METHODS AND APPLICATIONS OF ANALYSIS. Vol. 9, No. 3, pp. 329–344, September 2002

© 2002 International Press

A CONVEX DARBOUX THEOREM *

IVAR EKELAND † and LOUIS NIRENBERG ‡

Abstract. We give necessary and sufficient conditions for a smooth, generic, differential oneform ω on \mathbb{R}^n to decompose into a sum $\omega = a^1 du_1 + \ldots + a^k du_k$, where the functions a^ℓ are positive and the u_ℓ convex (or quasi-convex) near the origin.

1. Introduction. We are given a smooth differential one-form in a neighbourhood of the origin in \mathbb{R}^n (the Einstein summation convention is used throughout):

$$\omega = \omega_i dx^i$$

its exterior derivative being:

$$d\omega = \omega_{i,j} dx^j \wedge dx^i$$

with:

$$\omega_{i,j} = \frac{\partial \omega_i}{\partial x^j}$$

PROBLEM 1. Under what conditions can we represent ω (near the origin) in the form:

$$\omega = \sum_{\ell=1}^{k} a^{\ell} du_{\ell} \tag{1}$$

where the a^{ℓ} are positive functions and the u_{ℓ} are strictly convex functions?

The last requirement will be understood to mean that, for each ℓ , the matrix

$$\frac{\partial^2 u_\ell}{\partial x^i \partial x^j} =: u_{\ell,ij}$$

is positive definite.

An obvious necessary condition is:

$$\omega \wedge (d\omega)^k \equiv 0. \tag{2}$$

Indeed, if (1) holds, then

$$d\omega = da^{\ell} \wedge du_{\ell}$$

and

$$(d\omega)^k = \alpha \wedge du_1 \wedge \ldots \wedge du_k$$

for some form α , so that (2) follows.

^{*}Received November 9, 2000; accepted for publication February 15, 2001.

 $^{^{\}dagger}\mathrm{CEREMADE},$ Université Paris-Dauphine (ekeland@dauphine.fr).

[‡]Courant Institute of Mathematical Sciences, New York University (nirenberg@cims.nyu.edu).

We will always assume the generic condition:

$$\omega \wedge (d\omega)^{k-1} \neq 0. \tag{3}$$

DEFINITION 1. We say that a smooth one-form ω satisfies the *k*-fold Darboux condition at the origin if (2) holds on some neighbourhood of the origin.

It is a theorem of Darboux (see [2], theorem II.3.3) that, provided (3) holds, this condition is necessary and sufficient for the representation (1) near the origin, if we do not require the positivity of the a^{ℓ} nor the convexity of the u_{ℓ} .

In [3], Chiappori and Ekeland asked what further conditions are needed to have this representation with the a^{ℓ} positive and the u_{ℓ} convex. They treated the case when ω is real analytic by using Cartan-Kähler theory, and they found the following to be necessary and sufficient:

CONDITION 1. There is some neighbourhood of the origin where the matrix with coefficients $\omega_{i,j}$ is the sum of two matrices, a positive definite one and another one of rank k.

Shortly afterwards, V.M. Zakalyukin studied the nonanalytic case, when ω is merely smooth. He found a necessary and sufficient condition, theorem 1 of [5], which, surprisingly, is slightly different. He introduces the space $A_2(\omega)$ of all tangent vector fields ξ such that:

$$\begin{aligned} \langle \omega \mid \xi \rangle &= 0\\ \langle d\omega, (\xi, \eta) \rangle &= 0 \ \forall \eta \end{aligned}$$

and in addition to condition 1, he requires the following:

CONDITION 2. There is some neighbourhood of the origin where the matrix $\omega_{i,j} + \omega_{j,i}$ is positive definite on $A_2(\omega)$.

The present paper began as an attempt to understand the proof in [5]. We began by investigating the low-dimensional case, and to our surprise we found counterexamples to the preceding results, both [3] and [5]. We present two, with k = 2, that is, we are trying to write

$$\omega = a^1 du_1 + a^2 du_2. \tag{4}$$

EXAMPLE 1. Here n = 4, the Darboux condition holds and condition 1 as well. Set:

$$\omega = (1 + x^1 + x^4)dx^1 + x^2dx^2 + (x^3 + x^2)dx^3.$$

Then

$$d\omega = dx^4 \wedge dx^1 + dx^2 \wedge dx^3$$

and clearly (3) holds, as well as the Darboux condition. Further, we have:

$$\omega_{i,j} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \mathrm{Id} + \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

The last matrix has rank 2, so condition 1 holds. However, the problem has no solution. Indeed, if relation (4) holds, then u_1 satisfies:

$$du_1 \wedge \omega \wedge d\omega = du_1 \wedge a^2 du_2 \wedge d\omega \equiv 0 \tag{5}$$

On the other hand:

$$\omega \wedge d\omega = (1 + x^1 + x^4)dx^1 \wedge dx^2 \wedge dx^3.$$

Substituting into (5) yields

$$(1+x^1+x^4)u_{1,4} \equiv 0.$$

So $u_{1,4} \equiv 0$ and u_1 cannot be strictly convex.

