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TURBULENCE WITHOUT PRESSURE: EXISTENCE OF THE
INVARIANT MEASURE *

HENRY P. MCKEANT

1. Introduction. A number of proofs have been offered of the fact that Burgers’
equation, with Brownian external force, settles down, with time, into a statistically
steady state: see, for instance, Sinai [1996], E-Khanin-Mazel-Sinai [2000], and Kuksin-
Shirikyan [2001]. I propose a simple proof based on ideas of Doblin [1940] and Feller
[1966]. The equation in question:
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represents an co-dimensional diffusion in the space of functions v(z): 0 < z < 1 of

1
period 1 say, with mean value / v = 0. The external force edb/dt is a sum of “modes”

en(z) = a constant e, x v/2sin / cos(2mnx), indexed by n > 1, multiplied each by the

differential of its private 1-dimensional standard Brownian motion b, (¢) : 0 < t < oo.

It is assumed for the present proof that all modes are active, i.e. e, # 0 for any n > 1,

and that the force is smooth in respect to 0 < x < 1, i.e. that e,, vanishes rapidly; the

second proviso permits you to realize the diffusion in the space C*°[0,1). The force

competes with the restoring drift (1/2)0%v/0x2, pulling back towards the origin as per
1

1 1
/ ' = / (v")? <0, and with the twist vv/dz, so-called because / v(vv') =0,
0

0 0
the outcome being the statistical steady state cited at the start. The simplicity of the
present method has its price: in particular, it does not yield the exponentially fast

convergence of Fy(v) = E,[F(v¢)] to the invariant mean /F(U)CZM(U)7 which must

be a consequence of the rapid return of the diffusion to the vicinity of v = 0. Observe,
in this connection,
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1
with the obvious result that, up to the passage time 7' = min(¢ : / v =1r?),
0
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which yields
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r2 — (1/4n?) [ €2 0 4= Jo
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2. The Diffusion. The equatlon can be solved with the help of the Cole-Hopf
substitution: if w = exp[— / d¢ / , then

()]

1
with —f' = e, w > 0 and / Inw =0, and this equation yields to the Feynman-

ow 10%w

n 282+ fdb+*

0
Kag formula: w(t,z) = Z71E,[3w(0,2;)], in which x(¢) : ¢ > 0 is an auxiliary 1-
dimensional standard Brownian motion,

3= exp[/ot f(z—s)dbs], and Z = exp [/01 EnE.(gw)}

is a normalizer to keep / Inw = 0. The recipe may be re-expressed in terms of the

auxiliary Brownian motioon tied at £(0) = 0 and z(t) = 0. Then a simple application
of Kolmogorov-Centsov shows that the path w (and so also v) can be realized in the
space of functions jointly of class C[0,00) in respect to ¢t > 0 and of class C*°[0,1)
in respect to 0 < z < 1. In this way the diffusion is constructed: v = —w’/w. The
aim is now to prove the existence of the limit Fi,(v) tl%g E,[F/v;] and to identify it

as the invariant mean / F(v)dM (v). Naturally, it is essential that the mass of the

distribution of v not run out to co. I dispose of this at once by the estimate employed
at the end of Section 1 which yields

E(A ><e47rt/v+/ 47T2 747rt)
1 1 1 1
P(/ v2>R2>§R_2{_4”t2+42 62] withrzz/vg.
0 0

3. Equicontinuity. Let 0(t,z) be the functional gradient dv(t,z)/0v(0,y) for
fixed 0 < y < 1. You have 90/dt = (1/2)0?0/dx? — (8/dx)(v0) with 0(0, z)dz = the
unit mass at x = y, and this may be solved by a combination of Cameron-Martin and
Feynman-Kag: to wit,

whence

;J(t,.’l?) - E, [ — [gv(t—s,zs)drs—3 [fv3(t—s,ms)ds— ot'u’(t—s,acs)ds’xt _ y]l

which reduces to

Eyle Jo vsaa)da: =3 [’th(S’xs)ds,.Tt = x| = Ey[v, 2z, = 2]

upon reversal of the auxiliary Brownian path as per z(s) — z(t — s) (s < ¢). Now
the chain rule in function space applied to Fy(v) = E,[F(v)] = 2BM[F(v;)] with
F of class C'[C]0,1) — R] and v + 9Aw in place of v, plain, yields

Fi(v+ Av) — /dﬂ/ Av(y dyBM/ gradF Eylv, z, = z]dx

LE[I,z¢ = y] is short for the density (8/0y)E[l,z: < y.
2BM is the Brownian mean over the individual motions b, : n > 1.
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with grad F' taken at v, so that
1
|Ft(v 4+ Av) — Fy(v)| < | grad F|oo/ |Av|dyE,(v) < | grad F|oo|Av|se
0

in view of E(b) < 1. This provides compactness, permitting you to choose o = ay >
o0

ag > ete. | 0soas tomake G, (v) = a/ e~ Fy(v)dt converge to a function Go(v) of

0
1

class C[C[0,1) — R], uniformly on compact figures such as K = (v : / (v')? < R?).
0
I prefer this mode of convergence to the plain tl%m Fi(v) as it avoids a difficulty with

the non-compactness of C0,1).

