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STRUCTURE OF SOLUTIONS TO A CHEMOTAXIS SYSTEM

IN ONE SPACE DIMENSION
∗

TOSHITAKA NAGAI†

Abstract. We consider a chemotaxis system consisting of one parabolic equation and one
ordinary differential equation in one space dimension with a logarithmic chemotactic sensitivity
function and the exponential growth of dynamics for the chemical attractant. The structure of
positive solutions is studied from the viewpoint of infinite-dimensional dynamical systems.
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1. Introduction. We consider positive solutions to the following system of dif-
ferential equations

pt = {px − p(logw)x}x (0 < x < 1, t > 0), (1.1)

wt = (p− µ)w (0 < x < 1, t > 0), (1.2)

where µ is a positive constant. On this system we impose no-flux boundary conditions

px − p(logw)x = 0 (x = 0, 1, t > 0) (1.3)

and initial conditions

p|t=0 = p0, w|t=0 = w0 (0 < x < 1). (1.4)

The system is a mathematical model describing chemotaxis, that is, the directed
movement of some cells in response to gradients of a chemical attractant. In the
system p(x, t) stands for the cell density of some species at place x and time t, and
w(x, t) the concentration of a chemical attractant. Keller and Segel[13] proposed
mathematical models of chemotaxis in 1970 by continuum mechanical considerations,
and in 1997 Othmer and Stevens[21] derived such mathematical models of chemotaxis
by using the principle of reinforced random walks. We remark that the system



















pt = D{px − p(logw)x}x (0 < x < ℓ, t > 0),

wt = λpw − µw (0 < x < ℓ, t > 0),

px − p(logw)x = 0 (x = 0, ℓ, t > 0),

p|t=0 = p0, w|t=0 = w0 (0 < x < ℓ),

where D, ℓ, λ, µ are positive constants, is transformed to the system (1.1)–(1.4) by
the following rescaling

x

ℓ
7→ x,

D

ℓ2
t 7→ t,

ℓ2λ

D
p 7→ p, w 7→ w,

ℓ2µ

D
7→ µ.
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We mention that there is no diffusion term present in (1.2), and this is in contrast
to the usual chemotaxis systems

{

ut = ∇ · (∇u− uχ(v)∇v),
vt = D∆v + g(u, v).

The absence of the diffusion coefficient D may make differences in the structure of
solutions. For example, in the case where χ(v) = 1 and g(u, v) = u− v, every positive
solution under Neumann boundary conditions in one space dimension is bounded
under the condition D > 0 (see [8, 20]), but the finite-time blowup of solutions may
occur under the condition D = 0 (see [15, 17]). For the study of the usual chemotaxis
systems, we refer to [1, 2, 3, 6, 7, 9, 10, 11, 12, 16, 18, 19, 24, 25, 26] and references
therein.

Othmer and Stevens[21] studied the system (1.1)–(1.4) numerically, and got the
numerical observations indicating the possibility of finite-time blowup. Under the
boundary condition px = wx = 0, Levine and Sleeman[14] constructed two kinds of
exact solutions supporting the numerical observations of Othmer and Stevens. One
exists globally, and another one blows up in finite time. Yang, Chen and Liu[27]
also constructed the exact solutions by a different method from that in [14]. The
exact solutions show that the behavior of solutions to (1.1)–(1.4) depends strongly on
the initial data. For the study related to (1.1)–(1.4), we refer to [4, 15, 22, 23] and
references therein.

The no-flux boundary condition (1.3) follows from the condition

px(x, t) = 0 (x = 0, 1, t > 0), w0x(x) = 0 (x = 0, 1),

because (1.2) gives the representation of w(x, t)

w(x, t) = w0(x)e
R

t

0
{p(x,s)−µ}ds,

which together with the condition above implies wx(x, t) = 0 at x = 0, 1. In this
paper, we study the structure of positive solutions to (1.1), (1.2) under the following
boundary condition which is stronger than the boundary condition (1.3):

px(x, t) = wx(x, t) = 0 (x = 0, 1, t > 0). (1.5)

The plan of the paper is as follows. In Section 2, we discuss the behavior of positive
solutions through the exact solutions given in [14, 27], and give another method of
constructing an exact solution than that in [27]. In Section 3, we study the behavior
of positive solutions from the viewpoint of infinite-dimensional dynamical systems,
especially in terms of stable and unstable manifolds.

2. Exact solutions. Let (P (x),W (x)) be a positive solution to the stationary
problem of (1.1)–(1.3):







0 = {Px − P (logW )x}x, 0 = (P − µ)W (0 < x < 1),

Px − P (logW )x = 0 (x = 0, 1).

It is easily seen that (P (x),W (x)) is given by

P (x) ≡ µ, W (x) ≡ ν (ν is any positive constant).
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For any positive constants α and β, the spatially homogeneous solution (p, w) to
(1.1)–(1.4) with p0(x) ≡ α, w0(x) ≡ β is given by

(p, w) = (α, βe(α−µ)t).

These exact solutions show that the stationary solutions (µ, ν) are unstable, and that
the large-time behavior of solutions to (1.1)–(1.4) depends on the initial data.

