NONEXISTENCE OF POSITIVE SOLUTIONS FOR SOME FULLY NONLINEAR ELLIPTIC EQUATIONS*

QINIAN JIN, YANYAN LI, AND HAOYUAN XU ${ }^{\dagger}$
Dedicated to Joel Smoller on his 70th birthday

Key words. Fully nonlinear elliptic equations, nonexistence, comparison principle
AMS subject classifications. 35J60
It is well known that

$$
\begin{equation*}
\Delta u \geq u^{p} \quad \text { in } \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

has no positive solution if $p>1$. For a proof, see for example Osserman [9], Loewner and Nirenberg [7] and Brezis [2]. We extend this result to some fully nonlinear elliptic equations. Some related problems will also be studied.

Let us fix some notations. For each $1 \leq k \leq n$ let

$$
\sigma_{k}(\lambda)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \lambda_{i_{1}} \cdots \lambda_{i_{k}}, \quad \lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbb{R}^{n},
$$

denote the k th elementary symmetric function, and let Γ_{k} denote the connected component of $\left\{\lambda \in \mathbb{R}^{n}: \sigma_{k}(\lambda)>0\right\}$ containing the positive cone $\left\{\lambda \in \mathbb{R}^{n}: \lambda_{1}>\right.$ $\left.0, \cdots, \lambda_{n}>0\right\}$. It is well known that $\Gamma_{k}=\left\{\lambda \in \mathbb{R}^{n}: \sigma_{l}(\lambda)>0,1 \leq l \leq k\right\}$. Let $S^{n \times n}$ denote the set of $n \times n$ real symmetric matrices. For any $A \in S^{n \times n}$ we denote by $\lambda(A)$ the eigenvalues of A.

Throughout this note we will assume that $\Gamma \subset \mathbb{R}^{n}$ is an open convex symmetric cone with vertex at the origin satisfying $\Gamma_{n} \subset \Gamma \subset \Gamma_{1}$. Moreover, we also assume that f is a continuous function defined on $\bar{\Gamma}$ verifying the following properties:

$$
\begin{equation*}
f \text { is homogeneous of degree one on } \Gamma \text {, } \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
f \text { is symmetric in } \lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \Gamma, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
f \text { is monotonically increasing in each variable on } \Gamma \text {. } \tag{4}
\end{equation*}
$$

Given a smooth positive function u defined in \mathbb{R}^{n} with $n \geq 3$, we may introduce

$$
\begin{equation*}
A^{u}=-\frac{2}{n-2} u^{-\frac{n+2}{n-2}} D^{2} u+\frac{2 n}{(n-2)^{2}} u^{-\frac{2 n}{n-2}} D u \otimes D u-\frac{2}{(n-2)^{2}} u^{-\frac{2 n}{n-2}}|D u|^{2} I, \tag{5}
\end{equation*}
$$

where I is the $n \times n$ identity matrix, and $D u$ and $D^{2} u$ denote the gradient and the Hessian of u respectively. This operator appears in the recent work on conformally invariant elliptic equations and the σ_{k}-Yamabe problems in conformal geometry, see for example $[4,11]$.

[^0]First we have
ThEOREM 1. Let $\Gamma \subset \mathbb{R}^{n}$, $n \geq 3$, be an open convex symmetric cone with vertex at the origin satisfying $\Gamma_{n} \subset \Gamma \subset \Gamma_{1}$, and let $f \in C(\bar{\Gamma})$ satisfy (2), (3) and (4). If $\Gamma \supseteq \Gamma_{k}$ for some $1 \leq k \leq n$, then the problem

$$
\begin{equation*}
f\left(\lambda\left(-A^{u}\right)\right)=u^{p-\frac{n+2}{n-2}}, \quad \lambda\left(-A^{u}\right) \in \Gamma \text { in } \mathbb{R}^{n} \tag{6}
\end{equation*}
$$

has no positive continuous viscosity subsolution if $p>1+\max \left\{0, \frac{2(2 k-n)}{(n-2) k}\right\}$.
The definition of viscosity subsolutions appeared in Theorem 1 will be given below. In $[4,5] \mathrm{Li}$ and Li established some Liouville type theorems for the fully nonlinear elliptic equation

$$
\begin{equation*}
f\left(\lambda\left(A^{u}\right)\right)=u^{p-\frac{n+2}{n-2}}, \quad \lambda\left(A^{u}\right) \in \Gamma \quad \text { and } \quad u>0 \text { in } \mathbb{R}^{n} \tag{7}
\end{equation*}
$$

