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TURBULENCE WITHOUT PRESSURE: EXISTENCE OF THE
INVARIANT MEASURE ∗

HENRY P. MCKEAN†

1. Introduction. A number of proofs have been offered of the fact that Burgers’
equation, with Brownian external force, settles down, with time, into a statistically
steady state: see, for instance, Sinai [1996], E-Khanin-Mazel-Sinai [2000], and Kuksin-
Shirikyan [2001]. I propose a simple proof based on ideas of Döblin [1940] and Feller
[1966]. The equation in question:
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represents an ∞-dimensional diffusion in the space of functions v(x): 0 ≤ x < 1 of

period 1 say, with mean value
∫ 1

0

v = 0. The external force edb/dt is a sum of “modes”

en(x) ≡ a constant en ×√
2 sin / cos(2πnx), indexed by n ≥ 1, multiplied each by the

differential of its private 1-dimensional standard Brownian motion bn(t) : 0 ≤ t < ∞.
It is assumed for the present proof that all modes are active, i.e. en �= 0 for any n ≥ 1,
and that the force is smooth in respect to 0 ≤ x < 1, i.e. that en vanishes rapidly; the
second proviso permits you to realize the diffusion in the space C∞[0, 1). The force
competes with the restoring drift (1/2)∂2v/∂x2, pulling back towards the origin as per∫ 1

0

vv′′ =
∫ 1

0

(v′)2 ≤ 0, and with the twist v∂v/∂x, so-called because
∫ 1

0

v(vv′) = 0,

the outcome being the statistical steady state cited at the start. The simplicity of the
present method has its price: in particular, it does not yield the exponentially fast

convergence of Ft(v) ≡ Ev[F (vt)] to the invariant mean
∫

F (v)dM(v), which must

be a consequence of the rapid return of the diffusion to the vicinity of v ≡ 0. Observe,
in this connection,
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with the obvious result that, up to the passage time T = min(t :
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which yields

Ev(e4π2T ) ≤ R2

r2 − (1/4π2)
∫ 1

0
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for R2 =
∫ 1

0

v2 > r2 >
1

4π2

∫ 1

0

e2.
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2. The Diffusion. The equation can be solved with the help of the Cole-Hopf

substitution: if w = exp[−
∫ 1

0

dξ

∫ x

ξ

v(η)dη], then
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+ wfdb +
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(
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with −f ′ = e, w > 0 and
∫ 1

0

�nw = 0, and this equation yields to the Feynman-

Kaç formula: w(t, x) = Z−1Ex[zw(0, xt)], in which x(t) : t ≥ 0 is an auxiliary 1-
dimensional standard Brownian motion,

z = exp[
∫ t

0

f(xt−s)dbs], and Z = exp
[∫ 1

0

�nE•(zw)
]

is a normalizer to keep
∫ 1

0

�nw ≡ 0. The recipe may be re-expressed in terms of the

auxiliary Brownian motion tied at x(0) = 0 and x(t) = 0. Then a simple application
of Kolmogorov-Čentsov shows that the path w (and so also v) can be realized in the
space of functions jointly of class C[0,∞) in respect to t ≥ 0 and of class C∞[0, 1)
in respect to 0 ≤ x < 1. In this way the diffusion is constructed: v = −w′/w. The
aim is now to prove the existence of the limit F∞(v) lim

t↑∞
Ev[F/vt] and to identify it

as the invariant mean
∫

F (v)dM(v). Naturally, it is essential that the mass of the

distribution of v not run out to ∞. I dispose of this at once by the estimate employed
at the end of Section 1 which yields
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whence

P

(∫ 1

0
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)
≤ R−2

[
e−4π2tr2 +

1
4π2

∫ 1

0

e2

]
with r2 =

∫ 1

0

v2
0 .