Concerning spatially inhomogeneous solutions, Levine and Sleeman[14] gave the
following exact solutions under the boundary condition (1.5):

p(x, t) = π2
[

1 − 2NcεeNcπ
2t εeNcπ

2t − cos(Nπx)

1 − 2εeNcπ2t cos(Nπx) + ε2e2Ncπ2t

]

,

w(x, t) = e−µt
eπ

2t

1 − 2εeNcπ2t cos(Nπx) + ε2e2Ncπ2t
,

where 0 < ε < 1, N ∈ N and c is the root of λ2 +Nλ− 1 = 0. If c is taken as

c = (−N +
√

N2 + 4)/2,

then

lim
t→T

p(x∗, t) = lim
t→T

π2
(

1 +
2NcεeNcπ

2t

1 − εeNcπ2t

)

= ∞,

lim
t→T

w(x∗, t) = lim
t→T

e−µt

1 − εeNcπ2t
= ∞,

where

0 ≤ x∗ ≤ 1, cos(Nπx∗) = 1, T =
−1

cNπ2
log ε.

If c is taken as

c = (−N −
√

N2 + 4)/2,

then the exact solution above is global in time and

p(x, t) → π2, w(x, t)e−(π2−µ)t → 1 as t→ ∞.

To construct the exact solutions in [14], they put ψ(x, t) = logw(x, t)+µt to transform
(1.1), (1.2) with the boundary condition (1.5) into the system

{

ψtt − ψxxt + (ψxψt)x = 0 (0 < x < 1, t > 0),

ψx = 0 (x = 0, 1, t > 0),
(2.1)

and then they seek a solution ψ(x, t) in the form

ψ(x, t) = t+
∞
∑

n=1

ane
cnNt cos(nNπx) (2.2)

for fixed N ∈ N and c real.
Yang, Chen and Liu[27] also constructed two kinds of spatially inhomogeneous

exact solutions under the boundary condition (1.5). One exists globally, and another
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one blows up in finite time. They used (2.1) to construct the exact solutions by
function transformations. The exact solutions are as follows:

p(x, t) = π2
[

α− Ak1e
k1π

2t +Bk2e
k2π

2t ± 2c1
√
ABec1π

2t cos(Nπx)

Aek1π2t +Bek2π2t ± 2
√
ABec1π2t cos(Nπx)

]

, (2.3)

w(x, t) = e−µt
eαπ

2t

Aek1π2t +Bek2π2t ± 2
√
ABec1π2t cos(Nπx)

, (2.4)

where α > 0, A > 0, B > 0, c1 < α, N ∈ N and

k1 = c1 +N
√
α− c1, k2 = c1 −N

√
α− c1.

If A > B > 0, α− c1 > N2(
√
A+

√
B)2/(

√
A−

√
B)2, then

p(x, t) → (α − k1)π
2(> 0), w(x, t)e−{(α−k1)π2−µ}t → 1

A
(t→ ∞).

If B > A > 0, c1 < α, then p(x, t) and w(x, t) blow up at t = T , where

T =
1

2Nπ2
√
α− c1

log
B

A
.

These exact solutions show that the behavior of spatially inhomogeneous solutions
is sensitive to the initial data.

We give another method of constructing the exact solutions mentioned above than
that in Yang, Chen and Liu[27]. To do so, for positive solutions (p(x, t), w(x, t)) to
(1.1), (1.2), (1.4) with the boundary condition (1.5) we define (ϕ(x, t), ψ(x, t)) by

ϕ(x, t) = p(x, t) − p0, ψ(x, t) = logw(x, t) − logw0 − (p0 − µ)t.

Here, f =
∫ 1

0 f(x) dx for f ∈ L1(0, 1). Then, (ϕ(x, t), ψ(x, t)) satisfies the system

ϕt − ϕxx + p0ψxx = −(ϕψx)x (0 < x < 1, t > 0), (2.5)

ψt − ϕ = 0 (0 < x < 1, t > 0), (2.6)

with Neumann boundary conditions

ϕx = ψx = 0 (x = 0, 1, t > 0). (2.7)

We first construct an exact solution to the system (2.5)–(2.7) in the following
form

(

ϕ(x, t)
ψ(x, t)

)

=

∞
∑

n=1

(

dn(t)
en(t)

)

χnN (x), (2.8)

where dn(t), en(t) are smooth functions, χn(x) =
√

2 cos(
√
λnx), λn = (nπ)2 and

N ∈ N. The idea of seeking a solution in the form above comes from [15] where the
existence of finite-time blowup solutions and global solutions to a chemotaxis system
related to (2.5)–(2.7) are studied. We substitute (2.8) into (2.5), (2.6). Then,

∂t

(

ϕ
ψ

)

+

(

−∂2
x p0∂

2
x

−1 0

)(

ϕ
ψ

)

=

∞
∑

n=1

(

∂tdn + λnN (dn − p0en)
∂ten − dn

)

χnN (x),
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and as shown in [15]

−(ϕψx)x =
π2N2

√
2

∞
∑

n=1

(

n
n−1
∑

m=1

mdn−mem

+

∞
∑

m=1

n{(n+m)dmen+m −mdn+mem}
)

χnN (x).

