A CONVEX DARBOUX THEOREM *

IVAR EKELAND ${ }^{\dagger}$ AND LOUIS NIRENBERG ${ }^{\ddagger}$

Abstract

We give necessary and sufficient conditions for a smooth, generic, differential oneform ω on \mathbb{R}^{n} to decompose into a sum $\omega=a^{1} d u_{1}+\ldots+a^{k} d u_{k}$, where the functions a^{ℓ} are positive

 and the u_{ℓ} convex (or quasi-convex) near the origin.1. Introduction. We are given a smooth differential one-form in a neighbourhood of the origin in \mathbb{R}^{n} (the Einstein summation convention is used throughout):

$$
\omega=\omega_{i} d x^{i}
$$

its exterior derivative being:

$$
d \omega=\omega_{i, j} d x^{j} \wedge d x^{i}
$$

with:

$$
\omega_{i, j}=\frac{\partial \omega_{i}}{\partial x^{j}}
$$

Problem 1. Under what conditions can we represent ω (near the origin) in the form:

$$
\begin{equation*}
\omega=\sum_{\ell=1}^{k} a^{\ell} d u_{\ell} \tag{1}
\end{equation*}
$$

where the a^{ℓ} are positive functions and the u_{ℓ} are strictly convex functions?
The last requirement will be understood to mean that, for each ℓ, the matrix

$$
\frac{\partial^{2} u_{\ell}}{\partial x^{i} \partial x^{j}}=: u_{\ell, i j}
$$

is positive definite.
An obvious necessary condition is:

$$
\begin{equation*}
\omega \wedge(d \omega)^{k} \equiv 0 \tag{2}
\end{equation*}
$$

Indeed, if (1) holds, then

$$
d \omega=d a^{\ell} \wedge d u_{\ell}
$$

and

$$
(d \omega)^{k}=\alpha \wedge d u_{1} \wedge \ldots \wedge d u_{k}
$$

for some form α, so that (2) follows.

[^0]We will always assume the generic condition:

$$
\begin{equation*}
\omega \wedge(d \omega)^{k-1} \neq 0 \tag{3}
\end{equation*}
$$

Definition 1. We say that a smooth one-form ω satisfies the k-fold Darboux condition at the origin if (2) holds on some neighbourhood of the origin.

It is a theorem of Darboux (see [2], theorem II.3.3) that, provided (3) holds, this condition is necessary and sufficient for the representation (1) near the origin, if we do not require the positivity of the a^{ℓ} nor the convexity of the u_{ℓ}.

In [3], Chiappori and Ekeland asked what further conditions are needed to have this representation with the a^{ℓ} positive and the u_{ℓ} convex. They treated the case when ω is real analytic by using Cartan-Kähler theory, and they found the following to be necessary and sufficient:

Condition 1. There is some neighbourhood of the origin where the matrix with coefficients $\omega_{i, j}$ is the sum of two matrices, a positive definite one and another one of rank k.

Shortly afterwards, V.M. Zakalyukin studied the nonanalytic case, when ω is merely smooth. He found a necessary and sufficient condition, theorem 1 of [5], which, surprisingly, is slightly different. He introduces the space $A_{2}(\omega)$ of all tangent vector fields ξ such that:

$$
\begin{aligned}
\langle\omega \mid \xi\rangle & =0 \\
\langle d \omega,(\xi, \eta)\rangle & =0 \quad \forall \eta
\end{aligned}
$$

and in addition to condition 1 , he requires the following:
Condition 2. There is some neighbourhood of the origin where the matrix $\omega_{i, j}+$ $\omega_{j, i}$ is positive definite on $A_{2}(\omega)$.

The present paper began as an attempt to understand the proof in [5]. We began by investigating the low-dimensional case, and to our surprise we found counterexamples to the preceeding results, both [3] and [5]. We present two, with $k=2$, that is, we are trying to write

$$
\begin{equation*}
\omega=a^{1} d u_{1}+a^{2} d u_{2} \tag{4}
\end{equation*}
$$

Example 1. Here $n=4$, the Darboux condition holds and condition 1 as well. Set:

$$
\omega=\left(1+x^{1}+x^{4}\right) d x^{1}+x^{2} d x^{2}+\left(x^{3}+x^{2}\right) d x^{3}
$$

Then

$$
d \omega=d x^{4} \wedge d x^{1}+d x^{2} \wedge d x^{3}
$$

and clearly (3) holds, as well as the Darboux condition. Further, we have:

$$
\omega_{i, j}=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\operatorname{Id}+\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

The last matrix has rank 2, so condition 1 holds. However, the problem has no solution. Indeed, if relation (4) holds, then u_{1} satisfies:

$$
\begin{equation*}
d u_{1} \wedge \omega \wedge d \omega=d u_{1} \wedge a^{2} d u_{2} \wedge d \omega \equiv 0 \tag{5}
\end{equation*}
$$

On the other hand:

$$
\omega \wedge d \omega=\left(1+x^{1}+x^{4}\right) d x^{1} \wedge d x^{2} \wedge d x^{3}
$$

Substituting into (5) yields

$$
\left(1+x^{1}+x^{4}\right) u_{1,4} \equiv 0
$$

So $u_{1,4} \equiv 0$ and u_{1} cannot be strictly convex.
Example 2. Here $n=5$, the Darboux condition holds, and conditions 1 and 2 as well. Set:

$$
\begin{equation*}
\omega=-x^{2} d x^{1}+x^{1} d x^{2}+\left(1+x^{3}\right) d x^{3}+\left(1+x^{4}\right) d x^{4}+\left(1+x^{5}\right) d x^{5} \tag{6}
\end{equation*}
$$

Then

$$
\begin{aligned}
d \omega & =2 d x^{1} \wedge d x^{2} \\
\omega \wedge d \omega & =2 d x^{1} \wedge d x^{2}\left[\left(1+x^{3}\right) d x^{3}+\left(1+x^{4}\right) d x^{4}+\left(1+x^{5}\right) d x^{5}\right]
\end{aligned}
$$

so that (3) holds, as well as the Darboux condition. We also have:

$$
\omega_{i, j}=\left(\begin{array}{ccccc}
0 & -1 & 0 & 0 & 0 \tag{7}\\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)=\operatorname{Id}+\left(\begin{array}{ccccc}
-1 & -1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

so condition 1 holds as well. Finally, at the origin, ξ belonging to $A_{2}(\omega)$ means that

$$
\begin{aligned}
\xi^{3}+\xi^{4}+\xi^{5} & =0 \\
2\left(\xi^{1} \eta^{2}-\xi^{2} \eta^{1}\right) & =0 \quad \forall\left(\eta^{1}, \eta^{2}\right)
\end{aligned}
$$

the latter equation meaning that $\xi^{1}=\xi^{2}=0$. We see that the matrix $\omega_{i, j}+\omega_{j, i}$ is positive definite on vectors of the form $\left(0,0, \xi^{3}, \xi^{4}, \xi^{5}\right)$. So the condition 2 is satisfied also. However, in Appendix A, we present a proof that for the one-form ω given by (6) the problem has no solution.

