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ON THE PSEUDOSPECTRA OF BEREZIN-TOEPLITZ OPERATORS *

D. BORTHWICK' AND A. URIBE#}

1. Introduction. The study of pseudospectra of operators is a very active area
of research, of importance in applied mathematics and numerical analysis. We recall
that if € > 0, the e-pseudospectrum of an operator () acting on a Hilbert space is the
set of complex numbers, A € C, such that

_ 1
l@-AD7 >+,
or, equivalently, the set of A such that
o Q= AD @)
1.1 inf —————"— <
- 0 Il -

The importance of this set in applied settings stems from the following two facts:
1. If € is very small it may be difficult to distinguish the e-pseudospectrum from
the spectrum of @,
2. If @ is strongly non normal the e-pseudospectrum generally is much bigger
than the spectrum, even if € is very small.
In case @ is a differential or, more generally, a pseudodifferential operator with a small
parameter, i (such as a Schrodinger operator), it is natural to consider the asymptotic
behavior of the e-pseudospectrum of @ where € is related to A, e.g. ¢ = O(h™).
Dencker, Sjostrand and Zworski have recently studied this problem by microlocal
techniques, [10]. Earlier results for Schrodinger operators were obtained by E. B.
Davies, [9], and P. Redparth, [17].

On the other hand, in applications one often deals with large matrices, and then
it is natural to estimate the pseudospectrum in terms of the size of the matrix. In
a recent paper, [18], Trefethen and Chapman considered this problem for matrices
TW) = (Tjj}/) where

N . .
(1.2) T4 = fo_ymodn(G/N), 1< j1<N.

Here the f; are 1-periodic coeflicient functions . The main result of Trefethen and
Chapman is that, under certain assumptions including the following “twist” condition,

(19 S(2L /5L ) o) <0

where f(z,p) = 3, fi(p)e”™, then A\ = f(zq,po) is in the e-pseudospectrum of Ty
where € = O(e~°N) for some ¢ > 0.
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The purpose of this note is to show that microlocal techniques can also be applied
to the study of the pseudospectra of matrices such as (1.2) (and generalizations). In
this light we interpret the twist condition (1.3) as Hérmander’s solvability condition

(1.4) {Rf, Sf}Hxo,p0) <0

on the Poisson bracket of the real and imaginary parts of the symbol of a pseudod-
ifferential operator. Indeed if we define the Poisson bracket of the variables z and p
above to be one, it is easy to check that (1.3) is precisely Hormander’s condition. The
connection between Hormander’s condition and pseudospectra was first made by M.
Zworski in [21].

In this paper we construct pseudomodes for Berezin-Toeplitz operators under
condition (1.4) on the (smooth) symbol. Our construction is symbolic: in §2 we
introduce spaces of Hermite distributions containing the pseudomodes. From the
point of view of the symbolic calculus of these distributions, condition (1.4) is exactly
the condition on e for the operator: % + ex to have a kernel in the Schwartz space of
R, namely € > 0.

Although we will discuss our results in detail in the next section, we should
mention some limitations of our work. The methods of Trefethen and Chapman
apply to rough symbols, f, and they obtain exponentially small error terms. For
analytic symbols, it is very likely that exponentially small estimates (in the Toeplitz
setting) can be achieved by microlocal methods, as has been done in [10] for pseudo-
differential operators. The problem of dealing with general non-smooth symbols,
however, is much more challenging. Trefethen and Chapman’s main theorem includes
a global condition on the symbol (in addition to 1.2), and they present compelling
numerical evidence that global conditions on non-smooth symbols are necessary for
the existence of “good” pseudomodes (see §8 of [18]). This is a very interesting issue
that we do not address here. On the other hand, our results for smooth symbols are
fairly general and include a number of cases not covered by the results in [18] (e. g.
the “Scottish flag” matrix). Furthermore, the pseudomodes we construct are localized
in phase space, sharpening the localization results of [18].

We also mention that more straightforward microlocal methods can be applied
to the study of non-periodic versions of (1.2), along the lines of the example in §4.1.
More generally, the Berezin-Toeplitz operator calculus opens up the entire spectrum
of phase-space methods to study other problems associated with certain sequences of
large matrices, and we hope to return to some of these problems in the future.

1.1. The main results. The general setting for B-T operators is a Kahler man-
ifold, X, together with a holomorphic hermitian line bundle, L — X whose curvature
is the symplectic form on X. In our general theorems X will be compact. If f : X — C
is a “classical Hamiltonian”, (a smooth function) consider the sequence of operators
Ty = {TWN) /N =1,2,...}, acting on the space Hy of holomorphic sections of the
tensor power L&V defined by:

where Iy : L?(X, L®N) — Hy is orthogonal projection. The sequence, Ty, is the
primary example of a Berezin-Toeplitz operator. More generally, one can allow f to
depend on N as well, provided the N-dependence admits an asymptotic expansion as
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N — 0
fl@,N) ~ > N7 f()
j=0

in the C* topology. The function f; is then called the principal symbol of the
operator. We include explicit examples of all this in §4. General references for the
theory of Kéhler quantization and Berezin-Toeplitz operators are [3], [4], [8], [20].

For each N Hy is finite-dimensional, and for N large, by the Riemann-Roch
theorem, dim Hy is a polynomial in NV of degree one-half the dimension of X, n :=
%dim X.

The simplest cases are when X is a either the torus or the complex projective
line, for which n = 1. Thus the parameter, IV, is essentially the dimension of Hy.
Moreover, for such X the spaces Hy have a natural multiplicity-free representation
of the circle group, whose eigenvectors form a canonical basis of Hy. We will write
down explicitly the matrices corresponding to a B-T operator on these spaces in the
next section. It turns out, for example, that the matrices (1.2) are the matrices of
B-T operators on X equal to the two-torus.