EXAMPLE 2. Here n = 5, the Darboux condition holds, and conditions 1 and 2 as well. Set:

$$\omega = -x^2 dx^1 + x^1 dx^2 + (1+x^3) dx^3 + (1+x^4) dx^4 + (1+x^5) dx^5.$$
 (6)

Then

$$\begin{split} &d\omega = 2dx^1 \wedge dx^2 \\ &\omega \wedge d\omega = 2dx^1 \wedge dx^2 \left[(1+x^3)dx^3 + (1+x^4)dx^4 + (1+x^5)dx^5\right]. \end{split}$$

so that (3) holds, as well as the Darboux condition. We also have:

so condition 1 holds as well. Finally, at the origin, ξ belonging to $A_2(\omega)$ means that

$$\xi^{3} + \xi^{4} + \xi^{5} = 0$$

2($\xi^{1}\eta^{2} - \xi^{2}\eta^{1}$) = 0 $\forall (\eta^{1}, \eta^{2})$

the latter equation meaning that $\xi^1 = \xi^2 = 0$. We see that the matrix $\omega_{i,j} + \omega_{j,i}$ is positive definite on vectors of the form $(0, 0, \xi^3, \xi^4, \xi^5)$. So the condition 2 is satisfied also. However, in Appendix A, we present a proof that for the one-form ω given by (6) the problem has no solution.

In this paper, we find the necessary and sufficient conditions, always assuming (3), that a smooth ω must satisfy for the problem to have a solution.

First, we introduce in the space of all one-forms α a subset \mathcal{I} defined as follows:

$$\mathcal{I} = \left\{ \alpha \mid \alpha \land \omega \land (d\omega)^{k-1} \equiv 0 \right\}$$
(8)

CONDITION 3. There is a k-dimensional subspace V of $\mathcal{I}(0)$, containing $\omega(0)$, and such that on $N = V^{\perp}$, the matrix $\omega_{i,j}(0)$ is symmetric and positive definite.

In their seminal paper, [1], Browning and Chiappori investigated the consumption behaviour of a two-person household spending jointly one unit of account. This amounts to a particular case of problem 1, with k = 2 and:

$$\omega_j(x)x^j = 1.$$

Browning and Chiappori then consider the matrix $S = (s_{ij})$ defined by:

$$s_{ij} = \omega_{i,j} + x^{\kappa} \omega_{i,k} \omega_j,$$

and they show that $S = \Sigma + A$, where Σ is a symmetric matrix, positive semi-definite, and $A = (a_{ij})$ has rank at most one.

Suppose Σ is in fact positive definite and A has rank exactly one: $a_{ij} = u_i v_j$, where $\alpha = \sum u_i dx^i$ and $\beta = \sum v_i dx^i$ are both non-zero. A simple computation shows that:

$$\omega \wedge d\omega = -\omega \wedge \alpha \wedge \beta$$

so that α and β belong to \mathcal{I} . One then checks that S coincides with Σ on the orthogonal of the two-dimensional subspace spanned by ω and α , so the Browning-Chiappori condition amounts to condition 3 in that particular case.

THEOREM 1. Assume ω is a smooth one-form satisfying (3). Problem 1 has a solution if and only if the k-fold Darboux condition is satisfied near the origin, and condition 3 is satisfied at the origin.

Let us rewrite condition 3 at the origin. Define N as the subspace of vectors ξ , tangent at the origin, such that:

$$\langle \xi \mid \alpha \rangle = 0 \ \forall \alpha \in V.$$

Condition 3 requires that:

$$\begin{split} \omega_{i,j}(0)\xi^i\eta^j &= \omega_{i,j}(0)\eta^i\xi^j \ \ \forall \xi,\eta \in N,\\ \omega_{i,j}(0)\xi^i\xi^j &> 0 \ \ \forall 0 \neq \xi \in N. \end{split}$$

Note that condition 3 by itself is not open (if it holds at some point, it need not hold in a neigbourhood). Theorem 1 implies that it becomes open if we impose in addition the Darboux condition.

Proof of necessity. Assume problem (1) has a solution. We already know that the Darboux condition has to hold. At the origin (and hence nearby) the du_i are linearly independent; for otherwise, we could express $\omega(0)$ as a linear combination of k-1 of them, and it would then follow that $\omega \wedge (d\omega)^{k-1} = 0$ at the origin, contradicting (3).

Note next, as we did in example 1 for the case k = 2, that relation (1) implies:

$$\omega \wedge (d\omega)^{k-1} = \Theta \wedge du_1 \wedge \ldots \wedge du_k$$

for some (k-1)-form Θ , so that

$$du_i \wedge \omega \wedge (d\omega)^{k-1} = 0.$$

Thus du_i lies in \mathcal{I} for all *i*. Let *V* be the *k*-dimensional subspace spanned by du_1, \ldots, du_k . By (1), the linear form $\omega(0)$ lies in *V*. Set $N = V^{\perp}$ and take ξ and η in *N*. Differentiating (1), we find:

$$\omega_{i,j} = a_j^\ell u_{\ell,i} + a^\ell u_{\ell,ij}.$$
(9)

Writing $u_{\ell,i}\xi^i = u_{\ell,i}\eta^i = 0$ in the preceding equation , we get:

$$\omega_{i,j}\xi^i\eta^j = a^\ell u_{\ell,ij}\xi^i\eta^j$$

The right-hand side is symmetric in ξ and η , and so therefore is the left. Furthermore, taking $\xi = \eta$, we see that $\omega_{i,j}$ is positive definite, as announced. Necessity is proved. \Box

To conclude this section, let us state (and solve) a related problem. Recall first that a function u is *quasi-convex* iff the level sets $\{x \mid u(x) \leq h\}$ are convex for every h, and *strictly* quasi-convex if these level sets are stricly convex. A second-order necessary and sufficient condition for quasi-convexity is that the restriction of the quadratic form $u_{ij}\xi^i\xi^j$ to the subspace $u_i\xi^i = 0$ be positive semidefinite (see [4], theorem M.C.4). If it is positive definite, the function is strictly quasi-convex.

Such functions play an important role in economics, since direct utility functions are typically quasi-concave, and the indirect utility functions quasi-convex (see [4], proposition 3.D.3). In this context, the following is a natural question:

PROBLEM 2. Under what conditions can we represent ω (near the origin) in the form:

$$\omega = \sum_{\ell=1}^{k} a^{\ell} du_{\ell} \tag{10}$$

where the a^{ℓ} are positive functions and the u_{ℓ} are strictly quasi-convex functions?

