G)

wkϕkw̃l(Fk + Fl)Akl.

To this end, let us introduce the characteristic function χ of the domain Ω and use
the notation χi = χ(xi); then, one may write, on the one hand,

∑

(k,l)∈(K×G)

wkϕkw̃lFlAkl =
∑

(k,l)∈(K∪G)2

χk(1 − χl)w̃kw̃lϕkFlAkl

=
∑

k∈K

χkwkϕk(D̃ε,sF )x=xk
−

∑

(k,l)∈(K×K)

wkwlχkχlϕkFlAkl

≈︸︷︷︸
by (11),(6)

∫

Ω

ϕdivF (b(x, t), x, t)dx −
∑

(k,l)∈(K×K)

wkwlχkχlϕkFlAkl

=

∫

Ω

ϕdivF (b(x, t), x, t)dx + I;

on the other hand,

∑

(k,l)∈(K×G)

wkϕkw̃lFkAkl

=
∑

(k,l)∈(K×G)

wkw̃lϕlFkAkl +
∑

(k,l)∈(K×G)

wkw̃l(ϕk − ϕl)FkAkl

=
∑

(k,l)∈(K∪G)2

χk(1 − χl)w̃kw̃lϕlFkAkl +
∑

(k,l)∈(K×G)

wkw̃l(ϕk − ϕl)FkAkl

≈︸︷︷︸
by (11),(6)

∫

Ω

F (b(x, t), x, t)∇ϕdx −
∑

(k,l)∈(K×K)

wkwlχkχlϕlFkAkl

+
∑

(k,l)∈(K×G)

wkw̃l(ϕk − ϕl)FkAkl

=

∫

Ω

F (b(x, t), x, t)∇ϕdx + I ′ + II.

Therefore, one combines the two results to get

Kh,ε ≈
∫

∂Ω

F (b(x, t), x, t).n ϕ(x)dσ(x) + I ′ + I + II.

By switching the indices k and l and using that Akl = −Alk, one gets that I ′ + I = 0.
Moreover, the estimates (14) imply that | II |≤ Cmeas(∂Ω)κ′. Consequently,

Kh,ε −→
∆(h,ε)−→0

κ′−→0

∫

∂Ω

F (b(x, t), x, t).n ϕ(x)dσ(x)

and the proof is completed.
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Appendix B. To prove the equivalence between definitions (4.2) and (4.5), it is
sufficient to show that (4.5) implies (4.2), since the converse is obvious. To this end,
the main difficulty lies in establishing that the Radon measure ϑs,t is related to the
Young measure γνs,t in the following sense

dϑs,t = 〈γνs,t, F (λ, s, t)〉dσ(s)dt. (101)

Indeed, using the notation Mη(νx,t, ϕ) in (52), the inequality (47) to be proved reads

Mη(νx,t, ϕ) −
∫

∂Ω×IR+

〈γνs,t, B(λ, s, t)〉.n(s)ϕ(s, t)dsdt ≥ 0. (102)

Taking the following decomposition

ϕ(x, t) = ϕ(x, t)χκ(x(x̄, y)) + ϕ(x, t)(1 − χκ(x(x̄, y))),

where χκ is defined by (25), the inequality (102) becomes

Mη
(
νx,t, ϕ(x, t)(χκ(x(x̄, y))

)
+ Mη

(
νx,t, ϕ(x, t)(1 − χκ(x(x̄, y)))

)

−
∫

∂Ω×IR+

〈γνs,t, B(λ, s, t)〉.n(s)ϕ(s, t)dsdt ≥ 0.
(103)

Since ϕχδ ∈ C1
c (Ω × IR+), then, the term Mη

(
νx,t, ϕ(x, t)(χκ(x(x̄, y))

)
is positive

thanks to (52). Thereby, to prove (102), it suffices to show that

Mη
(
νx,t, ϕ(x, t)(1 − χκ(x(x̄, y)))

)

−
∫

∂Ω×IR+

〈γνs,t, B(λ, s, t)〉.n(s)ϕ(s, t)dsdt ≥ 0.

By developing the derivative ∇(ϕ(1 − χκ)), a straightforward calculation proves that

lim
κ→0+

Mη
(
νx,t, ϕ(1 − χκ)

)
=

∫

∂Ω×IR+

〈γν, ~(λ, x, t)〉.n ϕ dσ(x)dt.

Therefore, by tending κ→ 0+ in the previous inequality, we get
∫

∂Ω×IR+

〈γνx,t, ~(λ, x, t)〉.n(x)dσ(x)dt

−
∫

∂Ω×IR+

〈γνs,t, B(λ, s, t)〉.n(s)ϕ(s, t)dsdt ≥ 0.
(104)

To prove this inequality, one first starts with (53) and introduces the decomposition
(103). Secondly, by letting κ → 0+ and using the same arguments as before, one
obtains

∫

∂Ω×IR+

(
〈γν, q(λ, c, x, t).n〉 + sgn(b− c)F (c, x, t).n

)
ϕdσ(x)dt

−
∫

∂Ω×IR+

sgn(b − c)ϕ dϑ(σ(x), t) ≥ 0.

(105)
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As in [42], taking consecutively, c = 1 + max {‖u0‖∞, ‖b‖∞)} and c = −1 −
max {‖u0‖∞, ‖b‖∞)}, we find that

∫

Γ

〈γνx,t, F (λ, x, t)〉.nϕdσ(x)dt =

∫

Γ

ϕ dϑ(σ(x), t), (106)

which yields (101). By plugging this last identity into the inequality (105), one gets

∫

∂Ω×IR+

〈γν, q(λ, c, x, t)〉.nϕdσ(x)dt

−
∫

∂Ω×IR+

〈γν, sgn(b− c)(F (λ, x, t) − F (c, x, t))〉ϕdσ(x)dt ≥ 0.

To obtain (104), it suffices to use the decomposition

sgn(b− c)(F (λ, x, t) − F (c, x, t)) = sgn(b − c)(F (λ, x, t) − F (b, x, t)) − q(b, c, x, t)

and to approximate any entropy function η ∈ C1 by the following functions ηn(s) =
n∑

i=1

α
(n)
i |s− k

(n)
i |.

To end the proof of (4.5) =⇒ (4.2), one needs to show that (52) implies the
initial condition (48). This is achieved by Theorem 2.2 in [2].
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