Our main result is:

THEOREM 1.1. Let X be a compact, 2n-dimensional quantized Kdhler mani-
fold, and let Ty = {T(N) , N =1,2,...} be a Berezin-Toeplitz operator with smooth
principal symbol f: X — C.

0. For all A € C,

@™ —Anw)
o Tl

= inf |f(z) = Al + O(1/VN).

1. Assume that A = f(xo) where xo € X is such that

(1.5) {Rf, Sf}zo) <O.

Then there exists a sequence of vectors {1n € Hy} with microsupport precisely {xo}
and such that

(T — XD ()

(16) o A
2. On the other hand, if A = f(xqg) and
(L.7) {Rf, SfHao) >0,

then any sequence {¢Yn € Hy} such that (1.6) holds has microsupport away from
{1'()}.

We say a few words about the definition of microsupport in §2.1.

In the case of more than one degree of freedom (i. e. if the dimension of X is
greater than two), there are multiple pseudomodes under condition (1.5). The level
set f~1()) is a symplectic manifold (at least near x() and we construct pseudomodes
associated with any germ of isotropic submanifold of it containing x.

We will also prove an additional result, analogous to Theorem 4 in [10], whose
hypotheses hold typically in case A is on the boundary of the image of the principal
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symbol. Let R(f) = f1, S(f) = f2, and for I C {1,2}™ denote by fr the repeated
Poisson bracket:

— = = = .
fI - '_‘fbl '_'.f'ig o ‘_‘f'im,—l flnL

where 2, denotes the Hamilton vector field of g. Denoting the order of the Poisson
bracket by |I| = m, we define the order of a point € X as

(1.8) kE(x) :=max{j € Z; fr(x) =0for all |[I| <j}.

THEOREM 1.2. With the same assumptions as the previous Theorem, let A €
dImage(f) be such that:
1. df, # 0 for every x € f~1(\).
2. The mazimum order k := max,¢ -1y k(x) is finite.
Then there exist C, C1 > 0 such that

(1.9) CiN~Y% > inf H(T(N) =AW

i
> > N~ w,
VEHN ]l

The first inequality in (1.9) follows from Part 0 of Theorem 1.1; the second one
follows from subelliptic estimates. In the course of the proof of this Theorem we
will also show that, in general, the microsupport of a sequence of vectors ¢y € Hy
minimizing the Rayleigh quotient in (1.9) (i.e. the optimal pseudomodes) is contained
in f~1(\), see Proposition 3.3.

The existence part of Theorem 1.1 is proved by constructing pseudomodes out of
a class of distributions that will be defined in the next section. The proof of Theorems
1.1 and 1.2 appear in §3, and §4 is devoted to examples. We present some additional
results, including a description of the limit of the numerical range, in §5.

ACKNOWLEDGMENTS: We wish to thank Nick Trefethen for sharing with us an early
version of [18] and for encouraging remarks. Many thanks also to John Toth, Maciej
Zworski and Thierry Paul for helpful conversations.

2. Preliminaries.

2.1. Setup and strategy. Let L — X be as in the previous section, and let
P C L* denote the unit circle bundle in the dual of the line bundle L. We denote by

(2.1) *(P) = P L(P)

keZ

the Fourier decomposition of functions on P under the action of the circle; explicitly
f € L?(P)isin L2(P) iff f(e® - p) = e™** f(p). We will also need the spaces

(2.2) C°(P) = Li(P) N C>(P).

It is a tautology that C°(P) (resp. L7 (P)) can be naturally identified with the space
of sections C°(X, L®*) (resp. L?(X, L®%). We will henceforth identify these spaces
without further comment.

P is the boundary of a strictly pseudoconvex domain (the disk bundle of L*), and
under the natural action of the circle group its Hardy space, H, splits into Fourier
components that are naturally isomorphic to the spaces of holomorphic sections Hy:

(2.3) H=EPHn,  Hy=H(X L)
N=0
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We denote by II : L?(P) — H the Szegd projector of P, and by Iy : L?*(P) — Hy
the orthogonal projection onto the summand H .

The precise structure of the singularities of IT has been known for some time,
thanks to work of Boutet de Monvel and Sjostrand. We now recall the microlocal

structure of II, as described in [5]. Let o denote the connection form on P, and let
Z C TP be the manifold

Z={(p,rap);peP,r>0}

This is a conic symplectic submanifold of 7* P, and II is a Fourier integral operator
of Hermite type associated with the canonical relation

2%:={(¢¢);¢e 2}

We will say a few words below about the symbol of II, referring to [5] for the general
theory of Fourier integral operators of Hermite type. (See [20] for a description of II
as a Fourier integral operator with complex phase.)

The overall strategy of our proofs is the observation that much of the asymptotic
behavior of a sequence {1y € C®(X,L®V)} is encoded by the singularities of the
distribution on P, ¢ = Y ¥_, ¥n € C7>(P). For example, we have the following
elementary result:

LEMMA 2.1.  Given a sequence of vectors ¢y € C(X,LEN) let ¢ =
Yon_1¥N € C7°(P). For each s € R, let H(y(P) denote the Sobolev space on
P consisting of distributions, u, such that (Ap + I1)%/?(u) € L*(P), with the norm
llull sy = [[(Ap + I)%/2(u)|| 2. Then the following are equivalent:

(a) ¢ € C>(P)

(b) For all s € R |[¢n](s) = O(N™).

If, in addition, n € Hy for all N, then the above are equivalent to:

(¢) [lonllL> = O(NT).

Proof. The spaces C°(P) are invariant under Ap and orthogonal in H,), so for
each s [[9[12,) = 2 [¥n 17, It follows that (b) implies that ¢ € H,)(P) for all s, and
therefore it implies (a) (and (c), of course). Assuming (a) now, consider D§v where
k is a positive integer. Since this function is smooth it is in H,)(P) for each s, and
therefore || Dg||7y = Y5 N?* [¢n |7, < oo, which implies that [[¢n||(s) = O(NF).
Therefore (a) implies (b).