Clearly, (strictly) convex functions are (strictly) quasi-convex, so any solution to problem 1 is a solution to problem 2. So problem 2 would seem to be more general than problem 1. This is not the case: the problems are equivalent. This follows from

LEMMA 1. Assume that the function u is strictly quasi-convex at the origin, in the sense that the restriction of the quadratic form $u_{ij}(0)\xi^i\xi^j$ to the subspace $u_i(0)\xi^i = 0$ is positive definite. Then there is an increasing function $\phi(t)$, defined on a small interval containing u(0), such that $\phi \circ u$ is strictly convex at the origin, in the sense that the quadratic form $(\phi \circ u)_{ij}(0)\xi^i\xi^j$ is positive definite.

Proof. We may assume u(0) = 0 and $du(0) = dx_1$. Take $\phi'(0) = 1$ and $\phi''(0) = K$. We have:

$$(\phi \circ u)_{ij}(0)\xi^i\xi^j = u_{ij}(0)\xi^i\xi^j + K(\xi^1)^2$$

which can be made positive definite by choosing K large enough. \Box

So any decomposition

$$\omega = \sum_{\ell=1}^k a^\ell du_\ell$$

in terms of functions u_{ℓ} strictly quasi-convex at the origin (and hence strictly quasiconvex near the origin) yields a similar decomposition in terms of strictly convex functions. Indeed, choose for each u_{ℓ} a function ϕ_{ℓ} such that $\phi'_{\ell}(u_{\ell}) = 1$ at the origin and $v_{\ell} = \phi_{\ell} \circ u_{\ell}$ is strictly convex. Then:

$$\omega = \sum_{\ell=1}^{k} \frac{a^{\ell}}{\phi_{\ell}'(u_{\ell})} dv_{\ell}$$

and the coefficients are clearly positive. So theorem 1 provides an answer both to problems 1 and 2.

2. Preliminaries. The following algebraic result will be used repeatedly. It is proposition I.1.6. of [2].

LEMMA 2. Let $\alpha_1, \ldots, \alpha_{p+1}$ be linearly independent one-forms and Ω a two-form such that:

$$\alpha_1 \wedge \ldots \wedge \alpha_p \wedge \Omega^q = 0$$

for some positive integers p and q. Then

$$\alpha_1 \wedge \ldots \wedge \alpha_{p-1} \wedge \Omega^{q+1} = 0$$

From now on we assume that ω satisfies the conditions of theorem 1.

There are (n-1) one-forms $\alpha_1, \ldots, \alpha_{n-1}$, which, together with ω , span all 1-forms. We write:

$$d\omega = \omega \wedge \beta + \Omega \tag{11}$$

where Ω is a two-form involving the α_i only. Then, for any ℓ ,

$$\omega \wedge (d\omega)^{\ell} = \omega \wedge (\ell \omega \wedge \beta \wedge \Omega^{\ell-1} + \Omega^{\ell}) = \omega \wedge \Omega^{\ell}.$$
 (12)

Thus, setting $\ell = k - 1$ and k in succession, we find that:

$$\Omega^{k-1} \neq 0, \quad \Omega^k \equiv 0.$$

By another algebraic result, namely theorem I.1.7 in [2], there exist 2k-2 linearly independent one-forms, $\sigma_1, \ldots, \sigma_{k-1}, \sigma'_1, \ldots, \sigma'_{k-1}$, in the span of the α_i , and such that:

$$\Omega = \sum_{\ell=1}^{k-1} \sigma_\ell \wedge \sigma'_\ell \tag{13}$$

Inserting this in relation (11), we finally get

$$d\omega = \omega \wedge \beta + \sum_{\ell=1}^{k-1} \sigma_{\ell} \wedge \sigma'_{\ell} \tag{14}$$

One last algebraic result will be needed.

LEMMA 3. Let $\alpha_1, \ldots, \alpha_{\ell-1}$ be one-forms such that $\alpha_1, \ldots, \alpha_{\ell-1}, \omega$ are linearly independent and satisfy:

$$\alpha_1 \wedge \ldots \wedge \alpha_{\ell-1} \wedge \omega \wedge (d\omega)^{k-\ell+1} \equiv 0.$$

Define \mathcal{J}_{ℓ} to be the set of one-forms α such that:

$$\alpha \wedge \alpha_1 \wedge \ldots \wedge \alpha_{\ell-1} \wedge \omega \wedge (d\omega)^{k-\ell} \equiv 0.$$

Then:

(i) \mathcal{J}_{ℓ} is spanned by $2k - \ell$ one-forms $\tau_1, \ldots, \tau_{2k-\ell}$

(ii) If Θ is a two-form satisfying

$$\Theta \wedge \alpha_1 \wedge \ldots \wedge \alpha_{\ell-1} \wedge \omega \wedge (d\omega)^{k-\ell} \equiv 0.$$

then there exist one-forms μ_i such that

$$\Theta = \sum_{i=1}^{2k-\ell} \mu_i \wedge \tau_i$$

The proof is deferred to Appendix B. We are going to construct the functions u_1, \ldots, u_k by the successive equations:

$$du_1 \wedge \omega \wedge (d\omega)^{k-1} \equiv 0, \quad ie \ du_1 \in \mathcal{I}$$
(15.1)

$$du_2 \wedge du_1 \wedge \omega \wedge (d\omega)^{k-2} \equiv 0, \tag{15.2}$$

$$du_{\ell} \wedge \ldots \wedge du_{1} \wedge \omega \wedge (d\omega)^{k-\ell} \equiv 0, \qquad (15.\ell)$$

$$du_{k-1} \wedge du_{k-2} \wedge \ldots \wedge du_1 \wedge \omega \wedge d\omega \equiv 0, \qquad (15.k-1)$$

$$du_k \wedge \ldots \wedge du_1 \wedge \omega \equiv 0. \tag{15.k}$$

At the origin the du_{ℓ} are to be linearly independent and to lie in V. Furthermore, each u_{ℓ} will be strictly convex, the a^{ℓ} will be positive, and there will be conditions on the $du_{\ell}(0)$. We will do this inductively on ℓ .