They showed that for $-\infty<p<\frac{n+2}{n-2}$ problem (7) has no solution $u \in C^{2}\left(\mathbb{R}^{n}\right)$, while for $p=\frac{n+2}{n-2}$ any solution $u \in C^{2}\left(\mathbb{R}^{n}\right)$ of (7) must be of the form

$$
u(x)=\left(\frac{a}{1+b^{2}|x-\bar{x}|^{2}}\right)^{\frac{n-2}{2}}, \quad \forall x \in \mathbb{R}^{n}
$$

for some $\bar{x} \in \mathbb{R}^{n}$ and some positive constants a and b satisfying some suitable conditions. See also $[4,5]$ for earlier works on the subject. Theorem 1 indicates the sharp contrast between (6) and (7).

The proof of Theorem 1, in the spirit of [2], is based on a comparison principle. Let us work on slightly more general framework. Suppose Ω is an open set in \mathbb{R}^{n}. Then for any mapping $B(\cdot, \cdot, \cdot): \bar{\Omega} \times \mathbb{R}_{+} \times \mathbb{R}^{n} \rightarrow S^{n \times n}$ and any positive function $h(x, t)$ defined on $\Omega \times \mathbb{R}_{+}$, we may consider the problem

$$
\begin{equation*}
f\left(\lambda\left(D^{2} u+B(x, u, D u)\right)\right)=h(x, u), \lambda\left(D^{2} u+B(x, u, D u)\right) \in \Gamma \text { in } \Omega \tag{8}
\end{equation*}
$$

A positive function $u \in C^{2}(\Omega)$ is said to be a classical subsolution of (8) if $\lambda\left(D^{2} u+\right.$ $B(x, u, D u)) \in \Gamma$ and

$$
f\left(\lambda\left(D^{2} u+B(x, u, D u)\right)\right) \geq h(x, u) \quad \text { in } \Omega
$$

Similarly we can define the classical supersolutions and classical solutions for (8).
In the following we will recall the well-known definition of viscosity solutions for (8).

Definition 1. We say a positive function $u \in C(\Omega)$ is a viscosity subsolution of (8) if for each $\bar{x} \in \Omega$ there exists an $\varepsilon>0$ such that for any $\psi \in C^{2}\left(B_{\varepsilon}(\bar{x})\right)$ with the properties $\psi(\bar{x})=u(\bar{x})$ and

$$
\psi>0, \quad \psi \geq u \text { and } \lambda\left(D^{2} \psi+B(x, \psi, D \psi)\right) \in \Gamma \quad \text { in } B_{\varepsilon}(\bar{x}),
$$

there holds

$$
f\left(\lambda\left(D^{2} \psi(\bar{x})+B(\bar{x}, \psi(\bar{x}), D \psi(\bar{x}))\right)\right) \geq h(\bar{x}, \psi(\bar{x})) .
$$

Similarly one can define viscosity supersolution of (8). A positive function $u \in$ $C(\Omega)$ is called a viscosity solution of (8) if u is both a viscosity subsolution and a viscosity supersolution of (8).

It is straightforward to show that if $u \in C^{2}(\Omega)$ is a positive function satisfying $\lambda\left(D^{2} u+B(x, u, D u)\right) \in \Gamma$ in Ω, then u is a viscosity subsolution of (8) if and only if u is a classical subsolution of (8).

We have the following simple comparison principle.
Lemma 1. Let $\Omega \subset \mathbb{R}^{n}$ be an open bounded set, and let $t \rightarrow t^{-1} h(x, t)$ be strictly increasing on $(0, \infty)$ for each $x \in \Omega$. Suppose that $u \in C(\bar{\Omega})$ is a positive viscosity subsolution of (8) in Ω and that $v \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is a positive classical supersolution of (8) with $\lambda\left(D^{2} v+t^{-1} B(x, t v, t D v)\right) \in \Gamma$ for each $t \geq 1$. Suppose also that for each $x \in \Omega$ and $\xi, \mathbf{p} \in \mathbb{R}^{n}$ the function

$$
\begin{equation*}
t \rightarrow t^{-1}\langle B(x, t, t \mathbf{p}) \xi, \xi\rangle \tag{9}
\end{equation*}
$$

is non-increasing on $(0, \infty)$. If $u \leq v$ on $\partial \Omega$, then $u \leq v$ on $\bar{\Omega}$.
Proof. Suppose the conclusion is not true. Since u is bounded from above and v is positive on $\bar{\Omega}$, there must exist $a>1$ such that $u \leq a v$ on $\bar{\Omega}$ and $u(\bar{x})=a v(\bar{x})$ for some $\bar{x} \in \bar{\Omega}$. Since $u \leq v$ on $\partial \Omega$ and $a>1, \bar{x}$ must be an interior point of Ω. By assumption,

$$
\lambda\left(D^{2}(a v)+B(x, a v, D(a v))\right)=a \lambda\left(D^{2} v+a^{-1} B(x, a v, a D v)\right) \in \Gamma
$$