Let us define an operator Ay by the identity

(2.4) Ap = Ay + Di.

Then [Ap, Dg] = 0 and the restriction of Ay, to C37(P) agrees exactly with the Lapla-
cian on C°°(X, L®Y) associated with the connection and the Hermitian structure on
L®N . This has the following consequence: If 1 € Hy C L?(P),

(2.5) lonlls = (N? 4+ N +1)*[vn o

Indeed elements in Hy are eigenfunctions of Ap: We claim that Ap(¥y) = N(N +
1) n. By virtue of (2.4), this statement is equivalent to: Apy = N1y. This follows
from the well-known Bochner-Kodaira relationship the metric and the @ Laplacian on
sections of L, see for instance [11] Proposition 6.1. Clearly (2.5) has the consequence
that (c) implies (b) for sequences of vectors in Hy. O
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We end this subsection with a reminder of the notion of microsupport in Kéhler
quantization. Let {¢¥y € Hxy} be a sequence of holomorphic sections of the tensor
powers of L, and let ¢ =) ¢n. Since II(¢)) = 1, the wave-front set of 1 is included
in Z. The microsupport of the sequence is defined as the subset of X which is the
projection of WF(¢): we say that z € X is in the microsupport of {¢)x} if and only
if

3p, € P such that 7(p;) = = and (p, o) € WF(¥).

It follows from the above that microsupport of the sequence is the empty set iff
Y]z = O(N~°°). In addition, one can show that ¢y € X is not in the microsupport
of {tyny € Hn} iff there exists a neighborhood, V', of z¢ such that sup,cy |[¥n(pe)| =
O(N~°), where for all z p, € P denotes any point projecting to x.

The microsupport has a characterization in terms of the action of Toeplitz oper-
ators analogous to the characterization of the ordinary wave-front set by the action
of pseudodifferential operators. We refer to [8], §5, for alternative descriptions of the
microsupport.

2.2. Polarized Hermite distributions. In this section we define and analyze
the concept of generalized wave packets and their symbols in the context of Kéhler
quantization. In fact we’ll define more general states, associated to isotropic sub-
manifolds of a quantized Kéhler manifold (although everything we do generalizes to
any almost Kéahler manifold quantized by a projector, II, with the same microlocal
structure as the Szegd projector.)

Definition of polarized Hermite distributions.

Let us begin by considering a closed conic isotropic submanifold
RCZ.

Obviously R is isotropic in T*P \ {0}, and therefore associated with it are spaces
I'(P,R) of Hermite distributions on P. The general theory of such distributions (to-
gether with many applications) was developed by Boutet de Monvel and Guillemin,
see (see [5], or the Appendix for additional remarks). The polarized Hermite distri-
butions associated with R are simply the projections of elements of I'(P,R) by the
Szeg6 projector:

DEFINITION 2.2. The space of polarized Hermite distributions of order | associ-
ated with R is

(2.6) IL(P,R) := I(I'(P,R)).
We should point out that by the composition Theorem 9.4 of [5] one has the

inclusion: I4(P,R) C I'(P,R).

Notice that one has a natural isomorphism

PxRTt — Z
(p7 ’I’) = (pa Tap)

which becomes a symplectomorphism if we put on P x RT the symplectic structure

(2.7) —d(ra) = —rda — a A dr
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(here r is the coordinate on the R factor). Using this description of Z it is easy to
show that the base of the cone, R, is a submanifold Y C P such that the infinitesimal
generator of the circle action on P is never tangent to Y. Moreover, the projection,
m: P — X, restricts to an isotropic immersion of Y in X. Let us denote by Y this
immersed isotropic submanifold of X.

DEFINITION 2.3. A sequence of holomorphic sections, {{)n € Hn}, of the tensor
powers of L will be called an Hermite state associated with Y iff there exists v €
IL(P,R) such that the Fourier components of 1 according to (2.3) are precisely the

UN.

For example, if Y is a single point then the coherent states at that point are
an Hermite state. The case when Y is Lagrangian (and hence Y Legendrian) was
considered in [7].

Symbolic matters.

Our next step is to define the symbol of a polarized Hermite distribution. We
begin by recalling the nature of the symbol of general elements in I'(P,R). Such
distributions have symbols which are symplectic spinors associated with R. The
definitions are made in the tangent space to 7% P, so for notational convenience for
each p € R we'll set

R, =T1,R, Z,=T,2.
Let
N,:=R}/R,

where R denotes the symplectic orthogonal of R, inside T), (T*P). N, is a symplectic
vector space, called the symplectic normal space to R at p. Abstractly, the symbol
of u € I'(P,R) at p is a smooth vector in the metaplectic representation of the
metaplectic group of N, tensored with a half-density along R,, i.e. an element of:

Spin(R,) :i= A'*(R,) ® Hao(N,).

LEMMA 2.4. Let E, = {v € Z, ; Yu € R, w(u,v) = 0}/R, be the symplectic
normal of R in Z at p. Then, the symplectic normal, N,, is naturally isomorphic to
the direct sum

(2.8) N,=E,®Z;
where Z; is the symplectic orthogonal of Z, in T,(T*P).
Proof. This follows from the fact that

RS =R? @ Z¢

where R7Z is the symplectic orthogonal of R, inside Z,,, which itself follows from the
fact that Z is a symplectic submanifold of 7% P. O

It is important to note that the projection T, (T*P) — Ty, X induces a sym-
plectic isomorphism Z; ~ T(,)X. On the other hand, because of the negative sign in
(2.7), the same projection takes E, to (Tx(,)Y °/Tx(,)Y )™, where the minus indicates
a reversal of the symplectic structure.
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It follows from Lemma 2.4 that the metaplectic representation of the metaplectic
group of N, is a tensor product:

H(Np) = H(Ep)®H(ZS)
(Hilbert space tensor product). It is this decomposition that reveals the structure of
the symbol of a polarized Hermite distribution. In order to discuss this structure, we
recall that the smooth-vector factor of the symbol of II is of the form e ® €, where

e € Hy(Z7) is a normalized “ground state” (which can be identified with the ground
state of the harmonic oscillator on T’ (,) X defined by the metric).

