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A MONOTONE METHOD FOR FOURTH ORDER PERIODIC
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Abstract. In this paper, we show that the monotone iterative technique yields two monotone
sequences that converge uniformly to extremal solutions of fourth order periodic boundary value
problems and periodic solutions of functional differential equations.
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1. Introduction. The method of upper and lower solutions coupled with the
monotone iterative has been applied successfully to obtain existence results and ap-
proximation of solutions for periodic boundary value problems for first order and
second order ordinary differential equations (see [1] and references therein).

Some attempts have been made to extend these techniques to study periodic
boundary value problems and periodic solutions of first order and second order func-
tional differential equations (FDEs). For example, see [2-6, 10] and references therein.
As far as the authors know, the method of upper and lower solutions coupled with
the monotone iterative technique has rarely been applied in the study of periodic
boundary value problems and periodic solutions of higher order functional differential
equations.

In this paper, we consider the fourth order periodic boundary value prob-
lem(PBVP)

{

y(4)(t) = f(t, y(t), y(w(t))), t ∈ I = [0, T ],
y(i)(0) = y(i)(T ), i = 0, 1, 2, 3;

(1.1)

here f ∈ C(I × R2, R), w ∈ C(I, [a, b]), and a, b are constants such that [0, T ] ⊂
[a, b], T > 0.

We also consider in this paper T−periodic solutions of the functional differential
equation(FDE)

y(4)(t) = f(t, y(t), y(w(t))), t ∈ R; (1.2)

here f ∈ C(R3, R), f(t, u, v) = f(t + T, u, v), T > 0, w(t) = t − τ(t), τ ∈
C(R, R), τ(t) = τ(t + T ).
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Note that (1.1) and (1.2) include ordinary, retarded and advanced differential
equations.

In [7] and [8], Cabada and Lois obtained a maximum principle for the fourth-
order operator L4,αu = u(4)−αu with periodic boundary conditions, and they proved
the existence of solutions and the validity of the monotone method in the presence of
lower and upper solutions for the periodic boundary problem

{

u(4)(t) = F (t, u(t)), 0 ≤ t ≤ 1,

u(i)(0) = u(i)(1), i = 0, 1, 2, 3.

Recently, Jiang and Kong [9] studied the positivity of the Green’s function for −u(4)+
αu = 0 with periodic boundary conditions, and they established existence criteria for
multiple positive solutions using a fixed point theorem in cones. Note other higher
order results can be found in [11–15].

In this paper, Section 2 is devoted to the maximum principle, which is the key
to developing the monotone technique. Section 3 discusses the monotone method for
(1.1) and Section 4 discusses the monotone method for (1.2).

2. Maximum principle. To prove the validity of the monotone iterative tech-
nique, we shall use a maximum principle. In the proof of our maximum principle
below, we will use a lemma of Alberto Cabada [8].

Lemma 2.1.[8] If the linear problem

z(n)(t) + Mz(t) = 0,

z(i)(a) − z(i)(b) = 0, i = 0, · · · , n − 2,

z(n−1)(a) − z(n−1)(b) = 1,

has a unique solution r ∈ C∞[a, b], the problem

u(n)(t) + Mu(t) = σ(t) ∈ L1(I),

u(i)(a) − u(i)(b) = λi, i = 0, · · · , n − 1,

has a unique solution u given by the expression

u(t) =

∫ b

a

Gn(t, s)σ(s)ds +
n−1
∑

i=0

r(i)(t)λn−1−i,

where

Gn(t, s) =

{

r(a + t − s), a ≤ s ≤ t ≤ b,

r(b + t − s), a ≤ t ≤ s ≤ b.

Next, we define

G(t, m) = G(|t − s|, m) :=







f(t−s)+g(t−s)

4m3(e
mT

2 −e
−

mT

2 )2(cos mT−1)
, 0 ≤ s ≤ t ≤ T,

f(T+t−s)+g(T+t−s)

4m3(e
mT

2 −e
−

mT

2 )2(cos mT−1)
, 0 ≤ t ≤ s ≤ T,

(2.1)
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where

f(t) := (e
mT

2 − e−
mT

2 )2(sin mt + sinm(T − t)), (2.2)

and

g(t) := (emt − e−mt + em(T−t) − e−m(T−t))(1 − cosmT ). (2.3)

By similar arguments as in [9], we obtain the following result.

