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ORDER PRESERVING VIBRATING STRINGS AND APPLICATIONS
TO ELECTRODYNAMICS AND MAGNETOHYDRODYNAMICS∗

YANN BRENIER†

Abstract. The motion of a collection of vertical strings subject to horizontal linear vibrations
in the plane can be described by a system of first order nonlinear conservations laws. This system
-that we call the Chaplygin-Born-Infeld (CBI) system- is related to Magnetohydrodynamics and
more specifically to its shallow water version. Then, each vibrating string can be interpreted as a
magnetic line. The CBI system is also related to the Born-Infeld theory for the electromagnetic field,
a nonlinear correction to the classical Maxwell’s equations.

Due to the linearity of vibrations, there is a priori no mechanism to prevent the strings to cross
each other, at least for sufficiently large initial impulse. These crossings generate concentration sin-
gularities in the CBI system. A numerical scheme is introduced to maintain order preserving strings
beyond singularities. This order preserving scheme is shown to be convergent to a distinguished
limit, which can be interpreted, through maximal monotone operator theory, as a vanishing viscosity
limit of the CBI system. Finally, models of pressureless gas with sticky particles are revisited and a
new formulation is provided.
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1. Vibrating strings in the plane. Let us consider a one-parameter family of
vertical vibrating strings subject to horizontal vibrations in the plane (like a harp).
Each string is labelled by a ∈ [0, 1] and described at time t by a curve in the plane
(x, y):

y ∈ R → (X(t, a, y), y).

For simplicity, we assume spatial periodicity in y, so that y ∈ R/Z. Each string is
subject to horizontal vibrations according to the linear wave equation

∂ttX = c2∂yyX, (1)

with propagation speed c. Then, we observe:

Proposition 1.1. Let t0 < t1 and c = 1. Assume that X(t, a, y) is smooth and
satisfies ∂aX > 0 for (a, y) ∈ K = [0, 1]× R/Z and t ∈ [t0, t1]. Then,

h(t, X(t, a, y), y) =
1

∂aX(t, a, y)
,

b(t, X(t, a, y), y) = ∂yX(t, a, y), v(t, X(t, a, y), y) = ∂tX(t, a, y), (2)

implicitly define a solution (h, b, v) to the system of nonlinear first order conservation
laws:

∂t(hv) + ∂x(hv2 − hb2) − ∂y(hb) = 0, (3)

∂th + ∂x(hv) = 0, ∂t(hb) − ∂y(hv) = 0,
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for t0 ≤ t ≤ t1, on the strip

S(t) = {X(t, 0, y) ≤ x ≤ X(t, 1, y)}.

The proof of this elementary observation is postponed to the first Appendix.
Notice that, as long as ∂aX > 0 holds true, (h, b, v) may be equivalently defined by:

(h, hb, hv)(t, x, y) =

∫

(1, ∂yX, ∂tX)(t, a, y)δ(x − X(t, a, y))da. (4)

2. The Chaplygin-Born-Infeld system. Before discussing the physical in-
tepretation of system (3) -that we call the Chaplygin-Born-Infeld (CBI) system- where
h, v, b can be respectively interpreted as the density, velocity and magnetic fields of
a magnetic fluid, let us first consider two particular types of solutions. For those
solutions of (3) which do not depend on x, h is a time independent field, and (3) is
just a linear wave equation for (v, b), written as a first order system:

∂t(hv) = ∂y(hb) ∂t(hb) = ∂y(hv). (5)

Next, for solutions that do not depend on y, B = bh is a time independent field. If,
in addition, B is a constant, we recover a gas dynamics model:

∂th + ∂x(hv) = 0, ∂t(hv) + ∂x(hv2 + p) = 0, (6)

with density h ≥ 0, velocity v, and pressure p given by the unusual law p = p(h) =
−B2/h. The corresponding sound speed

√

dp/dh = |B|/h tends to zero as the density
h tends to infinity. This model is known as the Chaplygin gas and allows mass
concentrations in finite time. It has been advertised as a possible model for dark
energy [GKMP]. From a mathematical point of view, the Chaplygin gas equations
are known to be hyperbolic, linearly degenerate ([BDLL], [Se]...), with possible blow
up in sup norm for the density field h.
Finally, by setting

x = (x, y, z), ∇ = (∂x, ∂y, ∂z),

v(t, x) = (v(t, x, y), 0, 0), b(t, x) = (b(t, x, y), 1, 0),

we see that (3) is just a particular case of the following system

∂th + ∇ · (hv) = 0, ∂t(hb) + ∇× (hb × v) = 0,

∂t(hv) + ∇ · (h(v ⊗ v − b ⊗ b)) = 0. (7)

The later system has at least two possible interpretations. First, in the 2D case, i.e.
for solutions that do not depend on z, (7) just describes “shallow water” Magne-
tohydrodynamics (SWMHD) [Gil], without gravity terms. The shallow water MHD
equations are derived from the 3D MHD equations by averaging out the vertical di-
rection, in the case of an incompressible inviscid magnetic fluid moving inside a thin,
nearly horizontal, free boundary domain (like a pancake). For that reason, each string
y → (X(t, a, y), y) ∈ R × R/Z can be interpreted as an integral line of the magnetic
field b. Then, condition ∂aX > 0 just means that these curves do not cross each other
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and do not even touch each other. A second possible interpretation for system (7)
comes from the (augmented) Born-Infeld (ABI) equations, as discussed in [Br]. The
ABI system reads:

∂th + ∇ · (hv) = 0,

∂t(hb) + ∇× (hb × v) + ∇× d = 0,

∂t(hd) + ∇× (hd × v) −∇× b = 0,

∂t(hv) + ∇ · (h(v ⊗ v − b ⊗ b − d ⊗ d)) = ∇(
1

h
), (8)

where b, d, v are valued in R3 and h ≥ 1. Then (7) can be derived as a high field
limit of system (8), as h >> 1 and d << 1. Properly speaking, the Born-Infeld (BI)
equations correspond to the ABI system (8), restricted to the algebraic manifold:

τ2 + d2 + b2 + v2 = 1, τv = d × b, τ = 1/h,

which is preserved by the ABI system (at least for smooth solutions). The BI system
was introduced in 1934 [BI] as a nonlinear modification of Maxwell’s equations, in
order to cure the problem of divergent electrostatic fields generated by point particles
in classical Electrodynamics (see [Ja] for a discussion). The BI equations have a lot of
interesting features, for which we refer to Boillat’s lecture in [BDLL] for some mathe-
matical aspects and [Gib] for their impact in modern high energy Physics and String
Theory. Interestingly enough, it can be easily checked that, in one space dimension,
the ABI system reduces to the Chaplygin gas equations previously mentioned.

3. Occurence of singularities. Through Proposition 1.1, we have a simple way
to solve the Cauchy problem for the CBI system (3), at least for a substantial class
of initial conditions. Let us consider, for instance, initial conditions of the following
type:
h(t = 0, x, y) is the indicator function of the strip {0 < x < 1},
b(t = 0, x, y) = 1 and v(0, x, y) = ∂yU0(x, y) where U0 is a smooth function such that

sup
(a,y,y′)

|∂aU0(a, y) − ∂aU0(a, y′)| < 2c. (9)

First, we set

X(t = 0, a, y) = a, ∂tX(t = 0, a, y) = ∂yU0(a, y).

Next, solving the wave equation (1), we get, by d’Alembert’s formula,

X(t, a, y) = a +
1

2c
(U0(a, y + ct) − U0(a, y − ct)),

with, here, c = 1. Because of (9), we have ∂aX > 0 and, therefore, we obtain,
through (2), a global solution to system (3). Notice that, in this case, condition
(9) is a necessary and sufficient condition to get a global solution (for both positive
and negative times). Otherwise, we only get a local solution which breaks down for
sufficiently large values of t. More precisely, the strings y → (X(t, y, a), y) cross each
other and h blows up in sup norm. In physical terms, these singularities can be
interpreted as crossing of “magnetic lines” and “density” concentrations.
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4. Beyond singularities. Let us know address the following question: how
local solutions to the CBI system (3), obtained by solving the linear wave equation (1)
according to Proposition 1.1, can be extended globally, beyond singularities? There is
not a unique answer: it is a matter of modelling. For instance, we may be happy with
the linear wave equation and keep formulae (2) to define a generalized solution (h, b, v)
to system (3). Such a solution cannot be a weak solution in the usual sense but, rather,
a multivalued solution. A more consistent choice is to constrain the wave equation (1)
in such way that the resulting solutions X at least satisfy condition ∂aX ≥ 0, which
means that the “magnetic lines” y → (X(t, y, a), y) are allowed to touch but not to
cross each other. This is compatible with a weak formulation of (3), provided h is
considered as a nonnegative measure, and hb, hv are real valued measures absolutely
continuous with respect to h (b and v being their -square integrable- Radon-Nikodym
derivatives with respect to h). There are many ways to constrain the wave equations,
in the spirit of contact theory in Mechanics and variational inequalities in Mathematics
(see [PS] as a recent example). For instance, using a variational time implicit scheme
with time step δt > 0, it would be natural to define Xn(a, y) as an approximation to
X(nδt, a, y) for n = 1, 2, 3, · · ·, by solving, at each step n, the convex minimization
problem in X(a, y):

inf
X

sup
µ ≥ 0

∫

(δt−2|X − 2Xn + Xn−1|
2 + c2|∂yX |2 − 2µ∂aX)dady

where µ = µ(a, y) ≥ 0 is a Lagrange multiplier for condition ∂aX(a, y) ≥ 0. (Notice
that, without constraint, we would recover the familiar implicit time discretization
of the linear wave equation.) This would lead, at least formally as δt → 0, to the
following modification of the wave equation:

∂ttX = c2∂yyX − ∂aµ, ∂aX ≥ 0, µ ≥ 0, µ∂aX = 0. (10)

However, it is unclear (at least to us) that this provides a well posed formulation. So,
we will consider a different approximation scheme.