PROPOSITION 2.5. The symbol of a polarized Hermite distribution, u € Irt(P, R),
is of the form:

Oy = Vy @ Ky X €,

where e € Hw(Z,) is the symbol of the polarization and
ve € NY2(R))  ku € HooE,).
By dividing o, by e one obtains the non-trivial map in the following exact sequence:

0— ITV(PR) — IL(P,R) — NY*(R,) ® Hoo(E,) — 0.

We relegate the proof of this technical proposition to an appendix.

3. Proofs.

3.1. Proof of Theorem 1.1. Let T = {T™N) /N = 1,2,...} be a Berezin-
Toeplitz operator with smooth principal symbol f: X — C.

Part (0) of Theorem 1.1 is not difficult. Without loss of generality we can assume
that A = 0. Since {(TW))*T(M)} is a Toeplitz operator with symbol |f|?, one has
that for all vy € Hy,

TN en | = (TN T hn, on) ~ v (1 fPon), on) = (PN, o).
More precisely, from the definition of B-T operators we have that for any sequence of

wN e,}-[]\h

I = [ 1@ o) s + Lo - OGN,

where dyu is the measure on X and |1 (x)|? is the square of the length of ¥y () in

the Hermitian norm of L&Y — X. Tt follows that

T el
i Ha\(0) Tow] > ot 1f@)]+OQ/VA)

In the other direction, let xg be the point of X where inf |f(z)| is attained, and let

90;];7) =1II(-,po) be a coherent state at a point py € P that projects down to zo. Then

1T ]2 _ (TN T 0, 0,)

H, = 2+ O(1/N).
eneHN\{0}  [[UN]2 T [ENE |/ (po)] (1/N)

We now prove part (1) of the Theorem. We begin with a few preliminary consid-
erations. By Proposition 2.13 of [5], there exists a classical pseudodifferential operator
of order zero on the circle bundle P, @, such that:
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1. Q commutes with the Szego projector ([II, @] = 0) and with the S! action.
2. For each N the restriction of Q to Hy, Q : Hy — Hy is equal to TV,
3. The principal symbol of @) satisfies:

V(p,rap) €% oq(p,ray) = f(m(p))

where 7 : P — X is the projection.
Assume now that A = f(x), where zg € X is such that

(3.1) {Rf, Sf}Hzo) <O.

The inverse image f~1()) is, in a neighborhood of x¢, a codimension-two symplectic
submanifold of X. Let us pick an isotropic submanifold of f~!(\) (not necessarily
closed), Y, containing 9. Then Y is an isotropic submanifold of X. Our consider-
ations are local: we restrict our attention to a neighborhood of xy where {Rf, Sf}
is negative and such that there exists a lift of Y to a conic isotropic submanifold,
R C Z, in the sense of the previous section. We will construct a pseudomode with
microsupport equal to Y. Notice that we may take Y = {xo} if we wish.

Since [IT, Q] = 0 and II is self-adjoint, we have [T, Q] = 0. Therefore, by Propo-
sition 11.4 of [5],

(3.2) V(p,rap) € X {Rog, Sog}(p,ray) = {(Rf, If}(m(p)),

where o is the principal symbol of Q). Notice that the Poisson bracket on the left is
on T* P (with respect to the cotangent bundle structure), while the one on the right
is the Poisson bracket on X. Therefore, the Poisson bracket conditions (3.1, 3.5) on
f are inherited by 0.

To see how the Poisson bracket condition becomes relevant in our considerations,
we first consider a calculation in the Heisenberg representation on L%(R¥).

LEMMA 3.1. Let L be the operator on L?*(RF) corresponding to the action of a
vector ¢ € (R?* w) ® C under the Heisenberg representation. If

w(RE, I¢) >0,

then the restriction of L to the smooth vectors maps S(R¥) onto itself, with a non-zero
kernel.

Proof. The metaplectic representation describes how L transforms under the
action of the symplectic group on &. That is, £, = U(g)LeU (g7 "), where g — Ul(g) is
the projective unitary representation that gives rise to the metaplectic representation
when we take the double cover. The action of the metaplectic group preserves the
smooth vectors S(R¥), so in our argument we can replace & by g.¢ for g symplectic.

Under the assumption that ¢ := w(RE, IE) > 0, it is a straightforward exercise
to see that g can be chosen so that g.§ = ee; +if1, where e, ..., ex, f1,..., fr is the
standard symplectic basis for R?*. Thus it suffices to prove the result for

L=_— .
8951 ten

We see then that ker £ N S(R¥) contains functions of the form t(z1,...,21) =
e~1/2q(x,, ..., ;). And to show that £ maps S(RF) onto itself, let f € S(R¥). The
ODE Lu = f can be solved by variation of parameters:

x1
w(xy, ..., o) :/ f(t,ajg,...,xk)es(tz_x%)/Q dt.
0
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For € > 0, the estimates showing that u € S(R¥) follow easily. O
Applied at the symbol level, Lemma 3.1 leads directly to the following construc-
tion:

PROPOSITION 3.2. There exists a distribution u in the class I\ (P, R) of polarized
Hermite distributions of order zero associated with R such that:

(3.3) (@Q — M)u € C=(P).