In this paper, we find the necessary and sufficient conditions, always assuming (3), that a smooth ω must satisfy for the problem to have a solution.

First, we introduce in the space of all one-forms α a subset \mathcal{I} defined as follows:

$$
\begin{equation*}
\mathcal{I}=\left\{\alpha \mid \alpha \wedge \omega \wedge(d \omega)^{k-1} \equiv 0\right\} \tag{8}
\end{equation*}
$$

Condition 3. There is a k-dimensional subspace V of $\mathcal{I}(0)$, containing $\omega(0)$, and such that on $N=V^{\perp}$, the matrix $\omega_{i, j}(0)$ is symmetric and positive definite.

In their seminal paper, [1], Browning and Chiappori investigated the consumption behaviour of a two-person household spending jointly one unit of account. This amounts to a particular case of problem 1 , with $k=2$ and:

$$
\omega_{j}(x) x^{j}=1
$$

Browning and Chiappori then consider the matrix $S=\left(s_{i j}\right)$ defined by:

$$
s_{i j}=\omega_{i, j}+x^{k} \omega_{i, k} \omega_{j}
$$

and they show that $S=\Sigma+A$, where Σ is a symmetric matrix, positive semi-definite, and $A=\left(a_{i j}\right)$ has rank at most one.

Suppose Σ is in fact positive definite and A has rank exactly one: $a_{i j}=u_{i} v_{j}$, where $\alpha=\sum u_{i} d x^{i}$ and $\beta=\sum v_{i} d x^{i}$ are both non-zero. A simple computation shows that:

$$
\omega \wedge d \omega=-\omega \wedge \alpha \wedge \beta
$$

so that α and β belong to \mathcal{I}. One then checks that S coincides with Σ on the orthogonal of the two-dimensional subspace spanned by ω and α, so the BrowningChiappori condition amounts to condition 3 in that particular case.

Theorem 1. Assume ω is a smooth one-form satisfying (3). Problem 1 has a solution if and only if the k-fold Darboux condition is satisfied near the origin, and condition 3 is satisfied at the origin.

Let us rewrite condition 3 at the origin. Define N as the subspace of vectors ξ, tangent at the origin, such that:

$$
\langle\xi \mid \alpha\rangle=0 \quad \forall \alpha \in V
$$

Condition 3 requires that:

$$
\begin{gathered}
\omega_{i, j}(0) \xi^{i} \eta^{j}=\omega_{i, j}(0) \eta^{i} \xi^{j} \quad \forall \xi, \eta \in N \\
\omega_{i, j}(0) \xi^{i} \xi^{j}>0 \quad \forall 0 \neq \xi \in N
\end{gathered}
$$

Note that condition 3 by itself is not open (if it holds at some point, it need not hold in a neigbourhood). Theorem 1 implies that it becomes open if we impose in addition the Darboux condition.

Proof of necessity. Assume problem (1) has a solution. We already know that the Darboux condition has to hold. At the origin (and hence nearby) the $d u_{i}$ are linearly independent; for otherwise, we could express $\omega(0)$ as a linear combination of $k-1$ of them, and it would then follow that $\omega \wedge(d \omega)^{k-1}=0$ at the origin, contradicting (3).

Note next, as we did in example 1 for the case $k=2$, that relation (1) implies:

$$
\omega \wedge(d \omega)^{k-1}=\Theta \wedge d u_{1} \wedge \ldots \wedge d u_{k}
$$

for some $(k-1)$-form Θ, so that

$$
d u_{i} \wedge \omega \wedge(d \omega)^{k-1}=0
$$

Thus $d u_{i}$ lies in \mathcal{I} for all i. Let V be the k-dimensional subspace spanned by $d u_{1}, \ldots, d u_{k}$. By (1), the linear form $\omega(0)$ lies in V. Set $N=V^{\perp}$ and take ξ and η in N. Differentiating (1), we find:

$$
\begin{equation*}
\omega_{i, j}=a_{j}^{\ell} u_{\ell, i}+a^{\ell} u_{\ell, i j} \tag{9}
\end{equation*}
$$

Writing $u_{\ell, i} \xi^{i}=u_{\ell, i} \eta^{i}=0$ in the preceding equation, we get:

$$
\omega_{i, j} \xi^{i} \eta^{j}=a^{\ell} u_{\ell, i j} \xi^{i} \eta^{j}
$$

The right-hand side is symmetric in ξ and η, and so therefore is the left. Furthermore, taking $\xi=\eta$, we see that $\omega_{i, j}$ is positive definite, as announced. Necessity is proved.

To conclude this section, let us state (and solve) a related problem. Recall first that a function u is quasi-convex iff the level sets $\{x \mid u(x) \leq h\}$ are convex for every h, and strictly quasi-convex if these level sets are stricly convex. A second-order necessary and sufficient condition for quasi-convexity is that the restriction of the quadratic form $u_{i j} \xi^{i} \xi^{j}$ to the subspace $u_{i} \xi^{i}=0$ be positive semidefinite (see [4], theorem M.C.4). If it is positive definite, the function is strictly quasi-convex.

Such functions play an important role in economics, since direct utility functions are typically quasi-concave, and the indirect utility functions quasi-convex (see [4], proposition 3.D.3). In this context, the following is a natural question:

Problem 2. Under what conditions can we represent ω (near the origin) in the form:

$$
\begin{equation*}
\omega=\sum_{\ell=1}^{k} a^{\ell} d u_{\ell} \tag{10}
\end{equation*}
$$

where the a^{ℓ} are positive functions and the u_{ℓ} are strictly quasi-convex functions?
Clearly, (strictly) convex functions are (strictly) quasi-convex, so any solution to problem 1 is a solution to problem 2. So problem 2 would seem to be more general than problem 1. This is not the case: the problems are equivalent. This follows from

Lemma 1. Assume that the function u is strictly quasi-convex at the origin, in the sense that the restriction of the quadratic form $u_{i j}(0) \xi^{i} \xi^{j}$ to the subspace $u_{i}(0) \xi^{i}=0$ is positive definite. Then there is an increasing function $\phi(t)$, defined on a small interval containing $u(0)$, such that $\phi \circ u$ is strictly convex at the origin, in the sense that the quadratic form $(\phi \circ u)_{i j}(0) \xi^{i} \xi^{j}$ is positive definite.