5. A time discrete scheme beyond singularities. We now introduce a time
discrete scheme to go beyond singularities.

Given a uniform time step δt > 0, we denote by (Xδt,n(a, y), Uδt,n(a, y)) the
approximate solution at time t = nδt, for n = 0, 1, 2, · · ·, defined in two steps as
follows.

We first define Uδt,n+1 and X̂δt,n+1 by

X̂δt,n+1(a, y) =
1

2
(Xδt,n(y + cδt, a) + Xδt,n(y − cδt, a))

+
1

2c
(Uδt,n(y + cδt, a) − Uδt,n(y − cδt, a)) (11)

Uδt,n+1(a, y) =
c

2
(Xδt,n(y + cδt, a) − Xδt,n(y − cδt, a))

+
1

2
(Uδt,n(y + cδt, a) + Uδt,n(y − cδt, a)). (12)

This amounts, so far, to solving the wave equation (1) between time nδt and time
(n + 1)δt using d’Alembert’s formula. Next, we rearrange X̂δt,n+1(a, y) in increasing
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order with respect to a ∈ [0, 1], for each y ∈ R/Z, and obtain Xδt,n+1(a, y). In other
words, we set

Xδt,n+1 = X̂∗
δt,n+1,

where we denote by Y ∗ the non decreasing rearrangement of a given function Y ∈
L2([0, 1]). Let us recall that Y ∗ is implicitly and uniquely defined by

∂aY ∗ ≥ 0 ,

∫ 1

0

1{Y ∗(a) > x}da =

∫ 1

0

1{Y (a) > x}da, ∀x ∈ R.

Observe that this time discrete scheme becomes a fully discrete scheme, if the initial
data Xδt,0(a, y) and Uδt,0(a, y) are piecewise constant on a uniform cartesian grid with
steps δy and δa, provided that the time step δt is chosen so that cδt = δy. Using
standard finite difference notations, the resulting scheme is defined in two steps. The
predictor step reads

X̃n+1,k,j =
1

2
(Xn,k,j+1 + Xn,k,j−1) +

1

2c
(Un,k,j+1 − Un,k,j−1), (13)

Un+1,k,j =
1

2
(Un,k,j+1 + Un,k,j−1) +

c

2
(Xn,k,j+1 − Xn,k,j−1), (14)

where Xn,k,j and Un,k,j are respectively the (constant) values of Xδt,n(a, y) and
Uδt,n(a, y) in the cells |y − jδy| < δy/2 and |a − kδa| < δa/2. The corrector step

amounts to define, for each fixed n and j, the sequence (Xn+1,k,j)k to be (X̃n+1,k,j)k

sorted in increasing order (with possible repetitions) with respect to k.
To illustrate this numerical scheme, we compare at a given time T > 0 two solutions
corresponding to the same initial conditions: a non order preserving solution (figure
1) on one hand and an order preserving solution, on the other hand (figure 2). We
set c = 1 and T = 0.8. The initial conditions are:

X0(a, y) = a, U0(a, y) = 4sin(2π(a + y))

and the discretization parameters are: δt = δy = 0.01 and δa = 0.05 (which corre-
sponds to 21 “magnetic lines” and 100 mesh points to discretize the wave equation in
y). The kinetic and the total energy at step n are respectively defined as

Kn =
∑

j,k

(X̃n,k,j − Xn−1,k,j)
2

Tn = Kn +
∑

j,k

(Un,k,j − Un−1,k,j)
2.

It will be shown in the next section that Tn is decreasing in n. On figure 3, we show
the evolution of the kinetic and the total energy. We observe a fast dissipation of the
total energy until T = 0.8 (approximately) due to a lot of string crossings. Then,
there is no dissipation any longer, crossings stop and the solutions become 1-periodic
in time.
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Fig. 1. Regular strings. Solution at T=0.8, Initial conditions: X0(a, y) = a, U0(a, y) =
4sin(2π(a + y)). Horizontal axis: −10 < x < 15, 21 strings. Vertical axis: 0 < y < 1, δy = 0.01,

100 grid points. Time stepping: δt = δy = 0.01.

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5  0  5  10  15

"order-preserving-strings"

Fig. 2. Order preserving strings. Solution at T=0.8, Initial conditions: X0(a, y) = a,

U0(a, y) = 4sin(2π(a + y)). Horizontal axis: −10 < x < 15, 21 strings. Vertical axis: 0 < y < 1,

δy = 0.01, 100 grid points. Time stepping: δt = δy = 0.01.
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"energy-dissipation"

Fig. 3. Decay of the total energy. Horizontal axis: 0 < t < 4, δt = 0.01. Upper curve: Total

energy, Lower curve: Kinetic energy.

