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VISCOUS PROFILES OF TRAVELING WAVES IN SCALAR
BALANCE LAWS: THE CANARD CASE ∗

J. HÄRTERICH†

Abstract. The traveling wave problem for a viscous conservation law with a nonlinear source
term leads to a singularly perturbed problem which necessarily involves a non-hyperbolic point. The
correponding slow-fast system indicates the existence of canard solutions which follow both stable
and unstable parts of the slow manifold.

In the present paper we show that for the viscous equation there exist such heteroclinic waves
of canard type. Moreover, we determine their wave speed up to first order in the small viscosity
parameter by a Melnikov-like calculation after a blow-up near the non-hyperbolic point. It is also
shown that there are discontinuous waves of the inviscid equation which do not have a counterpart
in the viscous case.

1. Introduction. In [Här00], we started the study of viscous profiles of scalar
hyperbolic balance laws

ut + f(u)x = g(u), x ∈ R, u ∈ R, f ∈ C3, g ∈ C2. (1)

Equations of this type are often considered as an approximation for a viscous equation

ut + f(u)x = εuxx + g(u), x ∈ R, u ∈ R (2)

where the viscosity parameter ε is very small. Applications of balance laws, although
not scalar, can be found e.g. in combustion [PC86], nozzle flow [CG96] and describing
roll waves [NT01].

Our main interest in this paper are continuous traveling wave solutions since they
are a feature that distinguishes hyperbolic balance laws from the much better studied
hyperbolic conservation laws.

In the hyperbolic case ε = 0, Mascia [Mas97] has given a classification of the
possible traveling waves for the case of a convex flow function f . Here we will treat
the question whether these traveling waves are admissible with respect to the viscosity
criterion, i.e. whether they can be obtained as limits of traveling waves of the viscous
balance law (2) when ε tends to zero. We are also interested in the influence of the
small viscosity on the speed of the traveling wave. Estimates on this wave speed
correction are necessary to prove the convergence of the wave profiles in L1(R) for
ε → 0. It turns out that not all solutions are viscosity solutions in this sense. In
particular, all waves of the hyperbolic equation with more than one discontinuity do
not admit viscous profiles.

We assume the following about the nonlinear functions f and g:
(G) g possesses exactly three simple zeros u� < um < ur with u′(u�) < 0, u′(um) >

0 and u′(ur) < 0.
(F) f ′′(um) > 0 and f ′(w1) < f ′(um) < f ′(w2) for all w1 < um < w2.

Note that for the pure reaction dynamics ut = g(u) the zeroes u� and ur are attracting
while the zero um is repelling.

Since the hyperbolic equation (1) does in general not possess global smooth so-
lutions, and since on the other hand weak solutions are not unique, one considers
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as a solution usually a weak solution which satisfies an additional so-called entropy
condition. As this paper is concerned with traveling waves only, we state directly
for the special case of traveling waves what is meant by a (possibly discontinuous)
entropy solution of (1) .

Definition 1.1. An entropy traveling wave is a solution of (1) of the form
u(x, t) = u(x− st) for some velocity s ∈ R with the following properties:

(i) u is piecewise C1, i.e. u ∈ C1(R \ J) and the set of accumulation points of
J has only isolated points. At points where u is continuously differentiable it
satisfies the ordinary differential equation

(f ′(u(ξ)) − s) u′(ξ) = g(u(ξ)) (3)

with ξ = x− st.
(ii) The jumps at the points of discontinuity satisfy the Rankine-Hugoniot condi-

tion

s (u(ξ+) − u(ξ−)) = f(u(ξ+)) − f(u(ξ−)) (4)

and the entropy condition

u(ξ+) ≤ u(ξ−)

where u(ξ+) and u(ξ−) stand for the one-sided limits of u.

1.1. Heteroclinic waves of the hyperbolic equation. In this paper we are
primarily interested in traveling wave solutions which connect constant states at ±∞.

Definition 1.2. A traveling wave u is said to be a heteroclinic wave connecting
equilibria u−∞ and u+∞ if

lim
ξ→−∞

u(ξ) = u−∞, lim
ξ→+∞

u(ξ) = u+∞

for some u−∞, u+∞ ∈ R with u−∞ �= u+∞.
It is called a homoclinic wave if u−∞ = u+∞.

Apart from the heteroclinic waves there can be also discontinuous periodic and
nonperiodic waves.

There are several types of heteroclinic waves as shown in [Mas97]. They fall into
three categories:

(A) Heteroclinic waves which exist for a whole interval of wave speeds s
(B) waves which can be found only if the speed s takes precisely the value f ′(um)

and
(C) undercompressive shock waves which do also show up only for isolated wave

speeds determined by a Rankine-Hugoniot condition.
In the present paper we are mainly interested in the waves of type (B). A finer clas-
sification allows to split these waves into four subcategories (B1)–(B4), see [Här00].
However, under assumption (G) only two cases can actually occur:

(B1) Continuous, monotone increasing waves connecting u� to ur with speed s =
f ′(um)

(B4) Discontinuous waves that connect u� to ur with speed s = f ′(um).
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Note that for s0 := f ′(um) the traveling wave equation (3) can be put in the form

u′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g(u)
f ′(u) − f ′(um)

for u(ξ) �= um

g′(um)
f ′′(um)

for u(ξ) = um

(5)

The wave speed s0 is the only one for which the singularity of the function
g(u)(f ′(u) − s)−1 can be removed. Therefore, there exists a monotone heteroclinic
orbit u0 from u� to ur precisely for this wave speed. Considered as a traveling wave,
u0 is a continuous wave of type (B1). There are also entropy traveling waves with
an arbitrary number of discontinuities. They consist of smooth parts which are solu-
tions of (5) separated by discontinuities which connect a left state from the interval
(um, ur) to the corresponding right state in the interval (u�, um) according to the
Rankine–Hugoniot condition (4). These waves are all of type (B4). Note that these
waves of type (B4) pass at least twice (continuously) through the value um. This
fact will be used to show that these entropy traveling waves have no counterpart in
the viscous equation. In contrast, it will turn out that in the viscous equation only a
monotone heteroclinic orbit connecting the equilibria u� and ur exists for exactly one
wave speed s(ε) close to but not equal to s0 = f ′(um).

