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It is well known that
Au > u” in R" (1)

has no positive solution if p > 1. For a proof, see for example Osserman [9], Loewner
and Nirenberg [7] and Brezis [2]. We extend this result to some fully nonlinear elliptic
equations. Some related problems will also be studied.

Let us fix some notations. For each 1 < k < n let

gk()\): Z )‘il"')\ika A:()\la"',An)ER",

1<ip < <ip<n

denote the kth elementary symmetric function, and let I'y, denote the connected com-
ponent of {A € R™ : ox(A\) > 0} containing the positive cone {A € R™ : A\; >
0,---, A, > 0}. It is well known that I'y = {A € R" : 0y(A\) > 0,1 <1 < k}. Let
S™*™ denote the set of n x n real symmetric matrices. For any A € S™*™ we denote
by A(A) the eigenvalues of A.

Throughout this note we will assume that I' C R™ is an open convex symmetric
cone with vertex at the origin satisfying I';, C I' C I';. Moreover, we also assume that
f is a continuous function defined on T' verifying the following properties:

f is homogeneous of degree one on I’ (2)
f is symmetric in A = (Ay,--- ,Ay) €T, (3)

and
f is monotonically increasing in each variable on T'. (4)

Given a smooth positive function u defined in R™ with n > 3, we may introduce

2 n+2 2n 2n 2 2n
i D24+ — P Du® Du— ———u 3| Dul?l, (5
—u u+(n_2)2u u® Du (n_2)2u |Du|“I, (5)

where I is the n x n identity matrix, and Du and D?u denote the gradient and the
Hessian of u respectively. This operator appears in the recent work on conformally
invariant elliptic equations and the og-Yamabe problems in conformal geometry, see
for example [4, 11].
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First we have

THEOREM 1. Let I' C R™, n > 3, be an open convex symmetric cone with vertex
at the origin satisfying T,, C T C T'y, and let f € C(T) satisfy (2), (3) and (4). If
T' DTy for some 1 < k <mn, then the problem

FO(=A")) =uP~ 72, A(—A") €T in R" (6)

2(2k—n) }

has no positive continuous viscosity subsolution if p > 1 + max {O, =

The definition of viscosity subsolutions appeared in Theorem 1 will be given below.
In [4, 5] Li and Li established some Liouville type theorems for the fully nonlinear
elliptic equation

FO(AY) =uP~ 52, A(A") €T and u>0in R™. (7)
They showed that for —oo < p < 242 problem (7) has no solution u € C?*(R"), while
for p = 22 any solution u € C*(R™) of (7) must be of the form

n—2

a
u(z) (1+b2|x—a_:|2> , T €

for some Z € R™ and some positive constants a and b satisfying some suitable condi-
tions. See also [4, 5] for earlier works on the subject. Theorem 1 indicates the sharp
contrast between (6) and (7).

The proof of Theorem 1, in the spirit of [2], is based on a comparison principle.
Let us work on slightly more general framework. Suppose €2 is an open set in R".
Then for any mapping B(-,-,-) : @ x Ry x R® — S§"*" and any positive function
h(z,t) defined on Q x R4, we may consider the problem

fNMD?*u+ B(x,u, Du))) = h(z,u), N(D*u+ B(x,u, Du)) € T in Q. (8)

A positive function u € C?() is said to be a classical subsolution of (8) if A\(D?*u +
B(z,u,Du)) € T and

fND?*u + B(x,u, Du))) > h(z,u) in Q.

Similarly we can define the classical supersolutions and classical solutions for (8).
In the following we will recall the well-known definition of viscosity solutions for

(8).
DEFINITION 1. We say a positive function u € C() is a viscosity subsolution of

(8) if for each T € Q) there exists an & > 0 such that for any 1 € C?(B.(Z)) with the
properties ¥(T) = u(Z) and

¥ >0, ¥ >u and N(D?* + B(x,2p, D)) €T in B.(Z),
there holds
FND*(2) + B(z,9(x), DY(z)))) > h(z,9(2)).

Similarly one can define viscosity supersolution of (8). A positive function u €
C(Q) is called a wviscosity solution of (8) if u is both a viscosity subsolution and a
viscosity supersolution of (8).
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It is straightforward to show that if u € C?(Q) is a positive function satisfying
AN(D?u + B(z,u, Du)) € T in Q, then u is a viscosity subsolution of (8) if and only if
u is a classical subsolution of (8).