6. Convergence of the time discrete scheme. In this section, we establish
the convergence of the time discrete scheme to a distinguished limit. Let us first
introduce:

Definition 6.1. Let K = [0, 1] × R/Z and || · || be the norm on L2(K). Let
(X0, U0) ∈ L2(K)2 such that ∂aX0 ≥ 0. We say that

t ≥ 0 → (X(t), U(t)) = ((a, y) ∈ K → (X, U)(t, a, y)) ∈ (L2(K))2

is an order preserving family of solutions to the wave equation (1) with initial values
(X0, U0) if:
i) (X(t), U(t)) depends continuously on t with respect to the weak topology of L2(K),
and ∂aX ≥ 0 holds true,
ii) X(0) = X0, U(0) = U0,
iii) for all T ≥ 0 and all pair of smooth functions (Y, V )(t, x, a) such that ∂aY ≥ 0,
we have:

||X(T ) − Y (T )||2 + c−2||U(T ) − V (T )||2 ≤ ||X0 − Y (0)||2 + c−2||U0 − V (0)||2

+ 2

∫ T

0

dt

∫

K

dyda(U∂yY + (Y − X)∂tY + X∂yV + c−2(V − U)∂tV ). (15)

If, in addition,

sup
t

||∂yX(t)||2 + c−2||∂yU(t)||2 < +∞, (16)

then we say that (X, U) is a strong order preserving (SOP) solution.
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Then, we can prove our main result:

Theorem 6.2. Let K = [0, 1] × R/Z and (X0, U0) ∈ L2(K) such that:

∂aX0 ≥ 0, ∂yX0 ∈ L2(K), ∂yU0 ∈ L2(K). (17)

Then there is a unique strong order preserving solution t ≥ 0 → (X, U)(t) to the wave
equation (in the sense of definition 6.1) such that:

(X, U)(0) = (X0, U0).

This solution is obtained as the limit of the time discrete scheme, as the time step h
goes to zero. In addition:

||∂yX(t)||2 + c−2||∂yU(t)||2 ≤ ||∂yX0||
2 + c−2||∂yU0||

2. (18)

Moreover, for all pair (X, U), (X ′, U ′) of such solutions with initial values respectively
given by (X0, U0), (X ′

0, U
′
0), we have, for all T ≥ 0,

||X(T )− X ′(T )||2 + c−2||U(T ) − U ′(T )||2 ≤ ||X0 − X ′
0||

2 + c−2||U0 − U ′
0||

2. (19)

Remark. Finite collections of strings. So far, we have considered the
case of a continuum of strings, with a continuous label a ∈ [0, 1]. It is remarkable
that the continuous formulation (15), in Definition 6.1, can be kept unchanged in the
case of a finite collection of strings, with labels α = 1, · · ·, N . Only the monotonicity
constraint has to be understood as:

X(t, y, α) ≥ X(t, y, α − 1), Y (t, y, α) ≥ Y (t, y, α − 1), α = 2, ··, N, y ∈ R/Z.

To illustrate this case, we show at three different times (T = 0.1, T = 0.6, T = 1.1)
the location of three interacting strings, with initial data

X0(a, y) = a, U0(a, y) = 4sin(2π(a + y)), a ∈ {0, 0.5, 1}.

We see at time T = 0.1 that the strings are partly stuck. At this stage, the total
energy is being dissipated. At later time T = 0.6 and T = 1.1, the strings just
touch each other at a single point without sticking and the total energy is no longer
dissipated.

7. Proof of the main result.

Compactness of the time discrete scheme. The rearrangement operator is
known to be non expansive in all Lp spaces. In particular

∫ 1

0

|Y ∗(a) − Z∗(a)|2da ≤

∫ 1

0

|Y (a) − Z(a)|2da

holds true for all pairs (Y, Z) ∈ L2([0, 1])2. In addition, we have

∫ 1

0

|Y ∗(a)|2da =

∫ 1

0

|Y (a)|2da.

Since the wave operator is isometric, we easily deduce that the time discrete scheme
is bounded and non expansive in L2. Indeed, given a solution (Xδt,n, Uδt,n; n ∈ N) of
the time discrete scheme, we get

||Xδt,n+1||
2+c−2||Uδt,n+1||

2 = ||X̂δt,n+1||
2+c−2||Uδt,n+1||

2 = ||Xδt,n||
2+c−2||Uδt,n||

2.
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Fig. 4. Three strings. Three interacting strings : solution at T=0.1, Initial conditions:

X0(a, y) = a, U0(a, y) = 4sin(2π(a + y)). Horizontal axis: −10 < x < 15, 3 strings. Vertical

axis: 0 < y < 1, δy = 0.0025, 400 grid points. Time stepping: δt = δy = 0.0025.
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Fig. 5. Three strings. Three interacting strings : solution at T=0.6, Initial conditions:

X0(a, y) = a, U0(a, y) = 4sin(2π(a + y)). Horizontal axis: −10 < x < 15, 3 strings. Vertical

axis: 0 < y < 1, δy = 0.0025, 400 grid points. Time stepping: δt = δy = 0.0025.
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time=1.1

Fig. 6. Three strings. Three interacting strings : solution at T=1.1, Initial conditions:

X0(a, y) = a, U0(a, y) = 4sin(2π(a + y)). Horizontal axis: −10 < x < 15, 3 strings. Vertical

axis: 0 < y < 1, δy = 0.0025, 400 grid points. Time stepping: δt = δy = 0.0025.