4. Gy(v) is Constant in Respect to v. The point is that the diffusion comes
close to the origin v = 0 so that the path emanating from that place is typical; this is
the idea of Doblin [1940]. Let a small number r and a big number R be fixed, let K

be the compact figure (v : (/ ev)? <r? & / 2 < R?), and let T be the smaller
of the passage time to K and an adjustable integer N = 1,23 etc. Then

T
Golv) = aBy| /0 =By (0)dt] + Eole=T Go(vr)]

implies 1) Go(v) = Ey[Go(vr)] since T < N; 2) the same with T' now equal to the
passage time to K, by making N 1 oo; and 3) Go(v) = Go(0) by making r | 0 so that
K shrinks to the origin. It is here that the proviso e, # 0(n > 1) is used. Of course
2) is correct only if the passage time to K is finite with probability one. This is so
provided R is big enough.

Proof. If, for some small r and big R, the passage time T is infinite, then for

1 i
every t > 0, either (/ ev)? > r? or / (v')? > R?. Let E be the set of times s < t
0 0

1 1
when ( / ev)? > r? and E' its complement, on which you must have / (v')? > R%.
0 0

Two cases arise. )

0 R 1
Case 1:/ e4”t(/ ev> dt < 0o. Then
0 0
1 1 1 1
d/ v2:—/ 1/th+2/ evdb+/ e? dt,
0 0 0 0

1 1 1 1 1
g——/(v’)zdt—QWQ/ v2dt—|—2/ evdb—l—/ e dt,
2 0 0 0 0

and the resulting estimate

) 1 1 1 [t , 1 t ) 1 1 627r2t
62ﬂt/ UQS/US——/eQWS/(U’)zdS—i—Q/ 62”5/ evdb—l—/ € X ——
0 0 2 /o 0 0 0 0 27
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implies?

¢ 1 1
2 2
/dse%‘(’/ (v’)2§/ e xe?™ ! fort ] oco.
0 0 0

R 1 t ) 1 t R 1
26271' t/ 62 2/ 627r s(/ 6U)2+/ 627r s/ (’U/)2
0 0 0 0 0
Z T2/ e47r25 + RZ/ e271'25
E ’

cannot be balanced as ¢ T oo if R is too big in comparison to fol €2, no matter how
small the fixed number 7 > 0 may be.

00 1
Case 2: / e47r2t(/ ev)?dt = co. You have

0 0
, 1 1 1/t , 1 t , 1 1 6277%
62”’5/ ’U2§/’U(2)——/627rs/(’l}l)2d8+2/ 62”5/ evdb—i—/ € X —
0 0 2 /o 0 0 0 0 27

as before, and an application of the law of the iterated logarithm to the Brownian
integral produces the over-estimate of the right side by

1 17t ., 1 t 1 2 1 )
/ Vg — —/ e S/ (v')?* =2 / edn?s (/ ev) x ¢n ¢n (ditto) +/ e? xe*m
0 2 Jo 0 0 0 0

valid i.0. as t T 0o*, so that, i.0.,

t 1 2 1 rt , 1 1 1 )
N X / e47’r2s (/ 61}) _|_ - / 6271' S / (,U/)2+ S / ,Ug + / 62 x 6271' t
0 0 2 Jo 0 0 0

for any N =1,2,3 etc. you like, and

2 R2 2m2s ! 2 2wt
Nr edm?s L e <2 e’ xe i.0.
E 2 / 0

But then / 2™ is small compared to 62“2t, R being large, so that
E‘/

ar?t a2t
e47r23 — € -1 _ e47r23 > € -1 _ 627T2t 6271'23
E 47T2 ’ - 47T2 ’

2
e47r t

But now

is comparable to (1/47?)
of N.

, and the preceding display may be unbalanced by choice

3 [5° 1db is finite if f()o: I2dt < oo for any non-anticipating I.

4The point is that / 1db looks like a standard 1-dimensional Brownian motion run with the

‘ 0
clock / I%.
0
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5. Identification of G((0). To complete the proof, it is necessary to know that
Go(0) does not depend upon the mode of approach of a to 07. Then Go(0) =

/F(v)dM(v) with invariant M: in fact, G, formed with F;(v) = E,[F(v;)] in place
of F' is nothing but E,[G4(v:)] with the old G, so that

[ F)ar () = B, [Gaw)] = Go(0) = [ Fo)am().

as advertised. The uniqueness of the invariant measure is now self evident, too.

The omitted identification of Go(0) is simple. Take F > 0 and let it vanish off the
1

compact figure K = (v : / (v/)? < R?). This is harmless to the generality of F, R

being adjustable. Let m, be the maximum of G; obviously, m, | mg > 0asa | 0
and Gy < mg. It is to be proved that Gy = mg.

Proof. Let T be the passage time to K. Then, with the cut-off in F', F(v;) =0
for t < T, and G,(v) = E,[e TG, (vr)]; in particular, G, peaks at some place
voeK. Now, with o = the old «, of §3 and n T oo, you have m, = G4(v,), and
the convergence of G, (v) to the constant Go(0), which is uniform on the compact K,
implies mg = Go(vp) for some voeK. Then mo = Gp(0) ——— in short, the full
lai% Go(v) = mg exists. This nice trick is adapted from Feller [1966].
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