We have the following simple comparison principle.

LEMMA 1. Let Q C R™ be an open bounded set, and let t — t~1h(x,t) be strictly
increasing on (0,00) for each x € 2. Suppose that u € C(Q) is a positive viscosity
subsolution of (8) in Q and that v € C?(Q)NC(Q) is a positive classical supersolution
of (8) with N\(D*v +t~'B(x,tv,tDv)) € T for each t > 1. Suppose also that for each
x €Q and &, p € R™ the function

t —t~H(B(z,t,tp)&, &) 9)
is non-increasing on (0,00). If u < v on 99, then u < v on Q.

Proof. Suppose the conclusion is not true. Since u is bounded from above and
v is positive on Q, there must exist @ > 1 such that u < av on Q and u(z) = av(z)
for some z € Q. Since v < v on 9 and a > 1, Z must be an interior point of . By
assumption,

A (D*(av) + B(z,av, D(av))) = aX (D*v + a~ ' B(z, av,aDv)) € T.

Since u is a viscosity subsolution of (8), we have by using the degree one homogeneity
of f that

af (A (D*v(z) + a ' B(z,av(z),aDv(2)))) > h(Z,av(z)).

By using (9) and the monotonicity of f, noting that v is a classical supersolution of
(8), we have

f (A (D*v+a 'B(z,av,aDv))) < f (A (D*v + B(z,v, Dv))) < h(z,v).
Therefore ah(Z,v(Z)) > h(Z,av(Z)). This clearly contradicts the condition that the
function ¢t — t~1h(Z,t) is strictly increasing on (0, 00). O

Now we are in a position to indicate the idea of showing nonexistence of positive
viscosity subsolutions of (8) when Q = R™. To this end, let us pick a sequence of
bounded open sets {{2;} such that

HCcQC---CcQyC--- and UQj:R”,
j=1

Suppose we can construct a sequence of positive functions {U;} with U; € C%(Q;)
such that

A (D*U; +t7'B(x,tU;,tDU;)) € T in Q; for each t > 1, (10)
fFIND?U; + B(z,Uj;, DU;))) < h(z,U;) in €y, (11)
Uj(x) — +oo uniformly as d(z,9Q;) — 0 (12)

and

Uj(x) — 0 as j — oo for each fixed z € R". (13)
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If w € C(R™) is a positive viscosity subsolution of (8) with Q@ = R", then we can apply
Lemma 1 to conclude that

u(xz) < Uj(x) whenever z € Q; for each j.

Taking j — oo and using (13) gives u(x) = 0 which is a contradiction.
By using the degree one homogeneity of f, one can see that (6) can be written in
the form of (8) with

n—2

h(z,t) =

1
t* and B(z,t,p)= —%flp Xp+ mt71|l)|2[

for (z,t,p) € 2 x Ry x R™. Therefore Lemma 1 applies to (6). Now we are ready to
give the proof of Theorem 1.

Proof of Theorem 1. Let B; denote the ball of radius j with center at the origin.
It suffices to show the existence of a sequence of positive functions U; € C?*(B;)
satisfying (10), (11), (12) and (13) with Q; := B;.

Step 1. Let a = % and consider the function

Uz)=(1-[z[*)"" in By. (14)

We will show that A\(—AY)(x) € Ty C T for all z € By. Let r = |z|, then U(x) = o(r)
with p(r) = (1 — r?)~*. We need only to verify the claim at = (r,0,---,0) for
0 <r < 1. Let us perform the computation as in [6]. By straightforward calculation
one has

DU() = (&/(r),0,++- ,0) and D2U(x) = diag | " (), 2 ... £

r r
Therefore it follows from the definition of AV that
AV (@) = diag [X] (r), A5 (r), -, AL ()]
where
MW (r) = =250 720" (r) + 2o [ ()
N () == M (1) = =250 72 20— 27 [ ()2

But for the function ¢ it is easy to see that

a+1

o'(r) =2ar[p(r)] « and ¢"(r) = 204(,0%2 1+ (2a+ 1)r2] )

Thus
at2  nt2 e
W (r) = o™i 214 2oz 2],
W) = jloge™s i |1 2SR =0
Consequently

A-AY) = S ), (15)
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where

o= (i-

Therefore we need only to show that A(r) € 'y, for all 0 < r < 1. It is obvious that
A(0) =(1,1,---,1) € I't. So by the convexity of I'y, it suffices to show that A(1) € I'.
Note that A(1) is a positive multiple of the vector 8 = ("T*Q -1,1,---, 1), it suffices
to show § € T'.