Thus, we have

||Xδt,n||
2 + c−2||Uδt,n||

2 = ||Xδt,0||
2 + c−2||Uδt,0||

2 (20)

for all n = 0, 1, 2, ..., which already shows that the scheme is bounded in L2. Futher-
more, if (Yδt,n, Vδt,n; n ∈ N) is another solution of the scheme, we get:

||Xδt,n+1 − Yδt,n+1||
2 + c−2||Uδt,n+1 − Vδt,n+1||

2

≤ ||X̂δt,n+1 − Ŷδt,n+1||
2 + c−2||Uδt,n+1 − Vδt,n+1||

2

= ||Xδt,n − Yδt,n||
2 + c−2||Uδt,n − Vδt,n||

2 ≤ · · ·

= ||Xδt,0 − Yδt,0||
2 + c−2||Uδt,0 − Vδt,0||

2 (21)

for all n = 0, 1, 2, .... This shows that the scheme is non expansive in L2. Next, by
setting

Y0 = X1, V0 = U1,

we deduce

||Xδt,n+1 −Xδt,n||
2 + c−2||Uδt,n+1 −Uδt,n||

2 ≤ ||Xδt,1 −Xδt,0||
2 + c−2||Uδt,1 −Uδt,0||

2.

Let us now initialize the time discrete scheme by setting

Xδt,0 = X0, Uδt,0 = U0, (22)



ORDER PRESERVING VIBRATING STRINGS 525

where (X0, U0) ∈ L2(K)2 is chosen so that ∂aX0 ≥ 0 and ∂y(X0, U0) ∈ L2(K)2. We
see that

||Xδt,1 − Xδt,0||
2 + c−2||Uδt,1 − Uδt,0||

2

≤ κ0

∫

dyda(|X0(y + cδt, a) − X0(a, y)|2 + c−2|U0(y + cδt, a) − U0(a, y)|2)

where κ0 is a purely numerical constant. Thus, we have obtained

||Xδt,n+1 − Xδt,n||
2 + c−2||Uδt,n+1 − Uδt,n||

2 ≤ κ0δt
2(c2||∂yX0||

2 + ||∂yU0||
2). (23)

Let us now define, for all values of t ≥ 0, (Xδt, Uδt)(t, a, y) to be the linear interpolant
in t of (Xδt,n, Uδt,n) at t = nδt. Then, Properties (20) and (23) are sufficient to ensure
that

sup
t≥0

||Xδt(t)|| + ||Uδt(t)|| + ||∂tXδt(t)|| + ||∂tUδt(t)|| < +∞

which shows that (Xδt, Uδt), is a (relatively) compact family in the space of all func-
tions of t ≥ 0 valued in L2(K) that are continuous with respect to the weak topology
of L2(K). Thus, there is a sequence of time steps δt → 0 such that (Xδt, Uδt) con-
verges in this space to some limit (X, U). This limit clearly satisfies ∂aX ≥ 0. In
addition, due to the obvious translation invariance of the time discrete scheme with
respect to the y variable, we get, for all z ∈ R,

∫

dyda(|Xδt,n(y + z, a)− Xδt,n(a, y)|2 + c−2|Uδt,n(y + cδt, a) − Uδt,n(a, y)|2)

≤

∫

dyda(|X0(y + z, a) − X0(a, y)|2 + c−2|U0(y + cδt, a) − U0(a, y)|2)

≤ |z|2(||∂yX0||
2 + c−2||∂yU0||

2).

It follows that, for all t ≥ 0, ∂y(X, U)(t) belongs to L2(K)2 and (18) immediately
follows.

Convergence. It remains to prove that (X, U) is an order preserving solutions
in the sense of Definition 6.1. Let us consider a smooth pair (Y, V )(t, a, y) such that
∂aY ≥ 0. Since the rearrangement operator is non expansive, we first get

||Xδt,n+1 − Y (tn+1)||
2 + c−2||Uδt,n+1 − V (tn+1)||

2

≤ ||X̂δt,n+1 − Y (tn+1)||
2 + c−2||Uδt,n+1 − V (tn+1)||

2

=

∫

dyda(|
X(y + cδt) + X(y − cδt) + U(y + cδt) − U(y − cδt)

2
− Y (tn+1, y)|2

+ c−2|
U(y + cδt) + U(y − cδt) + c2(X(y + cδt) − X(y − cδt)

2
− V (tn+1, y)|2),

where, for notational simplicity, some subscripts δt, n, some dependence with respect
to a have been dropped and tk stands for kδt. After few manipulations and Taylor
expansions for Y and V , we get

||Xδt,n+1 − Y (tn+1)||
2 + c−2||Uδt,n+1 − V (tn+1)||

2

≤ ||Xδt,n − Ytn
||2 + c−2||Uδt,n − Vtn

||2

+ 2δt

∫

dyda(Uδt,n∂yY (nδt) + (Y (nδt) − Xδt,n)∂tY (nδt) + Xδt,n∂yV (nδt)

+ c−2(V (nδt) − Uδt,n)∂tV (nδt)) + κδt2,
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where κ depends only on (Y, V ) and initial conditions (X0, U0). Then, after adding
up the last inequality for n ranging from 0 to N , and letting δt → 0, Nδt → T , where
T > 0 is fixed, we finally obtain (15), as desired.
At this point, we have shown the existence of SOP solutions obtained as limits of the
numerical scheme, as the time step goes to zero.