Since u is a viscosity subsolution of (8), we have by using the degree one homogeneity of f that

$$
a f\left(\lambda\left(D^{2} v(\bar{x})+a^{-1} B(\bar{x}, a v(\bar{x}), a D v(\bar{x}))\right)\right) \geq h(\bar{x}, a v(\bar{x})) .
$$

By using (9) and the monotonicity of f, noting that v is a classical supersolution of (8), we have

$$
f\left(\lambda\left(D^{2} v+a^{-1} B(x, a v, a D v)\right)\right) \leq f\left(\lambda\left(D^{2} v+B(x, v, D v)\right)\right) \leq h(x, v)
$$

Therefore $a h(\bar{x}, v(\bar{x})) \geq h(\bar{x}, a v(\bar{x}))$. This clearly contradicts the condition that the function $t \rightarrow t^{-1} h(\bar{x}, t)$ is strictly increasing on $(0, \infty)$.

Now we are in a position to indicate the idea of showing nonexistence of positive viscosity subsolutions of (8) when $\Omega=\mathbb{R}^{n}$. To this end, let us pick a sequence of bounded open sets $\left\{\Omega_{j}\right\}$ such that

$$
\Omega_{1} \subset \Omega_{2} \subset \cdots \subset \Omega_{j} \subset \cdots \quad \text { and } \quad \bigcup_{j=1}^{\infty} \Omega_{j}=\mathbb{R}^{n}
$$

Suppose we can construct a sequence of positive functions $\left\{U_{j}\right\}$ with $U_{j} \in C^{2}\left(\Omega_{j}\right)$ such that

$$
\begin{gather*}
\lambda\left(D^{2} U_{j}+t^{-1} B\left(x, t U_{j}, t D U_{j}\right)\right) \in \Gamma \quad \text { in } \Omega_{j} \text { for each } t \geq 1 \tag{10}\\
f\left(\lambda\left(D^{2} U_{j}+B\left(x, U_{j}, D U_{j}\right)\right)\right) \leq h\left(x, U_{j}\right) \quad \text { in } \Omega_{j} \tag{11}\\
U_{j}(x) \rightarrow+\infty \text { uniformly as } d\left(x, \partial \Omega_{j}\right) \rightarrow 0 \tag{12}
\end{gather*}
$$

and

$$
\begin{equation*}
U_{j}(x) \rightarrow 0 \text { as } j \rightarrow \infty \text { for each fixed } x \in \mathbb{R}^{n} \tag{13}
\end{equation*}
$$

If $u \in C\left(\mathbb{R}^{n}\right)$ is a positive viscosity subsolution of (8) with $\Omega=\mathbb{R}^{n}$, then we can apply Lemma 1 to conclude that

$$
u(x) \leq U_{j}(x) \text { whenever } x \in \Omega_{j} \text { for each } j
$$

Taking $j \rightarrow \infty$ and using (13) gives $u(x) \equiv 0$ which is a contradiction.
By using the degree one homogeneity of f, one can see that (6) can be written in the form of (8) with

$$
h(x, t)=\frac{n-2}{2} t^{p} \quad \text { and } \quad B(x, t, \mathbf{p})=-\frac{n}{n-2} t^{-1} \mathbf{p} \otimes \mathbf{p}+\frac{1}{n-2} t^{-1}|\mathbf{p}|^{2} I
$$

for $(x, t, \mathbf{p}) \in \Omega \times \mathbb{R}_{+} \times \mathbb{R}^{n}$. Therefore Lemma 1 applies to (6). Now we are ready to give the proof of Theorem 1 .

Proof of Theorem 1. Let B_{j} denote the ball of radius j with center at the origin. It suffices to show the existence of a sequence of positive functions $U_{j} \in C^{2}\left(B_{j}\right)$ satisfying (10), (11), (12) and (13) with $\Omega_{j}:=B_{j}$.