Proof. We may assume $u(0)=0$ and $d u(0)=d x_{1}$. Take $\phi^{\prime}(0)=1$ and $\phi^{\prime \prime}(0)=K$ We have:

$$
(\phi \circ u)_{i j}(0) \xi^{i} \xi^{j}=u_{i j}(0) \xi^{i} \xi^{j}+K\left(\xi^{1}\right)^{2}
$$

which can be made positive definite by choosing K large enough.
So any decomposition

$$
\omega=\sum_{\ell=1}^{k} a^{\ell} d u_{\ell}
$$

in terms of functions u_{ℓ} strictly quasi-convex at the origin (and hence strictly quasiconvex near the origin) yields a similar decomposition in terms of strictly convex
functions. Indeed, choose for each u_{ℓ} a function $\phi_{\ell} \operatorname{such}$ that $\phi_{\ell}^{\prime}\left(u_{\ell}\right)=1$ at the origin and $v_{\ell}=\phi_{\ell} \circ u_{\ell}$ is strictly convex. Then:

$$
\omega=\sum_{\ell=1}^{k} \frac{a^{\ell}}{\phi_{\ell}^{\prime}\left(u_{\ell}\right)} d v_{\ell}
$$

and the coefficients are clearly positive. So theorem 1 provides an answer both to problems 1 and 2.
2. Preliminaries. The following algebraic result will be used repeatedly. It is proposition I.1.6. of [2].

Lemma 2. Let $\alpha_{1}, \ldots, \alpha_{p+1}$ be linearly independent one-forms and Ω a two-form such that:

$$
\alpha_{1} \wedge \ldots \wedge \alpha_{p} \wedge \Omega^{q}=0
$$

for some positive integers p and q. Then

$$
\alpha_{1} \wedge \ldots \wedge \alpha_{p-1} \wedge \Omega^{q+1}=0
$$

From now on we assume that ω satisfies the conditions of theorem 1.
There are $(n-1)$ one-forms $\alpha_{1}, \ldots, \alpha_{n-1}$, which, together with ω, span all 1-forms. We write:

$$
\begin{equation*}
d \omega=\omega \wedge \beta+\Omega \tag{11}
\end{equation*}
$$

where Ω is a two-form involving the α_{i} only. Then, for any ℓ,

$$
\begin{equation*}
\omega \wedge(d \omega)^{\ell}=\omega \wedge\left(\ell \omega \wedge \beta \wedge \Omega^{\ell-1}+\Omega^{\ell}\right)=\omega \wedge \Omega^{\ell} \tag{12}
\end{equation*}
$$

Thus, setting $\ell=k-1$ and k in succession, we find that:

$$
\Omega^{k-1} \neq 0, \quad \Omega^{k} \equiv 0
$$

By another algebraic result, namely theorem I.1.7 in [2], there exist $2 k-2$ linearly independent one-forms, $\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{1}^{\prime}, \ldots, \sigma_{k-1}^{\prime}$, in the span of the α_{i}, and such that:

$$
\begin{equation*}
\Omega=\sum_{\ell=1}^{k-1} \sigma_{\ell} \wedge \sigma_{\ell}^{\prime} \tag{13}
\end{equation*}
$$

Inserting this in relation (11), we finally get

$$
\begin{equation*}
d \omega=\omega \wedge \beta+\sum_{\ell=1}^{k-1} \sigma_{\ell} \wedge \sigma_{\ell}^{\prime} \tag{14}
\end{equation*}
$$

One last algebraic result will be needed.
LEmma 3. Let $\alpha_{1}, \ldots, \alpha_{\ell-1}$ be one-forms such that $\alpha_{1}, \ldots, \alpha_{\ell-1}, \omega$ are linearly independent and satisfy:

$$
\alpha_{1} \wedge \ldots \wedge \alpha_{\ell-1} \wedge \omega \wedge(d \omega)^{k-\ell+1} \equiv 0
$$

Define \mathcal{J}_{ℓ} to be the set of one-forms α such that:

$$
\alpha \wedge \alpha_{1} \wedge \ldots \wedge \alpha_{\ell-1} \wedge \omega \wedge(d \omega)^{k-\ell} \equiv 0
$$

Then:
(i) \mathcal{J}_{ℓ} is spanned by $2 k-\ell$ one-forms $\tau_{1}, \ldots, \tau_{2 k-\ell}$
(ii) If Θ is a two-form satisfying

$$
\Theta \wedge \alpha_{1} \wedge \ldots \wedge \alpha_{\ell-1} \wedge \omega \wedge(d \omega)^{k-\ell} \equiv 0
$$

then there exist one-forms μ_{i} such that

$$
\Theta=\sum_{i=1}^{2 k-\ell} \mu_{i} \wedge \tau_{i}
$$

The proof is deferred to Appendix B.
We are going to construct the functions u_{1}, \ldots, u_{k} by the successive equations:

$$
\begin{gather*}
d u_{1} \wedge \omega \wedge(d \omega)^{k-1} \equiv 0, \quad \text { ie } d u_{1} \in \mathcal{I} \tag{15.1}\\
d u_{2} \wedge d u_{1} \wedge \omega \wedge(d \omega)^{k-2} \equiv 0 \tag{15.2}
\end{gather*}
$$

$$
d u_{\ell} \wedge \ldots \wedge d u_{1} \wedge \omega \wedge(d \omega)^{k-\ell} \equiv 0
$$

$$
\begin{gather*}
d u_{k-1} \wedge d u_{k-2} \wedge \ldots \wedge d u_{1} \wedge \omega \wedge d \omega \equiv 0 \tag{15.k-1}\\
d u_{k} \wedge \ldots \wedge d u_{1} \wedge \omega \equiv 0 \tag{15.k}
\end{gather*}
$$

At the origin the $d u_{\ell}$ are to be linearly independent and to lie in V. Furthermore, each u_{ℓ} will be strictly convex, the a^{ℓ} will be positive, and there will be conditions on the $d u_{\ell}(0)$. We will do this inductively on ℓ.