1.2. Viscous Profiles. We want to compare the entropy traveling waves with
traveling waves of the viscous equation (2). Using the traveling wave ansatz u(x, t) =
u(x− st) in (2), leads to the equation

εu′′ = (f ′(u) − s)u′ − g(u) (6)

where the prime denotes differentiation with respect to the new coordinate ξ := x−st.
Note that, unlike in viscous conservation laws, the viscosity parameter ε is still present
in the traveling wave equation.

We can now make precise what we mean by a viscosity traveling wave solution.

Definition 1.3. A traveling wave solution of (1) with wave speed s0 is said to be
admissible or to admit a viscous profile if there is a sequence of solutions (uεn

)
of

εnu
′′
εn

= (f ′(uεn
) − sn)u′εn

− g(uεn
)

with εn ↘ 0, sn → s0 such that ‖uεn
− u‖L1(R) → 0.

Note that this approach is essentially different from Kruzhkov’s classical result
[Kru70]. While Kruzhkov shows convergence on a finite time interval [0, T ] with iden-
tical initial data for the hyperbolic and the parabolic equation, we focus on closeness
of the profiles for infinite times and allow therefore the initial conditions to differ
slightly.

On the other hand, we also allow a small difference in the speeds of the hyperbolic
and the viscous wave. This implies that in a fixed frame the L1–distance between the
two profiles will not remain small.

1.3. The main results. In another article [Här00] we were able to show by
classical singular perturbation theory the following statement:
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Proposition 1.1. All heteroclinic waves of type (A) and type (C) admit a
viscous profile.

In two cases we had to use different wave speeds sn �= s0. Using the wave speed
as an additional parameter is also necessary in order to show that all waves of type
(B1) possess a viscous profile, too.

Theorem 1.1 (Admissibility of type (B1) waves). The continuous traveling
wave connecting u� to ur is admissible.

More precisely, we will show that for ε sufficiently small there is a unique value
s(ε) such that a monotone heteroclinic wave uε of (2) connects u� to ur. The wave
speed s(ε) can be shown to depend on the viscosity ε in the following way:

Theorem 1.2 (Asymptotic behavior of the wave speed). For ε sufficiently small,
there is a unique heteroclinic connection uε from u� to ur that occurs at

s(ε) = s0 − 1
2
d

du

(
g′(u)
f ′′(u)

)∣∣∣∣
u=um

ε+ O(ε3/2).

We also present another result which shows that all discontinuous heteroclinic
waves do not satisfy the admissibility condition, although the entropy jump condition
can be derived from the viscous approximation.

Theorem 1.3 (Non-admissibility of type (B4) waves). All discontinuous hete-
roclinic traveling waves with wave speed f ′(um) do not admit a viscous profile.

This will be a consequence of the Jordan curve theorem and thus is probably a
low-dimensional effect which shows up only in scalar balance laws.

The rest of this article is organized as follows: In chapter 2 the set-up and some
notation is given. The nonexistence theorem 1.3 and the existence theorem 1.1 are
proved in chapters 3 and 4, respectively. The final chapter 5 uses a blow–up construc-
tion to derive asymptotic estimates for the speed of the viscous traveling waves.

2. Singular perturbation theory. We return now to the viscous traveling
wave equation. The second-order equation (6) that arises from plugging the traveling
wave ansatz into the parabolic equation (2) can be written as a first-order system in
two different ways. Apart from the “phase plane” coordinates

εu′ = w

w′ =
(f ′(u) − s)w

ε
− g(u)

one can use the “Liénard coordinates”

εu′ = v + f(u) − su
v′ = −g(u).

}
(7)

We will distinguish these two possibilities by a consequent use of the variable w for
phase plane considerations and v for Liénard plane arguments. From the “slow-fast”-
system (7) two limiting systems can be derived which both capture a part of the
behavior that is observed for ε > 0.

One is the “slow” system obtained by simply setting ε = 0:

0 = v + f(u) − su
v′ = −g(u).

}
(8)
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The flow is confined to the singular curve

Cs := {(u, v) : v + f(u) − su = 0}.

Rescaling the variable ξ we arrive at

u̇ = v + f(u) − su
v̇ = −εg(u).

}

In the limit ε = 0, this equation leads to the “fast” (or “layer”) system

u̇ = v + f(u) − su
v̇ = 0.

}
(9)

Equation (9) defines a vector field for which the singular curve Cs consists of equilib-
rium points only. It points to the left below the curve Cs and to the right above.

Trajectories of the fast system connect only points for which v+f(u)−su has the
same values. This is exactly the Rankine-Hugoniot condition for waves propagating
with speed s. Moreover the direction of the fast vector field is in accordance with the
entropy condition.

The linearization of the fast vector field (9) at an equilibrium (u,−f(u) + su)
possesses one eigenvalue 0 (because there is a one-dimensional manifold of equilibria)
and another real eigenvalue f ′(u) − s. We call a branch of Cs stable if f ′(u) − s < 0
along this branch and unstable, if f ′(u)− s > 0. By assumption (F) for any s there
is at most one point where f ′(u) = s. The linearization of (9) at this point which we
will call the “fold point” has a double zero eigenvalue, in particular Cs is not normally
hyperbolic in a neighborhood of the fold point.

Geometric singular perturbation theory in the spirit of Fenichel [Fen79] is a strong
tool to describe trajectories that do not pass through a small neighborhood of this
point. Outside such a neighborhood the branches of the singular curve are uniformly
normally hyperbolic with respect to the fast field. For this reason, the stable and
unstable branches persist as invariant manifolds for ε > 0.

Unfortunately, trajectories that pass near the top of the curve Cs are not captured
by this classical theory and cannot be avoided in the study of type (B) entropy
traveling waves. Such trajectories that switch from a stable branch to an unstable
branch and follow the unstable branch for a time of order O(1) are called canards.
They were first described in the Van-der-Pol equation by a group of french non-
standard analysts, see [BCDD81].

3. Nonexistence of viscous profiles. Discontinuous waves of the hyperbolic
balance law (1) can be quite complicated. They can possess an arbitrary number of
jumps, see [Mas97]. However, all these discontinuous heteroclinic waves from u� to
ur do not admit a viscous profile.

Proof of Theorem 1.3. We consider a discontinuous heteroclinic traveling wave
u0 with speed s0 parametrized in a way that its leftmost discontinuity is at ξ = 0. At
this first shock u0 jumps from u+ ∈ (um, ur) to u− ∈ (u�, um), see figure 3. In this
figure we have drawn the hyperbolic wave profile as a dashed line projected on the
singular curve Cs. The shock discontinuity is shown as a horizontal line connecting
two points on Cs.