Step 1. Let $\alpha=\frac{2}{p-1}$ and consider the function

$$
\begin{equation*}
U(x)=\left(1-|x|^{2}\right)^{-\alpha} \quad \text { in } B_{1} \tag{14}
\end{equation*}
$$

We will show that $\lambda\left(-A^{U}\right)(x) \in \Gamma_{k} \subset \Gamma$ for all $x \in B_{1}$. Let $r=|x|$, then $U(x)=\varphi(r)$ with $\varphi(r)=\left(1-r^{2}\right)^{-\alpha}$. We need only to verify the claim at $x=(r, 0, \cdots, 0)$ for $0 \leq r<1$. Let us perform the computation as in [6]. By straightforward calculation one has

$$
D U(x)=\left(\varphi^{\prime}(r), 0, \cdots, 0\right) \quad \text { and } \quad D^{2} U(x)=\operatorname{diag}\left[\varphi^{\prime \prime}(r), \frac{\varphi^{\prime}(r)}{r}, \cdots, \frac{\varphi^{\prime}(r)}{r}\right]
$$

Therefore it follows from the definition of A^{U} that

$$
A^{U}(x)=\operatorname{diag}\left[\lambda_{1}^{U}(r), \lambda_{2}^{U}(r), \cdots, \lambda_{n}^{U}(r)\right]
$$

where

$$
\left\{\begin{array}{l}
\lambda_{1}^{U}(r)=-\frac{2}{n-2} \varphi^{-\frac{n+2}{n-2}} \varphi^{\prime \prime}(r)+\frac{2(n-1)}{(n-2)^{2}} \varphi^{-\frac{2 n}{n-2}}\left[\varphi^{\prime}(r)\right]^{2} \\
\lambda_{2}^{U}(r)=\cdots=\lambda_{n}^{U}(r)=-\frac{2}{n-2} \varphi^{-\frac{n+2}{n-2} \frac{\varphi^{\prime}(r)}{r}-\frac{2}{(n-2)^{2}} \varphi^{-\frac{2 n}{n-2}}\left[\varphi^{\prime}(r)\right]^{2}} .
\end{array}\right.
$$

But for the function φ it is easy to see that

$$
\varphi^{\prime}(r)=2 \alpha r[\varphi(r)]^{\frac{\alpha+1}{\alpha}} \quad \text { and } \quad \varphi^{\prime \prime}(r)=2 \alpha \varphi^{\frac{\alpha+2}{\alpha}}\left[1+(2 \alpha+1) r^{2}\right]
$$

Thus

$$
\left\{\begin{array}{l}
\lambda_{1}^{U}(r)=\frac{4 \alpha}{n-2} \varphi^{\frac{\alpha+2}{\alpha}-\frac{n+2}{n-2}}\left[-1+\frac{2 \alpha-(n-2)}{n-2} r^{2}\right], \\
\lambda_{l}^{U}(r)=\frac{4 \alpha}{n-2} \varphi^{\frac{\alpha+2}{\alpha}-\frac{n+2}{n-2}}\left[-1-\frac{2 \alpha-(n-2)}{n-2} r^{2}\right], \quad l=2, \cdots, n
\end{array}\right.
$$

Consequently

$$
\begin{equation*}
\lambda\left(-A^{U}\right)=\frac{4 \alpha}{n-2} \varphi^{\frac{\alpha+2}{\alpha}-\frac{n+2}{n-2}} \lambda(r) \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda(r)=\left(1-\frac{2 \alpha-(n-2)}{n-2} r^{2}, 1+\frac{2 \alpha-(n-2)}{n-2} r^{2}, \cdots, 1+\frac{2 \alpha-(n-2)}{n-2} r^{2}\right) \tag{16}
\end{equation*}
$$

Therefore we need only to show that $\lambda(r) \in \Gamma_{k}$ for all $0 \leq r<1$. It is obvious that $\lambda(0)=(1,1, \cdots, 1) \in \Gamma_{k}$. So by the convexity of Γ_{k} it suffices to show that $\lambda(1) \in \Gamma_{k}$. Note that $\lambda(1)$ is a positive multiple of the vector $\beta=\left(\frac{n-2}{\alpha}-1,1, \cdots, 1\right)$, it suffices to show $\beta \in \Gamma_{k}$.