Lemma 2.2. If m ∈ (0, 2π
T

), then the function G(t,m) in the interval [0, T ] attains

its maximum at t=0 and its minimum at t = T
2 .

From Lemma 2.2, the greatest value of m for which G(t, m) is negative in [0, T ]
will be the smallest positive zero of the expression

f(0) + g(0) = (emT − e−mT )(1 − cosmT ) + (e
mT

2 − e−
mT

2 )2 sin mT.

This expression is zero if and only if either m = 2πn
T

, n ∈ N or

tan
mT

2
= − tanh

mT

2
. (2.4)

The smallest positive root of (2.4) will be denoted by k. This is the unique root in
(0, 2π

T
).

Let m ∈ (0, k) ⊂ (0, 2π
T

). Then G(0, m) < 0.

Remark. When T = 2π, the smallest positive root k of (2.4) takes a value of
0.7528094 with an error of ±10−7(see[8, 9]).

Theorem 2.1. Let y ∈ E = C([a, b], R) ∩ C4([0, T ], R) and M = m4, m ∈
(0, k), N > 0 such that

(i) y(4)(t) − My(t) − Ny(w(t)) ≥ 0, t ∈ I,

(ii) y(i)(0) = y(i)(T ), i = 0, 1, 2,

y(3)(0) ≥ y(3)(T ),
(iii) y(0) = y(t), t ∈ [a, 0]

⋃

[T, b],
and
(iv) N

M
(1

δ
− 1) < 1, here δ =

(emT −1) cos mT

2
+(emT +1) sin mT

2

emT +2e
mT

2 sin mT

2
−1

,

where k is the smallest positive root of the equation tan mT
2 = − tanh mT

2 , and w ∈
C(I, [a, b]).
Then y(t) ≤ 0, ∀t ∈ [a, b].

Proof. There exists ξ ∈ [0, T ] such that

y(ξ) = min
t∈[0,T ]

y(t) = min
t∈[a,b]

y(t),

and so

y(4)(t) − My(t) − Ny(ξ) ≥ 0, t ∈ I,

y(i)(0) = y(i)(T ), i = 0, 1, 2,

y(3)(0) ≥ y(3)(T ).
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Let σ(t) = y(4)(t) − My(t) − Ny(ξ) ≥ 0 and λ = y(3)(0) − y(3)(T ) ≥ 0.
Then we have

y(4)(t) − My(t) − Ny(ξ) = σ(t), t ∈ I,

y(i)(0) = y(i)(T ), i = 0, 1, 2,

y(3)(0) = y(3)(T ) + λ.

Let u(t) = y(t) + N
M

y(ξ), and so

u(4)(t) − Mu(t) = σ(t), t ∈ I,

u(i)(0) = u(i)(T ), i = 0, 1, 2,

u(3)(0) = u(3)(T ) + λ.

Let r(t) be the unique solution (r ∈ C∞[0, T ]) to the problem

z(4)(t) − Mz(t) = 0,

z(i)(0) = z(i)(T ), i = 0, 1, 2,

z(3)(0) = z(3)(T ) + 1.

From Lemma 2.1, we obtain

u(t) =

{

∫ T

0
G(0, s, m)σ(s)ds + λr(0), t ∈ [a, 0]

⋃

[T, b],
∫ T

0
G(t, s, m)σ(s)ds + λr(t), t ∈ [0, T ],

(2.5)

where m = 4
√

M, and G(t, s, m), f(t), g(t) are defined above Lemma 2.2 and

r(t) =
f(t) + g(t)

4m3(e
mT

2 − e−
mT

2 )2(cosmT − 1)
. (2.6)