For the viscous equation (7) with ε small and wave speed s near s0, the equilibrium
u� is of saddle type with a one-dimensional unstable manifold. Hence, if there was a
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heteroclinic orbit uε from u� to ur, then it would have to be a branch of the unstable
manifold of u�. We follow thus the unstable manifold of u� and show that it cannot
converge to ur.
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u

“trajectory” of the

ur

trajectory of theul

um

viscous equation

v

hyperbolic equation
(projected onto Cs)

v + f(u) − su = 0

Fig. 1. Why some discontinuous entropy waves cannot possess a viscous profile

If the (smooth) trajectory corresponding to the unstable manifold of u� was L1-
close to u0, then it would have to intersect the curve Cs near u = u+ because u′ can
only change sign by crossing Cs. For ε sufficiently small, the trajectory would then
intersect the curve Cs again near u = u− and enter a positively invariant region whose
boundary is formed by the trajectory and a part of Cs. This region is painted in grey
in figure 3. Since the grey region is positively invariant and ur lies in the exterior of
this region, there can be no heteroclinic connection from u� to ur that could provide
a viscous profile for the entropy traveling wave u0.

4. Admissibility of monotone heteroclinic waves. In this chapter we show
that monotone heteroclinic waves of type (B1) do always admit a viscous profile. In
a first step we prove, that for fixed ε small there is a unique wave speed s(ε) near s0
that allows for a heteroclinic connection from u� to ur in (7).

4.1. Rotated Vector Fields. A useful concept for the study of some special
planar systems are the so-called rotated vector fields introduced by Duff [Duf53] and
later improved by Perko [Per75, Per93].

Definition 4.1. Consider a family of planar vector field

ẋ = P (x, y, ν)
ẏ = Q(x, y, ν) (10)

depending on a scalar parameter ν. Let G : R
2 → R be an analytic function such that

G(x, y) = 0 defines a curve which is not a trajectory of (10). The family is called a
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family of rotated vector fields (mod G =0) if∣∣∣∣ P (x, y, ν) Q(x, y, ν)
Pν(x, y, ν) Qν(x, y, ν)

∣∣∣∣ ≤ 0 for all x, y and ν (11)

and if the inequality is strict except on the set {(x, y); G(x, y) = 0}.
Geometrically, this means that varying the parameter ν, the vector field is “ro-

tated” in the same direction at every point with the possible exception of some points
where it may keep its direction. We will use the following

Proposition 4.1 (Duff, Perko). Consider a family of rotated vector fields. Sup-
pose there is an equilibrium, which for all values of ν possesses a one-dimensional un-
stable manifold. Then this unstable manifold moves either clockwise or anti-clockwise
as the parameter ν is increased. The stable manifold moves in the same direction.
Moreover, these directions are the same for all saddle equilibria of the system.

Lemma 4.1. Consider (7) written in phase plane coordinates

u̇ = w/ε

ẇ =
f ′(u) − s

ε
w − g(u)

⎫⎪⎬
⎪⎭ (12)

depending on the parameters ε and s. Then this is a family of rotated vector fields
(mod w = 0) with respect to the parameter s.

Proof. We only have to evaluate (11), i.e.∣∣∣∣∣∣∣
w/ε

f ′(u) − s

ε
w − g(u)

0 −w/ε

∣∣∣∣∣∣∣ = −
(w
ε

)2

≤ 0

and check that this expression only vanishes on the line w = 0 which is not a trajectory
of the system.

Remark 1. The vector field in Liénard coordinates is not a rotated vector field.
This is the reason why we work here (and only here) in phase plane coordinates.

Now we may use proposition 4.1 to show the existence of a heteroclinic connection
from u� to ur for the viscous traveling wave equation.

Lemma 4.2. For ε sufficiently small there exists a unique value s = s(ε) such
that there is a monotone heteroclinic connection uε(ξ) from u� to ur.

Proof. We fix ε and consider a branch of the unstable manifold Wu(u�) and
denote with w−(s) the value of its first intersection with the line u = um. In case
Wu(u�) is a heteroclinic connection between u� and um we set w−(s) := 0. Similarly
the first intersection of W s(ur) determines a number w+(s). Both functions w−(s)
and w+(s) depend continuously on s by standard invariant manifold theory.

Since s0 = f ′(um), for s − s0 > 2
√
εg′(um) the equilibrium um is a sink with

two real eigenvalues. In this case the unstable manifold of u� connects to um, so
w−(s) = 0. However w+(s) > 0 since um is a stable equilibrium and ẇ < 0 along the
line w = 0 as long as u > um.
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For s − s0 < −2
√
εg′(um) the situation is vice versa: We have w+(s) = 0 and

w−(s) > 0. The intermediate value theorem yields now immediately the existence of
a number s(ε) for which w−(s) = w+(s). Due to proposition 4.1 we know that the
function w− is monotone increasing while w+ is monotone decreasing. From this we
can conclude that s(ε) is unique.

Remark 2. Since the traveling wave uε is monotone in ξ, its derivative u′ε is the
eigenfunction associated with the first eigenvalue. In turn, this implies that 0 is the
largest eigenvalue and hence for each fixed ε we can conclude that uε is linearly stable
with respect to perturbations of the viscous balance law (2).

The wave speed s(ε) of the viscous traveling wave will in general differ from the
wave speed s0 of the hyperbolic traveling wave. However, they are close to each other
as the following lemma shows.

Lemma 4.3. The speed of the viscous traveling wave is O(ε)–close to the speed
of the hyperbolic traveling wave, i.e. there exists a number σ > 0 such that for ε > 0
sufficiently small we have

|s(ε) − s0| ≤ σε.

Proof. The argument is purely geometrical. We first define a curve γ as a graph

v = γ(u) = −f(u) + su+
εg(u)

f ′(u) − s0
.

We will show that for s − s0 > σε the unstable manifold Wu(u�) lies below γ while
the stable manifold W s(ur) lies above γ. For s− s0 < −σε the situation is vice versa:
Wu(u�) lies above γ while W s(ur) lies underneath. In both cases the manifolds cannot
intersect to form a heteroclinic orbit.

We first determine the relative position of γ and Wu(u�) near u = u�. The slope
of γ at u = u� is

γ′(u�) = −f ′(u�) + s+
εg′(u�)

f ′(u�) − s0
.