Observe first that the set \mathcal{I} of one-forms, defined by (8), is a linear space of dimension (2k-1). Indeed, using (12) and (13), we find that α belongs to \mathcal{I} if and only if:

$$0 \equiv \alpha \wedge \omega \wedge \Omega^{k-1}$$

= $c \alpha \wedge \omega \wedge \sigma_1 \wedge \sigma'_1 \dots \wedge \sigma_{k-1} \wedge \sigma'_{k-1}$

for some $c \neq 0$. This means that

$$\mathcal{I} = Span \left\{ \omega, \sigma_1, \sigma'_1, \dots, \sigma_{k-1}, \sigma'_{k-1} \right\}.$$

We claim that \mathcal{I} generates a differential ideal. This is equivalent to the Frobenius condition: if $\alpha_1, \ldots, \alpha_{2k-1}$ span \mathcal{I} , then there are one-forms μ_{ij} such that, for $1 \leq i \leq 2k-1$:

$$d\alpha_i = \sum_{i=1}^{2k-1} \mu_{ij} \wedge \alpha_j. \tag{16}$$

To verify (16), we take α in \mathcal{I} and apply d to (8):

$$d\alpha \wedge \omega \wedge (d\omega)^{k-1} = \alpha \wedge (d\omega)^k$$

which vanishes by lemma 2. Relation (16) then follows by lemma 3 (ii)

Assume $u_1, \ldots, u_{\ell-1}$ have been obtained, satisfying equations (15.1) to (15. $\ell-1$), with ω and the differentials du_i linearly independent. We then define a set \mathcal{I}_{ℓ} of one-forms α by:

$$\mathcal{I}_{\ell} = \left\{ \alpha \mid \alpha \wedge du_{\ell-1} \wedge \ldots \wedge du_1 \wedge \omega \wedge (d\omega)^{k-\ell} \equiv 0 \right\}$$

It follows from lemma 2 that:

$$\mathcal{I}_{\ell} \subset \mathcal{I}_{\ell-1} \subset \ldots \subset \mathcal{I}_1 \tag{17}$$

and the assumption on the $u_i, 1 \leq i \leq \ell$, means that:

$$u_i \in \mathcal{I}_i \quad \forall i \le \ell \tag{18}$$

For $\ell = 1$, we get $\mathcal{I}_1 = \mathcal{I}$. For $\ell = k$, we get:

$$\mathcal{I}_{k} = \{ \alpha \mid \alpha \wedge du_{k-1} \wedge \ldots \wedge du_{1} \wedge \omega \equiv 0 \}$$
$$= Span \{ \omega, du_{1}, \ldots, du_{k-1} \}$$

which is a k-dimensional linear space.

We claim that \mathcal{I}_k generates a differential ideal. Indeed, if $\alpha \in \mathcal{I}_k$, we apply d to the system for α , and we get:

$$d\alpha \wedge du_{k-1} \wedge \ldots \wedge du_1 \wedge \omega \equiv \pm \alpha \wedge du_{k-1} \wedge \ldots \wedge du_1 \wedge d\omega$$
$$\equiv 0$$

because α is a linear combination of $\omega, du_1, \ldots, du_{k-1}$, and u_{k-1} has been assumed to satify equation (15.k - 1). As above, using lemma 3 (ii), we find that the forms $\omega, du_1, \ldots, du_{k-1}$ satisfy the Frobenius condition, so that \mathcal{I}_k generates a differential ideal.

For $1 < \ell < k$, by lemma 3 (i), \mathcal{I}_{ℓ} is at each point a linear space of dimension $2k - \ell$. We claim that \mathcal{I}_{ℓ} generates a differential ideal. For, if $\alpha \in \mathcal{I}_{\ell}$, then, applying d to the system defining α , we obtain:

$$d\alpha \wedge du_{\ell-1} \wedge \ldots \wedge du_1 \wedge \omega \wedge (d\omega)^{k-\ell} \equiv \pm \alpha \wedge du_{\ell-1} \wedge \ldots \wedge du_1 \wedge (d\omega)^{k-\ell+1}$$

and the right-hand side vanishes by lemma 2. Using lemma 3 (ii) we conclude that \mathcal{I}_{ℓ} is spanned by one-forms satisfying the Frobenius condition, so that it is a differential ideal.

3. Proof of sufficiency. Without loss of generality, we may suppose that at the origin $\omega = dx^1$, and that V is spanned by dx^1, \ldots, dx^k . Thus N consists of all vectors ξ , tangent at the origin, such that:

$$\xi^1 = \ldots = \xi^k = 0.$$

and the assumed symmetry of $\omega_{i,j}(0)$ on N means simply that:

$$\omega_{i,j}(0) = \omega_{j,i}(0) \quad \forall i, j > k.$$

Thus:

$$d\omega(0) = dx^1 \wedge \beta_1 + \tau$$
 with $\tau = dx^2 \wedge \beta_2 + \ldots + dx^k \wedge \beta_k$

where each β_i involves only the dx^j with j > i. And so at the origin:

$$\omega \wedge (d\omega)^{k-\ell} = \omega \wedge (\tau)^{k-\ell}$$
, with $\tau^k = 0$.