Hence,

∂tdn + λnN (dn − p0en) =
π2N2

√
2
n

n−1
∑

m=1

mdn−mem

+
π2N2

√
2

∞
∑

m=1

n{(n+m)dmen+m −mdn+mem},
(2.9)

∂ten − dn = 0. (2.10)

We look for dn(t), en(t) satisfying en(t) 6= 0 for all n ≥ 1 and

nd1en − dne1 = 0 for all n ≥ 2. (2.11)

The condition (2.11) means that the term for m = 1 in the infinite series on the
right-hand side of (2.9) vanishes. Let us show that (2.11) gives the relation

(n+m)dmen+m −mdn+mem = 0 for all m,n ≥ 1. (2.12)

In fact, (2.11) implies

dn
en

= n
d1

e1
for all n ≥ 2.

Using this relation, we have

(n+m)dmen+m −mdn+mem = emen+m

{

(n+m)
dm
em

−m
dn+m

en+m

}

= emen+m

{

(n+m)m
d1

e1
−m(n+m)

d1

e1

}

= 0.

Hence, by (2.9) and (2.12), for all n ≥ 1 the following relation holds.

∂tdn + λnN (dn − p0en) =
π2N2

√
2
n
n−1
∑

m=1

mdn−mem.

From this relation and (2.10) it follows that en(n ≥ 1) satisfies

∂2
t en + λnN∂ten − λnNp0en =

π2N2

√
2
n

n−1
∑

m=1

mem∂ten−m. (2.13)
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By (2.10) and (2.11), we have nen∂te1 − e1∂ten = 0 for all n ≥ 2, from which it
follows that

|en(t)| = c̃n|e1(t)|n for all n ≥ 1,

where c̃n are positive constants and c̃1 = 1. By (2.13) with n = 1, e1(t) satisfies

∂2
t e1 + λN∂te1 − λNp0e1 = 0,

which implies that

e1(t) = ĉ+1 e
ρ+

N
t + ĉ−1 e

ρ−
N
t for constants ĉ+1 , ĉ

−
1 ,

where

ρ±N =
−λN ±

√

λ2
N + 4p0λN
2

.

Assuming that (ϕ(x, t), ψ(x, t)) decays to zero as t→ −∞, we see

e1(t) = ĉ+1 e
ρ+

N
t, ĉ+1 6= 0.

Hence,

en(t) = cne
nρ+

N
t.

Here, c1 = ĉ+1 and cn 6= 0 for all n ≥ 2. To determine cn (n ≥ 2), we substitute

en(t) = cne
nρ+

N
t (n ≥ 1) into (2.13) and get

cn

{

(nρ+
N )2 + λnNnρ

+
N − λnNp0

}

enρ
+

N
t

=
π2N2

√
2
n

n−1
∑

m=1

m(n−m)cn−mcmρ
+
Ne

nρ+
N
t.

Noting

(nρ+
N )2 + λnNnρ

+
N − λnNp0 = N2(n− 1)n2π2ρ+

N ,

we have

(n− 1)ncn =
1√
2

n−1
∑

m=1

m(n−m)cn−mcm.

Putting ncn =
√

2εn, we have

εn =
1

n− 1

n−1
∑

m=1

εn−mεm.

From this relation, we have εn = εn1 , ε1 = c1/
√

2, and cn =
√

2εn1/n. Therefore,

en(t) =

√
2

n
εn1 e

nρ+
N
t, dn(t) =

√
2εn1ρ

+
Ne

nρ+
N
t.
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For simplicity we put ε = ε1, ρ = ρ+
N . By the expression of ψ(x, t),

ψ(x, t) =

∞
∑

n=1

en(t)χnN (x) = 2

∞
∑

n=1

1

n
εnenρt cos(nNπx).

Consider the case c1 = ĉ+1 > 0, that is, ε > 0. Under the condition εeρt < 1, we have

2

∞
∑

n=1

1

n
εnenρt cos(nNπx) =

∞
∑

n=1

1

n

{

en(log ε+ρt+iNπx) + en(log ε+ρt−iNπx)
}

= − log(1 − 2εeρt cos(Nπx) + ε2e2ρt).

Hence,















ψ(x, t) = − log(1 − 2εeρt cos(Nπx) + ε2e2ρt),

ϕ(x, t) = ∂tψ(x, t) = −2ερeρt
εeρt − cos(Nπx)

1 − 2εeρt cos(Nπx) + ε2e2ρt
.

(2.14)

In the case c1 = ĉ+1 < 0, replacing ε by −ε (ε > 0), we have an exact solution
(ϕ(x, t), ψ(x, t)) with a plus sign of the term cos(Nπx) in (2.14).

By p(x, t) = p0 + ϕ(x, t), w(x, t) = exp(logw0 + (p0 − µ)t + ψ(x, t)), we get an
exact solution (p(x, t), w(x, t)) to (1.1), (1.2), (1.4), (1.5) given by















p(x, t) = p0 − 2ερeρt
εeρt ± cos(Nπx)

1 ± 2εeρt cos(Nπx) + ε2e2ρt
,

w(x, t) = elogw0
e(p0−µ)t

1 ± 2εeρt cos(Nπx) + ε2e2ρt
.