It is well known that

$$
\operatorname{det}\left(t I+\operatorname{diag}\left[\frac{n-2}{\alpha}-1,1, \cdots, 1\right]\right)=\sum_{l=0}^{n} \sigma_{n-l}(\beta) t^{l}
$$

Therefore, by letting $g(t)$ denote the function on the left hand side in the above equation, we have

$$
\sigma_{l}(\beta)=\frac{1}{(n-l)!} \frac{d^{n-l} g}{d t^{n-l}}(0)
$$

Noting that

$$
g(t)=\left(t+\frac{n-2}{\alpha}-1\right)(t+1)^{n-1}=(t+1)^{n}+\left(\frac{n-2}{\alpha}-2\right)(t+1)^{n-1}
$$

We thus obtain

$$
\sigma_{l}(\beta)=\frac{(n-1) \cdots(l+1)}{(n-l)!}\left[n+\left(\frac{n-2}{\alpha}-2\right) l\right]>0
$$

for all $1 \leq l \leq k$ since $p>1+\max \left\{0, \frac{2(2 k-n)}{(n-2) k}\right\}$. The claim therefore follows.
Step 2. For each j consider the function

$$
\begin{equation*}
U_{j}(x)=C j^{\alpha}\left(j^{2}-|x|^{2}\right)^{-\alpha} \quad \text { in } B_{j} \tag{17}
\end{equation*}
$$

where C is a positive constant. Such functions have been used in $[9,7,2]$ to deal with problems similar to (1). We claim that one can choose a suitably large C independent of j such that for all j there hold

$$
\begin{equation*}
\lambda\left(-A^{U_{j}}\right) \in \Gamma_{k} \subset \Gamma \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(\lambda\left(-A^{U_{j}}\right)\right) \leq U_{j}^{p-\frac{n+2}{n-2}} \quad \text { in } B_{j} \tag{19}
\end{equation*}
$$

In fact, by writing $U_{j}(x)=C j^{-\alpha} U\left(\frac{x}{j}\right)$ we can see that

$$
\begin{equation*}
A^{U_{j}}(x)=C^{-\frac{4}{n-2}} j^{\frac{4 \alpha}{n-2}-2} A^{U}\left(\frac{x}{j}\right), \quad x \in B_{j} \tag{20}
\end{equation*}
$$

This gives (18) by the corresponding property for A^{U}. In order to show (19), by using the degree one homogeneity of f it follows from (15) and (20) that

$$
f\left(\lambda\left(-A^{U_{j}}(x)\right)\right)=\frac{4 \alpha}{n-2} C^{-\frac{4}{n-2}} j^{\frac{4 \alpha}{n-2}-2}\left[U\left(\frac{x}{j}\right)\right]^{\frac{\alpha+2}{\alpha}-\frac{n+2}{n-2}} f\left(\lambda\left(\frac{|x|}{j}\right)\right)
$$

where $\lambda(r)$ is defined by (16). Since $\{\lambda(r): 0 \leq r \leq 1\}$ is a compact subset of Γ_{k}, one can find a positive constant C_{0} such that $f(\lambda(r)) \leq C_{0}$ for $0 \leq r \leq 1$. Moreover, since $\alpha=\frac{2}{p-1}$, we have

$$
\frac{\alpha+2}{\alpha}=p \quad \text { and } \quad \frac{4 \alpha}{n-2}-2=-\left(p-\frac{n+2}{n-2}\right) \alpha
$$

Therefore

$$
\begin{aligned}
& {\left[U_{j}(x)\right]^{p-\frac{n+2}{n-2}}-f\left(\lambda\left(-A^{U_{j}}(x)\right)\right)} \\
& \quad \geq C^{p-\frac{n+2}{n-2}} j^{-\left(p-\frac{n+2}{n-2}\right) \alpha}\left[U\left(\frac{x}{j}\right)\right]^{p-\frac{n+2}{n-2}}-\frac{4 \alpha}{n-2} C_{0} C^{-\frac{4}{n-2}} j^{\frac{4 \alpha}{n-2}-2}\left[U\left(\frac{x}{j}\right)\right]^{p-\frac{n+2}{n-2}} \\
& \quad=C^{-\frac{4}{n-2}}\left[U\left(\frac{x}{j}\right)\right]^{p-\frac{n+2}{n-2}} j^{\frac{4 \alpha}{n-2}-2}\left[C^{p-1}-\frac{4 \alpha C_{0}}{n-2}\right]
\end{aligned}
$$

This gives (19) if we choose C such that $C^{p-1}>\frac{4 \alpha C_{0}}{n-2}$ which is always possible since $p>1$. The proof is complete.

Next we will apply the argument in the proof of Theorem 1 to show a nonexistence result of positive solutions for some Hessian equations in \mathbb{R}^{n}. There has been much work on Hessian equations, see e.g. $[3,10]$ and the references therein.