We will need:

LEMMA 4. At the origin, if $\alpha_1, \ldots, \alpha_\ell$ are any ℓ linear forms in V, then:

$$\alpha_1 \wedge \ldots \wedge \alpha_\ell \wedge \omega \wedge (d\omega)^{k-\ell} = 0.$$

Proof. Write, for $i = 1, \ldots, \ell$:

$$\alpha_i = \sum_{j=1}^k \alpha_{ij} dx^j = \alpha_{i1} dx^1 + \alpha'_i.$$

Then:

$$\alpha_1 \wedge \ldots \wedge \alpha_{\ell} \wedge \omega \wedge (d\omega)^{k-\ell} = \alpha'_1 \wedge \ldots \wedge \alpha'_{\ell} \wedge \omega \wedge (d\omega)^{k-\ell}$$
$$= \alpha'_1 \wedge \ldots \wedge \alpha'_{\ell} \wedge \omega \wedge (\tau)^{k-\ell},$$

and the right-hand side vanishes for every term involves k products of the (k-1) one-forms dx^2, \ldots, dx^k . \Box

3.1. Construction of u_1 **.** Since \mathcal{I} has dimension 2k - 1 and satisfies (16), it follows from the Frobenius theorem (see [2], theorem II.1.1) that there exists 2k - 1 functions v_1, \ldots, v_{2k-1} , the differentials of which span \mathcal{I} . We may choose v_1, \ldots, v_k such that, at the origin:

$$dv_i(0) = dx^i, \text{ for } i = 1, \dots, k$$
$$v_j(0) = 0 \quad \forall j.$$

Since ω belongs to \mathcal{I} , we may write:

$$\omega = \sum_{\ell=1}^{2k-1} f^\ell \, dv_\ell,$$

with $f^{1}(0) = 1$ and $f^{\ell}(0) = 0$ for $\ell > 1$. So:

$$\omega_i = f^{\ell} v_{\ell,i}$$

$$\omega_{i,j}(0) = v_{1,ij}(0) + f_j^{\ell}(0) v_{\ell,i}(0).$$

Now use the fact that $\omega_{i,j}(0)$ is positive definite on N, and hence on $\mathcal{I}^{\perp}(0)$, which is a smaller space. For $\xi \in \mathcal{I}^{\perp}(0)$, we have:

$$v_{\ell,i}(0)\xi^i = 0 \ \ell = 1, \dots, 2k-1 \tag{19}$$

and:

$$c\|\xi\|^2 \le \omega_{i,j}(0)\xi^i\xi^j = v_{1,ij}(0)\xi^i\xi^j, \quad c > 0.$$
(20)

 Set

$$u_1 = v_1 + \epsilon_1 v_2 + K \sum_{1}^{2k-1} (v_\ell)^2$$
(21)

for $\epsilon_1 > 0$ small and K large. Then u_1 is a solution of (15.1), that is, $du_1 \in \mathcal{I}$. We claim that u_1 is strictly convex at the origin. Indeed, at the origin:

$$u_{1,ij}(0)\xi^i\xi^j = v_{1,ij}(0)\xi^i\xi^j + \epsilon_1 v_{2,ij}(0)\xi^i\xi^j + 2K\sum_{\ell} (v_{\ell,i}(0)\xi^i)^2.$$

Thus, for $\xi \in \mathcal{I}^{\perp}(0)$, we have, according to (19) and (20):

$$u_{1,ij}(0)\xi^i\xi^j = \omega_{i,j}(0)\xi^i\xi^j + \epsilon_1 v_{2,ij}(0)\xi^i\xi^j$$

$$\geq c/2\|\xi\|^2 \text{ for } \epsilon_1 \text{ small}$$

When ξ belongs to a complementary subspace of $\mathcal{I}^{\perp}(0)$, the last term in (21) takes precedence, so that, for K large enough:

$$u_{1,ij}(0)\xi^i\xi^j \ge \frac{c}{2}\|\xi\|^2, \ c > 0.$$

for all vectors ξ tangent at the origin. This finishes the construction of u_1 . Note that:

$$du_1(0) = dx^1 + \epsilon_1 dx^2 \tag{22}$$

3.2. Construction of the u_{ℓ} , for $\ell \leq k - 1$. We now argue by induction. Suppose we have constructed functions:

$$u_1,\ldots,u_{\ell-1},$$

for $\ell \leq k - 1$, and positive numbers

 $\epsilon_1,\ldots,\epsilon_{\ell-1}$

satisfying recursively (15.1), ..., $(15.\ell - 1)$, the matrix $u_{i,rs}(0)$ being positive definite, and

$$du_i(0) = dx^1 - \epsilon_i dx^i + \epsilon_i dx^{i+1} \tag{23}$$

for $2 \leq i \leq \ell - 1$, while (22) holds for i = 1. We now construct u_{ℓ} with similar properties.

Since \mathcal{I}_{ℓ} generates a differential ideal, and has dimension $2k - \ell$, using Frobenius again we find that there exist $2k - \ell$ functions $v_1, \ldots, v_{2k-\ell}$ spanning \mathcal{I}_{ℓ} .