(2.15)

Here, p0 and logw0 can be taken as any positive constants, ε is any constant with
0 < ε < 1, and 0 ≤ x ≤ 1, t < −(log ε)/ρ, ρ = ρ+

N . To show the positivity of p(x, t),
we rewrite p(x, t) as

p(x, t) = p0 − ρ+ ρ
1 − ε2e2ρt

1 ± 2εeρt cos(Nπx) + ε2e2ρt
. (2.16)

By noting εeρt < 1 and

p0 − ρ =
2p0 + (Nπ)2 −

√

(Nπ)4 + 4p0(Nπ)2

2
> 0,

the positivity of p(x, t) is obtained.
We remark that the exact blowup solutions given by (2.3), (2.4) are derived from

the exact solutions given by (2.15). In fact, for given B > A > 0 and α > c1 we put

ε =

√

A

B
, p0 = {(α− c1) +N

√
α− c1}π2, logw0 = log

1

B
.

Then,

ρ+
N = Nπ2

√
α− c1.
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Put k1 = c1 +N
√
α− c1 and k2 = c1 −N

√
α− c1. Calculations give

1

π2
p(x, t) = (α − k2) − (k1 − k2)

Ae(k1−k2)π2t ±
√
ABe(c1−k2)π2t cos(Nπx)

B ± 2
√
ABe(c1−k2)π2t cos(Nπx) +Ae(k1−k2)π2t

= α− Ak1e
k1π

2t +Bk2e
k2π

2t ± 2c1
√
ABec1π

2t cos(Nπx)

Bek2π2t ± 2
√
ABec1π2t cos(Nπx) +Aek1π2t

and the expression of w(x, t) given by (2.4).
Next, we consider the case where (ϕ(x, t), ψ(x, t)) decays to zero as t→ ∞. In this

case, we see e1(t) = ĉ−1 e
ρ−

N
t. In the same way as the exact blowup solutions, we have

the exact global solutions in time expressed by (2.15), where ρ = ρ−N < 0, 0 < ε < 1.
The positivity of p(x, t) holds for every 0 ≤ x ≤ 1, t ≥ 0 under the condition

p0 − ρ−N > (Nπ)2
(1 + ε

1 − ε

)2

. (2.17)

In fact, by (2.16) with ρ = ρ−N and the relation p0 − ρ−N = (ρ−N )2/λN we have

p(x, t) ≥ (p0 − ρ−N ) + ρ−N
1 + ε

1 − ε
= (p0 − ρ−N) −Nπ

√

p0 − ρ−N
1 + ε

1 − ε

=
√

p0 − ρ−N

(

√

p0 − ρ−N −Nπ
1 + ε

1 − ε

)

> 0.

The exact solutions given by (2.3), (2.4), which exist globally in time, are also derived
from the exact solutions given by (2.15) as follows. For given A > B > 0 and
α− c1 > N2(

√
A+

√
B)2/(

√
A−

√
B)2 we put

ε =

√

B

A
, p0 = {(α− c1) −N

√
α− c1}π2, logw0 = log

1

A
.

Then,

ρ−N = −Nπ2
√
α− c1.

By putting k1 = c1 + N
√
α− c1 and k2 = c1 − N

√
α− c1, calculations similar to

those in the case of the exact blowup solutions give the expression of p(x, t), w(x, t)
given by (2.3), (2.4) respectively. We remark that the condition (2.17) is equivalent
to the condition α − c1 > N2(

√
A +

√
B)2/(

√
A −

√
B)2, by taking into account

p0 − ρ−N = (α− c1)π
2.

Our method of constructing the exact solutions gives the reason why the way of
seeking exact solutions in the form (2.2) works well, and shows that the exact solutions
of [27] are derived from our exact solutions as mentioned above. It was pointed out
in [15] that the exact solutions of [27] are derivable from those in [14] by translations
in time or change of scale, and change of scale formulas were not given explicitly.

By the arguments above, we know that we can not construct finite-time blowup
solutions and global solutions of (2.5)–(2.7), i.e., those of (1.1)–(1.3), in the form
(2.8) with dn(0) = nλan, en(0) = an except for the exact solutions above, under the

condition that the sequence {(d̂n(t), ên(t))} = {(nλanenλt, anenλt)} satisfies (2.13),
i.e.,

∂2
t ên + λnN∂tên − λnNp0ên =

π2N2

√
2
n

n−1
∑

m=1

mêm∂tên−m,
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because (ϕ̂(x, t), ψ̂(x, t)) =
∑∞
n=1(d̂n(t), ên(t))χnN (x) is the exact solution of (2.5)–

(2.7) and (ϕ(x, t), ψ(x, t)) = (ϕ̂(x, t), ψ̂(x, t)) by virtue of the condition (2.11) for

{(d̂n(t), ên(t))} and the uniqueness of solutions. This means that the technique used
in [15] for showing the existence of finite-time blowup solutions and global solutions
for a chemotaxis system related to (2.5)–(2.7) is not applicable to the existence of
those to our system except for the exact solutions. In the next section we apply
invariant manifold theory to studying the asymptotic behavior of solutions to (1.1),
(1.2), (1.4), (1.5) as well as the existence of global solutions.

3. Stable and unstable manifolds. Throughout this section, we consider pos-
itive solutions to (1.1), (1.2), (1.4), (1.5).