Theorem 2. Let $\Gamma \subset \mathbb{R}^{n}$ be an open convex symmetric cone with vertex at the origin satisfying $\Gamma_{n} \subset \Gamma \subset \Gamma_{1}$, let $f \in C(\bar{\Gamma})$ satisfy (2), (3) and (4). Then the equation

$$
\begin{equation*}
f\left(\lambda\left(D^{2} u\right)\right)=u^{p}, \quad \lambda\left(D^{2} u\right) \in \Gamma \text { in } \mathbb{R}^{n} \text { with } n \geq 1 \tag{21}
\end{equation*}
$$

has no positive continuous viscosity subsolution for any $p>1$.
Proof. Consider the function U in B_{1} defined by (14). Then the computation in the proof of Theorem 1 indicates that

$$
\lambda\left(D^{2} U(x)\right)=2 \alpha[U(x)]^{\frac{\alpha+2}{\alpha}} \tilde{\lambda}(r), \quad x \in B_{1}
$$

where $r=|x|$ and

$$
\widetilde{\lambda}(r)=\left(1+(2 \alpha+1) r^{2}, 1-r^{2}, \cdots, 1-r^{2}\right)
$$

Therefore $\lambda\left(D^{2} U(x)\right) \in \Gamma_{n} \subset \Gamma$ for $x \in B_{1}$.
Next consider the function U_{j} on B_{j} defined by (17). Recall that $U_{j}(x)=$ $C j^{-\alpha} U\left(\frac{x}{j}\right)$, we have for $x \in B_{j}$ that $\lambda\left(D^{2} U_{j}(x)\right) \in \Gamma$ and

$$
\lambda\left(D^{2} U_{j}(x)\right)=2 C \alpha j^{-\alpha-2}\left[U\left(\frac{x}{j}\right)\right]^{\frac{\alpha+2}{\alpha}} \widetilde{\lambda}\left(\frac{|x|}{j}\right)
$$

Therefore by the degree one homogeneity of f it follows that

$$
f\left(\lambda\left(D^{2} U_{j}(x)\right)\right)=2 C \alpha j^{-\alpha-2}\left[U\left(\frac{x}{j}\right)\right]^{\frac{\alpha+2}{\alpha}} f\left(\widetilde{\lambda}\left(\frac{|x|}{j}\right)\right)
$$

Since $\{\widetilde{\lambda}(r): 0 \leq r \leq 1\}$ is a compact subset of $\bar{\Gamma}$, we can choose a constant C_{0} such that $f(\widetilde{\lambda}(r)) \leq C_{0}$ for $0 \leq r \leq 1$. Therefore

$$
\begin{aligned}
-f\left(\lambda\left(D^{2} U_{j}(x)\right)\right) & +\left[U_{j}(x)\right]^{p} \\
& \geq-2 \alpha C_{0} C j^{-\alpha-2}\left[U\left(\frac{x}{j}\right)\right]^{\frac{\alpha+2}{\alpha}}+C^{p} j^{-p \alpha}\left[U\left(\frac{x}{j}\right)\right]^{p} \\
& =C j^{-p \alpha}\left[U\left(\frac{x}{j}\right)\right]^{p}\left\{C^{p-1}-2 C_{0} \alpha\right\}
\end{aligned}
$$

≥ 0
if we choose C so large that $C^{p-1} \geq 2 \alpha C_{0}$.
We have therefore constructed a sequence of positive functions $U_{j} \in C^{2}\left(B_{j}\right)$ satisfying (10), (11), (12) and (13). The proof is thus complete.

We remark that for the equation (21) with $p=0$ some Bernstein type theorems have been established for some specific function f in the literature. The wellknown theorem of Jörgen, Calabi and Pogorelov says that any convex solution of $\operatorname{det}\left(D^{2} u\right)=1$ in \mathbb{R}^{n} must be a quadratic polynomial. In [1] it is shown that any convex solution of $\sigma_{k}\left(\lambda\left(D^{2} u\right)\right)=1$ in \mathbb{R}^{n} satisfying a quadratic growth condition is a quadratic polynomial; similar result is established for the Hessian quotient equation $\frac{\sigma_{n}}{\sigma_{k}}\left(\lambda\left(D^{2} u\right)\right)=1$ in \mathbb{R}^{n} for some $1 \leq k \leq n-1$. Combining these facts with Theorem 2 it seems interesting to study the existence of positive solutions of (21) for $0<p \leq 1$.