Uniqueness and stability of SOP solutions. Since the existence of SOP
solutions has been already established through the convergence analysis of the ap-
proximation scheme, it is enough to prove the stability property (19) with respect
to initial conditions. This is a straightforward consequence of (15) because of bound
(18). Indeed, by substituting (X ′, U ′) for (Y, V ) in formulation (15), we get (after
suitable regularizations)

||X(T )− X ′(T )||2 + c−2||U(T ) − U ′(T )||2 − ||X0 − X ′
0||

2 − c−2||U0 − U ′
0||

2

≤ 2

∫ T

0

dt

∫

K

dyda(U∂yX ′ + (X ′ − X)∂tX
′ + X∂yU ′ + c−2(U ′ − U)∂tU

′)

Symmetrizing the right hand side in (X, U), (X ′, U ′) leads to:

||X(T )− X ′(T )||2 + c−2||U(T )− U ′(T )||2 − ||X0 − X ′
0||

2 − c−2||U0 − U ′
0||

2

≤

∫ T

0

dt

∫

K

dyda(∂y(UX ′ + XU ′) + (X ′ − X)∂t(X
′ − X) + c−2(U ′ − U)∂t(U

′ − U))

=

∫ T

0

dt

∫

K

dyda((X ′ − X)∂t(X
′ − X) + c−2(U ′ − U)∂t(U

′ − U))

(since X, U, X ′, U ′ are periodic in y)

=
1

2
(||X(T ) − X ′(T )||2 + c−2||U(T ) − U ′(T )||2 − ||X0 − X ′

0||
2 − c−2||U0 − U ′

0||
2).

The proof of Theorem 6.2 is now complete.

Existence of OP solutions. Notice that, because of the stability property (19),
it is easy to show the existence of order preserving solutions for all initial conditions
(X0, U0) in L2(K)2, provided that ∂aX0 ≥ 0, through a standard approximation
argument. However, the uniqueness of those solutions is not clear.
Let us point out that it is not clear at all that, given an order preserving solution
(X, U), the corresponding field (h, hb, hv), defined as measures by (4), are solutions to
the original CBI system (3) in the sense of distributions. We leave this as a challenging
question!

8. Interpretations of order preserving solutions.

Formulation with a Lagrange multiplier. Loosely speaking, formulation (15)
means

∂tX = ∂yU − ∂aµ, ∂tU = c2∂yX, ∂aX ≥ 0, (24)

for some nonnegative measure µ(t, a, y), which plays the role of a Lagrange multiplier
for constraint ∂aX ≥ 0. Equivalently, (24) reads:

∂ttX = c2∂yyX − ∂t∂aµ, ∂aX ≥ 0, µ ≥ 0, (25)

which, indeed, differs from (10) we considered earlier. Let us briefly check that Defi-
nition 6.1 is indeed consistent with formulation (24). Let us consider a SOP solution
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(X, U). Thanks to (16), by using a standard mollification argument, we may substi-
tute in (15), for (Y, V ), respectively (X, U + ǫω) and (X + ǫξ, U), where ω and ξ are
smooth compactly supported functions of (t, a, y) ∈]0, T [×]0, 1[×R/Z, with ∂aξ ≥ 0
and ǫ ≥ 0. The first choice (Y, V ) = (X, U + ǫω) leads to

0 ≤ 2

∫ T

0

dt

∫

K

(U∂yX + X∂yU + ǫX∂yω + ǫc−2ω∂tU + ǫ2c−2ω∂tω)dyda

= 2ǫ

∫ T

0

dt

∫

K

(X∂yω + c−2ω∂tU)dyda + O(ǫ2),

(using that (X, U) is periodic in y). It follows that

∂tU = c2∂yX

holds true in the distributional sense. Next, using (Y, V ) = (X + ǫξ, U), we deduce
from (15):

0 ≤ 2

∫ T

0

dt

∫

K

(U∂yX + ǫU∂yξ + ǫξ∂tX + ǫ2ξ∂tξ + X∂yU)dyda

= 2ǫ

∫ T

0

dt

∫

K

(U∂yξ + ξ∂tX)dyda + O(ǫ2)

= 2ǫ

∫ T

0

dt

∫

K

(−∂yU + ∂tX)ξdyda + O(ǫ2).

Since ξ is arbitrarily chosen, with ∂aξ ≥ 0, we deduce that there is a nonnegative
measure µ(t, a, y) such that

−∂yU + ∂tX = −∂aµ.

Thus, formulation (24) is recovered, Notice that µ∂aξ = 0 holds true when when

Ω = {(t, a, y) ∈]0, T [×]0, 1[×R/Z, ∂aX > 0}.

is an open set. Indeed, in such a case, we can relax condition ∂aξ ≥ 0 in Ω and deduce
that µ = 0 in Ω.