From Lemma 2.2, a direct calculation shows that

r(
T

2
) ≤ G(t, s, m) ≤ r(0) < 0; (2.7)

here

r(
T

2
) =

emT + 2e
mT

2 sin mT
2 − 1

4m3(1 − emT ) sin mT
2

and

r(0) =
(emT − 1) cos mT

2 + (emT + 1) sin mT
2

4m3(1 − emT ) sin mT
2

< 0.
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From (2.5) and (2.7) we have

r(
T

2
)(

∫ T

0

σ(s)ds + λ) ≤ u(t) ≤ r(0)(

∫ T

0

σ(s)ds + λ), ∀t ∈ [a, b]. (2.8)

Since u(t) = y(t) + N
M

y(ξ), we have from (2.8) that

y(ξ) =
M

M + N
u(ξ) ≥ M

M + N
r(

T

2
)(

∫ T

0

σ(s)ds + λ).

On the other hand, from (2.8) we also have

y(t) = u(t) − N

M
y(ξ)

≤ r(0)(

∫ T

0

σ(s)ds + λ) − N

M
y(ξ)

≤ (

∫ T

0

σ(s)ds + λ)(r(0) − N

M + N
r(

T

2
))

= (

∫ T

0

σ(s)ds + λ)r(
T

2
)(δ − N

M + N
);

here δ = r(0)

r( T

2
)

=
(emT −1) cos mT

2
+(emT +1) sin mT

2

emT +2e
mT

2 sin mT

2
−1

. Now from assumption (iv), we obtain

N
M+N

< δ. Thus y(t) ≤ 0, ∀t ∈ [a, b].

In the same way as in Theorem 2.1, we obtain the following result.

Theorem 2.2. Let y ∈ X = {y ∈ C4(R, R) : y(t) = y(t+T )} and M = m4, m ∈
(0, k), N > 0 such that

(i) y(4)(t) − My(t) − Ny(w(t)) ≥ 0, t ∈ R,

and
(ii) N

M
(1

δ
− 1) ≤ 1, here δ =

(emT −1) cos mT

2
+(emT +1) sin mT

2

emT +2e
mT

2 sin mT

2
−1

,

where k is defined in Theorem 2.1 and w(t) = t − τ(t), τ ∈ C(R, R), τ(t) = τ(t +
T ), T > 0. Then y(t) ≤ 0, ∀t ∈ R.

3. Monotone method for PBVPs of fourth order FDE. In order to develop
the monotone iterative technique for (1.1), we shall first consider the following PBVP







y(4)(t) − My(t) − Ny(w(t)) = σ(t), t ∈ I,

y(i)(0) = y(i)(T ), i = 0, 1, 2, 3,

y(t) = y(0), t ∈ [a, 0]
⋃

[T, b],
(3.1)

where σ ∈ C(I, R) and w ∈ C(I, [a, b]).

Let

E∗ = {y ∈ E : y(t) = y(0), ∀t ∈ [a, 0]
⋃

[T, b]},

where E is defined as in Section 2. Endow E∗ with the norm

||y||4 = max
t∈[a,b]

|y(t)| + max
t∈[0,T ]

(

4
∑

i=1

|y(i)(t)|)
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for y ∈ E∗. Then E∗ is a Banach space.
A function α ∈ E∗ is said to be a lower solution to (3.1), if it satisfies







α(4)(t) − Mα(t) − Nα(w(t)) ≥ σ(t), t ∈ I,

α(i)(0) = α(i)(T ), i = 0, 1, 2,

α(3)(0) ≥ α(3)(T ).

(3.2)

An upper solution β ∈ E∗ for (3.1) is defined analogously by reversing the inequalities
of above. A function y ∈ E∗ is said to be a solution to (3.1), if it is both an upper
solution and a lower solution to (3.1).

For α, β ∈ E∗, we shall write α ≤ β if α(t) ≤ β(t) for ∀t ∈ [a, b]. In such a case,
we shall denote

[α, β] = {y ∈ E∗ : α ≤ y ≤ β}.

Theorem 3.1. Suppose that there exists a lower solution α and an upper
solution β of (3.1) such that α ≤ β, and assume that M = m4, m ∈ (0, k), N > 0
satisfies condition (iv) of Theorem 2.1 (here k is defined in Theorem 2.1). Then (3.1)
has a unique solution y ∈ [α, β].