Observe first that the set \mathcal{I} of one-forms, defined by (8), is a linear space of dimension $(2 k-1)$. Indeed, using (12) and (13), we find that α belongs to \mathcal{I} if and only if:

$$
\begin{aligned}
0 & \equiv \alpha \wedge \omega \wedge \Omega^{k-1} \\
& \equiv c \alpha \wedge \omega \wedge \sigma_{1} \wedge \sigma_{1}^{\prime} \ldots \wedge \sigma_{k-1} \wedge \sigma_{k-1}^{\prime}
\end{aligned}
$$

for some $c \neq 0$. This means that

$$
\mathcal{I}=\operatorname{Span}\left\{\omega, \sigma_{1}, \sigma_{1}^{\prime}, \ldots, \sigma_{k-1}, \sigma_{k-1}^{\prime}\right\}
$$

We claim that \mathcal{I} generates a differential ideal. This is equivalent to the Frobenius condition: if $\alpha_{1}, \ldots, \alpha_{2 k-1}$ span \mathcal{I}, then there are one-forms $\mu_{i j}$ such that, for $1 \leq$ $i \leq 2 k-1$:

$$
\begin{equation*}
d \alpha_{i}=\sum_{i=1}^{2 k-1} \mu_{i j} \wedge \alpha_{j} \tag{16}
\end{equation*}
$$

To verify (16), we take α in \mathcal{I} and apply d to (8):

$$
d \alpha \wedge \omega \wedge(d \omega)^{k-1}=\alpha \wedge(d \omega)^{k}
$$

which vanishes by lemma 2. Relation (16) then follows by lemma 3 (ii)
Assume $u_{1}, \ldots, u_{\ell-1}$ have been obtained, satisfying equations (15.1) to $(15 . \ell-1)$, with ω and the differentials $d u_{i}$ linearly independent. We then define a set \mathcal{I}_{ℓ} of oneforms α by:

$$
\mathcal{I}_{\ell}=\left\{\alpha \mid \alpha \wedge d u_{\ell-1} \wedge \ldots \wedge d u_{1} \wedge \omega \wedge(d \omega)^{k-\ell} \equiv 0\right\}
$$

It follows from lemma 2 that:

$$
\begin{equation*}
\mathcal{I}_{\ell} \subset \mathcal{I}_{\ell-1} \subset \ldots \subset \mathcal{I}_{1} \tag{17}
\end{equation*}
$$

and the assumption on the $u_{i}, 1 \leq i \leq \ell$, means that:

$$
\begin{equation*}
u_{i} \in \mathcal{I}_{i} \forall i \leq \ell \tag{18}
\end{equation*}
$$

For $\ell=1$, we get $\mathcal{I}_{1}=\mathcal{I}$.
For $\ell=k$, we get:

$$
\begin{aligned}
\mathcal{I}_{k} & =\left\{\alpha \mid \alpha \wedge d u_{k-1} \wedge \ldots \wedge d u_{1} \wedge \omega \equiv 0\right\} \\
& =\operatorname{Span}\left\{\omega, d u_{1}, \ldots, d u_{k-1}\right\}
\end{aligned}
$$

which is a k-dimensional linear space.
We claim that \mathcal{I}_{k} generates a differential ideal. Indeed, if $\alpha \in \mathcal{I}_{k}$, we apply d to the system for α, and we get:

$$
\begin{aligned}
d \alpha \wedge d u_{k-1} \wedge \ldots \wedge d u_{1} \wedge \omega & \equiv \pm \alpha \wedge d u_{k-1} \wedge \ldots \wedge d u_{1} \wedge d \omega \\
& \equiv 0
\end{aligned}
$$

because α is a linear combination of $\omega, d u_{1}, \ldots, d u_{k-1}$, and u_{k-1} has been assumed to satify equation $(15 . k-1)$. As above, using lemma 3 (ii), we find that the forms $\omega, d u_{1}, \ldots, d u_{k-1}$ satisfy the Frobenius condition, so that \mathcal{I}_{k} generates a differential ideal.

For $1<\ell<k$, by lemma 3 (i), \mathcal{I}_{ℓ} is at each point a linear space of dimension $2 k-\ell$. We claim that \mathcal{I}_{ℓ} generates a differential ideal. For, if $\alpha \in \mathcal{I}_{\ell}$, then, applying d to the system defining α, we obtain:

$$
d \alpha \wedge d u_{\ell-1} \wedge \ldots \wedge d u_{1} \wedge \omega \wedge(d \omega)^{k-\ell} \equiv \pm \alpha \wedge d u_{\ell-1} \wedge \ldots \wedge d u_{1} \wedge(d \omega)^{k-\ell+1}
$$

and the right-hand side vanishes by lemma 2. Using lemma 3 (ii) we conclude that \mathcal{I}_{ℓ} is spanned by one-forms satisfying the Frobenius condition, so that it is a differential ideal.
3. Proof of sufficiency. Without loss of generality, we may suppose that at the origin $\omega=d x^{1}$, and that V is spanned by $d x^{1}, \ldots, d x^{k}$. Thus N consists of all vectors ξ, tangent at the origin, such that:

$$
\xi^{1}=\ldots=\xi^{k}=0 .
$$

and the assumed symmetry of $\omega_{i, j}(0)$ on N means simply that:

$$
\omega_{i, j}(0)=\omega_{j, i}(0) \forall i, j>k
$$

Thus:

$$
d \omega(0)=d x^{1} \wedge \beta_{1}+\tau \text { with } \tau=d x^{2} \wedge \beta_{2}+\ldots+d x^{k} \wedge \beta_{k}
$$

where each β_{i} involves only the $d x^{j}$ with $j>i$. And so at the origin:

$$
\omega \wedge(d \omega)^{k-\ell}=\omega \wedge(\tau)^{k-\ell}, \text { with } \tau^{k}=0
$$

We will need:
Lemma 4. At the origin, if $\alpha_{1}, \ldots, \alpha_{\ell}$ are any ℓ linear forms in V, then:

$$
\alpha_{1} \wedge \ldots \wedge \alpha_{\ell} \wedge \omega \wedge(d \omega)^{k-\ell}=0
$$

Proof. Write, for $i=1, \ldots, \ell$:

$$
\alpha_{i}=\sum_{j=1}^{k} \alpha_{i j} d x^{j}=\alpha_{i 1} d x^{1}+\alpha_{i}^{\prime}
$$