It is well known that

_9 n
det (tl—l—diag {"— 1,1, 1]) = o (B
(6%
=0

Therefore, by letting ¢(¢) denote the function on the left hand side in the above
equation, we have

20— (n—2)

2
1
n—2 USRS

20— (n—2) 4 20— (n—2) 4
T 1+ - (16)

1 dnflg

ou(B) = (n— 1) din=t

(0).
Noting that
o) = 1+

We thus obtain

) = =L oy (222 2) ] 5

n—2

«

- 1> t+D)" =4+ 1)" + <”T_2 - 2> (t+1)" L.

fora111§1§ksmcep>1+max{0,%

Step 2. For each j consider the function

}. The claim therefore follows.

Uj(z) = Cj* (i — |=[*)™" in By, (17)

where C' is a positive constant. Such functions have been used in [9, 7, 2] to deal with
problems similar to (1). We claim that one can choose a suitably large C' independent
of j such that for all j there hold

M=AY)eT, cT (18)
and
_nt2
fFA=AY)) <U ™7 in B, (19)

In fact, by writing U;(xz) = Cj~*U (%) we can see that
AVi(z) = C~wzjai24U (5> , T €B,. (20)
J

This gives (18) by the corresponding property for AV. In order to show (19), by using
the degree one homogeneity of f it follows from (15) and (20) that

a+2 n+2

10 = e o (2)] 0T (),
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where A(r) is defined by (16). Since {A(r) : 0 < r < 1} is a compact subset of Ty,
one can find a positive constant Cy such that f(A(r)) < Cy for 0 < r < 1. Moreover,

since a = 25, we have
a+2 4o n+2
=p and —— —2=—|p-— a.
o n—2 n—2
Therefore
_ nt2 .
[U; @)% = f (A=A (2)))
_nd2 o (poni2), AN == 4o 4 oda 2\ 1P 22
> P2 PTa=z)e |y 5 —n_2COC m—3 -2 U Z
__4 €T pi% 4o _ _ 40(00
=C 2 |U[Z G-z 2 loL 1 )
J n—2

This gives (19) if we choose C such that CP~1 > % which is always possible since
p > 1. The proof is complete. O

Next we will apply the argument in the proof of Theorem 1 to show a nonexistence
result of positive solutions for some Hessian equations in R™. There has been much
work on Hessian equations, see e.g. [3, 10] and the references therein.

THEOREM 2. Let I' C R™ be an open convex symmetric cone with vertex at the
origin satisfying T'y, C T C Ty, let f € CI) satisfy (2), (3) and (4). Then the
equation

FND?*u)) =uP, X(D?*u) €T in R™ withn > 1 (21)

has no positive continuous viscosity subsolution for any p > 1.

Proof. Consider the function U in B; defined by (14). Then the computation in
the proof of Theorem 1 indicates that

a+2 >~

/\(DQU(:C)) =2a[U(z)] = A(r), z€ DBy,
where r = |z| and
X(T) = (1+(2a+1)r2,1—r27... 71_742)'

Therefore A(D?U(z)) € T, C T for = € By.
Next consider the function U; on B; defined by (17). Recall that U;(z) =

cj—U (%), we have for x € B; that A(D?U;(x)) € I and
a+2

X (D2U(x)) = 2Caj 2 [U G)] T (M) .

J

Therefore by the degree one homogeneity of f it follows that

oo e[ (5)] 7 (63)
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Since {X(r) :0 < r <1} is a compact subset of I', we can choose a constant Cy such
that f(A(r)) < Cp for 0 < r < 1. Therefore

—f (A (D?Uj(x))) + [U; ()]

(a0
_Qjm[U<§>r{Cpl—2Qm}

>0

if we choose C so large that CP~! > 2aCj.
We have therefore constructed a sequence of positive functions U; € C?(B;)
satisfying (10), (11), (12) and (13). The proof is thus complete. O

We remark that for the equation (21) with p = 0 some Bernstein type theo-
rems have been established for some specific function f in the literature. The well-
known theorem of Jérgen, Calabi and Pogorelov says that any convex solution of
det(D?u) = 1 in R™ must be a quadratic polynomial. In [1] it is shown that any
convex solution of o (A(D?u)) = 1 in R™ satisfying a quadratic growth condition is a
quadratic polynomial; similar result is established for the Hessian quotient equation
‘;—:(A(DQu)) =11in R™ for some 1 < k <n — 1. Combining these facts with Theorem
2 it seems interesting to study the existence of positive solutions of (21) for 0 < p < 1.