Proof. Consider the PBVP







y(4)(t) − My(t) = Np(t, y(w(t))) + σ(t), t ∈ I = [0, T ],
y(i)(0) = y(i)(T ), i = 0, 1, 2, 3,

y(t) = y(0), t ∈ [a, 0]
⋃

[T, b],
(3.1∗)

where

p(t, x) =







α(t), if x < α(t),
x, if α(t) ≤ x ≤ β(t),
β(t), if x > β(t).

Let us define an operator Φ : E∗ → E∗ by

(Φy)(t) =

{

∫ T

0
G(t, s, m)[Np(s, y(w(s))) + σ(s)]ds, t ∈ I = [0, T ],

∫ T

0 G(0, s, m)[Np(s, y(w(s))) + σ(s)]ds, t ∈ [a, 0]
⋃

[T, b],

where G(t, s, m) is defined in the proof of Theorem 2.1. A standard argument shows
that Φ : E∗ → E∗ is continuous and compact (note since Np(t, y(w(t))) + σ(t) is
bounded on I, then Φ is bounded in E∗). The existence of a fixed point y for the
operator Φ follows now from the Schauder fixed point theorem. That means (3.1)∗

has a solution y ∈ E∗.

Now we will show that y ∈ [α, β]. First, we prove that y ≥ α. Set u(t) =
α(t) − y(t), t ∈ [a, b]. Since α(w(t)) − p(t, y(w(t))) ≥ min{u(w(t)), 0}, t ∈ I, then by
the definition of lower solution, we obtain

(i) u(4)(t) − Mu(t) − N min{u(w(t)), 0} ≥ 0, t ∈ I,

(ii) u(i)(0) = u(i)(T ), i = 0, 1, 2,

u(3)(0) ≥ u(3)(T ),

(iii) u(0) = u(t), t ∈ [a, 0]
⋃

[T, b],
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(iv) N
M

(1
δ
− 1) < 1, here δ =

(emT −1) cos mT

2
+(emT +1) sin mT

2

emT +2e
mT

2 sin mT

2
−1

.

Suppose, to the contrary, that y(t) < α(t) for some t ∈ [0, T ]. It is enough to
consider the following two cases.

Case 1: u(t) ≥ 0, u(t) 6≡ 0 on I = [0, T ].

In this case, we have that u(3)(0) ≥ u(3)(T ) and u(4)(t) ≥ 0, t ∈ I. Thus
u(t) = constant = C > 0 on I, and we obtain

0 ≤ u(4)(t) − Mu(t) − N min{u(w(t)), 0} = −MC,

which contradicts the fact that C > 0.

Case 2: There exist t1, t2 ∈ [0, T ] such that u(t1) > 0 and u(t2) < 0.

Let u(ξ) = min
t∈[0,T ]

u(t) = min
t∈[a,b]

u(t) < 0. Since min{u(w(t)), 0} ≥ u(ξ), then

u(4)(t) − Mu(t) − Nu(ξ) ≥ 0, t ∈ [0, T ].

As in the proof of Theorem 2.1 we obtain u(t) ≤ 0. This implies y ≥ α. Similarly, we
can prove y ≤ β. Since y ∈ [α, β], this implies that y is also a solution of (3.1).

Finally, we will prove the uniqueness. Suppose that there exist two solutions y1

and y2 of (3.1) on [α, β]. Applying Theorem 2.1 again one can prove v = y1 − y2 ≥ 0
on [a, b]. As the same argument is valid for y2 − y1, then y2 − y1 ≥ 0. Thus y1 = y2.

The proof of Theorem 3.1 is complete.

Now we are in a position to prove the validity of the monotone method for (1.1).
First we shall introduce the concepts of lower and upper solutions for (1.1).

A function α ∈ E∗ is said to be a lower solution to (1.1), if it satisfies







α(4)(t) ≥ f(t, α(t), α(w(t))), t ∈ I,

α(i)(0) = α(i)(T ), i = 0, 1, 2,

α(3)(0) ≥ α(3)(T ).

(3.3)

An upper solution for (1.1) is defined analogously by reversing the inequalities of
above. A function y ∈ E∗ is said to be a solution to (1.1), if it is both an upper
solution and a lower solution to (1.1).