The unstable manifold Wu(u�) is tangent to the eigenvector e+ of the unstable eigen-
value λ+ of the linearization of (7) at the stationary point u = u�, v = −f(u�) + su�.
A straightforward calculation gives

λ+ =
1
2ε

(
f ′(u�) − s+

√
(f ′(u�) − s)2 − 4εg′(u�)

)
with corresponding eigenvector

e+ =

⎛
⎝ 1

1
2

√
(f ′(u�) − s)2 − 4εg′(u�) − 1

2 (f ′(u�) − s)

⎞
⎠ . (13)

Expanding the square root in powers of ε we get as the slope of the tangent vector

f ′(u�) + s+
εg′(u�)

f ′(u�) − s
+

2ε2g′(u�)2

(f ′(u�) − s)3
+ O(ε3)

= γ′(u�) +
εg′(u�)

f ′(u�) − s
− εg′(u�)
f ′(u�) − s0

+
2ε2g′(u�)2

(f ′(u�) − s0)3
+ O(ε3)

= γ′(u�) +
εg′(u�)(s− s0)

(f ′(u�) − s0)(f ′(u�) − s)
+

2ε2g′(u�)2

(f ′(u�) − s0)3
+ O(ε3).
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Since g′(u�) < 0, this shows that for s− s0 > σε with σ chosen sufficiently large, the
unstable manifold lies below γ in a right neighborhood of u = u�.

The same calculation can be carried out near u = ur to show that for s− s0 > σε
the stable manifold W s(ur) lies above γ in a left neighborhood of u = ur.

To prove that Wu(u�) stays below γ we compare the vectorfield (7) along γ with
the slope γ′. We have

v̇

u̇

∣∣∣∣
v=γ(u)

=
−εg(u)

γ(u) + f(u) − su

= −f ′(u) + s0

= γ′(u) − (s− s0) − ε
(f ′(u) − s0)g′(u) − f ′′(u)g(u)

(f ′(u) − s0)2
.

Since

lim
u→um

(f ′(u) − s0)g′(u) − f ′′(u)g(u)
(f ′(u) − s0)2

=
f ′′(um)g′′(um) − f ′′′(um)g′(um)

2f ′′(um)2

the last term is uniformly bounded on the interval (u�, ur). So, by choosing s−s0 > σε
with σ sufficiently large, the slope of the vector field will be strictly smaller than the
slope of the curve γ, in other words, trajectories do cross γ from above.

Therefore the unstable manifold Wu(u�) cannot intersect the stable manifold
W s(ur) which lies above γ.

Since the case s− s0 < −σε is completely analogous, we omit the details.

Using this estimate on the wave speed we are now able to localize the heteroclinic
orbit uε in the Liénard plane. We do this in two steps: First, we prove estimates for
the part of uε which is at least O(ε1/2) away from um. In a second step we then show
that the passage near um only takes a time of order O(ε1/2). Together, this suffices
to prove the admissibility of the monotone heteroclinic wave u0.

Lemma 4.4. Let σ be as in lemma 4.3 and δ > 0 be arbitrary. Then there exists
some constants k > 0 and ε1 > 0 such that for all 0 < ε ≤ ε1 and |s − s0| ≤ σε the
region

U+ =
{
u� ≤ u ≤ um − δε1/2,

∣∣∣∣v + f(u) − su− εg(u)
f ′(u) − s0

∣∣∣∣ ≤ k
ε3/2g(u)
u− um

}

contains a branch of the unstable manifold of u� and trajectories of (7) can leave U+

only at the right boundary u = um − δε1/2.
Similarly trajectories may enter a region

U− =
{
um + δε1/2 ≤ u ≤ ur,

∣∣∣∣v + f(u) − su− εg(u)
f ′(u) − s0

∣∣∣∣ ≤ k
ε3/2g(u)
u− um

}

containing the stable manifold of ur only at u = um + δε1/2. The situation is depicted
in figure 4.1.

Proof. Using |s− s0| = O(ε), we get from (13) the expression

e+ =

⎛
⎝ 1

−(f ′(u�) − s) + ε
g′(u�)

f ′(u�) − s
+ O(ε2)

⎞
⎠
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O(ε1/2)

ur

um

the viscous equation

ul

u

v

kε3/2g(u)/(u− um) kε3/2g(u)/(u− um)

v + f(u) − su = 0

region U− of widthregion U+ of width

heteroclinic orbit of

Fig. 2. The heteroclinic orbit at s = s(ε)

for the eigenvector corresponding to the unstable eigenvalue of the linearization of (7)
at u�.

The tangent vectors to the upper and lower boundary of U+ at u� are

t± =

⎛
⎝ 1

−(f ′(u�) − s) + ε
g′(u�)

f ′(u�) − s0
± kε3/2 g′(u�)

u� − um

⎞
⎠

and by choosing ε small one can certainly make sure that e+ is contained in the
open sector between t− and t+. This implies that the unstable manifold of u� passes
through U+.
To show that trajectories leave U+ only at the right boundary one first considers the
upper boundary v = γ(u) of U+ where

γ(u) = −f(u) + su+ ε
g(u)

f ′(u) − s0
+ kε3/2 g(u)

u− um
.

The slope of this boundary curve is

dγ(u)
du

= −f ′(u) + s+ ε
(f ′(u) − s0)g′(u) − f ′′(u)g(u)

(f ′(u) − s0)2

+kε3/2 (u− um)g′(u) − g(u)
(u− um)2

.

Since the limits

lim
u→um

(f ′(u) − s0)g′(u) − f ′′(u)g(u)
(f ′(u) − s0)2

=
f ′′(um)g′′(um) − f ′′′(um)g′(um)

2f ′′(um)2
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and

lim
u→um

(u− um)g′(u) − g(u)
(u− um)2

= −1
2
g′′(um)

both exist, it follows that there exists some constant M > 0 such that

dγ(u)
du

≥ −f ′(u) + s−Mε−Mkε3/2. (14)

On the other hand, the slope of the vector field (7) along the boundary curve γ
of U+ is

v̇

u̇

∣∣∣∣
v=γ(u)

=
−εg(u)

γ(u) + f(u) − su
=

−(f ′(u) − s0)

1 + ε1/2(f ′(u)−s0)
u−um

.

Using the inequality (1 + κ)−1 < 1 − κ+ κ2 which is valid for κ > 0 this yields

v̇

u̇

∣∣∣∣
v=γ(u)

≤ −f ′(u) + s0 + kε1/2 (f ′(u) − s0)2

u− um
− k2ε

(f ′(u) − s0)3

(u− um)2
(15)

Let cf := inf [u�,ur ] f
′′ > 0 and Cf := sup[u�,ur ] f

′′ > 0. For u ∈ [u�, um − δε1/2] the
mean value theorem shows that

f ′(u) − s0 ≤ cf (u− um) ≤ −cfδε1/2.