Then:

$$
\begin{aligned}
\alpha_{1} \wedge \ldots \wedge \alpha_{\ell} \wedge \omega \wedge(d \omega)^{k-\ell} & =\alpha_{1}^{\prime} \wedge \ldots \wedge \alpha_{\ell}^{\prime} \wedge \omega \wedge(d \omega)^{k-\ell} \\
& =\alpha_{1}^{\prime} \wedge \ldots \wedge \alpha_{\ell}^{\prime} \wedge \omega \wedge(\tau)^{k-\ell}
\end{aligned}
$$

and the right-hand side vanishes for every term involves k products of the $(k-1)$ one-forms $d x^{2}, \ldots, d x^{k}$. प
3.1. Construction of u_{1}. Since \mathcal{I} has dimension $2 k-1$ and satisfies (16), it follows from the Frobenius theorem (see [2], theorem II.1.1) that there exists $2 k-1$ functions $v_{1}, \ldots, v_{2 k-1}$, the differentials of which span \mathcal{I}. We may choose v_{1}, \ldots, v_{k} such that, at the origin:

$$
\begin{aligned}
d v_{i}(0) & =d x^{i}, \text { for } i=1, \ldots, k \\
v_{j}(0) & =0 \quad \forall j .
\end{aligned}
$$

Since ω belongs to \mathcal{I}, we may write:

$$
\omega=\sum_{\ell=1}^{2 k-1} f^{\ell} d v_{\ell}
$$

with $f^{1}(0)=1$ and $f^{\ell}(0)=0$ for $\ell>1$. So:

$$
\begin{aligned}
\omega_{i} & =f^{\ell} v_{\ell, i} \\
\omega_{i, j}(0) & =v_{1, i j}(0)+f_{j}^{\ell}(0) v_{\ell, i}(0)
\end{aligned}
$$

Now use the fact that $\omega_{i, j}(0)$ is positive definite on N, and hence on $\mathcal{I}^{\perp}(0)$, which is a smaller space. For $\xi \in \mathcal{I}^{\perp}(0)$, we have:

$$
\begin{equation*}
v_{\ell, i}(0) \xi^{i}=0 \quad \ell=1, \ldots, 2 k-1 \tag{19}
\end{equation*}
$$

and:

$$
\begin{equation*}
c\|\xi\|^{2} \leq \omega_{i, j}(0) \xi^{i} \xi^{j}=v_{1, i j}(0) \xi^{i} \xi^{j}, \quad c>0 \tag{20}
\end{equation*}
$$

Set

$$
\begin{equation*}
u_{1}=v_{1}+\epsilon_{1} v_{2}+K \sum_{1}^{2 k-1}\left(v_{\ell}\right)^{2} \tag{21}
\end{equation*}
$$

for $\epsilon_{1}>0$ small and K large. Then u_{1} is a solution of (15.1), that is, $d u_{1} \in \mathcal{I}$. We claim that u_{1} is strictly convex at the origin. Indeed, at the origin:

$$
u_{1, i j}(0) \xi^{i} \xi^{j}=v_{1, i j}(0) \xi^{i} \xi^{j}+\epsilon_{1} v_{2, i j}(0) \xi^{i} \xi^{j}+2 K \sum_{\ell}\left(v_{\ell, i}(0) \xi^{i}\right)^{2}
$$

Thus, for $\xi \in \mathcal{I}^{\perp}(0)$, we have, according to (19) and (20):

$$
\begin{aligned}
u_{1, i j}(0) \xi^{i} \xi^{j} & =\omega_{i, j}(0) \xi^{i} \xi^{j}+\epsilon_{1} v_{2, i j}(0) \xi^{i} \xi^{j} \\
& \geq c / 2\|\xi\|^{2} \text { for } \epsilon_{1} \text { small }
\end{aligned}
$$

When ξ belongs to a complementary subspace of $\mathcal{I}^{\perp}(0)$, the last term in (21) takes precedence, so that, for K large enough:

$$
u_{1, i j}(0) \xi^{i} \xi^{j} \geq \frac{c}{2}\|\xi\|^{2}, \quad c>0
$$

for all vectors ξ tangent at the origin. This finishes the construction of u_{1}. Note that:

$$
\begin{equation*}
d u_{1}(0)=d x^{1}+\epsilon_{1} d x^{2} \tag{22}
\end{equation*}
$$

3.2. Construction of the u_{ℓ}, for $\ell \leq k-1$. We now argue by induction. Suppose we have constructed functions:

$$
u_{1}, \ldots, u_{\ell-1}
$$

for $\ell \leq k-1$, and positive numbers

$$
\epsilon_{1}, \ldots, \epsilon_{\ell-1}
$$

satisfying recursively $(15.1), \ldots,(15 . \ell-1)$, the matrix $u_{i, r s}(0)$ being positive definite, and

$$
\begin{equation*}
d u_{i}(0)=d x^{1}-\epsilon_{i} d x^{i}+\epsilon_{i} d x^{i+1} \tag{23}
\end{equation*}
$$

for $2 \leq i \leq \ell-1$, while (22) holds for $i=1$. We now construct u_{ℓ} with similar properties.

Since \mathcal{I}_{ℓ} generates a differential ideal, and has dimension $2 k-\ell$, using Frobenius again we find that there exist $2 k-\ell$ functions $v_{1}, \ldots, v_{2 k-\ell}$ spanning \mathcal{I}_{ℓ}.

Because of (22) and (23), the $d u_{i}(0), 1 \leq i \leq \ell-1$, all belong to V. Comparing lemma 4 with the definition of \mathcal{I}_{ℓ}, we find that $V \subset \mathcal{I}_{\ell}(0)$, so that we may assume that:

$$
d v_{i}(0)=d x^{i} \text { for } i=1, \ldots, k .
$$

Again, we may represent:

$$
\omega_{i}=f^{\ell} v_{\ell, i}
$$

using functions f^{ℓ} with $f^{1}(0)=1$ and $f^{\ell}(0)=0$ for $\ell>1$. Thus, at the origin:

$$
\omega_{i, j}(0)=v_{1, i j}+f_{j}^{\ell} v_{\ell, i}
$$

Since $\mathcal{I}_{\ell}(0) \supset V$, we have $\mathcal{I}_{\ell}(0)^{\perp} \subset N$. For $\xi \in \mathcal{I}_{\ell}(0)^{\perp}$, we get:

$$
\omega_{i, j}(0) \xi^{i} \xi^{j}=v_{1, i j}(0) \xi^{i} \xi^{j}
$$

By our assumption on V, it follows that, for some $c>0$, we have:

$$
v_{1, i j}(0) \xi^{i} \xi^{j} \geq c\|\xi\|^{2}, \quad \forall \xi \in \mathcal{I}_{\ell}(0)^{\perp}
$$

We now define:

$$
u_{\ell}=v_{1}-\epsilon_{\ell} v_{\ell}+\epsilon_{\ell} v_{\ell+1}+K \sum_{s=1}^{2 k-\ell} v_{\ell}^{2}
$$