Theorem 3.2. Suppose that there exists a lower solution α and an upper solution
β of (1.1) such that α ≤ β on [a, b].

Assume that there exist constants M = m4, m ∈ (0, k), N > 0 satisfying

(H1) f(t, u2, v2) − f(t, u1, v1) ≤ M(u2 − u1) + N(v2 − v1), for t ∈ I, whenever
α(t) ≤ u1 ≤ u2 ≤ β(t) and α(w(t)) ≤ v1 ≤ v2 ≤ β(w(t)),

(H2)
N
M

(1
δ
− 1) < 1, here δ =

(emT −1) cos mT

2
+(emT +1) sin mT

2

emT +2e
mT

2 sin mT

2
−1

,

where k is the smallest positive root of the equation tan mT
2 = − tanh mT

2 .

Then there exist two sequences {αn} and {βn}, nondecreasing and nonincreasing,
respectively, with α0 = α and β0 = β, which converge uniformly and monotonically to
the extremal solution to the problem (1.1) in the segment [α, β].
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Proof. For each given η ∈ [α, β], we consider the PBVP (3.1) with

σ(t) = ση(t) = f(t, η(t), η(w(t))) − Mη(t) − Nη(w(t)).

We shall refer to this problem as (PL)η.
Since η ∈ [α, β] we have by (H1) and the definitions of lower and upper solutions,

that

α(4)(t) − Mα(t) − Nα(w(t)) ≥ f(t, α(t), α(w(t))) − Mα(t) − Nα(w(t))

≥ f(t, η(t), η(w(t))) − Mη(t) − Nη(w(t)) = ση(t)

and

β(4)(t) − Mβ(t) − Nβ(w(t)) ≤ ση(t).

As a consequence, α and β are respectively a lower and an upper solution for
(PL)η and Theorem 3.1 permits us to define the operator A : [α, β] → [α, β], where
Aη is the unique solution of (PL)η on [α, β].

Concerning the mapping A, applying Theorem 3.1, it is easy to prove that

Claim 3.1. A is a monotone increasing mapping on the segment [α, β], namely,
Aη1 ≤ Aη2 when η1, η2 ∈ [α, β] and η1 ≤ η2.

Thus we may define the sequences {αn}, {βn} by αn+1 = Aαn, βn+1 = Aβn,
α0 = α, β0 = β.

Using Claim 3.1 it is immediate that

α = α0 ≤ α1 ≤ ... ≤ αn ≤ ... ≤ βn ≤ ... ≤ β1 ≤ β0 = β.

Since {αn} is nondecreasing, {βn} is nonincreasing, {α(i)
n } and {β(i)

n }(i = 0, 1, 2, 3)
are bounded in C(I, R), we have that

lim
n→∞

αn(t) := α∗(t) and lim
n→∞

βn(t) := β∗(t)

uniformly and monotonically on [a, b]. Using the definition of (PL)η and passing the
limit when n tends to ∞, we conclude that α∗(t) and β∗(t) are both solutions to the
problem (1.1).

Furthermore, if y ∈ [α, β] is a solution to the problem (1.1), then,by induction,
αn(t) ≤ y(t) ≤ βn(t) on [a, b], n = 0, 1, 2, · · · , and hence, y ∈ [α∗, β∗]. This shows that
α∗(t) and β∗(t) are respectively minimal and maximal solutions to the problem (1.1)
in the segment [α, β].

The proof of Theorem 3.2 is complete.

4. Monotone method for periodic solutions of FDEs. In this section, we
are in a position to prove the validity of the monotone method for (1.2). First, we
shall introduce the concepts of lower and upper solutions for these problems.

Let X be defined as in Section 2 and let X have the norm

||y||4 = max
t∈[0,T ]

(

4
∑

i=0

|y(i)(t)|)

for y ∈ X . Then X is a Banach space.
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A function α ∈ X is said to be a lower solution to (1.2), if it satisfies

α(4)(t) ≥ f(t, α(t), α(w(t))), t ∈ R. (4.1)

An upper solution for (1.2) is defined analogously by reversing the inequalities of
above. A function y ∈ X is said to be a solution to (1.2), if it is both an upper
solution and a lower solution to (1.2).