3. Equicontinuity. Let
•
v(t, x) be the functional gradient ∂v(t, x)/∂v(0, y) for

fixed 0 ≤ y < 1. You have ∂
•
v/∂t = (1/2)∂2 •

v/∂x2 − (∂/∂x)(v
•
v) with

•
v(0, x)dx = the

unit mass at x = y, and this may be solved by a combination of Cameron-Martin and
Feynman-Kaç: to wit,

•
v(t, x) = Ex[e−

∫ t
0 v(t−s, xs)dxs− 1

2

∫ t
0 v2(t−s,xs)ds−∫ t

0 v′(t−s,xs)ds, xt = y]1

which reduces to

Ey[e
∫ t
0 v(s,xs)dxs− 1

2

∫ t
0 v2(s,xs)ds, xt = x] ≡ Ey[v, xt = x]

upon reversal of the auxiliary Brownian path as per x(s) → x(t − s) (s ≤ t). Now
the chain rule in function space applied to Ft(v) = Ev[F (vt)] = 2BM [F (vt)] with
F of class C1[C[0, 1) → R] and v + ϑ∆v in place of v, plain, yields

Ft(v + ∆v) − Ft(v) =
∫ 1

0

dϑ

∫ 1

0

∆v(y)dy BM

∫ 1

0

gradF Ey[v, xt = x]dx

1E[I, xt = y] is short for the density (∂/∂y)E[I, xt ≤ y].
2BM is the Brownian mean over the individual motions bn : n ≥ 1.
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with grad F taken at vt, so that

|Ft(v + ∆v) − Ft(v)| ≤ | grad F |∞
∫ 1

0

|∆v|dyEy(v) ≤ | grad F |∞|∆v|∞

in view of E(v) ≤ 1. This provides compactness, permitting you to choose α = α1 >

α2 > etc. ↓ 0 so as to make Gα(v) = α

∫ ∞

0

e−αtFt(v)dt converge to a function G0(v) of

class C[C[0, 1) → R], uniformly on compact figures such as K = (v :
∫ 1

0

(v′)2 ≤ R2).

I prefer this mode of convergence to the plain lim
t↑∞

Ft(v) as it avoids a difficulty with

the non-compactness of C[0, 1).

4. G0(v) is Constant in Respect to v. The point is that the diffusion comes
close to the origin v ≡ 0 so that the path emanating from that place is typical; this is
the idea of Döblin [1940]. Let a small number r and a big number R be fixed, let K

be the compact figure (v : (
∫ 1

0

ev)2 ≤ r2 &
∫ 1

0

(v′)2 ≤ R2), and let T be the smaller

of the passage time to K and an adjustable integer N = 1, 2, 3 etc. Then

Gα(v) = αEv[
∫ T

0

e−αtFt(v)dt] + Ev[e−αT Gα(vT )]

implies 1) G0(v) = Ev[G0(vT )] since T ≤ N ; 2) the same with T now equal to the
passage time to K, by making N ↑ ∞; and 3) G0(v) = G0(0) by making r ↓ 0 so that
K shrinks to the origin. It is here that the proviso en �= 0(n ≥ 1) is used. Of course
2) is correct only if the passage time to K is finite with probability one. This is so
provided R is big enough.

Proof. If, for some small r and big R, the passage time T is infinite, then for

every t ≥ 0, either (
∫ 1

0

ev)2 > r2 or
∫ 1

0

(v′)2 > R2. Let E be the set of times s ≤ t

when (
∫ 1

0

ev)2 > r2 and E′ its complement, on which you must have
∫ 1

0

(v′)2 > R2.

Two cases arise.

Case 1:
∫ ∞

0

e4π2t

(∫ 1

0

ev

)2

dt < ∞. Then

d

∫ 1

0

v2 = −
∫ 1

0

v
′2 dt + 2

∫ 1

0

ev db +
∫ 1

0

e2 dt,

≤ −1
2

∫ 1

0

(v′)2 dt − 2π2

∫ 1

0

v2 dt + 2
∫ 1

0

ev db +
∫ 1

0

e2 dt,

and the resulting estimate

e2π2t

∫ 1

0

v2 ≤
∫ 1

0

v2
0 − 1

2

∫ t

0

e2π2s

∫ 1

0

(v′)2 ds + 2
∫ t

0

e2π2s

∫ 1

0

ev db +
∫ 1

0

e2 × e2π2t

2π2
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implies3 ∫ t

0

ds e2π2s

∫ 1

0

(v′)2 ≤
∫ 1

0

e2 × e2π2t for t ↑ ∞.