Combining this with (14) and (15) one arrives at

dγ(u)
du

− v̇

u̇

≥ s− s0 − εM − kε3/2M − kε1/2 f
′(u) − s0
u− um

(f ′(u) − s0) + k2ε
(f ′(u) − s0)3

(u− um)2

≥ −σε− εM − kε3/2M +
2
3
kεδc2f − 1

3
kε1/2cf (f ′(u) − s0) + k2ε

(f ′(u) − s0)3

(u− um)2

≥
(
−σ −M +

1
3
kδc2f

)
ε+ k(

1
3
εδc2f − ε3/2M) +

(
1
3
kε1/2cf − k2εC2

f

)
(s0 − f ′(u))︸ ︷︷ ︸

>0

.

Taking k sufficiently large such that 1
3kδc

2
f > σ +M and ε small we can achieve

that dγ(u)
du ≥ v̇

u̇ for u ∈ [u�, um − δε1/2]. This shows that the vector field along the
upper boundary γ of U+ points into the interior of U+.

In exactly the same way one can show that along the lower boundary the vector
field points into the interior of U+ as well. So the only way how a trajectory can leave
U+ is through the right boundary at u = um − δε1/2.

The proof for the region U− is completely analogous and will therefore be omitted.

Up to now, we know that the heteroclinic orbit uε found in lemma 4.2 passes
through the regions U+ and U−. This implies that u′ε is O(ε1/2)-close to the vector
field of the hyperbolic traveling wave equation (6) except possibly near the fold point:
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Corollary 4.1. As long as uε ∈ [u�, um − δε1/2] ∪ [um + δε1/2, ur] we have

duε

dξ
=

1
ε

(vε + f(uε) − s(ε)uε) =
g(uε)

f ′(uε) − s0
+ O(ε1/2).

Parametrize now the family of heteroclinic orbits uε such that uε(0) = um holds
for all ε and fix

δ0 :=

√
g′(um)

f ′′(um)
> 0.

With this parametrization we can find ξ± = ξ±(ε) such that

uε(ξ±(ε)) = um ± δ0
√
ε.

Lemma 4.5. For ε sufficiently small and ξ ∈ [ξ−, ξ+], we have u′ε(ξ) ≥ c with a
constant c > 0 independent of ε. In particular, this implies that ξ+ − ξ− = O(

√
ε).

Proof. Let vε denote the v-component of the heteroclinic orbit of (7) which exists
at s = s(ε). According to lemma 4.4, this heteroclinic orbit leaves the strip U+ at a
height

vε(ξ−) ≥ −f(uε) + s(ε)uε(ξ−) +
εg(uε)

(f ′(uε) − s0)
− kε3/2g(u)

u− um

= −δ
2
0f

′′(um)
2

ε+
εg′(um)

√
εδ0 + O(ε2)

f ′′(um)δ0
√
ε+ O(ε)

+ O(ε3/2)

= −δ
2
0f

′′(um)
2

ε+
εg′(um)
f ′′(um)

+ O(ε3/2)

=
g′(um)

2f ′′(um)
ε+ O(ε3/2)

where lemma 4.3 and the definition of δ0 was used. We can now find c > 0 such that

vε(ξ−) ≥ cε.

Similarly, vε(ξ+) ≥ cε. Since vε is monotone increasing on [ξ−, 0] and monotone
decreasing on [0, ξ+], we know that

vε(ξ) + f(uε(ξ)) − s(ε)uε(ξ) ≥ min{vε(ξ−), vε(ξ+)} ≥ cε

for ξ ∈ [ξ−, ξ+]. So, on this small part of the heteroclinic orbit we have indeed

u′ε =
1
ε
(vε + f(uε) − s(ε)uε) ≥ c.

We are now able to conclude the proof of theorem 1.1. It remains to show that the
monotone traveling wave u0 of the hyperbolic equation and the viscous heteroclinic
waves uε with s = s(ε) satisfy the estimate

‖uε − u0‖L1(R) → 0 for ε↘ 0
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when they are suitably parametrized.

Proof of theorem 1.1. Recall that the heteroclinic waves uε were parametrized
according to uε(0) = um. Similarly, we fix the parametrization of u0 by assuming
that u0(0) = um. We need to show that for any given ρ > 0

‖uε − u0‖L1(R) ≤ ρ

holds provided that ε is sufficiently small. To this end, we split the trajectories in
five different parts: For ξ > ξ and ξ < ξ with ξ and ξ to be determined later, the
exponential convergence to ur and u� will give us good estimates. For ξ ∈ [ξ, ξ−] and
ξ ∈ [ξ+, ξ] the heteroclinic orbit (uε, vε) lies in the regions U+ and U− where we have
good control over u′ε. By lemma 4.5, the remaining interval [ξ−, ξ+] is so small that
it does not affect the L1-estimate:∫ ξ+

ξ−
|uε(ξ) − u0(ξ)| dξ = O(

√
ε) ≤ ρ

5
(16)

for ε small enough.
To make use of the exponential decay near u�, we determine θ� > 0 small such

that

g(u)
f ′(u) − s

+ kε1/2 g(u)
u− um

≥ 1
2
g′(u�)(u− u�)
f ′(u�) − s0

(17)

for u� ≤ u ≤ u� + θ�, |s − s0| ≤ σ and 0 ≤ ε ≤ ε1. Moreover, θ� should be so small
that

θ�

0∫
−∞

exp
(

g′(u�)ξ
2(f ′(u�) − s0)

)
dξ ≤ ρ

10
. (18)

Using θ� we can find ξ such that u0(ξ) < u� + θ� and uε(ξ) < u� + θ� holds for all ε
small enough. This is possible since u′ε = g(uε)

f ′(uε)−s(ε) + O(
√
ε) is bounded away from

zero uniformly in ε for uε ∈ [u� + θ�, um].
By corollary 4.1, we have

u′ε ≥ g(uε)
f ′(uε) − s(ε)

+ kε1/2 g(uε)
uε − um

for uε ∈ [u�, um − δε1/2].
Combining this with (17), one gets for ξ ≤ ξ (where uε ∈ [u�, u� + θ�])

uε(ξ) − u� ≤ exp
(

1
2
g′(u�)(ξ − ξ)
f ′(u�) − s0

)
(uε(ξ) − u�) ≤ exp

(
1
2
g′(u�)(ξ − ξ)
f ′(u�) − s0

)
θ�.

