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It is well known that

∆u ≥ up in R
n (1)

has no positive solution if p > 1. For a proof, see for example Osserman [9], Loewner
and Nirenberg [7] and Brezis [2]. We extend this result to some fully nonlinear elliptic
equations. Some related problems will also be studied.

Let us fix some notations. For each 1 ≤ k ≤ n let

σk(λ) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik
, λ = (λ1, · · · , λn) ∈ R

n,

denote the kth elementary symmetric function, and let Γk denote the connected com-
ponent of {λ ∈ R

n : σk(λ) > 0} containing the positive cone {λ ∈ R
n : λ1 >

0, · · · , λn > 0}. It is well known that Γk = {λ ∈ R
n : σl(λ) > 0, 1 ≤ l ≤ k}. Let

Sn×n denote the set of n× n real symmetric matrices. For any A ∈ Sn×n we denote
by λ(A) the eigenvalues of A.

Throughout this note we will assume that Γ ⊂ R
n is an open convex symmetric

cone with vertex at the origin satisfying Γn ⊂ Γ ⊂ Γ1. Moreover, we also assume that
f is a continuous function defined on Γ verifying the following properties:

f is homogeneous of degree one on Γ, (2)

f is symmetric in λ = (λ1, · · · , λn) ∈ Γ, (3)

and

f is monotonically increasing in each variable on Γ. (4)

Given a smooth positive function u defined in R
n with n ≥ 3, we may introduce

Au = −
2

n− 2
u−

n+2

n−2D2u+
2n

(n− 2)2
u−

2n
n−2Du⊗Du−

2

(n− 2)2
u−

2n
n−2 |Du|2I, (5)

where I is the n × n identity matrix, and Du and D2u denote the gradient and the
Hessian of u respectively. This operator appears in the recent work on conformally
invariant elliptic equations and the σk-Yamabe problems in conformal geometry, see
for example [4, 11].
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First we have

Theorem 1. Let Γ ⊂ R
n, n ≥ 3, be an open convex symmetric cone with vertex

at the origin satisfying Γn ⊂ Γ ⊂ Γ1, and let f ∈ C(Γ) satisfy (2), (3) and (4). If
Γ ⊇ Γk for some 1 ≤ k ≤ n, then the problem

f(λ(−Au)) = up− n+2

n−2 , λ(−Au) ∈ Γ in R
n (6)

has no positive continuous viscosity subsolution if p > 1 + max
{
0, 2(2k−n)

(n−2)k

}
.

The definition of viscosity subsolutions appeared in Theorem 1 will be given below.
In [4, 5] Li and Li established some Liouville type theorems for the fully nonlinear
elliptic equation

f(λ(Au)) = up− n+2

n−2 , λ(Au) ∈ Γ and u > 0 in R
n. (7)

They showed that for −∞ < p < n+2
n−2 problem (7) has no solution u ∈ C2(Rn), while

for p = n+2
n−2 any solution u ∈ C2(Rn) of (7) must be of the form

u(x) =

(
a

1 + b2|x− x̄|2

) n−2

2

, ∀x ∈ R
n

for some x̄ ∈ R
n and some positive constants a and b satisfying some suitable condi-

tions. See also [4, 5] for earlier works on the subject. Theorem 1 indicates the sharp
contrast between (6) and (7).

The proof of Theorem 1, in the spirit of [2], is based on a comparison principle.
Let us work on slightly more general framework. Suppose Ω is an open set in R

n.
Then for any mapping B(·, ·, ·) : Ω × R+ × R

n → Sn×n and any positive function
h(x, t) defined on Ω × R+, we may consider the problem

f(λ(D2u+B(x, u,Du))) = h(x, u), λ(D2u+B(x, u,Du)) ∈ Γ in Ω. (8)

A positive function u ∈ C2(Ω) is said to be a classical subsolution of (8) if λ(D2u +
B(x, u,Du)) ∈ Γ and

f(λ(D2u+B(x, u,Du))) ≥ h(x, u) in Ω.

Similarly we can define the classical supersolutions and classical solutions for (8).
In the following we will recall the well-known definition of viscosity solutions for

(8).

Definition 1. We say a positive function u ∈ C(Ω) is a viscosity subsolution of
(8) if for each x̄ ∈ Ω there exists an ε > 0 such that for any ψ ∈ C2(Bε(x̄)) with the
properties ψ(x̄) = u(x̄) and

ψ > 0, ψ ≥ u and λ(D2ψ +B(x, ψ,Dψ)) ∈ Γ in Bε(x̄),

there holds

f(λ(D2ψ(x̄) +B(x̄, ψ(x̄), Dψ(x̄)))) ≥ h(x̄, ψ(x̄)).