Just as before, we find that

$$
u_{\ell, i j}(0) \xi^{i} \xi^{j} \geq \frac{c}{2}\|\xi\|^{2},
$$

provided ϵ_{ℓ} is small and K large. We have $u_{\ell} \in \mathcal{I}_{\ell}$, and at the origin:

$$
d u_{\ell}(0)=d x^{1}-\epsilon_{\ell} d x^{\ell}+\epsilon_{\ell} d x^{\ell+1}
$$

3.3. Construction of u_{k} and conclusion. We have thus constructed u_{1}, \ldots, u_{k-1} with the desired properties, and we finally construct u_{k}. Again, \mathcal{I}_{k} has dimension k and generates a differential ideal, so that it is spanned by the differentials of k functions w_{1}, \ldots, w_{k}. As above, $\mathcal{I}_{k}(0)=V$, so we may choose

$$
d w_{i}(0)=d x_{i}(0), \quad i=1, \ldots, k
$$

We now set:

$$
u_{k}=w_{1}-\epsilon_{k} w_{k}+K \sum_{1}^{k} w_{\ell}^{2}
$$

As before, using the fact that $\omega_{i, j}(0)$ is positive definite on $N=V^{\perp}$, we find that for ϵ_{k} small and K large, we have

$$
u_{k, i j}(0) \xi^{i} \xi^{j} \geq \frac{c}{2}\|\xi\|^{2}
$$

while:

$$
d u_{k}(0)=d x^{1}-\epsilon_{k} d x^{k}
$$

To complete the proof of the theorem, we must show that in the representation

$$
\omega=\sum_{\ell=1}^{k} a^{\ell} d u_{\ell}
$$

all the a^{ℓ} are positive at the origin. Well, at the origin, the $d u_{i}(0)$ are independent, so the $a_{\ell}(0)$ are unique. But at the origin;

$$
\begin{aligned}
\omega(0) & =d x^{1} \\
d u_{1}(0) & =d x^{1}+\epsilon_{1} d x^{2} \\
d u_{2}(0) & =d x^{1}-\epsilon_{2} d x^{2}+\epsilon_{2} d x^{3} \\
& \ldots \\
d u_{k-1}(0) & =d x^{1}-\epsilon_{k-1} d x^{k-1}+\epsilon_{k-1} d x^{k} \\
d u_{k}(0) & =d x^{1}-\epsilon_{k} d x^{k} .
\end{aligned}
$$

Then:

$$
\begin{aligned}
\frac{1}{\epsilon_{1}} d u_{1}(0) & =\frac{1}{\epsilon_{1}} d x^{1}+d x^{2} \\
\frac{1}{\epsilon_{2}} d u_{2}(0) & =\frac{1}{\epsilon_{2}} d x^{1}-d x^{2}+d x^{3} \\
& \cdots \\
\frac{1}{\epsilon_{k-1}} d u_{k-1}(0) & =\frac{1}{\epsilon_{k-1}} d x^{1}-d x^{k-1}+d x^{k} \\
\frac{1}{\epsilon_{k}} d u_{k}(0) & =\frac{1}{\epsilon_{k}} d x^{1}-d x^{k} .
\end{aligned}
$$

Summing up, we get:

$$
\sum_{i} \frac{1}{\epsilon_{i}} d u_{i}(0)=\left(\sum_{i} \frac{1}{\epsilon_{i}}\right) d x^{1}
$$

which gives the desired decomposition $\omega(0)=\sum_{\ell} a^{\ell}(0) d u_{\ell}(0)$, with

$$
a^{\ell}(0)=\left[\epsilon_{\ell} \sum\left(1 / \epsilon_{i}\right)\right]^{-1}>0
$$

This concludes the proof.
Appendix A. Proof of Example 2. We prove that for the one-form ω given by (6) the problem has no solution. Assume otherwise; for the sake of convenience, write $u_{1}=u, u_{2}=v, a^{1}=a$, and $a^{2}=b$, so that

$$
\omega=a d u+b d v
$$

In particular, on the plane $x^{3}=x^{4}=x^{5}=0$, we have:

$$
\begin{align*}
& a u_{1}+b v_{1}=-x^{2} \tag{24}\\
& a u_{2}+b v_{2}=x^{1} \tag{25}
\end{align*}
$$

We may assume $u(0)=v(0)=0$. Expanding u and v near the origin in the plane $\left(x^{1}, x^{2}\right)$, we have:

$$
\begin{aligned}
& u=c_{1} x^{1}+c_{2} x^{2}+Q_{1}\left(x^{1}, x^{2}\right)+o\left(\|x\|^{2}\right) \\
& v=d_{1} x^{1}+d_{2} x^{2}+Q_{2}\left(x^{1}, x^{2}\right)+o\left(\|x\|^{2}\right)
\end{aligned}
$$

where Q_{1} and Q_{2} are positive definite quadratic forms.
From (24) and (25), we have:

$$
\begin{align*}
& a\left(u_{2} v_{1}-u_{1} v_{2}\right)=x^{1} v_{1}+x^{2} v_{2}=d_{1} x^{1}+d_{2} x^{2}+2 Q_{2}\left(x^{1}, x^{2}\right)+o\left(\|x\|^{2}\right) \tag{26}\\
& b\left(u_{1} v_{2}-u_{2} v_{1}\right)=x^{1} u_{1}+x^{2} u_{2}=c_{1} x^{1}+c_{2} x^{2}+2 Q_{1}\left(x^{1}, x^{2}\right)+o\left(\|x\|^{2}\right) . \tag{27}
\end{align*}
$$

At the origin, the right-hand sides vanish, and since a and b are positive, we must have $u_{2} v_{1}-u_{1} v_{2}=0$. This implies that the vectors $\left(c_{1}, c_{2}\right)$ and $\left(d_{1}, d_{2}\right)$ are parallel. One or both may vanish, but in any case we can choose $\left(x_{1}, x_{2}\right) \neq 0$ near the origin so that

$$
c_{1} x^{1}+c_{2} x^{2}=0=d_{1} x^{1}+d_{2} x^{2}
$$

For such a choice of (x_{1}, x_{2}), the right-hand sides of (26) and (27) are positive. But the left-hand sides have opposite signs. This is a contradiction.