We begin with mentioning the local existence as well as the uniqueness of positive
solutions for the positive initial data (p0(x), w0(x)). Consider the problem











pt = (px − pψx)x, ψt = p− p0 (0 < x < 1, t > 0),

px = ψx = 0 (x = 0, 1, t > 0),

p|t=0 = p0, ψ|t=0 = logw0 − logw0 (0 < x < 1).

(3.1)

In what follows, as in the previous section we put

f =

∫ 1

0

f(x) dx for f ∈ L1(0, 1).

For a solution (p(x, t), ψ(x, t)) to (3.1) satisfying p(x, t) > 0 (0 ≤ x ≤ 1, t ≥ 0), we
get a positive solution (p(x, t), w(x, t)) to (1.1), (1.2), (1.4), (1.5) by putting

w(x, t) = elogw0+(p0−µ)t+ψ(x,t).

The arguments of [4, 22] can be applied to (3.1) to getting the local existence in
time and the uniqueness for classical positive solutions in a Hölder space, [17, 22]
for solutions in the L2-framework and [15] for solutions in a sequence space which is
continuously and injectively imbedded in L1(0, 1) ×W 1,1(0, 1).

Proposition 3.1. Let Tm be the maximal existence time of the positive solution
(p(x, t), w(x, t)) to (1.1), (1.2), (1.4), (1.5). If Tm is finite, then

lim sup
t→Tm

‖p(t)‖L∞ = ∞, lim sup
t→Tm

‖w(t)‖L∞ = ∞.

This proposition means that both p(x, t) and w(x, t) blow up at the same time
Tm. Proposition 3.1 was shown in [27] for classical solutions, and can be shown for
solutions in the L2-framework by applying the arguments of [17].

To discuss the behavior of spatially inhomogeneous positive solutions
(p(x, t), w(x, t)), we first give the following lemma.

Lemma 3.1. The following relation

p(t) = p0, logw(t) = logw0 + (p0 − µ)t

holds.

Proof. Integrating Eq. (1.1) on the interval (0, 1) in x yields that

d

dt

∫ 1

0

p(x, t) dx = 0,
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which implies the identity on p.
Next, from Eq. (1.2) we have

(logw)t = p− µ.

Integrating this equation on (0, 1) in x gives the identity on w.

Proposition 3.2. It holds that
(i) ‖w(t)‖L1 ≥ elogw0+(p0−µ)t,
(ii) if p0 > µ, then lim

t→Tm

‖w(t)‖L∞ = ∞.

Proof. Since the function s 7→ log s is concave in s > 0, Jensen’s inequality gives

log ‖w(t)‖L1 = log

∫ 1

0

w(x, t) dx ≥
∫ 1

0

logw(x, t) dx = logw(t).

By the identity on w in Lemma 3.1, this relation gives the first assertion. The second
assertion follows from the first assertion in the case of Tm = ∞, and from Proposition
3.1 in the case of Tm <∞.

For the further study of the behavior of solutions, let us define (ϕ(x, t), ψ(x, t))
by

ϕ(x, t) = p(x, t) − p0, ψ(x, t) = logw(x, t) − logw0 − (p0 − µ)t. (3.2)

Then, (ϕ, ψ) satisfies the system

∂t

(

ϕ
ψ

)

+

(

−∂2
x p0∂

2
x

−1 0

)(

ϕ
ψ

)

=

(

−∂x(ϕ∂xψ)
0

)

(3.3)

with Neumann boundary conditions

∂xϕ = ∂xψ = 0 (x = 0, 1) (3.4)

and initial conditions

ϕ|t=0 = p0 − p0, ψ|t=0 = logw0 − logw0. (3.5)

We remark that the following identity

∫ 1

0

ϕdx =

∫ 1

0

ψ dx = 0

holds by Lemma 3.1.
Let X be a Banach space defined by

X = L2
0(0, 1) × (H2

N (0, 1) ∩ L2
0(0, 1))

with the norm

|Φ|X = ‖ϕ‖L2 + ‖∂2
xψ‖L2 for Φ =

(

ϕ
ψ

)

∈ X,
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where

L2
0(0, 1) = {ϕ| ϕ ∈ L2(0, 1),

∫ 1

0

ϕdx = 0 },

H2
N (0, 1) = {ϕ| ϕ ∈ H2(0, 1), ∂xϕ = 0 at x = 0, 1 }.

Define a closed operator A in the Banach space X by

A =

(

−∂2
x p0∂

2
x

−1 0

)

with the domain D(A) = (H2
N ∩ L2

0(0, 1))2.

Theorem 3.1 of [17] gives the characterization of the spectrum of the following operator

(

−∂2
x ν∂2

x

−1 a

)

for positive constants ν, a,

and this theorem is also valid for a = 0. Applying Theorem 3.1 of [17] as ν = p0 and
a = 0, we have the following theorem on the spectrum σ (A) of the operator A.