Similarly one can define viscosity supersolution of (8). A positive function u ∈
C(Ω) is called a viscosity solution of (8) if u is both a viscosity subsolution and a
viscosity supersolution of (8).
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It is straightforward to show that if u ∈ C2(Ω) is a positive function satisfying
λ(D2u+ B(x, u,Du)) ∈ Γ in Ω, then u is a viscosity subsolution of (8) if and only if
u is a classical subsolution of (8).

We have the following simple comparison principle.

Lemma 1. Let Ω ⊂ R
n be an open bounded set, and let t→ t−1h(x, t) be strictly

increasing on (0,∞) for each x ∈ Ω. Suppose that u ∈ C(Ω) is a positive viscosity
subsolution of (8) in Ω and that v ∈ C2(Ω)∩C(Ω) is a positive classical supersolution
of (8) with λ(D2v + t−1B(x, tv, tDv)) ∈ Γ for each t ≥ 1. Suppose also that for each
x ∈ Ω and ξ,p ∈ R

n the function

t→ t−1〈B(x, t, tp)ξ, ξ〉 (9)

is non-increasing on (0,∞). If u ≤ v on ∂Ω, then u ≤ v on Ω.

Proof. Suppose the conclusion is not true. Since u is bounded from above and
v is positive on Ω, there must exist a > 1 such that u ≤ av on Ω and u(x̄) = av(x̄)
for some x̄ ∈ Ω. Since u ≤ v on ∂Ω and a > 1, x̄ must be an interior point of Ω. By
assumption,

λ
(
D2(av) +B(x, av,D(av))

)
= aλ

(
D2v + a−1B(x, av, aDv)

)
∈ Γ.

Since u is a viscosity subsolution of (8), we have by using the degree one homogeneity
of f that

af
(
λ

(
D2v(x̄) + a−1B(x̄, av(x̄), aDv(x̄))

))
≥ h(x̄, av(x̄)).

By using (9) and the monotonicity of f , noting that v is a classical supersolution of
(8), we have

f
(
λ

(
D2v + a−1B(x, av, aDv)

))
≤ f

(
λ

(
D2v +B(x, v,Dv)

))
≤ h(x, v).

Therefore ah(x̄, v(x̄)) ≥ h(x̄, av(x̄)). This clearly contradicts the condition that the
function t→ t−1h(x̄, t) is strictly increasing on (0,∞).

Now we are in a position to indicate the idea of showing nonexistence of positive
viscosity subsolutions of (8) when Ω = R

n. To this end, let us pick a sequence of
bounded open sets {Ωj} such that

Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωj ⊂ · · · and

∞⋃

j=1

Ωj = R
n.

Suppose we can construct a sequence of positive functions {Uj} with Uj ∈ C2(Ωj)
such that

λ
(
D2Uj + t−1B(x, tUj , tDUj)

)
∈ Γ in Ωj for each t ≥ 1, (10)

f(λ(D2Uj +B(x, Uj , DUj))) ≤ h(x, Uj) in Ωj , (11)

Uj(x) → +∞ uniformly as d(x, ∂Ωj) → 0 (12)

and

Uj(x) → 0 as j → ∞ for each fixed x ∈ R
n. (13)
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If u ∈ C(Rn) is a positive viscosity subsolution of (8) with Ω = R
n, then we can apply

Lemma 1 to conclude that

u(x) ≤ Uj(x) whenever x ∈ Ωj for each j.

Taking j → ∞ and using (13) gives u(x) ≡ 0 which is a contradiction.
By using the degree one homogeneity of f , one can see that (6) can be written in

the form of (8) with

h(x, t) =
n− 2

2
tp and B(x, t,p) = −

n

n− 2
t−1p ⊗ p +

1

n− 2
t−1|p|2I

for (x, t,p) ∈ Ω × R+ × R
n. Therefore Lemma 1 applies to (6). Now we are ready to

give the proof of Theorem 1.

Proof of Theorem 1. Let Bj denote the ball of radius j with center at the origin.
It suffices to show the existence of a sequence of positive functions Uj ∈ C2(Bj)
satisfying (10), (11), (12) and (13) with Ωj := Bj .