For the same reason, the traveling wave solution u0 of the hyperbolic equation satisfies

u0(ξ) − u� ≤ exp
(

1
2
g′(u�)(ξ − ξ)
f ′(u�) − s0

)
(u0(ξ) − u�) ≤ exp

(
1
2
g′(u�)(ξ − ξ)
f ′(u�) − s0

)
θ�.

By (18) this implies that

ξ∫
−∞

|uε(ξ) − u0(ξ)| dξ ≤
ξ∫

−∞
(|uε(ξ) − u�| + |u� − u0(ξ)|) dξ ≤ ρ

5
. (19)
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In exactly the same way one can show that∫ +∞

ξ

|uε(ξ) − u0(ξ)| dξ ≤ ρ

5
. (20)

Here ξ is determined similarly as ξ by the conditions u0(ξ) > ur−θr and u0(ξ) > ur−θr

for some θr satisfying

θr

∞∫
0

exp
(

g′(ur)ξ
2(f ′(ur) − s0)

)
dξ ≤ ρ

10
.

For the estimate on the intermediate interval [ξ, ξ−], we note first that |uε(ξ−) −
u0(ξ−)| = O(

√
ε) by lemma 4.5. Since the heteroclinic trajectory (uε, vε) passes

through U+ we have for ξ ∈ [ξ, ξ−]

|uε(ξ) − u0(ξ)| − |uε(ξ−) − u0(ξ−)|

≤
∫ ξ

ξ−
|u′ε(ζ) − u′0(ζ)| dζ

≤
∫ ξ

ξ−

∣∣∣∣ g(u0)
f ′(u0) − s0

− g(uε)
f ′(uε) − s(ε)

∣∣∣∣+ O(
√
ε) dζ

=
∫ ξ

ξ−

∣∣∣∣ g(u0)
f ′(u0) − s0

− g(uε)
f ′(uε) − s0 + O(ε)

∣∣∣∣+ O(
√
ε) dζ

≤
∫ ξ

ξ−
L|uε(ζ) − u0(ζ)| dζ + O(

√
ε)

where L is a Lipschitz constant for the function g/(f ′−s0) on [ξ, ξ−]. By the Gronwall
inequality, this implies |uε(ξ)−u0(ξ)| = O(

√
ε) again for ξ ∈ [ξ, ξ−]. After integration,

this yields ∫ ξ−

ξ

|uε(ξ) − u0(ξ)| dξ = O(
√
ε) ≤ ρ

5
(21)

for ε small. Exactly by the same reasoning, we get∫ ξ

ξ+

|uε(ξ) − u0(ξ)| dξ ≤ ρ

5
(22)

for all sufficiently small ε. Adding up (16) and (19)–(22), we arrive at∫ +∞

−∞
|uε(ξ) − u0(ξ)| dξ ≤ ρ

which completes the proof of theorem 1.1.

5. Asymptotic speed of the viscous traveling wave. In this section we will
derive an asymptotic formula for the wave speed of the viscous traveling wave. The
tool we use is a blow-up construction similar to the one in [KS01a]. The analysis is
very close to the case treated there, however due to violation of a non-degeneracy
assumption the “canard case” theorem in [KS01a] does not apply directly.
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Details and background on the blow–up method can be found in [DR96] and
[KS01a, KS01b].

From the viewpoint of geometrical singular perturbation theory, parts of the sin-
gular curve Cs which are normally hyperbolic, persist for small ε > 0. Deleting a small
neighborhood of the fold point from Cs leaves two branches: One branch As

0 which is
attracting for the fast dynamics and one branch Rs

0 which is repelling. By Fenichels
theory [Fen79], there will be two invariant curves As

ε and Rs
ε close to As

0 and Rs
0 for

ε > 0 small. In general, these curves are constructed as center manifolds of the slow
manifold and hence are not unique.

The dynamics on As
ε and Rs

ε is close to the slow dynamics on A0 and Rs
0, in

particular, the equilibria u� and ur, which persist for ε > 0, will lie on As
ε and Rs

ε.
Moreover, As

ε must contain the unstable manifold of u� and Rs
ε must contain the one-

dimensional stable manifold of ur, at least up to a vicinity of the fold point. This
implies that both As

ε and Rs
ε are determined uniquely. Of course, we may continue

As
ε and Rs

ε with the flow in forward, resp. backward direction.
A heteroclinic orbit from u� to ur exists if and only if the forward continuation

of As
ε intersects the backward continuation of Rs

ε. From the previous lemma we know
already that such an intersection occurs for precisely one value s(ε).

This chapter is concerned with the question how to determine, at least to leading
order, the wave speed correction s(ε) − s0 caused by the small viscosity.

The key is a good understanding of the dynamics near the fold point when ε is
small and s is varied near s0.

To this end, we introduce a new small parameter µ and rescale the variables
according to

u = um + µū,
v = −f(um) + sum + µ2v̄,
ε = µ2ε̄

⎫⎬
⎭ (23)

with

(ū, v̄, ε̄) ∈ S := {ū2 + v̄2 + ε̄2 = 1}.

It will be convenient to keep the wave speed s as a parameter which will be scaled
seperately. The “blow-up” maps the fold point at ε = 0 to a sphere S × {µ = 0}.
Similarly, a full neighborhood of the fold point is mapped to the set S × [0, µ0) and
this mapping is one-to-one outside S × {0}. As we are interested in values ε > 0 we
need to study the blown up vector field in a vicinity of the hemisphere S ∩ {ε̄ ≥ 0}.

The difference between the usual blow–up of singularities and the approach of
[DR96] used here is the fact that the blow up here “mixes” the dynamic variables and
the parameters. In particular, ε̄ will in general not be constant along solutions of the
rescaled equation. However, the quantity µ2ε̄ remains a first integral.

To study the flow in the rescaled variables we will change coordinates again and
study the blown up vector field in two different sets of coordinates.

The first change of coordinates is given by the transformation

u1 = ūε̄−1/2 ⇒ u = um + µ1u1

v1 = v̄ε̄−1 ⇒ v = −f(um) + sum + µ2
1v1

µ1 = µε̄1/2 ⇒ ε = µ2
1.
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Note that this change of variables has the same effect as setting ε̄ = 1 in (23).
Moreover, we scale the parameter s as

s− s0 =: µ1s1.