But now

2e2π2t

∫ 1

0

e2 ≥
∫ t

0

e2π2s(
∫ 1

0

ev)2 +
∫ t

0

e2π2s

∫ 1

0

(v′)2

≥ r2

∫
E

e4π2s + R2

∫
E′

e2π2s

cannot be balanced as t ↑ ∞ if R is too big in comparison to
∫ 1

0
e2, no matter how

small the fixed number r > 0 may be.

Case 2:
∫ ∞

0

e4π2t(
∫ 1

0

ev)2dt = ∞. You have

e2π2t

∫ 1

0

v2 ≤
∫ 1

0

v2
0 − 1

2

∫ t

0

e2π2s

∫ 1

0

(v′)2 ds + 2
∫ t

0

e2π2s

∫ 1

0

ev db +
∫ 1

0

e2 × e2π2t

2π2

as before, and an application of the law of the iterated logarithm to the Brownian
integral produces the over-estimate of the right side by

∫ 1

0

v2
0 −

1
2

∫ t

0

e2π2s

∫ 1

0

(v′)2 − 2

√∫ t

0

e4π2s

(∫ 1

0

ev

)2

× �n �n (ditto) +
∫ 1

0

e2 × e2π2t,

valid i.o. as t ↑ ∞4, so that, i.o.,

N ×
√∫ t

0

e4π2s

(∫ 1

0

ev

)2

+
1
2

∫ t

0

e2π2s

∫ 1

0

(v′)2+ ≤
∫ 1

0

v2
0 +

∫ 1

0

e2 × e2π2t

for any N = 1, 2, 3 etc. you like, and

Nr

√∫
E

e4π2s +
R2

2

∫
E′

e2π2s ≤ 2
∫ 1

0

e2 × e2π2t i.o.

But then
∫

E′
e2π2s is small compared to e2π2t, R being large, so that

∫
E

e4π2s =
e4π2t − 1

4π2
−

∫
E′

e4π2s ≥ e4π2t − 1
4π2

− e2π2t

∫
E′

e2π2s

is comparable to (1/4π2)e4π2t, and the preceding display may be unbalanced by choice
of N .

3
∫ ∞
0 Idb is finite if

∫ ∞
0 I2dt < ∞ for any non-anticipating I.

4The point is that

∫ t

0
Idb looks like a standard 1-dimensional Brownian motion run with the

clock

∫ t

0
I2.
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5. Identification of G0(0). To complete the proof, it is necessary to know that
G0(0) does not depend upon the mode of approach of α to 0+. Then G0(0) =∫

F (v)dM(v) with invariant M : in fact, Gα formed with Ft(v) = Ev[F (vt)] in place

of F is nothing but Ev[Gα(vt)] with the old Gα so that∫
Ft(v)dM(v) = Ev[G0(vt)] = G0(0) =

∫
F (v)dM(v),

as advertised. The uniqueness of the invariant measure is now self evident, too.
The omitted identification of G0(0) is simple. Take F ≥ 0 and let it vanish off the

compact figure K = (v :
∫ 1

0

(v′)2 ≤ R2). This is harmless to the generality of F , R

being adjustable. Let mα be the maximum of Gα; obviously, mα ↓ m0 ≥ 0 as α ↓ 0
and G0 ≤ m0. It is to be proved that G0 ≡ m0.

Proof. Let T be the passage time to K. Then, with the cut-off in F , F (vt) = 0
for t ≤ T , and Gα(v) = Ev[e−αT Gα(vT )]; in particular, Gα peaks at some place
vαεK. Now, with α = the old αn of §3 and n ↑ ∞, you have mα = Gα(vα), and
the convergence of Gα(v) to the constant G0(0), which is uniform on the compact K,
implies m0 = G0(v0) for some v0εK. Then m0 = G0(0) in short, the full
lim
α↓0

Gα(v) = m0 exists. This nice trick is adapted from Feller [1966].
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