Step 1. Let α = 2
p−1 and consider the function

U(x) =
(
1 − |x|2

)−α
in B1. (14)

We will show that λ(−AU )(x) ∈ Γk ⊂ Γ for all x ∈ B1. Let r = |x|, then U(x) = ϕ(r)
with ϕ(r) = (1 − r2)−α. We need only to verify the claim at x = (r, 0, · · · , 0) for
0 ≤ r < 1. Let us perform the computation as in [6]. By straightforward calculation
one has

DU(x) = (ϕ′(r), 0, · · · , 0) and D2U(x) = diag

[
ϕ′′(r),

ϕ′(r)

r
, · · · ,

ϕ′(r)

r

]
.

Therefore it follows from the definition of AU that

AU (x) = diag
[
λU

1 (r), λU
2 (r), · · · , λU

n (r)
]
,

where




λU
1 (r) = − 2

n−2ϕ
− n+2

n−2ϕ′′(r) + 2(n−1)
(n−2)2ϕ

− 2n
n−2 [ϕ′(r)]

2
,

λU
2 (r) = · · · = λU

n (r) = − 2
n−2ϕ

− n+2

n−2
ϕ′(r)

r
− 2

(n−2)2ϕ
− 2n

n−2 [ϕ′(r)]
2
.

But for the function ϕ it is easy to see that

ϕ′(r) = 2αr [ϕ(r)]
α+1

α and ϕ′′(r) = 2αϕ
α+2

α

[
1 + (2α+ 1)r2

]
.

Thus




λU
1 (r) = 4α

n−2ϕ
α+2

α
− n+2

n−2

[
−1 + 2α−(n−2)

n−2 r2
]
,

λU
l (r) = 4α

n−2ϕ
α+2

α
− n+2

n−2

[
−1 − 2α−(n−2)

n−2 r2
]
, l = 2, · · · , n.

Consequently

λ(−AU ) =
4α

n− 2
ϕ

α+2

α
− n+2

n−2λ(r), (15)
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where

λ(r) =

(
1 −

2α− (n− 2)

n− 2
r2, 1 +

2α− (n− 2)

n− 2
r2, · · · , 1 +

2α− (n− 2)

n− 2
r2

)
. (16)

Therefore we need only to show that λ(r) ∈ Γk for all 0 ≤ r < 1. It is obvious that
λ(0) = (1, 1, · · · , 1) ∈ Γk. So by the convexity of Γk it suffices to show that λ(1) ∈ Γk.
Note that λ(1) is a positive multiple of the vector β =

(
n−2

α
− 1, 1, · · · , 1

)
, it suffices

to show β ∈ Γk.
It is well known that

det

(
tI + diag

[
n− 2

α
− 1, 1, · · · , 1

])
=

n∑

l=0

σn−l(β)tl.

Therefore, by letting g(t) denote the function on the left hand side in the above
equation, we have

σl(β) =
1

(n− l)!

dn−lg

dtn−l
(0).

Noting that

g(t) =

(
t+

n− 2

α
− 1

)
(t+ 1)n−1 = (t+ 1)n +

(
n− 2

α
− 2

)
(t+ 1)n−1.

We thus obtain

σl(β) =
(n− 1) · · · (l + 1)

(n− l)!

[
n+

(
n− 2

α
− 2

)
l

]
> 0

for all 1 ≤ l ≤ k since p > 1 + max
{

0, 2(2k−n)
(n−2)k

}
. The claim therefore follows.

Step 2. For each j consider the function

Uj(x) = Cjα
(
j2 − |x|2

)−α
in Bj , (17)

where C is a positive constant. Such functions have been used in [9, 7, 2] to deal with
problems similar to (1). We claim that one can choose a suitably large C independent
of j such that for all j there hold

λ(−AUj ) ∈ Γk ⊂ Γ (18)

and

f
(
λ(−AUj )

)
≤ U

p− n+2

n−2

j in Bj . (19)

In fact, by writing Uj(x) = Cj−αU
(

x
j

)
we can see that

AUj (x) = C− 4
n−2 j

4α
n−2

−2AU

(
x

j

)
, x ∈ Bj . (20)

This gives (18) by the corresponding property for AU . In order to show (19), by using
the degree one homogeneity of f it follows from (15) and (20) that

f
(
λ(−AUj (x))

)
=

4α

n− 2
C− 4

n−2 j
4α

n−2
−2

[
U

(
x

j

)]α+2

α
− n+2

n−2

f

(
λ

(
|x|

j

))
,
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where λ(r) is defined by (16). Since {λ(r) : 0 ≤ r ≤ 1} is a compact subset of Γk,
one can find a positive constant C0 such that f(λ(r)) ≤ C0 for 0 ≤ r ≤ 1. Moreover,
since α = 2

p−1 , we have

α+ 2

α
= p and

4α

n− 2
− 2 = −

(
p−

n+ 2

n− 2

)
α.