Appendix B. Proof of lemma 3. We begin by an algebraic result:
Lemma 5. Consider a $2 m$-dimensional space of one-forms spanned by

$$
\sigma_{1}, \sigma_{1}^{\prime}, \ldots, \sigma_{m}, \sigma_{m}^{\prime}
$$

and set:

$$
\Omega=\sigma_{1} \wedge \sigma_{1}^{\prime}+\ldots+\sigma_{m} \wedge \sigma_{m}^{\prime}
$$

so that $\Omega^{m} \neq 0$. Let $\gamma_{1}, \ldots \gamma_{s-1}$ be linearly independent one-forms such that:

$$
\gamma_{1} \wedge \ldots \wedge \gamma_{s-1} \wedge \Omega^{m-s+2} \equiv 0
$$

Then:
(i) There is a set of one-forms $\beta_{1}, \ldots, \beta_{m}, \gamma_{s}^{\prime}, \ldots, \gamma_{m}^{\prime}$ such that:

$$
\begin{equation*}
\Omega=\sum_{i=1}^{s-1} \gamma_{i} \wedge \beta_{i}+\sum_{j=s}^{m} \gamma_{j}^{\prime} \wedge \beta_{j} . \tag{28}
\end{equation*}
$$

(ii) The space of one-forms

$$
\mathcal{M}_{s}=\left\{\alpha \mid \alpha \wedge \gamma_{1} \wedge \ldots \wedge \gamma_{s-1} \wedge \Omega^{m-s+1} \equiv 0\right\}
$$

is spanned by the $\gamma_{i}, \gamma_{j}^{\prime}, \beta_{\ell}$, for $1 \leq i<s \leq j \leq m, 1 \leq \ell \leq m$, and so has dimension $2 m-s+1$.

Proof. We first assume (i) to prove (ii).
If (28) holds, since $\Omega^{m} \neq 0$, the β_{i}, γ_{i} and γ_{i}^{\prime} must be linearly independent. The system defining \mathcal{J}_{s} then becomes:

$$
\begin{aligned}
0 & =\alpha \wedge \gamma_{1} \wedge \ldots \wedge \gamma_{s-1} \wedge\left(\sum_{i=s}^{m} \gamma_{i}^{\prime} \wedge \beta_{i}\right)^{m-s+1} \\
& =(m-s+1)!\alpha \wedge \gamma_{1} \wedge \ldots \wedge \gamma_{s-1} \wedge \gamma_{s}^{\prime} \wedge \beta_{s} \wedge \ldots \wedge \gamma_{m}^{\prime} \wedge \beta_{m}
\end{aligned}
$$

We end up with:

$$
\mathcal{M}_{s}=\operatorname{Span}\left\{\gamma_{i}, \gamma_{j}^{\prime}, \beta_{j} \mid 1 \leq i \leq s-1, s \leq j \leq m\right\}
$$

so that (ii) is proved.
Now to prove (i). This will be done by induction on s. For $s=1$, we can take $\beta_{i}=\sigma_{i}$ and $\gamma_{i}^{\prime}=\sigma_{i}^{\prime}$, so the lemma holds in this case.

Suppose (i) holds up to $s=r$; we wish to establish it for $s=r+1$. Let $\gamma_{1}, \ldots, \gamma_{r}$ be linearly independent one-forms satisfying

$$
\gamma_{1} \wedge \ldots \wedge \gamma_{r} \wedge \Omega^{m-r+1} \equiv 0
$$

This means that γ_{r} belongs to \mathcal{M}_{r}. Since (28) holds for $s=r$, we have seen that γ_{r} then belongs to the linear span of the $\gamma_{i}, \gamma_{j}^{\prime}, \beta_{j}$, for $1 \leq i<r \leq j \leq m$:

$$
\gamma_{r}=\sum_{i=1}^{r-1} c_{i} \gamma_{i}+\sum_{j=r}^{m} b_{j} \beta_{j}+\sum_{j=r}^{m} a_{j} \gamma_{j}^{\prime}
$$

At least one of the b_{j} or a_{j} must be non-zero. Suppose it is a_{r}; the case where all the a_{j} vanish and $b_{r} \neq 0$ would be treated in the same way. We may assume $a_{r}=1$. Then:

$$
\begin{equation*}
\gamma_{r}^{\prime}=\gamma_{r}-\sum_{i=1}^{r-1} c_{i} \gamma_{i}-\sum_{j=r}^{m} b_{j} \beta_{j}-\sum_{j=r+1}^{m} a_{j} \gamma_{j}^{\prime} \tag{29}
\end{equation*}
$$

Because (28) holds up for $s=r$, we have:

$$
\Omega=\sum_{i=1}^{r-1} \gamma_{i} \wedge \beta_{i}+\sum_{j=r}^{m} \gamma_{j}^{\prime} \wedge \beta_{j}
$$

Replacing γ_{r}^{\prime} in this expression by its value, taken from (29), we obtain:

$$
\begin{equation*}
\Omega=\sum_{i=1}^{r-1} \gamma_{i} \wedge\left(\beta_{i}-c_{i} \beta_{r}\right)+\gamma_{r} \wedge \beta_{r}+\sum_{j=r+1}^{m}\left(\gamma_{i}^{\prime}+b_{j} \beta_{r}\right) \wedge\left(\beta_{j}-a_{j} \beta_{r}\right) \tag{30}
\end{equation*}
$$

Setting:

$$
\begin{aligned}
& \bar{\beta}_{i}=\beta_{i}-c_{i} \beta_{r} \text { for } 1 \leq i \leq r-1 \\
& \bar{\beta}_{r}=\beta_{r} \\
& \bar{\gamma}_{j}^{\prime}=\gamma_{j}^{\prime}+b_{j} \beta_{r} \text { for } r+1 \leq j \leq m \\
& \bar{\beta}_{j}=\beta_{j}-a_{j} \beta_{r} \quad \text { for } r+1 \leq j \leq m
\end{aligned}
$$

we rewrite (30) as follows:

$$
\Omega=\sum_{i=1}^{r} \gamma_{i} \wedge \bar{\beta}_{i}+\sum_{j=r+1}^{m} \bar{\gamma}_{j}^{\prime} \wedge \bar{\beta}_{j}
$$

so (28) holds for $s=r+1$, and the lemma is proved.