Because of (22) and (23), the $du_i(0), 1 \leq i \leq \ell - 1$, all belong to V. Comparing lemma 4 with the definition of \mathcal{I}_{ℓ} , we find that $V \subset \mathcal{I}_{\ell}(0)$, so that we may assume that:

$$dv_i(0) = dx^i \text{ for } i = 1, ..., k.$$

Again, we may represent:

$$\omega_i = f^\ell v_{\ell,i},$$

using functions f^{ℓ} with $f^{1}(0) = 1$ and $f^{\ell}(0) = 0$ for $\ell > 1$. Thus, at the origin:

$$\omega_{i,j}(0) = v_{1,ij} + f_j^\ell v_{\ell,i}$$

Since $\mathcal{I}_{\ell}(0) \supset V$, we have $\mathcal{I}_{\ell}(0)^{\perp} \subset N$. For $\xi \in \mathcal{I}_{\ell}(0)^{\perp}$, we get:

$$\omega_{i,j}(0)\xi^i\xi^j = v_{1,ij}(0)\xi^i\xi^j$$

By our assumption on V, it follows that, for some c > 0, we have:

$$v_{1,ij}(0)\xi^i\xi^j \ge c \|\xi\|^2, \quad \forall \xi \in \mathcal{I}_\ell(0)^\perp$$

We now define:

$$u_{\ell} = v_1 - \epsilon_{\ell} v_{\ell} + \epsilon_{\ell} v_{\ell+1} + K \sum_{s=1}^{2k-\ell} v_{\ell}^2$$

Just as before, we find that

$$u_{\ell,ij}(0)\xi^i\xi^j \ge \frac{c}{2}\|\xi\|^2,$$

provided ϵ_{ℓ} is small and K large. We have $u_{\ell} \in \mathcal{I}_{\ell}$, and at the origin:

$$du_{\ell}(0) = dx^1 - \epsilon_{\ell} dx^{\ell} + \epsilon_{\ell} dx^{\ell+1}$$

3.3. Construction of u_k and conclusion. We have thus constructed u_1, \ldots, u_{k-1} with the desired properties, and we finally construct u_k . Again, \mathcal{I}_k has dimension k and generates a differential ideal, so that it is spanned by the differentials of k functions w_1, \ldots, w_k . As above, $\mathcal{I}_k(0) = V$, so we may choose

$$dw_i(0) = dx_i(0), \ i = 1, \dots, k$$

We now set:

$$u_k = w_1 - \epsilon_k w_k + K \sum_{1}^k w_\ell^2$$

As before, using the fact that $\omega_{i,j}(0)$ is positive definite on $N = V^{\perp}$, we find that for ϵ_k small and K large, we have

$$u_{k,ij}(0)\xi^i\xi^j \ge \frac{c}{2}\|\xi\|^2$$

while:

$$du_k(0) = dx^1 - \epsilon_k dx^k$$

To complete the proof of the theorem, we must show that in the representation

$$\omega = \sum_{\ell=1}^k a^\ell du_\ell$$

all the a^{ℓ} are positive at the origin. Well, at the origin, the $du_i(0)$ are independent, so the $a_{\ell}(0)$ are unique. But at the origin;

$$\omega(0) = dx^{1}$$

$$du_{1}(0) = dx^{1} + \epsilon_{1}dx^{2}$$

$$du_{2}(0) = dx^{1} - \epsilon_{2}dx^{2} + \epsilon_{2}dx^{3}$$

$$\dots$$

$$du_{k-1}(0) = dx^{1} - \epsilon_{k-1}dx^{k-1} + \epsilon_{k-1}dx^{k}$$

$$du_{k}(0) = dx^{1} - \epsilon_{k}dx^{k}.$$

Then:

$$\frac{1}{\epsilon_1} du_1(0) = \frac{1}{\epsilon_1} dx^1 + dx^2$$

$$\frac{1}{\epsilon_2} du_2(0) = \frac{1}{\epsilon_2} dx^1 - dx^2 + dx^3$$

...
$$\frac{1}{\epsilon_{k-1}} du_{k-1}(0) = \frac{1}{\epsilon_{k-1}} dx^1 - dx^{k-1} + dx^k$$

$$\frac{1}{\epsilon_k} du_k(0) = \frac{1}{\epsilon_k} dx^1 - dx^k.$$

Summing up, we get:

$$\sum_{i} \frac{1}{\epsilon_i} du_i(0) = (\sum_{i} \frac{1}{\epsilon_i}) dx^1$$

which gives the desired decomposition $\omega(0) = \sum_\ell a^\ell(0) du_\ell(0),$ with

$$a^{\ell}(0) = [\epsilon_{\ell} \sum (1/\epsilon_i)]^{-1} > 0$$

This concludes the proof.

Appendix A. Proof of Example 2. We prove that for the one-form ω given by (6) the problem has no solution. Assume otherwise; for the sake of convenience, write $u_1 = u$, $u_2 = v$, $a^1 = a$, and $a^2 = b$, so that

$$\omega = adu + bdv$$

In particular, on the plane $x^3 = x^4 = x^5 = 0$, we have:

$$au_1 + bv_1 = -x^2 \tag{24}$$

$$au_2 + bv_2 = x^1. (25)$$

We may assume u(0) = v(0) = 0. Expanding u and v near the origin in the plane (x^1, x^2) , we have:

$$u = c_1 x^1 + c_2 x^2 + Q_1(x^1, x^2) + o(||x||^2)$$

$$v = d_1 x^1 + d_2 x^2 + Q_2(x^1, x^2) + o(||x||^2)$$

where Q_1 and Q_2 are positive definite quadratic forms.

From (24) and (25), we have:

$$a(u_2v_1 - u_1v_2) = x^1v_1 + x^2v_2 = d_1x^1 + d_2x^2 + 2Q_2(x^1, x^2) + o(||x||^2)$$
(26)

$$b(u_1v_2 - u_2v_1) = x^1u_1 + x^2u_2 = c_1x^1 + c_2x^2 + 2Q_1(x^1, x^2) + o(||x||^2).$$
(27)

At the origin, the right-hand sides vanish, and since a and b are positive, we must have $u_2v_1 - u_1v_2 = 0$. This implies that the vectors (c_1, c_2) and (d_1, d_2) are parallel. One or both may vanish, but in any case we can choose $(x_1, x_2) \neq 0$ near the origin so that

$$c_1x^1 + c_2x^2 = 0 = d_1x^1 + d_2x^2.$$

For such a choice of (x_1, x_2) , the right-hand sides of (26) and (27) are positive. But the left-hand sides have opposite signs. This is a contradiction.