Theorem 3.1. It holds that
(i) σ (A) = {λ+

n |n ≥ 1} ∪ {λ−n |n ≥ 1} ∪ {−p0}, where λ±n are eigenvalues of A
given by

λ+
n =

λn +
√

λ2
n + 4p0λn
2

> 0, λ−n =
−2p0λn

λn +
√

λ2
n + 4p0λn

< 0,

λn = (nπ)2,
(ii) λ+

n → ∞, λ−n → −p0 (n→ ∞),
(iii) the null spaces N(λ±n −A) of λ±n −A are given by

N(λ+
n −A) =

{

c

(

λ+
n

−1

)

χn
∣

∣ c ∈ C

}

,

N(λ−n −A) =
{

c

(

−λ−n
1

)

χn
∣

∣ c ∈ C

}

,

where χn(x) =
√

2 cos(nπx).

The operator A is sectorial in X . Hence, the fractional powers of A1 := A + bI
with Reσ(A1) > 0 are well defined, and the spaces Xβ = D(Aβ1 ) with the graph norm

|Φ|β = |Aβ1Φ|X are defined for β ≥ 0. For 1/2 < β < 1, the following estimate

‖ϕ‖H1 + ‖ψ‖H2 ≤ Const.|Φ|β for Φ =

(

ϕ
ψ

)

∈ Xβ (3.6)

holds (see Proposition 3.2 of [17]). From this estimate it follows that the function F
defined by

F (Φ) =

(

−∂x(ϕ∂xψ)
0

)

for Φ =

(

ϕ
ψ

)

∈ Xβ (
1

2
< β < 1)

satisfies

|F (Φ1) − F (Φ2)|β ≤ C(|Φ1|β + |Φ2|β)|Φ1 − Φ2|β for Φ1,Φ2 ∈ Xβ,
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where C is a constant independent of Φ1,Φ2. With the notation above, the system
(3.3)–(3.5) can be expressed in the form







dΦ

dt
(t) +AΦ(t) = F (Φ(t)) (t > 0),

Φ|t=0 = Φ0,
(3.7)

where

Φ(t) =

(

ϕ(t)
ψ(t)

)

, Φ0 =

(

p0 − p0

logw0 − logw0

)

.

To apply invariant manifold theory to (3.7), we put

σ(A) = σ+ ∪ σ−, σ+ = {λ+
n |n ≥ 1}, σ− = {λ−n |n ≥ 1} ∪ {−p0}.

Let P+ (resp. P−) be the projection associated with σ+ (resp. σ−), and X+ =
P+X, X− = P−X . Then,

X = X+ ⊕X− (the direct sum of X+ and X−).

We put Xβ
+ = D(Aβ+) for the restriction of A to X+. Note that the origin (0, 0) in

X is the unique steady state of (3.7) and unstable. Applying Theorem 5.2.1 of [5] to
(3.7) gives the following proposition.

Proposition 3.3. There exists ρ > 0 such that the following holds:
(i) There exists the stable manifold Ms included in {Φ ∈ Xβ||Φ|β ≤ ρ} (1/2 <

β < 1) which is tangent to Xβ
+ at the origin. Further, if Φ0 ∈ Ms, then the

solution Φ(t; Φ0) of (3.7) with the initial function Φ0 exists for all t > 0 and
satisfies

|Φ(t; Φ0)|β → 0 exponentially as t→ ∞.

(ii) There exists the unstable manifold Mu included in {Φ ∈ Xβ ||Φ|β ≤ ρ} (1/2 <
β < 1) which is tangent to X− at the origin. Further, if Φ0 ∈ Mu, then the
solution Φ(t; Φ0) of (3.7) with the initial function Φ0 exists for all t < 0 and
satisfies

|Φ(t; Φ0)|β → 0 as t→ −∞.

(iii) If |Φ(t; Φ0)|β ≤ ρ for all t ≥ t0 (resp. t ≤ t1), then Φ(t; Φ0) ∈ Ms (resp.
Φ(t; Φ0) ∈ Mu) for all t ≥ t0 (resp. t ≤ t1).

Theorem 3.2. For the stable manifold Ms in Proposition 3.3 it holds that
(i) if (p0 − p0, logw0 − logw0) ∈ Ms, then

(p(t) − p0, logw(t) − logw0 − (p0 − µ)t) ∈ Ms for all t > 0

and

‖p(t) − p0‖H1 + ‖ logw(t) − logw0 − (p0 − µ)t‖H2 → 0, (3.8)

‖w(t)e−(p0−µ)t − elogw0‖H2 → 0 (3.9)

exponentially as t→ ∞,
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(ii) there exists ρ1 > 0 such that if

‖p(t) − p0, logw(t) − logw0 − (p0 − µ)t‖H2 ≤ ρ1 for all t ≥ t0, (3.10)

then

(p(t) − p0, logw(t) − logw0 − (p0 − µ)t) ∈ Ms for all t ≥ t0.

Proof. Let Φ(t) = t(ϕ(t), ψ(t)) be the solution to (3.7) corresponding to the initial
function Φ(0) = t(p0 − p0, logw0 − logw0) ∈ Ms. Define (p(t), w(t)) by

p(t) = ϕ(t) + p0, w(t) = eψ(t)+(p0−µ)t+logw0 .