Proof of lemma 3(i). We show first that:

$$
\begin{equation*}
\mathcal{J}_{\ell}=\left\{\alpha \mid \alpha \wedge \alpha_{\ell-1} \wedge \ldots \wedge \alpha_{1} \wedge \omega \wedge(d \omega)^{k-\ell} \equiv 0\right\} \tag{31}
\end{equation*}
$$

has dimension $2 k-\ell$.
Recall that the $\alpha_{1}, \ldots, \alpha_{\ell-1}$ and ω are linearly independent, and satisfy

$$
\begin{equation*}
\alpha_{1} \wedge \ldots \wedge \alpha_{\ell} \wedge \omega \wedge(d \omega)^{k-\ell+1} \equiv 0 \tag{32}
\end{equation*}
$$

By lemma $2, \mathcal{J}_{\ell}$ and the α_{i} belong to \mathcal{I}, and so is α_{i} is a linear combination of ω and the $\sigma_{j}, \sigma_{j}^{\prime}$. Thus we may write:

$$
\begin{equation*}
\alpha_{i}=b_{i} \omega+\gamma_{i} \text { for } 1 \leq i \leq \ell-1 \tag{33}
\end{equation*}
$$

where γ_{i} is a linear combination of the $\sigma_{j}, \sigma_{j}^{\prime}$. Inserting (33) in (32), we obtain:

$$
\begin{equation*}
\gamma_{1} \wedge \ldots \wedge \gamma_{\ell-1} \wedge \omega \wedge(d \omega)^{k-\ell+1} \equiv 0 \tag{34}
\end{equation*}
$$

On the other hand, by relation (14), we have:

$$
d \omega=\omega \wedge \beta+\Omega, \quad \text { with } \Omega=\sum_{i=1}^{k-1} \sigma_{\ell} \wedge \sigma_{\ell}^{\prime}
$$

so equation (34) becomes:

$$
\begin{equation*}
\gamma_{1} \wedge \ldots \wedge \gamma_{\ell-1} \wedge \omega \wedge \Omega^{k-\ell+1} \equiv 0 \tag{35}
\end{equation*}
$$

This implies:

$$
\begin{equation*}
\gamma_{\ell-1} \wedge \ldots \wedge \gamma_{1} \wedge \Omega^{k-\ell+1} \equiv 0 \tag{36}
\end{equation*}
$$

Indeed, the left-hand side is a k-form involving only the $\sigma_{j}, \sigma_{j}^{\prime}$, and if it did not vanish, taking the wedge product with ω, which is linearly independent from the $\sigma_{j}, \sigma_{j}^{\prime}$ would contradict (35).

Consider any α in \mathcal{J}_{ℓ}. We may write $\alpha=b \omega+\hat{\alpha}$, where $\hat{\alpha}$ is a linear combination of the $\sigma_{i}, \sigma_{i}^{\prime}$, and equation (31) implies:

$$
\hat{\alpha} \wedge \gamma_{1} \wedge \ldots \wedge \gamma_{\ell-1} \wedge \Omega^{k-\ell}=0
$$

By lemma 5 , with $m=k-1$, we see that the set of such $\hat{\alpha}$ has dimension $2 k-\ell-1$, so \mathcal{J}_{ℓ}, which is spanned by these $\hat{\alpha}$ and by ω, has dimension $2 k-\ell$.

Proof of lemma 3(ii). Suppose the two-form Θ satisfies the prescribed condition. Then:

$$
\Theta \wedge \alpha_{1} \wedge \ldots \wedge \alpha_{\ell-1} \wedge \omega \wedge \Omega^{k-\ell} \equiv 0 .
$$

Using (33), we get:

$$
\Theta \wedge \gamma_{1} \wedge \ldots \wedge \gamma_{\ell-1} \wedge \omega \wedge \Omega^{k-\ell} \equiv 0
$$

and the $\gamma_{1}, \ldots, \gamma_{\ell-1}$ satisfy (36)

By lemma 5 (i), with $m=k-1$, there is a set of one-forms $\beta_{1}, \ldots, \beta_{k-1}, \gamma_{\ell}^{\prime}, \ldots, \gamma_{k-1}^{\prime}$ such that:

$$
\Omega=\sum_{i=1}^{\ell-1} \gamma_{i} \wedge \beta_{i}+\sum_{j=\ell}^{k-1} \gamma_{j}^{\prime} \wedge \beta_{j}
$$

and hence:

$$
\Theta \wedge \gamma_{1} \wedge \ldots \wedge \gamma_{\ell-1} \wedge \omega \wedge \gamma_{\ell}^{\prime} \wedge \beta_{\ell} \wedge \ldots \wedge \gamma_{k-1}^{\prime} \wedge \beta_{k-1} \equiv 0
$$

Set $\tau_{1}=\omega, \tau_{2}=\gamma_{1}, \tau_{\ell}=\gamma_{\ell-1}, \tau_{\ell+1}=\gamma_{\ell}^{\prime}, \ldots, \ldots, \tau_{k}=\gamma_{k-1}^{\prime}, \tau_{k+1}=\beta_{\ell}, \ldots$, $\tau_{2 k-\ell}=\beta_{k-1}$. By lemma 5 (ii), they are all independent and span \mathcal{J}_{ℓ}. Then the preceding equation takes the form:

$$
\begin{equation*}
\Theta \wedge \tau_{1} \wedge \ldots \wedge \tau_{2 k-\ell} \equiv 0 \tag{37}
\end{equation*}
$$

The τ_{i}, together with $n-(2 k-\ell)$ forms $\tau_{2 k-\ell+1}^{\prime}, \ldots, \tau_{n}^{\prime}$, span all one-forms. We may therefore write:

$$
\begin{equation*}
\Theta=\sum_{i=1}^{2 k-\ell} \mu_{i} \wedge \tau_{i}+\sum_{2 k-\ell<i<j}^{n} f^{i j} \tau_{i}^{\prime} \wedge \tau_{j}^{\prime} . \tag{38}
\end{equation*}
$$

It then follows from (37) that:

$$
\tau_{1} \wedge \ldots \wedge \tau_{2 k-\ell} \wedge \sum_{2 k-\ell<i<j}^{n} f^{i j} \tau_{i}^{\prime} \wedge \tau_{j}^{\prime} . \equiv 0
$$

which means that the $f^{i j}$ all are identically zero. Equation (38) then has the desired form.

REFERENCES

[1] M. Browning and P.A. Chiappori, Efficient intra-household allocations: a general characterization and empirical tests, Econometrica, 66 (1998), pp. 1241-1278.
[2] R. Bryant, S. Chern, R. Gardner, H. Goldschmidt, P. Griffiths, Exterior Differential Systems, Springer-Verlag, 1991.
[3] P.A. Chiappori and I. Ekeland, A convex Darboux theorem, Annali della Scuola Normale di Pisa, Cl. Sci (4), XXV (1997), pp. 287-297.
[4] A. Mas-Colell, M. Whinston, J. Green, Microeconomic theory, Oxford University Press, 1995.
[5] V. Zakalyukin, Concave Darboux theorem, CRAS Paris 327, série 1, (1998), pp.633-638.

[^0]: *Received November 9, 2000; accepted for publication February 15, 2001.
 ${ }^{\dagger}$ CEREMADE, Université Paris-Dauphine (ekeland@dauphine.fr).
 ${ }^{\ddagger}$ Courant Institute of Mathematical Sciences, New York University (nirenberg@cims.nyu.edu).