A formulation using maximal monotone operators. More accurately, for-
mulation (15) may be reset in the framework of maximal monotone operators [Bz] in
the following way.
We use the Hilbert space H = L2(K)2 and define

D = {(X, U) ∈ H, (∂yX, ∂yU) ∈ H, ∂aX ≥ 0}. (26)

The operator A itself is defined, with domain D, as A = W + ∂Φ0, where W is the
(skew-symmetric) linear wave operator:

W (X, U) = −(∂yU, ∂yX) (27)

and ∂Φ0 is the subdifferential of the lsc convex function Φ0 defined on H with value
0 when ∂aX ≥ 0 and +∞ otherwise. Notice that A has a “gradient part”, namely
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∂Φ0, and a skew-symmetric part, namely W . For the L2 inner product ((·, ·)), A is
indeed monotone, since, for all pairs (X, U), (X ′, U ′),

((A(X, U) − A(X ′, U ′), (X, U) − (X ′, U ′)))

= ((∂Φ0(X, U) − ∂Φ0(X
′, U ′), (X, U) − (X ′, U ′))) ≥ 0

(using that W is skew symmetric and Φ0 convex). Then, (24) can be interpreted just
as:

0 ∈
d

dt
(X, U) + A(X, U), (28)

in the sense of maximal monotone operator theory [Bz]. Using general results of
this theory, we infer that solutions of equation (28) can be approximated by those of
perturbed equations such as

0 ∈
d

dt
(X, U) + Aε(X, U), Aε = W + ε∂Φ (29)

as ε > 0 goes to zero, for all lsc convex function Φ(X, U), provided Φ(X, U) = +∞ if
and only if ∂aX ≥ 0 is violated. Typical examples are:

Φ(X, U) =

∫

K

φ(∂aX(a, y))dady, (30)

for all lsc convex function φ on R such that φ(τ) = +∞ if and only if τ < 0. A typical
example is:

φ(τ) = τ log τ,

for τ > 0, with φ(0) = 0 and φ(τ) = +∞ if τ < 0. Other examples are:

φ(τ) = τγ ,

with γ ≥ 1, for τ ≥ 0, with φ(τ) = +∞ if τ < 0.

Order preserving and vanishing viscosity solutions. The perturbed model
(29,27,30) can be written in PDE style as:

∂tX = ∂yU − ε∂a(φ′(∂aX)), ∂tU = ∂yX. (31)

As proven in the second Appendix, for each sufficiently smooth solution (X, U) satisfy-
ing ∂aX > 0, the corresponding Eulerian fields (h, b, v) defined by (4) (or equivalently
by (2)) are solutions to a viscous perturbation of the CBI system, namely:

∂t(hv) + ∂x(hv2 − hb2) − ∂y(hb) = ε∂x(µ(h)∂xv), (32)

∂th + ∂x(hv) = 0, ∂t(hb) − ∂y(hv) = 0,

where the viscosity coefficient µ can be related to φ through

µ(h) = τφ′′(τ), τ =
1

h
. (33)

(Notice that φ(τ) = τ log τ corresponds to a constant viscosity µ.)
So, we conclude that the order preserving solutions that we have introduced to solve
the CBI system can be interpreted -at least formally- as vanishing viscosity limits of
the viscous model (32).
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9. Sticky particles revisited. The limit, as c goes to 0, of our numerical
scheme is well defined and reduced to:

Uδt,n(a, y) = U0(a, y), (34)

X̂δt,n+1(a, y) = Xδt,n(a, y) + δt ∂yU0(a, y) (35)

Xδt,n+1(·, y) = (X̂δt,n+1)
∗(·, y), ∀y ∈ R/Z. (36)

Notice that, in this scheme, y acts just as a parameter, that we can disregard. Then,
the scheme just reads:

X̂δt,n+1(a) = Xδt,n(a) + δt v0(a), (37)

Xδt,n+1 = X̂∗
δt,n+1. (38)

The resulting scheme is nothing but an expression of the “transport-collapse” method
for scalar conservation laws [Br3], [Br2], in the particular case of monotonic initial
data in one space dimension. More precisely, let u(t, x) be the unique solution, à la
Kruzhkov [Se] to the scalar conservation law

∂tu + ∂xF (u) = 0, (39)

with initial condition

u(0, x) =

∫ 1

0

H(x − X0(a))da,

where H denotes the Heaviside function, and “flux function” F defined by:

F (a) =

∫ a

0

v0(a
′)da′.

Then, it is established in [Br3] that, for each fixed T ≥ 0,

∫ +∞

−∞

dx

∫ 1

0

|H(x − Xδt,n(a)) − H(u(T, x) − a)|da → 0, δt = T/n → 0.