Appendix B. Proof of lemma 3. We begin by an algebraic result:

LEMMA 5. Consider a 2m-dimensional space of one-forms spanned by

$$\sigma_1, \sigma'_1, \ldots, \sigma_m, \sigma'_m$$

and set:

$$\Omega = \sigma_1 \wedge \sigma'_1 + \ldots + \sigma_m \wedge \sigma'_m$$

so that $\Omega^m \neq 0$. Let $\gamma_1, \ldots, \gamma_{s-1}$ be linearly independent one-forms such that:

$$\gamma_1 \wedge \ldots \wedge \gamma_{s-1} \wedge \Omega^{m-s+2} \equiv 0.$$

Then:

(i) There is a set of one-forms $\beta_1, \ldots, \beta_m, \gamma'_s, \ldots, \gamma'_m$ such that:

$$\Omega = \sum_{i=1}^{s-1} \gamma_i \wedge \beta_i + \sum_{j=s}^m \gamma'_j \wedge \beta_j.$$
(28)

(ii) The space of one-forms

$$\mathcal{M}_s = \left\{ \alpha \mid \alpha \land \gamma_1 \land \ldots \land \gamma_{s-1} \land \Omega^{m-s+1} \equiv 0 \right\}$$

is spanned by the $\gamma_i, \gamma'_j, \beta_\ell$, for $1 \le i < s \le j \le m$, $1 \le \ell \le m$, and so has dimension 2m - s + 1.

Proof. We first assume (i) to prove (ii).

If (28) holds, since $\Omega^m \neq 0$, the β_i , γ_i and γ'_i must be linearly independent. The system defining \mathcal{J}_s then becomes:

$$0 = \alpha \wedge \gamma_1 \wedge \ldots \wedge \gamma_{s-1} \wedge \left(\sum_{i=s}^m \gamma'_i \wedge \beta_i\right)^{m-s+1}$$
$$= (m-s+1)! \ \alpha \wedge \gamma_1 \wedge \ldots \wedge \gamma_{s-1} \wedge \gamma'_s \wedge \beta_s \wedge \ldots \wedge \gamma'_m \wedge \beta_m$$

We end up with:

$$\mathcal{M}_s = Span\left\{\gamma_i, \gamma'_j, \beta_j \mid 1 \le i \le s - 1, \ s \le j \le m\right\}$$

so that (ii) is proved.

Now to prove (i). This will be done by induction on s. For s = 1, we can take $\beta_i = \sigma_i$ and $\gamma'_i = \sigma'_i$, so the lemma holds in this case.

Suppose (i) holds up to s = r; we wish to establish it for s = r + 1. Let $\gamma_1, \ldots, \gamma_r$ be linearly independent one-forms satisfying

$$\gamma_1 \wedge \ldots \wedge \gamma_r \wedge \Omega^{m-r+1} \equiv 0.$$

This means that γ_r belongs to \mathcal{M}_r . Since (28) holds for s = r, we have seen that γ_r then belongs to the linear span of the $\gamma_i, \gamma'_j, \beta_j$, for $1 \le i < r \le j \le m$:

$$\gamma_r = \sum_{i=1}^{r-1} c_i \gamma_i + \sum_{j=r}^m b_j \beta_j + \sum_{j=r}^m a_j \gamma'_j$$

At least one of the b_j or a_j must be non-zero. Suppose it is a_r ; the case where all the a_j vanish and $b_r \neq 0$ would be treated in the same way. We may assume $a_r = 1$. Then:

$$\gamma'_{r} = \gamma_{r} - \sum_{i=1}^{r-1} c_{i} \gamma_{i} - \sum_{j=r}^{m} b_{j} \beta_{j} - \sum_{j=r+1}^{m} a_{j} \gamma'_{j}$$
(29)

Because (28) holds up for s = r, we have:

$$\Omega = \sum_{i=1}^{r-1} \gamma_i \wedge \beta_i + \sum_{j=r}^m \gamma'_j \wedge \beta_j.$$

Replacing γ'_r in this expression by its value, taken from (29), we obtain:

$$\Omega = \sum_{i=1}^{r-1} \gamma_i \wedge (\beta_i - c_i \beta_r) + \gamma_r \wedge \beta_r + \sum_{j=r+1}^m (\gamma_i' + b_j \beta_r) \wedge (\beta_j - a_j \beta_r)$$
(30)

Setting:

$$\begin{aligned} \overline{\beta}_i &= \beta_i - c_i \beta_r \quad for \quad 1 \le i \le r - 1\\ \overline{\beta}_r &= \beta_r \\ \overline{\gamma}_j' &= \gamma_j' + b_j \beta_r \quad for \quad r+1 \le j \le m\\ \overline{\beta}_j &= \beta_j - a_j \beta_r \quad for \quad r+1 \le j \le m, \end{aligned}$$

we rewrite (30) as follows:

$$\Omega = \sum_{i=1}^{r} \gamma_i \wedge \overline{\beta}_i + \sum_{j=r+1}^{m} \overline{\gamma}_j' \wedge \overline{\beta}_j$$

so (28) holds for s = r + 1, and the lemma is proved. \Box

Proof of lemma 3(i). We show first that:

$$\mathcal{J}_{\ell} = \left\{ \alpha \mid \alpha \land \alpha_{\ell-1} \land \ldots \land \alpha_1 \land \omega \land (d\omega)^{k-\ell} \equiv 0 \right\},\tag{31}$$

has dimension $2k - \ell$.