From ε̇ = 0 we infer µ̇1 = 0. Hence, in this coordinate system µ1 may also be regarded
as a parameter.

In a similar way one can change coordinates for v̄ < 0 according to

u2 = ū(−v̄)−1/2 ⇒ u = um + µ2u2

µ2 = µ(−v̄)1/2 ⇒ v = −µ2
2 − f(um) + sum

ε2 = −ε̄v̄−1 ⇒ ε = µ2
2ε2

which amounts to the same as setting v̄ ≡ −1 in (23).
In addition we set

s− s0 =: µ2s2.

For ε̄ > 0 and v̄ < 0 we may use both sets of variables. In their common domain of
definition, the change of variables between the two sets of coordinates is given by

u1 =
u2√
ε2
, u2 =

u1√−v1

v1 = − 1
ε2
, ε2 = − 1

v1

µ1 = µ2
√
ε2, µ2 = µ1

√−v1.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(24)

Expanding f and g in a Taylor series near u1 = 0, the viscous traveling wave
equation (7) written in the first set of coordinates reads

µ1u̇1 = v1 +Au2
1 − s1u1 + µ1Bu

3
1 + O(µ2

1)
µ1v̇1 = −Du1 − µ1Eu

2
1 + O(µ2

1)

}
(25)

with A := 1
2f

′′(um), B := 1
6f

′′′(um), D := g′(um) and E := 1
2g

′′(um). Due to the
assumptions (F) and (G) we have D > 0 and A > 0.

After rescaling the independent variable, we arrive at the system

u̇1 = v1 +Au2
1 − s1u1 + µ1Bu

3
1 + O(µ2

1)
v̇1 = −Du1 − µ1Eu

2
1 + O(µ2

1)

}
(26)

which is well-defined for all µ1 and which for µ1 �= 0 possesses the same orbits as (25).
For µ1 = s1 = 0 this is a well-known equation in the theory of singular perturbations.
It is integrable, more precisely

H(u1, v1) :=
(
v1 +Au2

1 −
D

2A

)
e2Av1/D

is a conserved quantity. Equation (26) possesses a family of periodic orbits which
accumulate onto a special unbounded solution γ1 corresponding to H = 0. This
special solution can be parametrized as

u1(τ) =
D

2A
τ, v1(τ) =

D

2A
− D2

4A
τ2.
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We will now show that in the coordinates (23) this unbounded orbit corresponds to
a heteroclinic orbit γ̄ connecting two equilibria on the “equator” ε̄ = 0 of S.

From the definition of u1, v1 we get immediately

ū2 = ε̄u2
1, v̄2 = ε̄2v2

1 .

Since ū2(τ) + v̄2(τ) + ε̄2(τ) = 1 we get a quadratic equation for ε̄(τ) which can be
solved to give

ε̄(τ) =
2
(
−D2τ2 +

√
64A4 +D4τ4 + 4A2D2(Dτ2 − 2)2)

)
16A2 +D2(Dτ2 − 2)2

.

In particular, we can immediately see that ε̄(τ) → 0 for τ → ±∞. Moreover,

ū(τ) = ε̄(τ)1/2 · D
2A

τ → ±
√√

1 + 4A2 − 1√
2A

v̄(τ) = ε̄(τ) · ( D
2A

− D2

4A
τ2) →

√
1 + 4A2 − 1

2A

as τ → ±∞. Since all limits exist, the orbit γ is indeed a connecting orbit between
two equilibria on S.

Below we will show by a Melnikov-like calculation that this heteroclinic orbit
persists for s1 = s1(µ1) providing a connection between the unstable manifold of u�

and the stable manifold of ur.
In the second set of coordinates corresponding to v̄ ≡ −1 in (23), the equations

of motion are more complicated:
From the relation µ2

2 = −v − f(um) + sum we get

2µ2µ̇2 = −v̇ = g(u) = Dµ2u2 + Eµ2
2u

2
2 + O(µ3

2) =: µ2R(µ2, u2).

From ε̇ = 0 one concludes that

µ2
2ε̇2 = −µ2ε2R(µ2, u2).

Similarly, from the u–equation we derive

2µ2ε2u̇2 = −2 + 2Au2
2 − 2u2s2 + 2Bµ2u

3
2 − ε2u2R(µ2, u2) + O(µ2

2).

Hence, the vector field can (after rescaling by a factor 2µ2ε2) be written as

u̇2 = −2 + 2Au2
2 − 2u2s2 + 2Bµ2u

3
2 − ε2u2R(µ2, u2) + O(µ2

2)
µ̇2 = ε2µ2R(µ2, u2)
ε̇2 = −2ε22R(µ2, u2)

⎫⎬
⎭ (27)

By (24), in these coordinates the unbounded solution γ from the first set of coordinates
corresponds to

ε2(τ) =
4A

D2τ2 − 2D
, u2(τ) =

Dτ√
A(D2τ2 − 2D)

, µ2 = s2 = 0 (28)

and hence converges to (u2, µ2, ε2) = (± 1√
A
, 0, 0) as τ → ±∞. Due to the rescaling

by 2µ2ε2, (28) is not a solution of (27).
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Apart from the invariant subspace {µ2 = s2 = 0} containing parts of the hetero-
clinic orbit γ̄, equation (27) possesses other invariant subspaces that will help us to
describe the dynamics. For any s2 fixed, there is an invariant line {µ2 = ε2 = 0}.
Restricting (27) to this line yields the equation

u̇2 = −2 + 2Au2
2 − 2u2s2.

For small s2, there are two equilibria: An attracting equilibrium pa(s2) with u2 =
− 1√

A
+ O(s2) and one repelling equilibrium pr(s2) with u2 = 1√

A
+ O(s2).

For any fixed s2, the invariant subspace {µ2 = ε2 = 0} is contained in the invariant
subspaces {ε2 = 0} and {µ2 = 0} which will be studied next.

In the invariant two-dimensional subspace {ε2 = 0}, equations (27) simplify to

u̇2 = −2 + 2Au2
2 − 2u2s2 + 2Bµ2u

3
2 + O(µ2

2)
µ̇2 = 0.

There exist a line La(s2) = {(ua(µ2, s2), µ2); µ2 ≥ 0} of equilibria emanating from
pa(s2) with ua(µ2, s2) = − 1√

A
+ O(|s2| + µ2). The linearization in (ua(µ2, s2), µ2)

has one negative eigenvalue −4
√
A+ O(µ2 + |s2|) �= 0 and one zero eigenvalue. This

means that the line of equilibria is normally hyperbolic for all |µ2| sufficiently small.
A similar normally hyperbolic line Lr(s2) of repelling equilibria emanates from pr(s2).