Proof. Suppose u € I (P,R) with 0, = v, ® ky ® e as in Proposition 2.5. It’s
clear that (Q — A)u = II(Q — A\)u is also a polarized Hermite distribution. What
is its symbol? Since the principal symbol of ) — AI vanishes on R, we are led to use
the first transport equation for the Hermite calculus. The Hamilton vector field, &, of
the symbol of ) at a point p € R is in the symplectic normal space N,. Therefore,
the Heisenberg representation of that space associates to &, an operator, £, on the
space Hoo(N,). According to Theorem 10.2 in [5], (Q — AI)(u) € I"/?(P,R) and
its symbol is v, ® L(k, ® €). In fact, since (Q — Al)u is still polarized, under the
decomposition Heo(N,) ~ Hoo(E,) ® Hoo(Z°), L acts only on Ho(E,). The symbol
is really v, ® L(ky) @ e.

We noted in the previous section that the pull-back of the symplectic form from
X under the natural projection E, — T,y X is the opposite of the symplectic form
on F. So the Poisson bracket condition (3.2) along with Lemma 3.1 implies that, as
an operator on Hy (E,), £ is onto and has a non-trivial kernel.

Because £ has a kernel, we can choose ug € I°(P,R) with symbol L(o(ug)) = 0.
Therefore vy == (Q — A)(u1) € I"'(P,R). Because £ maps onto Ho(E,) (by
Lemma 3.1 again), we can then find u; € I~'/2(P,R) such that L(0y,) = —0y,,
Thus vs := (Q — M) (ug +u1) € I73/2(P,R). Continuing in this fashion and finishing
with a Borel summation of the u;’s produces u € I°(P,R) such that (Q — AI)(u) is
of order (—oc0), and therefore smooth. O

We can now finish the proof of the part (1) of Theorem 1.1. Let u be as in the
previous Proposition, which we choose to have a Gaussian principal symbol. Define
uy = Iy (u). By Lemma 2.1, (3.3) implies the norm estimates

(3.4) (TN = ADun | = O(N™>).
On the other hand, letting gp,(,fjv) be the coherent state at py € P, from the reproducing

property uy(pg) = ((pl()év), upn) we obtain the estimate

|[un (po)|
[N
Combining (A.1) with the asymptotics
NA\"
N
e = v (o, po) ~ (5-)
(see e. g. equation (28) in [20]), we see that
lunll = CN=EFD/2]

where [ = dim Y. Together with (3.4) this implies (1.6).
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To prove part (2) of Theorem 1.1, we start by assuming that
(3.5) {Rf, SfHo) >0,
and let uy € Hy be a sequence of vectors such that
(TN = AD)(un)| = O(N™) and [un] = 1.

If we let u be the distribution on P whose Fourier coefficients are the uy, then we
can rewrite this condition as

(3.6) (Q — A)(u) € C=(P).

We will now quote Theorem 27.1.11. of [13] (Hérmander, Vol IV) asserting that the
Poisson bracket condition (3.5), translated to the corresponding statement about o,
implies that @@ — AI is microlocally subelliptic on the set

Yo, ={p€Z; n(p)=x0} CT*P,

with loss of 1/2 derivatives. Therefore, by (3.6), for all s € R, uw € H°S at every
. ) . ()

p € X,,. What this means is that for each such p we can write: u = ug + u; where

uy € Hg)(P) and p & WF(ug), for all s. Therefore the wave-front set of  is disjoint

from X, .

3.2. Proof of Theorem 1.2. There are two ingredients in the proof, one is a
very general localization statement (well-known in the theory of fi-admissible ¥DOs),
and the second Hormander’s results on microlocal subellipticity that we used in the
previous section. We begin with the localization result, which is of interest in its own
right.

PROPOSITION 3.3. Let Ty = {T(N)} be a Berezin-Toeplitz operator with principal
symbol f, and let {uy € Hy} be a minimizing sequence of the Rayleigh quotients,
{”(T(N)H_#Dw,w € Hy}, where |lun| = 1 for all N. Then the distribution u =
Yoy un € C°(P) has wave-front set contained in the set of points, p € T*P, such
that w(p) € f~1()\), and therefore the microsupport of {un} is contained in f~1(N).

Proof. For simplicity of notation, assume without loss of generality that A = 0.
Let @ denote the operator on P inducing the T™") and commuting with II, as before.
The minimizing sequence is a sequence of eigenstates of the non-negative, self-adjoint
classical pseudodifferential operator of order zero S = Q*Q on P. We will denote by
SN) . H — Hy the restriction of S to Hy. By assumption uy is an eigenvector of
SN) corresponding to the smallest eigenvalue. Let y € C5°(R) be a test function, R
a zeroth-order YDO on P, and consider the traces

T;NI% = Tr/ x(t) Re NS~ gt

If we write the eigenvalues and eigenvectors of Sy in the form:
S = B, HY < EY <)

where dy = dim H and {z/;jv }; is an orthonormal basis of Hy, then

N N N N
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Just as in the proof of part (0) of Theorem 1.1, by taking coherent states as trial
functions one obtains the estimate: E{N) = O(1/N).

LEMMA 3.4. If the microsupport of R is disjoint from the characteristic set of Q,
then T;NI% =O(N—>).

Proof of the Lemma. The operator e~"*P¢% is a Fourier integral operator, and a

simple wave-front set calculation shows that the wave-front set of the operator
IIoS, :=1Io /X(t) e~ DS gt

is contained in the set

{(p,p) € Zx 25 0g(p) =0=0q(p)}-

Therefore, if the microsupport of R is disjoint from the characteristic set of @, the
operator Rollo S, is smoothing. Consider next the generating function of the TN,

T(s) := Z e T;],V}% = tr(U(eis) oRollo SX>’
N

where U (e%) is the operator on P given by composition by the action of e~*. Another

wave-front set calculation shows that T € C°°(S!) because Ro Il o S, is smoothing,

and therefore the Fourier coefficients of T are rapidly decreasing. This proves the
lemma.