Therefore

[Uj(x)]p−
n+2
n−2 − f

�
λ(−A

Uj (x))
�

≥ C
p−

n+2
n−2 j

−(p−
n+2
n−2)α

�
U

�
x

j

��p−
n+2
n−2

−
4α

n − 2
C0C

− 4
n−2 j

4α
n−2

−2

�
U

�
x

j

��p−
n+2
n−2

= C
− 4

n−2

�
U

�
x

j

��p−
n+2
n−2

j
4α

n−2
−2

�
C

p−1
−

4αC0

n − 2

�
.

This gives (19) if we choose C such that Cp−1 > 4αC0

n−2 which is always possible since
p > 1. The proof is complete.

Next we will apply the argument in the proof of Theorem 1 to show a nonexistence
result of positive solutions for some Hessian equations in R

n. There has been much
work on Hessian equations, see e.g. [3, 10] and the references therein.

Theorem 2. Let Γ ⊂ R
n be an open convex symmetric cone with vertex at the

origin satisfying Γn ⊂ Γ ⊂ Γ1, let f ∈ C(Γ) satisfy (2), (3) and (4). Then the
equation

f(λ(D2u)) = up, λ(D2u) ∈ Γ in R
n with n ≥ 1 (21)

has no positive continuous viscosity subsolution for any p > 1.

Proof. Consider the function U in B1 defined by (14). Then the computation in
the proof of Theorem 1 indicates that

λ(D2U(x)) = 2α[U(x)]
α+2

α λ̃(r), x ∈ B1,

where r = |x| and

λ̃(r) =
(
1 + (2α+ 1)r2, 1 − r2, · · · , 1 − r2

)
.

Therefore λ(D2U(x)) ∈ Γn ⊂ Γ for x ∈ B1.
Next consider the function Uj on Bj defined by (17). Recall that Uj(x) =

Cj−αU
(

x
j

)
, we have for x ∈ Bj that λ(D2Uj(x)) ∈ Γ and

λ
(
D2Uj(x)

)
= 2Cαj−α−2

[
U

(
x

j

)]α+2
α

λ̃

(
|x|

j

)
.

Therefore by the degree one homogeneity of f it follows that

f
(
λ

(
D2Uj(x)

))
= 2Cαj−α−2

[
U

(
x

j

)]α+2

α

f

(
λ̃

(
|x|

j

))
.
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Since {λ̃(r) : 0 ≤ r ≤ 1} is a compact subset of Γ, we can choose a constant C0 such

that f(λ̃(r)) ≤ C0 for 0 ≤ r ≤ 1. Therefore

−f
(
λ

(
D2Uj(x)

))
+ [Uj(x)]

p

≥− 2αC0Cj
−α−2

[
U

(
x

j

)]α+2
α

+ Cpj−pα

[
U

(
x

j

)]p

=Cj−pα

[
U

(
x

j

)]p {
Cp−1 − 2C0α

}

≥0

if we choose C so large that Cp−1 ≥ 2αC0.

We have therefore constructed a sequence of positive functions Uj ∈ C2(Bj)
satisfying (10), (11), (12) and (13). The proof is thus complete.

We remark that for the equation (21) with p = 0 some Bernstein type theo-
rems have been established for some specific function f in the literature. The well-
known theorem of Jörgen, Calabi and Pogorelov says that any convex solution of
det(D2u) = 1 in R

n must be a quadratic polynomial. In [1] it is shown that any
convex solution of σk(λ(D2u)) = 1 in R

n satisfying a quadratic growth condition is a
quadratic polynomial; similar result is established for the Hessian quotient equation
σn

σk
(λ(D2u)) = 1 in R

n for some 1 ≤ k ≤ n− 1. Combining these facts with Theorem

2 it seems interesting to study the existence of positive solutions of (21) for 0 < p ≤ 1.

We now consider some analogous problems in half Euclidean space R
n
+. In [8] Lou

and Zhu considered the problem





∆u = up in R
n
+,

u > 0 in R
n
+,

∂u
∂xn

= uq on ∂R
n
+,

(22)

where R
n
+ := {x = (x′, xn) ∈ R

n : xn > 0}, and showed that (22) has no solution
if p > 1 and q > 1. We extend below this result to some fully nonlinear elliptic
equations.