By applying a similar argument as in Section 3, we can obtain the following result.

Theorem 4.1. Suppose that there exists a lower solution α and an upper solution
β of (1.2) such that α ≤ β in R.

Assume that there exist two constants M = m4, m ∈ (0, k), N > 0 satisfying
(B1) f(t, u2, v2)− f(t, u1, v1) ≤ M(u2 − u1) + N(v2 − v1), for t ∈ R, whenever

α(t) ≤ u1 ≤ u2 ≤ β(t) and α(w(t)) ≤ v1 ≤ v2 ≤ β(w(t)),

(B2)
N
M

(1
δ
− 1) < 1, here δ =

(emT −1) cos mT

2
+(emT +1) sin mT

2

emT +2e
mT

2 sin mT

2
−1

.

where k is the smallest root of the equation tan mT
2 = − tanh mT

2 .

Then there exist two sequences {αn} and {βn}, nondecreasing and nonincreasing,
respectively, with α0 = α and β0 = β, which converge uniformly and monotonically to
the extremal T - periodic solution to (1.2) in the segment [α, β].

REFERENCES

[1] G. S. Ladde, V. Lakshmikantham, and A.S. Vatsala, Monotone Iterative Techniques for
Nonlinear Differential Equations, Pitman Advanced Publishing Program, 1985.

[2] S. Leela and M. N. Oguztoreli, Periodic boundary value problems for differential equations
with delay and monotone iterative methods, J. Math. Anal. Appl., 122 (1987), pp. 301–307.

[3] J. R. Haddock and M. N. Nkashama, Periodic boundary value problems and monotone
iterative methods for functional differential equations, Nonlinear Anal., 22 (1994), pp.
267–276.

[4] E. Liz and J. J. Nieto, Periodic boundary value problems for a class of functional differential
equations, J. Math. Anal. Appl., 200 (1996), pp. 680–686.

[5] J. J. Nieto, Differential inequalities for functional perturbations of first order differential
equations, Applied Mathematics Letters, 15 (2002), pp. 173–179.

[6] D. Jiang, and J. Wei, Monotone method for first- and second-order periodic boundary value
problems and periodic solutions of functional differential equations, Nonlinear Anal., 50
(2002), pp. 885–898.

[7] A. Cabada and S. Lois, Maximum principles for fourth and sixth order periodic boundary
value problems, Nonlinear Anal. , 29:10 (1997), pp. 1161–1171.

[8] A. Cabada, The method of lower and upper solutions for second, third, fourth and higher order
boundary value problems, J. Math. Anal. Appl., 185 (1994), pp. 302–320.

[9] D. Jiang and L. Kong, A monotone method for constructing extremal solutions to second-
order periodic boundary value problems, Ann. Polon. Math., LXXVI (2001), pp. 279–285.

[10] D. Jiang, J.J. Nieto and W. Zuo, On the monotone method for first and second order pe-
riodic boundary value problems and periodic solutions of functional differential equations,
J. Math. Anal. Appl., 289 (2004), pp. 691–699.

[11] P.L. Buono and J. Belair, Restrictions and unfolding of double Hopf bifurcation in functional
differential equations, J. Diff. Eqns., 189 (2003), pp. 234–266.

[12] T. Sengadir and A.K. Pani, Weak solutions of integro–differential and functional–differential
equations, Diff. Eqns. Dynam. Sys., 4 (1996), pp. 411–422.

[13] T. Tanigawi, Oscillation and nonoscillation for a class of fourth order quasilinear functional
differential equations, Hiroshima Math., 33 (2003), pp. 297–316.

[14] P.X. Weng, Upper and lower solutions method for the boundary value problem of a fourth-
order functional differential equation (Chinese), J. South China Normal Univ. Natur. Sci.
Ed., (2000), pp. 1–6.

[15] S. Zhang, X. Zheng and Z. Wang, Periodic solutions of a fourth order nonlinear differential
equation, Soochow J. Math., 28 (2002), pp. 253–265.



28 W. ZUO ET. AL.