Continuing with the proof of the Proposition, choose x so that x > 0 (we can even
take it so that x is equal to one in a neighborhood of zero), and choose R of the form:
R = F*o F where F is a zeroth order DO on P. Then all terms in the sum defining
T;{V}% are non-negative, and the previous Lemma implies that, if the microsupport of
F is disjoint from Char(Q), one has: ||F(uy)|| = O(N~°°). But this implies that, for
any such F,

F(u) =Y F(uy) € C*(P).
N

Since we can pick F' microlocally elliptic in a neighborhood of any point in the com-
plement of Char(Q), the wave-front set of u must be contained in Char(Q). O

Turning to the proof of Theorem 1.2, we note that under its assumptions we are
in a position to apply the subellipticity results of Hormander. Note first that any
given repeated Poisson bracket of the real and imaginary parts of f evaluated at a
point « € X is equal to the same repeated Poisson bracket of the real and imaginary
parts of the principal symbol of @, evaluated at any p € Z such that 7(p) = x.

Next, we claim that the hypotheses of Theorem 1.2 imply the hypotheses of
Theorem 27.1.11. of [13], namely:

(A) For every x € f~1()\) there is some j < k and some z € C,

(3.7) (Eren) SEH) @) £0

where Zg 7y is the Hamilton vector field of R(z f), considered as a differential
operator.
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(B) The repeated Poisson bracket above is non-negative (it is positive, actually)
if j is the smallest integer such that (3.7) holds for some z. Moreover such j
is odd.
Part (A) follows from hypothesis (2) in Theorem 1.2 by Corollary 27.2.4 in [13].
Lemma 5.1 of [10] shows that hypothesis (1) of Theorem 1.2 implies Hérmander’s

Condition (¥), which, as indicated in the remark after Theorem 27.1.11 of [13], implies
(B). The proof of this remark is further detailed in the first paragraph in the proof of
Theorem 4 of [10].

Let © C Z be the set of points in Z projecting to f~1(0) (recall that we took
A = 0). We conclude, by Theorem 27.1.11 of [13] and the previous considerations,
that for all p € ©, Q is subelliptic at p with loss of at most § = k/(k + 1) derivatives.

By Lemma 27.1.5 of [13], for each p € © there exists a zeroth-order YDO, A,
non-characteristic at p and such that

Vg€ C%(P) 1Al < Co(IQglz + llgll-))-

An examination of the proof of this lemma shows that we can take the symbol of
each A, to be non-negative. Since © is a cone with compact base, there exists an
integer K such that the sum of K of the operators A,, call them A;,..., Ay, is

non-characteristic at each p € ©. We denote such a sum by A = Zfil Aj. Then

(3.8) vge C=(P) [Aglls < C(IQglz + lglln))

for some fixed C' > 0. By averaging with respect to the S! action on P (which
preserves Sobolev norms), we can further assume without loss of generality that
[A, Dg] = 0.

Let B be a microlocal parametrix of A in a neighborhood of © such that [B, Dg] =
0. Since, by Proposition 3.3, the wave-front set of u is contained in ©, we have:

u= BA(u)+g, withge C®(P).
By taking Fourier components it follows that
YN lunll(—s) < CollA(un)|l(-s) + llgnll(-s),
where Cp is the H(_s)y norm of B. This together with (3.8) implies that for all N
1Q(un)llzz = Cillunll-s) = Callgnll-s) = llunll(-1)-
Since g € C*°(P), |lgn|l(—s) = O(N~>°), while equation (2.5) gives us that
Cillunll(=s) = llunll(—1) = CL(N* + N +1)7%2 — (N* + N + 1)~ '/?

Since § = k/(1+ k) < 1, this proves Theorem 1.2.

4. Examples. We now look at specific examples of quantized Kahler manifolds,
X, and of Toeplitz operators. The corresponding Hilbert spaces have canonical bases
and therefore the Toeplitz operators become sequences of matrices of a specific type
that we compute.



44 D. BORTHWICK AND A. URIBE

4.1. A preliminary example. We begin with a concrete example associated
with X = C, the plane with its usual complex structure. Although this X is not com-
pact (and therefore it does not fit precisely into the general framework of this paper)
we will “cut it” to the unit disk, both symplectically and quantum-mechanically. This
leads to a sequence of large matrices to which microlocal methods apply, provided one
stays away from the boundary of the unit disk. We only consider an explicit operator
which is the microlocal model of the general case. It will be clear that what we do
easily generalizes to other operators in this setting. In this section we want to be
explicit and avoid using the general machinery.

Recall that the Kahler quantization of the plane gives rise to the Bargmann spaces

By ={f:C — C entire ; ]”2::l f(2)? e N dady < oo
7r
X

where z = z + iy and N > 0. Elements of By arise from the general Kahler quan-
tization scheme applied to C. The quantizing line bundle L — C is holomorphically
trivial, and so its sections can be identified with entire functions on C. The Hermitian
structure on L, however, is not trivial. We introduce the following notation for the
length function of ¢ € By as a section of LY — C:

(4.1) [0(2)]s = [p(2)] e V=2,

Notice that then the norm of 4 is the integral of the function |¢|s with respect to the
area form.

A fundamental operator on By is the harmonic oscillator (shifted by 1/2, for
convenience),

d

Op(Hyo) = N*12£

which is a Berezin-Toeplitz operator with symbol Hy , (2,Z) = 2Z. The eigenfunctions
and eigenvalues of Op(Hy ) are:

d . 4 . .
N_lzaz7 = N1, and |27 = N1E+D)/2 7l

so that

k+1)/2
|k) = Mzk, E=0,1,...
V!
is an orthonormal basis of By. The unit disk is the region of phase space where the
classical energy zZ is less than one. The analogous object quantum-mechanically is
the span of the eigenfunctions with eigenvalue less than one, that is the monomials
23 with j < N. Thus

Hy = { polynomials in the complex variable z of degree < N }

where it is now natural to restrict NV to be an integer. This setting is close to the
case of the sphere to be considered in the next section, provided one does not get
too close to the boundary of the unit disk. The Hilbert space Hn of the sphere can
also be identified with the space of polynomials in a complex variable of degree at
most N, although on the sphere ||z;]| is essentially (C%,)~/2. (Here C% is a notation
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for the standard binomial coefficients.) Symplectically, the sphere is the disk with its
boundary collapsed to a point.