We now consider some analogous problems in half Euclidean space \mathbb{R}_{+}^{n}. In [8] Lou and Zhu considered the problem

$$
\left\{\begin{array}{l}
\Delta u=u^{p} \quad \text { in } \mathbb{R}_{+}^{n} \tag{22}\\
u>0 \quad \text { in } \mathbb{R}_{+}^{n} \\
\frac{\partial u}{\partial x_{n}}=u^{q} \quad \text { on } \partial \mathbb{R}_{+}^{n}
\end{array}\right.
$$

where $\mathbb{R}_{+}^{n}:=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\}$, and showed that (22) has no solution if $p>1$ and $q>1$. We extend below this result to some fully nonlinear elliptic equations.

To set up our framework, let $\Omega \subset \mathbb{R}^{n}$ be an open set with smooth boundary $\partial \Omega \neq \emptyset$ and let ν be the unit inner normal to $\partial \Omega$. Let $\Sigma \subset \partial \Omega$ be an open subset of $\partial \Omega$. Then for any functions $h(x, t)$ and $g(x, t)$ defined on $\Omega \times(0, \infty)$ and $\Sigma \times[0, \infty)$ respectively, we may consider the problem

$$
\left\{\begin{array}{l}
f\left(\lambda\left(D^{2} u+B(x, u, D u)\right)\right)=h(x, u) \quad \text { in } \Omega \tag{23}\\
\lambda\left(D^{2} u+B(x, u, D u)\right) \in \Gamma \quad \text { in } \Omega \\
\frac{\partial u}{\partial \nu}=g(x, u) \quad \text { on } \Sigma
\end{array}\right.
$$

We say a function $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ is a classical subsolution of (23) if $u>0$ in Ω, u is a classical subsolution of (8) in Ω and $\frac{\partial u}{\partial \nu} \geq g(x, u)$ on Σ.

We also introduce the concept of viscosity subsolution for (23).

Definition 2. Let $u \in C(\Omega \cup \Sigma)$ be such that $u>0$ in Ω. We say u is a viscosity subsolution of (23) if u is a viscosity subsolution of (8) in Ω, and for each $\bar{x} \in \Sigma$ there is a neighborhood O of \bar{x} such that for any $\psi \in C^{1}(O \cap \bar{\Omega})$ with the properties

$$
\psi(\bar{x})=u(\bar{x}) \quad \text { and } \quad \psi \geq u \text { in } O \cap \bar{\Omega}
$$

there holds

$$
\frac{\partial \psi}{\partial \nu}(\bar{x}) \geq g(\bar{x}, \psi(\bar{x}))
$$

ThEOREM 3. Let $\Gamma \subset \mathbb{R}^{n}$ be an open convex symmetric cone with vertex at the origin satisfying $\Gamma_{n} \subset \Gamma \subset \Gamma_{1}$, let $f \in C(\bar{\Gamma})$ satisfy (2), (3) and (4), and let $g(x, t)$ be a function defined on $\partial \mathbb{R}_{+}^{n} \times[0, \infty)$ such that $g(x, t)>0$ for all $x \in \partial \mathbb{R}_{+}^{n}$ if $t>0$. If $n \geq 3$ and $\Gamma \subset \Gamma_{k}$ for some $1 \leq k \leq n$, then the problem

$$
\left\{\begin{array}{l}
f\left(\lambda\left(-A^{u}\right)\right)=u^{p-\frac{n+2}{n-2}} \quad \text { in } \mathbb{R}_{+}^{n} \tag{24}\\
\lambda\left(-A^{u}\right) \in \Gamma \quad \text { in } \mathbb{R}^{n} \\
\frac{\partial u}{\partial x_{n}}=g(x, u) \quad \text { on } \partial \mathbb{R}_{+}^{n}
\end{array}\right.
$$

has no positive continuous viscosity subsolution for $p>1+\max \left\{0, \frac{2(2 k-n)}{(n-2) k}\right\}$.
Proof. For each j consider the function U_{j} on B_{j} defined by (17). We have shown that U_{j} satisfies (18) and (19). Note that

$$
\frac{\partial U_{j}}{\partial x_{n}}=0 \quad \text { on } B_{j} \cap \partial \mathbb{R}_{+}^{n}
$$