Recall that the $\alpha_1, \ldots, \alpha_{\ell-1}$ and ω are linearly independent, and satisfy

$$\alpha_1 \wedge \ldots \wedge \alpha_\ell \wedge \omega \wedge (d\omega)^{k-\ell+1} \equiv 0.$$
(32)

By lemma 2, \mathcal{J}_{ℓ} and the α_i belong to \mathcal{I} , and so is α_i is a linear combination of ω and the σ_j, σ'_j . Thus we may write:

$$\alpha_i = b_i \omega + \gamma_i \quad for \quad 1 \le i \le \ell - 1 \tag{33}$$

where γ_i is a linear combination of the σ_j, σ'_j . Inserting (33) in (32), we obtain:

$$\gamma_1 \wedge \ldots \wedge \gamma_{\ell-1} \wedge \omega \wedge (d\omega)^{k-\ell+1} \equiv 0.$$
(34)

On the other hand, by relation (14), we have:

$$d\omega = \omega \wedge \beta + \Omega$$
, with $\Omega = \sum_{i=1}^{k-1} \sigma_{\ell} \wedge \sigma'_{\ell}$

so equation (34) becomes:

$$\gamma_1 \wedge \ldots \wedge \gamma_{\ell-1} \wedge \omega \wedge \Omega^{k-\ell+1} \equiv 0.$$
(35)

This implies:

$$\gamma_{\ell-1} \wedge \ldots \wedge \gamma_1 \wedge \Omega^{k-\ell+1} \equiv 0 \tag{36}$$

Indeed, the left-hand side is a k-form involving only the σ_j, σ'_j , and if it did not vanish, taking the wedge product with ω , which is linearly independent from the σ_j, σ'_j would contradict (35).

Consider any α in \mathcal{J}_{ℓ} . We may write $\alpha = b\omega + \hat{\alpha}$, where $\hat{\alpha}$ is a linear combination of the σ_i, σ'_i , and equation (31) implies:

$$\hat{\alpha} \wedge \gamma_1 \wedge \ldots \wedge \gamma_{\ell-1} \wedge \Omega^{k-\ell} = 0$$

By lemma 5, with m = k-1, we see that the set of such $\hat{\alpha}$ has dimension $2k-\ell-1$, so \mathcal{J}_{ℓ} , which is spanned by these $\hat{\alpha}$ and by ω , has dimension $2k-\ell$. \Box

Proof of lemma 3(ii). Suppose the two-form Θ satisfies the prescribed condition. Then:

$$\Theta \wedge \alpha_1 \wedge \ldots \wedge \alpha_{\ell-1} \wedge \omega \wedge \Omega^{k-\ell} \equiv 0$$

Using (33), we get:

$$\Theta \wedge \gamma_1 \wedge \ldots \wedge \gamma_{\ell-1} \wedge \omega \wedge \Omega^{k-\ell} \equiv 0.$$

and the $\gamma_1, \ldots, \gamma_{\ell-1}$ satisfy (36)

By lemma 5 (i), with m = k - 1, there is a set of one-forms $\beta_1, \ldots, \beta_{k-1}, \gamma'_{\ell}, \ldots, \gamma'_{k-1}$ such that:

$$\Omega = \sum_{i=1}^{\ell-1} \gamma_i \wedge \beta_i + \sum_{j=\ell}^{k-1} \gamma'_j \wedge \beta_j,$$

and hence:

$$\Theta \wedge \gamma_1 \wedge \ldots \wedge \gamma_{\ell-1} \wedge \omega \wedge \gamma'_{\ell} \wedge \beta_{\ell} \wedge \ldots \wedge \gamma'_{k-1} \wedge \beta_{k-1} \equiv 0.$$

Set $\tau_1 = \omega$, $\tau_2 = \gamma_1$, $\tau_\ell = \gamma_{\ell-1}$, $\tau_{\ell+1} = \gamma'_\ell$, ..., $\tau_k = \gamma'_{k-1}$, $\tau_{k+1} = \beta_\ell$, ..., $\tau_{2k-\ell} = \beta_{k-1}$. By lemma 5 (ii), they are all independent and span \mathcal{J}_ℓ . Then the preceding equation takes the form:

$$\Theta \wedge \tau_1 \wedge \ldots \wedge \tau_{2k-\ell} \equiv 0. \tag{37}$$

The τ_i , together with $n - (2k - \ell)$ forms $\tau'_{2k-\ell+1}, \ldots, \tau'_n$, span all one-forms. We may therefore write:

$$\Theta = \sum_{i=1}^{2k-\ell} \mu_i \wedge \tau_i + \sum_{2k-\ell < i < j}^n f^{ij} \tau_i' \wedge \tau_j'.$$
(38)

It then follows from (37) that:

$$\tau_1 \wedge \ldots \wedge \tau_{2k-\ell} \wedge \sum_{2k-\ell < i < j}^n f^{ij} \tau'_i \wedge \tau'_j \equiv 0$$

which means that the f^{ij} all are identically zero. Equation (38) then has the desired form. \Box

REFERENCES

- M. BROWNING AND P.A. CHIAPPORI, Efficient intra-household allocations: a general characterization and empirical tests, Econometrica, 66 (1998), pp. 1241–1278.
- R. BRYANT, S. CHERN, R. GARDNER, H. GOLDSCHMIDT, P. GRIFFITHS, Exterior Differential Systems, Springer-Verlag, 1991.
- [3] P.A. CHIAPPORI AND I. EKELAND, A convex Darboux theorem, Annali della Scuola Normale di Pisa, Cl. Sci (4), XXV (1997), pp. 287–297.
- [4] A. MAS-COLELL, M. WHINSTON, J. GREEN, Microeconomic theory, Oxford University Press, 1995.
- [5] V. ZAKALYUKIN, Concave Darboux theorem, CRAS Paris 327, série 1, (1998), pp.633-638.