Then, (p(t), w(t)) is the solution to (1.1), (1.2), (1.4), (1.5) corresponding to the initial
function (p0, w0), and by Proposition 3.3,

(ϕ(t), ψ(t)) = (p(t) − p0, logw(t) − logw0 − (p0 − µ)t) ∈ Ms for all t ≥ 0,

|t(ϕ(t), ψ(t))|β → 0 exponentially as t→ ∞. (3.11)

By (3.6) and (3.11), we have (3.8). Using the fact that H1(0, 1) ⊂ C[0, 1], H2(0, 1) ⊂
C1[0, 1] and these injections are continuous, by (3.8) we have (3.9).

Next, let us show (ii). We note that

|Ψ|1 ≤ C(‖φ1‖H2 + ‖φ2‖H2) for Ψ =

(

φ1

φ2

)

∈ X1,

where C is a constant independent of Ψ. Take ρ1 > 0 such that Cρ1 ≤ ρ, where ρ is the
one in Proposition 3.3. Then, if (3.10) is satisfied, then |Φ(t)|β ≤ |Φ(t)|1 ≤ Cρ1 ≤ ρ
which implies Φ(t) ∈ Ms for all t ≥ t0 by Proposition 3.3.

Theorem 3.2 shows that the large-time behavior of (p(x, t), w(x, t)) is completely
determined by p0, logw0 as well as the existence of global solutions in time, under the
condition (p0 − p0, logw0 − logw0) ∈ Ms.

Concerning the unstable manifold, we have the following.

Theorem 3.3. For the unstable manifold Mu in Proposition 3.3 it holds that
(i) if (p0 − p0, logw0 − logw0) ∈ Mu, then

(p(t) − p0, logw(t) − logw0 − (p0 − µ)t) ∈ Mu for all t < 0

and

‖p(t) − p0‖H1 + ‖ logw(t) − logw0 − (p0 − µ)t‖H2 → 0,

‖w(t)e−(p0−µ)t − elogw0‖H2 → 0

as t→ −∞,
(ii) there exists ρ2 > 0 such that if

‖p(t) − p0, logw(t) − logw0 − (p0 − µ)t‖H2 ≤ ρ2 for all t ≤ t1,

then

(p(t) − p0, logw(t) − logw0 − (p0 − µ)t) ∈ Mu for all t ≤ t1.
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We next study the behavior of the positive solution (p(x, t), w(x, t)) as t → Tm,
where Tm is the maximal existence time of (p(x, t), w(x, t)), under the condition

p0 6= p0, (p0 − p0, logw0 − logw0) ∈ Mu. (3.12)

Let ψ(x, t) be the one defined by (3.2). Then, (p(x, t), ψ(x, t)) satisfies



















pt = (px − pψx)x, ψt = p− p0 (0 < x < 1, t > 0),

px = ψx = 0 (x = 0, 1, t > 0),

p|t=0 = p0, ψ|t=0 = logw0 − logw0 (0 < x < 1).

(3.13)

Lemma 3.2. The identity

d

dt
W (p(t), ψ(t)) +Q(p(t), ψ(t)) = 0 (3.14)

holds, where

W (p, ψ) =

∫ 1

0

(p log p− pψ) dx,

Q(p, ψ) =

∫ 1

0

|p− p0|2 dx+ 4

∫ 1

0

eψ|(e−ψ/2√p)x|2 dx.

Under the condition (3.12), by Theorem 3.3 we have

lim
t→−∞

{‖p(t)− p0‖H1 + ‖ψ(t)‖H2} = 0. (3.15)

Using Lemma 3.2 and (3.15) yields the following.

Lemma 3.3. Under the condition (3.12), it holds that
(i) Q(p(t), ψ(t)) > 0 for every t ∈ (−∞, Tm),
(ii) the function t 7→W (p(t), ψ(t)) is decreasing in t and

W (p(t), ψ(t)) → p0 log p0 (t → −∞). (3.16)

Proof. Since Q(p(t), ψ(t)) ≥ 0, by (3.14) the function t 7→ W (p(t), ψ(t)) is non-

increasing. By (3.15) and
∫ 1

0 ψ(t) dx = 0, we have (3.16).
Suppose that Q(p(t0), ψ(t0)) = 0 for some t0. Then,

p(t0) = p0,

∫ 1

0

|ψx(t0)|2 dx = 0.

By ψ(t0) = constant and
∫ 1

0 ψ(t0) dx = 0, we have ψ(t0) = 0. In the case of t0 < 0,
the uniqueness of solutions to (3.13) yields that p(t) = p0, ψ(t) = 0 (t0 < t <
Tmax). This gives a contradiction to p(0) = p0 6= p0. In the case of t0 > 0, since
t 7→W (p(t), ψ(t)) is non-increasing, combining W (p(t0), ψ(t0)) = p0 log p0 with (3.16)
yields that W (p(t), ψ(t)) = p0 log p0 (−∞ < t ≤ t0). Hence, we have Q(p(t), ψ(t)) =
0 (−∞ < t < t0), and then p(t) = p0, ψ(t) = 0 (−∞ < t ≤ t0) which gives a
contradiction to p(0) = p0 6= p0. Therefore, Q(p(t), ψ(t)) > 0 for every t < Tm, and
then t 7→W (p(t), ψ(t)) is decreasing by (3.14).
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Theorem 3.4. Under the condition (3.12), the solution (p(x, t), w(x, t)) to (1.1),
(1.2), (1.4), (1.5) with the initial function (p0, w0) satisfies

lim sup
t→Tm

{‖p(t) − p0‖H1 + ‖w(t)e−(p0−µ)t − elogw0‖L∞} = ∞. (3.17)