The example we will be studying is based in the following observation. Suppose
one has a Berezin-Toeplitz operator, ), and a state 1 such that Q¢ = 0. Suppose
one has a “good” semi-classical cut-off operator, ©y (a projector), which is semi-
classically the identity in a certain region of the plane (referred to as the allowed
region), and let Py = OnyQOy. Then

0=0ONnQON(¥) +ONQON(¥) + ONQON(¥) + ONQON ()

where ©% = I — Oy is the complementary projection. The second and third terms
in this sum will be very small due to the assumed localization properties of Op. It
follows that ©x(¢) is a good pseudo-mode for Py (with pseudo-eigenvalue zero) if

[Ox |
lOny

is small, that is, if ¥ concentrates in the classically allowed region of ©5. We will
take O to be the orthogonal projection

@NZ BN—>HN,

for which the classically allowed region is the interior of the unit disk. We now proceed
to make this statement more precise. Our basic tool is the reproducing kernel of By,
in the form of the coherent states: For each w € C, let

(4.2) 0w(2) := NeV*® ¢ By.
These states have the reproducing property
(4.3) Vp €Bn, 2€C ¥(2) = (¥, ¢:).
Notice that, in particular
2
(4.4) lewll® = (Pws pu) = N eV,
LEMMA 4.1. For every § > 0 there exists n > 0 such that for all N > n and for
each w € C such that |w| < 1, we have:

1+96 212
45 Ok pul? < ED o |2 wf2 VN =N tul?)2
(4.5) ||N<P||—\/%”<P”‘|

Proof. From the Taylor series expression for ¢,, and the orthogonality relations
of the monomials z7, one can show that

I'(N +1,N|w|?
(46) Okl = o (1 - LA,

where I'(n,z) = [°t""'e'dt is the incomplete gamma function. To estimate the
quantity in parenthesis, notice that

N|w|?
N!=T(N +1) :F(N+1,N|w|2)+/ e 'tV dt.
0
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Therefore, dividing by N! and making the change of variables: s = t/N, we see that
the quantity in parenthesis in (4.6) equals

NN+1 /wl2 Ne N NN+ /le2 N
e Vs ds = e~ e NF() gg

where f(s) = s —log(s) — 1. This is a decreasing function on s € (0, 1), and therefore
the last integrand is maximal at s = |w|?. On the other hand, it is elementary to
check that

Vee (0,1) f(1—e) >€?/2,

and therefore

2

NN+1 el NN+ 2)

T / e~ Vs N g < i e N |w|26—N(1—\w| ) /2_
. O .

An application of Stirling’s formula finishes the proof. O
As we now see this Lemma implies the localization properties of © y:

COROLLARY 4.2. For each ¢ € By, and for each z such that |z| < 1,
(4.7) [ON (W)()s < 6] ]o] N/ e N,

Therefore, for all € > 0 there exist C, a > 0 such that for all ¢ € By

(1.9 I, ek <ol N

Proof. By the reproducing property (4.3), we have:

@ﬁ(%//)(z) - <@ﬁ¢7¢z> = <1/}; GJI\_/QDZ>7

and therefore, by the Cauchy-Schwartz inequality and (4.5), for all sufficiently large
N

0% () (2)| < 1Ullllesl |z| N4 e~ NA=I=1D7/4,

Using (4.4) we obtain (4.7), and (4.8) follows by integration. O
We will need one more general fact about the projection, © y:

LEMMA 4.3. For all z € C and ¢ € Hpn, one has:
(4.9) [(OnY)(2)]s < (N +1) max [¢(e"z)]s.

0<t<2mw

Proof. This is a consequence of the following formula for O y:
1 N 2
4.1 ( ) _ —ikt it dt,
(4.10) oxv) ()= 5. 3 | et

together with the fact that the Hermitian weight function e=V#%/2 is S invariant. O
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We now show how the above results can be applied to a concrete example, the
sequence Py = OnQO N where ( is the model operator:

1d

Q=yg T

acting on the space Hy. The symbol of {Py} is the function f = pz + Z restricted
to the unit disk. Notice that {Rf, Sf} is identically equal to u? — 1, which we will
assume is negative, i.e. we now take p € (—1,1). Notice that for each A € C there
exists a unique 2o such that A = f(zo).

Every complex number is an eigenvalue of the operator (). Specifically, for each
zo € C consider the state

— 2 z0 —N —29)2
SOM,ZU(Z) —+vNe Nlzo| /26szoe 5 1(z—20) )

One can verify that ¢, ., € By because || < 1. The state ¢, ., is the (quantum)

translate of the basic “squeezed state” at the origin, v/ Ne*%“zz, to the point zg, and
its norm is a universal constant (independent of N and of zy). It is trivial to verify
that

Q‘p,u,zg (Z) = f(zO) Pr,zo (Z)

As a section of L®N — C, the length of ¢, ., at z is
(4.11) |Puzo(2)]s = VN e

where F' is the real quadratic function

P(z) = (=7 - %,u(z —20)?) +27/2 4 |22

F' is non-negative, vanishing exactly at z = z9. The states ¢, -, are the model of the
polarized Hermite states associated with a point. Our result is as follows:

PROPOSITION 4.4. With the previous notation and if p € (—1,1) and |2z| < 1,

1Py — MO (0l Ui
2O = O(NY= e @
16 (2| ( )

for some a > 0.