Suppose (24) has a positive continuous viscosity subsolution u. We will derive a contradiction by showing that for each j

$$
\begin{equation*}
u(x) \leq U_{j}(x) \quad \text { whenever } x \in B_{j}^{+} \tag{25}
\end{equation*}
$$

where $B_{j}^{+}:=B_{j} \cap \mathbb{R}_{+}^{n}$. Suppose (25) is not true, then one can find a number $a>1$ such that $u \leq a U_{j}$ on B_{j}^{+}and $u(\bar{x})=a U_{j}(\bar{x})$ for some $\bar{x} \in \overline{B_{j}^{+}}$. Since $U_{j}(x) \rightarrow+\infty$ as $d\left(x, \partial B_{j}\right) \rightarrow 0$, we must have $\bar{x} \in B_{j} \cap \overline{\mathbb{R}_{+}^{n}}$. If $\bar{x} \in \partial \mathbb{R}_{+}^{n}$, then from Definition 2 we have

$$
0=\frac{\partial\left(a U_{j}\right)}{\partial x_{n}}(\bar{x}) \geq g\left(\bar{x}, a U_{j}(\bar{x})\right)>0
$$

which is absurd. Therefore \bar{x} must be in the interior of B_{j}^{+}. But this can be excluded again by imitating the proof of Lemma 1 .

By the same argument we can also establish the following nonexistence result.
THEOREM 4. Let $\Gamma \subset \mathbb{R}^{n}$ be an open convex symmetric cone with vertex at the origin satisfying $\Gamma_{n} \subset \Gamma \subset \Gamma_{1}$, let $f \in C(\bar{\Gamma})$ satisfy (2), (3) and (4), and let $g(x, t)$
be a function defined on $\partial \mathbb{R}_{+}^{n} \times[0, \infty)$ such that $g(x, t)>0$ for all $x \in \partial \mathbb{R}_{+}^{n}$ if $t>0$. Then the problem

$$
\left\{\begin{array}{l}
f\left(\lambda\left(D^{2} u\right)\right)=u^{p} \quad \text { in } \mathbb{R}_{+}^{n} \\
\lambda\left(D^{2} u\right) \in \Gamma \quad \text { in } \mathbb{R}_{+}^{n} \\
\frac{\partial u}{\partial x_{n}}=g(x, u) \quad \text { on } \partial \mathbb{R}_{+}^{n}
\end{array}\right.
$$

has no positive continuous viscosity subsolution if $p>1$.
REMARK 1. If we take $f(\lambda)=\sum_{i=1}^{n} \lambda_{i}$, then it follows from Theorem 3 (or Theorem 4) that problem (22) has no solution if $p>1$, without any condition on q. This improves the above mentioned result of Lou and Zhu.

Acknowledgement. Part of the work of the second author is supported by NSF-DMS-0401118.

REFERENCES

[1] Bao J. G., Chen J. Y., Guan B. and Ji M., Liouville property and regularity of a Hessian quotient equation, Amer. J. Math., 125:2 (2003), pp. 301-316.
[2] Brezis H., Semilinear equations in \mathbb{R}^{N} without condition at infinity, Appl Math Optim, 12 (1984), pp. 271-282.
[3] Caffarelli L., Nirenberg L. and Spruck J., The Dirichlet problem for nonlinear secondorder elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math., 155:3-4 (1985), pp. 261-301.
[4] Li A. B. and Li Y. Y., On some conformally invariant fully nonlinear equations, Comm. Pure Appl. Math., 56 (2003), pp. 1416-1464.
[5] Li A. B. and Li Y. Y., On some conformally invariant fully nonlinear equations, Part II: Liouville, Harnack and Yamabe, Acta Math., to appear.
[6] Li Y. Y., Conformally invariant fully nonlinear elliptic equations and isolated singularities, J. Funct. Anal., to appear.
[7] Loewner C., Nirenberg L., Partial differential equations invariant under conformal or projective transformations, Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp. 245-272. Academic Press, New York, 1974.
[8] Lou Y. AND Zhu M., Classifications of nonnegative solutions to some elliptic problems, Differential Integral Equations, 12 (1999), pp. 601-612.
[9] Osserman, R., On the inequality $\Delta u \geq f(u)$, Pacific J. Math., 7 (1957), pp. 1641-1647.
[10] Trudinger N. S. and Wang X. J., Hessian measures, II Ann. of Math., 150:2 (1999), pp. 579604.
[11] Viaclovsky J., Conformal geometry, contact geometry, and the calculus of variations, Duke Math. J., 101:2 (2000), pp. 283-316.

[^0]: *Received October 5, 2005; accepted for publication November 10, 2005.
 ${ }^{\dagger}$ Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903, USA (qjin@math.rutgers.edu; yyli@math.rutgers.edu; hyxu@math.rutgers.edu).