To set up our framework, let Ω ⊂ R
n be an open set with smooth boundary

∂Ω 6= ∅ and let ν be the unit inner normal to ∂Ω. Let Σ ⊂ ∂Ω be an open subset of
∂Ω. Then for any functions h(x, t) and g(x, t) defined on Ω × (0,∞) and Σ × [0,∞)
respectively, we may consider the problem





f
(
λ

(
D2u+B(x, u,Du)

))
= h(x, u) in Ω,

λ
(
D2u+B(x, u,Du)

)
∈ Γ in Ω,

∂u
∂ν

= g(x, u) on Σ.

(23)

We say a function u ∈ C2(Ω) ∩ C1(Ω) is a classical subsolution of (23) if u > 0 in Ω,
u is a classical subsolution of (8) in Ω and ∂u

∂ν
≥ g(x, u) on Σ.

We also introduce the concept of viscosity subsolution for (23).
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Definition 2. Let u ∈ C(Ω∪Σ) be such that u > 0 in Ω. We say u is a viscosity
subsolution of (23) if u is a viscosity subsolution of (8) in Ω, and for each x̄ ∈ Σ there
is a neighborhood O of x̄ such that for any ψ ∈ C1(O ∩ Ω) with the properties

ψ(x̄) = u(x̄) and ψ ≥ u in O ∩ Ω

there holds

∂ψ

∂ν
(x̄) ≥ g(x̄, ψ(x̄)).

Theorem 3. Let Γ ⊂ R
n be an open convex symmetric cone with vertex at the

origin satisfying Γn ⊂ Γ ⊂ Γ1, let f ∈ C(Γ) satisfy (2), (3) and (4), and let g(x, t) be
a function defined on ∂R

n
+ × [0,∞) such that g(x, t) > 0 for all x ∈ ∂R

n
+ if t > 0. If

n ≥ 3 and Γ ⊂ Γk for some 1 ≤ k ≤ n, then the problem






f(λ(−Au)) = up− n+2
n−2 in R

n
+,

λ(−Au) ∈ Γ in R
n,

∂u
∂xn

= g(x, u) on ∂R
n
+

(24)

has no positive continuous viscosity subsolution for p > 1 + max
{
0, 2(2k−n)

(n−2)k

}
.

Proof. For each j consider the function Uj on Bj defined by (17). We have shown
that Uj satisfies (18) and (19). Note that

∂Uj

∂xn

= 0 on Bj ∩ ∂R
n
+.

Suppose (24) has a positive continuous viscosity subsolution u. We will derive a
contradiction by showing that for each j

u(x) ≤ Uj(x) whenever x ∈ B+
j , (25)

where B+
j := Bj ∩ R

n
+. Suppose (25) is not true, then one can find a number a > 1

such that u ≤ aUj on B+
j and u(x̄) = aUj(x̄) for some x̄ ∈ B+

j . Since Uj(x) → +∞

as d(x, ∂Bj) → 0, we must have x̄ ∈ Bj ∩ R
n
+. If x̄ ∈ ∂R

n
+, then from Definition 2 we

have

0 =
∂(aUj)

∂xn

(x̄) ≥ g(x̄, aUj(x̄)) > 0

which is absurd. Therefore x̄ must be in the interior of B+
j . But this can be excluded

again by imitating the proof of Lemma 1.

By the same argument we can also establish the following nonexistence result.

Theorem 4. Let Γ ⊂ R
n be an open convex symmetric cone with vertex at the

origin satisfying Γn ⊂ Γ ⊂ Γ1, let f ∈ C(Γ) satisfy (2), (3) and (4), and let g(x, t)
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be a function defined on ∂R
n
+ × [0,∞) such that g(x, t) > 0 for all x ∈ ∂R

n
+ if t > 0.

Then the problem





f(λ(D2u)) = up in R
n
+

λ(D2u) ∈ Γ in R
n
+,

∂u
∂xn

= g(x, u) on ∂R
n
+

has no positive continuous viscosity subsolution if p > 1.

Remark 1. If we take f(λ) =
∑n

i=1 λi, then it follows from Theorem 3 (or
Theorem 4) that problem (22) has no solution if p > 1, without any condition on q.
This improves the above mentioned result of Lou and Zhu.
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