We now consider some analogous problems in half Euclidean space R’}. In [8] Lou
and Zhu considered the problem

Au=uP inR7,

>0 inR?, (22)
88;71 =u? on JRY,

where R} := {z = (2/,2,) € R" : 2, > 0}, and showed that (22) has no solution
if p > 1and ¢ > 1. We extend below this result to some fully nonlinear elliptic
equations.

To set up our framework, let 2 C R™ be an open set with smooth boundary
00 # 0 and let v be the unit inner normal to 9Q. Let ¥ C 09 be an open subset of
9. Then for any functions h(x,t) and g(z,t) defined on © x (0,00) and X x [0, c0)
respectively, we may consider the problem

f (/\ (D2u + B(z,u, Du))) = h(z,u) in Q,

A (Dzu + B(z,u, Du)) el inQ, (23)

% =g(z,u) on X.
We say a function u € C%(Q) N C*(Q) is a classical subsolution of (23) if u > 0 in Q,
u is a classical subsolution of (8) in Q and 2% > g(z,u) on X.

We also introduce the concept of viscosity subsolution for (23).
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DEFINITION 2. Let u € C(QUX) be such that u > 0 in Q. We say u is a viscosity
subsolution of (23) if u is a viscosity subsolution of (8) in 2, and for each T € 3 there
is a neighborhood O of T such that for any ¢ € C1(O N Q) with the properties

(@) =u(@) and Y >uin ONQ
there holds

9

(@) 2 (@, 0(2))

THEOREM 3. Let I' C R™ be an open conver symmetric cone with vertex at the
origin satisfying T, CT C Ty, let f € C(T) satisfy (2), (3) and (4), and let g(x,t) be
a function defined on ORY x [0,00) such that g(x,t) > 0 for all x € ORY ift > 0. If
n >3 and I' C Ty for some 1 < k <n, then the problem

B
JAM(=AY)) =uP" 7= inRY,
A—A") el inR”, (24)

aam—“n =g(z,u) on IR

2(2k—n) }

has no positive continuous viscosity subsolution for p > 1 + max {O, =20k

Proof. For each j consider the function U; on B; defined by (17). We have shown
that U; satisfies (18) and (19). Note that

o,
ge. =0 on By NORL.

Suppose (24) has a positive continuous viscosity subsolution u. We will derive a
contradiction by showing that for each j

u(z) < Uj(xr) whenever z € B;f, (25)

where B;F := Bj NR’. Suppose (25) is not true, then one can find a number a > 1
such that v < aU; on B;f and u(Z) = aU;(Z) for some T € B;-r. Since Uj(x) — 400
as d(z,0B;) — 0, we must have z € B; NR}.. If z € 9R", then from Definition 2 we
have

8(CLUJ')

0= oxy,

(z) > g(z,aU;(z)) >0
which is absurd. Therefore Z must be in the interior of B;f. But this can be excluded
again by imitating the proof of Lemma 1. O

By the same argument we can also establish the following nonexistence result.

THEOREM 4. Let I' C R™ be an open convex symmetric cone with vertex at the
origin satisfying T'y C T' C Ty, let f € C(I') satisfy (2), (3) and (4), and let g(z,t)
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be a function defined on OR’} x [0,00) such that g(x,t) > 0 for all x € OR" if t > 0.
Then the problem

fMD?u)) =u? in R%
AD?*u) €T in RY,

8’9;1 =g(z,u) on IR}

has no positive continuous viscosity subsolution if p > 1.

REMARK 1. If we take f(N) = >0, N, then it follows from Theorem 3 (or

1=

Theorem 4) that problem (22) has no solution if p > 1, without any condition on q.
This improves the above mentioned result of Lou and Zhu.
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