Scalar conservation laws with monotonic initial conditions have been shown in [BG] to
be the right, well-posed, mathematical model to describe one-dimensional pressureless
gas with sticky particles (for which a recent reference is [BJL]). In particular, the
Eulerian fields (h, hv) defined by

h(t, x) = ∂xu(t, x), hv(t, x) = ∂x(F (u(t, x))

are weak solutions of the pressureless gas equations:

∂th + ∂x(hv) = 0, ∂t(hv) + ∂x(hv2) = 0. (40)

Using the same arguments as in section 8, we claim that a gas of sticky particles
exactly corresponds to the vanishing viscosity limit ε → 0 of any pressureless viscous
model:

∂th + ∂x(hv) = 0, ∂t(hv) + ∂x(hv2) = ε∂x(µ(h)∂xv), (41)
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with positive viscosity µ.
Finally, our analysis provides a new formulation -in Lagrangian coordinates- of a
pressureless gas of sticky particles, or, equivalently, of a scalar conservation law with
monotonic initial data. Namely:

∂ttX = −∂t∂aµ, ∂aX ≥ 0, µ ≥ 0, µ∂aX = 0. (42)

A more precise definition, from which both existence and uniqueness can be easily
deduced, is:

Definition 9.1. Let us denote by || · || the norm on L2([0, 1]).
Let X0 ∈ L2([0, 1]) such that ∂aX0 ≥ 0. We say that

(t, a) ∈ R+ × [0, 1] → X(t, a) ∈ R

describes a pressureless gas of sticky particles, with initial value X0 and velocity v0,
if:
i) X(t, ·) depends continuously on t with respect to the weak topology of L2([0, 1]), and
∂aX ≥ 0 holds true,
ii) X(0) = X0,
iii) for all T ≥ 0 and all smooth functions Y (t, a) such that ∂aY ≥ 0,

||X(T )−Y (T )||2 ≤ ||X0−Y (0)||2+2

∫ T

0

dt

∫ 1

0

(X−Y )(t, a)(v0(a)−∂tY (t, a))da. (43)

10. Appendix: Proof of Proposition 1.1. To prove Proposition 1.1, we first
observe that the two last equations in (3) are compatibility conditions that auto-
matically follow from definition (4). Indeed, given a test function φ(x), we have, by
definition (4),

∫

R

φ(x)h(t, x, y)dx =

∫ 1

0

φ(X(t, y, a))da.

Thus,

∂t

∫

R

φ(x)h(t, x, y)dx =

∫ 1

0

φ′(X(t, y, a))∂tX(t, y, a)da

=

∫

R

φ′(x)h(t, x, y)v(t, x, y)dx

(by definition of hv through (4)) and

∂th + ∂x(hv) = 0

follows. Similarly, by definition of hb and hv through (4), we have:

∂t

∫

R

φ(x)h(t, x, y)b(t, x, y)dx − ∂y

∫

R

φ(x)h(t, x, y)v(t, x, y)dx

=

∫ 1

0

∂t(∂yX(t, y, a)φ(X(t, y, a)))da −

∫ 1

0

∂y(∂tX(t, y, a)φ(X(t, y, a)))da = 0

and deduce:

∂t(hb) − ∂y(hv) = 0.
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Let us now establish that h, b, v satisfy the first equation in (3). First, observe, using
(2), that

∫

((∂yX)2, (∂tX)2)δ(x − X(t, a, y))da = (hb2, hv2)(t, x, y). (44)

Thus,

∂t(hv) =

∫

∂ttXδ(x − X(t, a, y))da −

∫

(∂tX)2δ′(x − X(t, a, y))da

(by definition (4) of hv)

=

∫

∂yyXδ(x − X(t, a, y))da −

∫

(∂tX)2δ′(x − X(t, a, y))da

(using equation (1) with c = 1 )

=

∫

((∂yX)2 − (∂tX)2)δ′(x − X(t, a, y))da = ∂x(h(b2 − v2)).

The proof of Proposition 1.1 is now complete.

11. Appendix: Derivation of equations (32). Let us use (4) and (2) to
express the Eulerian fields (h, b, v) from (X, U). As in section 10, we get from (31),
first,

∂th + ∂x(hv) = 0, ∂t(hb) − ∂y(hv) = 0,

and, next,

∂t(hv) + ∂x(h(v2 − b2)) =

∫

(∂ttX − ∂yyX)δ(x − X(t, a, y))da

= ε

∫

∂ta(φ′(∂aX))δ(x − X(t, a, y))da

(because of (31))

= ε

∫

∂a(φ′′(∂aX)∂taX)δ(x − X)da

= ε

∫

∂a(φ′′(∂aX)∂a(v(t, X(t, a, y), y))δ(x − X)da

(using (2))

= ε

∫

∂a(φ′′(∂aX)(∂xv)(t, X(t, a, y), y)∂aX)δ(x − X)da

= ε

∫

∂a((µ(1/h)∂xv)(t, X, y))δ(x − X)da

(by definition (33) of µ and because of (2))

= ε

∫

(∂x(µ(1/h)∂xv))(t, X, y)∂aXδ(x − X)da

= ε∂x(µ(1/h)∂xv))(t, x, y)

∫

∂aXδ(x − X)da

= ε∂x(µ(1/h)∂xv))(t, x, y)

for X(t, 0, y) < x < X(t, 1, y). Thus (32) holds true, as announced.
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