From the equations defining the blow-up, one can see that these manifolds La(s2)
and Lr(s2) correspond to the attracting and repelling parts As

0 and Rs
0 of the slow

manifold Cs in our original setting before the blow-up. In fact, La(s2) and Lr(s2) are
the extension of As

0 and Rs
0 to µ = 0.

The two-dimensional invariant subspace {µ2 = 0} also contains pa(s2) and pr(s2)
but as an easy calculation shows, there are no other equilibria. For fixed |s2| small, the
linearization at pa(s2) has one non-zero eigenvalue and one zero eigenvalue. Therefore
there exists a one-dimensional center manifold Ca(s2) of pa(s2). For s2 = 0 alias s = s0
this center manifold is exactly a branch of the heteroclinic orbit γ̄ we have already
found. Similarly, there exists a one-dimensional center manifold Cr(s2) of pr(s2) in
the plane {µ2 = 0}.

Now we return to the full phase space of the blown-up vector field, i.e. to equation
(27). For |s2| sufficiently small, the linearization in the equilibrium pa(s2) possesses a
positive eigenvalue and a double zero eigenvalue. From this eigenvalue structure the
existence of an invariant manifold follows:

Proposition 5.1. Fix s2 and consider the equilibrium ps
a = ( 1√

A
, 0, 0) of (27).

There exists a family of two-dimensional center manifolds Ma(s2) of the equilibria
pa(s2) which is attracting. The manifold Ma(s2) contains the line La(s2) of equilibria.
Moreover, for s2 = 0 the manifold Ma(0) also contains a piece of the heteroclinic orbit
γ̄.

Analogously, for fixed s2 with |s2| sufficiently small, there exists a two-dimensional
repelling center manifold Mr(s2) near the equilibrium pr(s2). This manifold contains
the line Lr(s2) of equilibria. Again for s2 = 0 the manifold Mr(0) contains a part of
γ̄.

We need to find conditions under which there are trajectories in the blown-up
equation with µ > 0 connecting a neighborhood of pa with a neighborhood of pr.
This is necessary in order to have a connection from As

ε to Rs
ε. Such a connection will

automatically be a heteroclinic orbit in the original system (7).
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ε̄

ū

v̄

γ̄

pr

Lr

pa
Ma

La

Aε

Mr

Rε

u = ur
u = u�

Fig. 3. The dynamics in the blown up vector field for s = s0 and the connection to the global
heteroclinic orbit

We will therefore determine by a Melnikov-type calculation the relation between
µ2 and s2 such that an intersection between Mr(s2) to Ma(s2) exists. In fact, we
know that such a connection exists at µ2 = s2 = 0.

Working in the first set of coordinates again, we apply some recent results of Wech-
selberger [We02] to determine asymptotically the distance between Mr and Ma. To
this end, let d(µ1, s1) be a distance function measuring the distance of the unstable
manifold of pr and the stable manifold of pa at u1 = 0. From the existence of the
special solution γ we conclude that d(0, 0) = 0. A variant of Melnikov’s method can
be used to determine the location of the zeroes of d for small nonzero parameters
µ1 and s1. It has been shown in [KS01a] that the splitting of these manifolds can
be measured by the usual Melnikov integrals, although the situation is different from
the one typically considered in Melnikov theory: Instead of looking for an intersec-
tion of stable and unstable manifolds of two hyperbolic equilibria one looks for the
intersection of two noncompact center–stable and center–unstable manifolds associ-
ated with unbounded solutions of at most algebraic growth. However, since for this
type of solutions the notion of dichotomies is still well defined it is possible to derive
Melnikov integrals as a measure for the splitting of these invariant manifolds. For
a complete treatment of this situation, see [We02]. We remark that in the second
set of coordinates there is only a heteroclinic orbit at µ2 = 0. It is asymptotic to
two non-hyperbolic equilibria which disappear for µ2 �= 0. The Melnikov-like analysis
does not yield persistence of a heteroclinic orbit for other values of µ2 in the blown-up
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equations, see figure 5.
In particular, we may compute ∂d

∂µ1
and ∂d

∂s1
in the standard way, see [Van92].

To perform the computation one needs explicitly all bounded solutions of the adjoint
linearized equation. Linearizing (26) around the solution γ1 with µ1 = s1 = 0 yields
the non-autonomous linear system(

u̇
v̇

)
=
(

Dτ 1
−D 0

)(
u
v

)
.

The adjoint equation

ψ̇ =
( −Dτ D

−1 0

)
ψ

has the (up to a constant factor) unique bounded solution

ψ(τ) =

(
Dτe−

D
2 τ2

e−
D
2 τ2

)
. (29)

The Melnikov integral ∂d
∂µ1

is then computed by integrating the scalar product of ψ
with the µ1-derivative of (26) evaluated along the special unbounded solution γ:

∂d

∂µ1
=

+∞∫
−∞

(
Dτ
1

)T
(

BD3

8A3 τ
3

−D2E
4A2 τ

2

)
e−

D
2 τ2

dτ

=

+∞∫
−∞

(
BD4

8A3
τ4 − D2E

4A2
τ2

)
e−

D
2 τ2

dτ

=

+∞∫
−∞

(
BD3/2

√
2A3

ν4 − D1/2E√
2A2

ν2

)
e−ν2

dν

=

√
πD

2

(
3BD
4A3

− E

2A2

)
Similarly, we find

∂d

∂s1
=

+∞∫
−∞

(
Dτe−

D
2 τ2

e−
D
2 τ2

)T ( − D
2Aτ

0

)
dτ

= −
+∞∫

−∞

D2

2A
τ2e−

D
2 τ2

dτ

= −
√
πD

2
1
A
.

By the implicit function theorem this implies that d(µ1, s1) = 0 has a solution s1 =
s1(µ1) with

s1(µ1) =
(
−3BD

4A2
+

E

2A

)
µ1 + O(µ2

1)
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translating this result of the Melnikov calculation back to the original coordinates, we
have:

Lemma 5.1. For ε sufficiently small, there is a unique heteroclinic connection uε

from u� to ur that occurs at

s(ε) = s0 −
(
f ′′′(um)g′(um) − g′′(um)f ′′(um)

2f ′′(um)2

)
ε+ O(ε3/2).

This concludes the proof of theorem 1.2.
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