Proof. If Tmax < ∞, then (3.17) holds by Proposition 3.1. Hence, we consider

only the case of Tm = ∞. To show (3.17) with Tm = ∞, by we−(p0−µ)t = elogw0+ψ it
suffices to show that

lim sup
t→∞

{‖p(t)‖H1 + ‖ψ+(t)‖L∞} = ∞, (3.18)

where ψ+ = max{ψ, 0}.
Assume that (3.18) is not true. Then,

sup
t≥0

{‖p(t)‖H1 + ‖ψ+(t)‖L∞} <∞. (3.19)

Integrating (3.14) in time t and using (3.16), we have

∫ t

−∞

Q(p(s), ψ(s)) ds = −W (p(t), ψ(t)) + p0 log p0. (3.20)

Noting that

sup
t≥0

∫ 1

0

pψ dx ≤ sup
t≥0

∫ 1

0

pψ+ dx <∞,

we see that supt≥0(−W (p(t), ψ(t))) < ∞ by (3.19), and that
∫∞

−∞Q(p(s), ψ(s)) ds is
finite by (3.20). Hence,

∫ ∞

−∞

‖p(s) − p0‖2
L2 ds <∞.

Since supt≥0 ‖p(t)‖H1 <∞ and H1(0, 1) is compactly imbedded in C[0, 1], there exists
{tn} such that

tn → ∞, ‖p(tn) − p0‖C[0,1] → 0 (n → ∞). (3.21)

By
∫ 1

0
ψ(t) dx = 0 and (3.19), we note that

sup
t≥0

∫ 1

0

|ψ(t)| dx = 2 sup
t≥0

∫ 1

0

ψ+(t) dx <∞.

Using (3.21), we then have

∫ 1

0

p(x, tn)ψ(x, tn) dx

=

∫ 1

0

{p(x, tn)ψ(x, tn) − p0ψ(x, tn)} dx→ 0 (n→ ∞).
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Combining this with (3.21) implies

W (p(tn), ψ(tn)) → p0 log p0 (n→ ∞).

Hence, by (3.20) we have

∫ ∞

−∞

Q(p(s), ψ(s)) ds = lim
n→∞

∫ tn

−∞

Q(p(s), ψ(s)) ds = 0.

This is a contradiction to
∫∞

−∞Q(p(s), ψ(s)) ds > 0.

We mention a relation between the exact solutions (p(x, t), w(x, t)) given by (2.3),
(2.4) and the invariant manifolds Ms,Mu mentioned above.

Consider the first case where A > B > 0, α− c1 > N2(
√
A+

√
B)2/(

√
A−

√
B)2.

Then, (p(x, t), w(x, t)) satisfies

p(x, t) → (α− k1)π
2(> 0), w(x, t)e−{(α−k1)π2−µ}t → 1

A
(t→ ∞).

Put p0(x) = p(x, 0) and w0(x) = w(x, 0). We show that

p0 = (α − k1)π
2, (3.22)

logw0 = log
1

A
. (3.23)

To show (3.22), we use Lemma 3.1 and limt→∞ p(x, t) = (α− k1)π
2 and get

p0 = lim
t→∞

∫ 1

0

p(x, t) dx = (α− k1)π
2.

To show (3.23), we rewrite w0(x) in the form

w0(x) =
1

A(1 + ε2 ± 2ε cos(Nπx))
, ε =

√

B

A
< 1

and get

∫ 1

0

logw0(x) dx = log
1

A
−
∫ 1

0

log(1 + ε2 ± 2ε cos(Nπx)) dx.

Since
∫ 1

0

log(1 + ε2 ± 2ε cos(Nπx)) dx = 0,

we obtain (3.23).
Next, by taking into account (3.22) and (3.23), it follows from the expression of

the exact solution (p(x, t), w(x, t)) that

p(x, t) − p0 = π2B(k1 − k2)e
−(k1−k2)π2t ± 2(k1 − c1)

√
ABe−(k1−c1)π

2t cos(Nπx)

A+Be−(k1−k2)π2t ± 2
√
ABe−(k1−c1)π2t cos(Nπx)

,

logw(x, t) − logw0 − (p0 − µ)t

= log
A

A+Be−(k1−k2)π2t ± 2
√
ABe−(k1−c1)π2t cos(Nπx)

.
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By k1 − k2 = 2N
√
α− c1 and k1 − c1 = N

√
α− c1,

‖p(t) − p0, logw(t) − logw0 − (p0 − µ)t)‖H2 → 0 (t→ ∞).

Hence, Theorem 3.2 implies that

(p(t) − p0, logw(t) − logw0 − (p0 − µ)t) ∈ Ms for all t >> 1.

Consider the second case where B > A > 0, c1 < α. We also see that

p0 = (α− k2)π
2, logw0 = log

1

B
.

Since

‖p(t) − p0, logw(t) − logw0 − (p0 − µ)t)‖H2 → 0 (t→ −∞),

Theorem 3.3 implies that

(p(t) − p0, logw(t) − logw0 − (p0 − µ)t) ∈ Mu for all t << −1.
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