Proof. We first will show that

(4.12) 15 (@120 12 = |91,z [I* + Oe™M).

As noted above, ||¢,. | is a constant independent of N. For simplicity, a will denote
a positive constant that may not be the same at each occurrence.

Let A denote a disk of radius less than one containing zy in its interior. Then,
by (4.9) and the decay properties of ¢, .,

(4.13) H9N(<Pu,zO)||2=//A|9N(<Pu,zo)|§dxdy+O(G_QN).

Next, notice that on A, |, .,(2)|s is uniformly bounded by a constant times v/N,
and therefore (by (4.9) again) |©n (.2 )(2)|s is bounded by a constant times N*/2
there. It follows that

R

= [ON (.20 (2)]s - O(N?/2),

ON (ruz0) (22 = [Py, (2)
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with a constant uniformly on z € A. Therefore, by (4.8),

//A|@N(¢M,ZO)I§dxdy=//Alsou,zolid:cdy+0(e—“1v).

Once again, by the localization properties of ¢, », we have

om0 2 = //A (Opnzo |2 i dy + O(e=N).

The last two equations and (4.13) imply (4.12).

Let us now turn our attention to the vector (Py — A)On (¢, 2,)- In the standard
orthonormal basis {|k)}, the matrix T = (¢;,,) of Py is tri-diagonal. Specifically, the
only non-zero elements of this matrix are:

(4.14) th kel = V/ k/N and a1,k = 1/ k/N.

Let ppz0 = D opeo @k l|k). Since ¢, -, is an eigenfunction of @ with eigenvalue A,

(Py = NOx($pz0) = (nar—1 = aw ) IV).
We claim that both ay_1 and ay are exponentially small in N. Indeed

1

2
an|N) = 5 / eIVt wu,ZO(e”z) dt,
0

which implies that for all z € C

v N! )
lay 2] < N2 mtaX|<Pu,zo(Z€1t>|a

where the absolute value is the standard one. Evaluating both sides at z = 1 and
applying Stirling’s formula we obtain

lan| < CN—V4e—N/2 m?x|cpu720(e“)|.

But e~ /2max; |, 2, (€')| = max; |, 5, ()]s, and therefore
e N/2 max l0p.z0 (1) = O(VNe M)

since |29| < 1 (see 4.11 and the remarks following it). Therefore ay = O(N'/*e=N),
and similarly for ay_;. O

Much more generally we can start with a pseudo-mode of a general Berezin-
Toeplitz operator, ), on Bargmann space. By the localization properties of the
projector ©p, the projection by ©Op of the pseudomode will be a pseudomode of
ONQON.

4.2. Quantization of the torus. We consider the standard torus, X = C/A,
A = 72, with the complex structure arising from that of C. A quantizing line bundle
on X is holomorphically trivial when pulled-back to C, therefore its sections can be
identified with entire functions on C satisfying a transformation law with respect to
translations by elements of A. It is well-known that the functions that arise in this
manner are precisely theta functions. The quantizing line bundle is not unique, since
one can always tensor a given one with the flat line bundles over X. This gives rise
to theta functions with characteristics.
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4.2.1. The Hilbert spaces. A quantizing line bundle over X can be con-
structed from a cocycle y : C x A — C\ {0} given by:

(4.15) x(z, m+in) = (-1)™" emlz(m=in)+3 (m*+n?)] —2milmutny]

where p and v are fixed real numbers (the so-called characteristics of the bundle). x
is called a cocycle because it satisfies the condition

(4.16) X(2,A) x(2 + A, 1) = x(2, A+ p).
The quantizing line bundle is the quotient of C x C by the equivalence relation:
(z,a) ~ (w,b) < 3X € Asuch that (w,b) = (z+ X, x(z,N)a).

For simplicity we will only consider here theta functions with characteristics (u,v) =
(0,0).
We observe the following features of this construction:

1. The sections of this line bundle, L, are naturally identified with the functions
f: C — C such that

(4.17) V(z,\) e Cx A fz+ ) = x(z,A) f(2).
(Indeed the section associated to one such f is defined by:

si(l2]) = [(z f(2)]

where the square brackets denote equivalence classes.)

2. For any integer N the N-th power of x, x”V is again a cocycle. The line
bundle it defines is the N-th tensor power of L, L&V,

3. A Hermitian structure on L is defined by a function h : C — RT satisfying:

(4.18) h(z) = |x(z, M| h(z + N).

The Hermitian metric we will consider is: |[(z,a)]| = |ale~™=*/2,
Given these data, it is easy to see that the space Hy of holomorphic sections of
the line bundle L&Y can be identified with the space of entire functions f : C — C
satisfying: V2 € C, m+in € A

Flz+m+in) = (—1)Nmn Nalz(m—in)t5(m*+n*)] ¢()

Its Hilbert space structure is given by the inner product

(4.19) <f.g>= /f F(2) 9@ e N de dy,

where F is a fundamental domain for A.
The transformation law (4.17) is not the standard one for theta functions (see [2],
[15]). However, if f € Hy, then

_ 2
Fm( ) . Nrz*/2 f( )
satisfies the classical transformation law

ff(z+m+in) = N (n®—2inz) 17 (2).
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For future reference we also associate to f € Hy the function
J1(z) = M 1 (2)
which satisfies the transformation law
FU(z+m+in) = N H2m2) gy (),
Note that, in particular
ffz+n) = f(2), and fY(z+im) = f¥(2).

Exploiting these periodicity conditions we now exhibit two (dual) basis of H .
We begin with the functions f*. They can be expanded in Fourier series,

oo

i)=Y ame(m2)
m=—o00
where we let e(z) := 2™, The transformation law for f* becomes a relation among
the Fourier coefficients, namely a,,+nn, = e~ m(Nn’+2mn) Qm. This shows that the

dimension of the space of theta functions of order N is IV, as the values of ag,...an_1
determine the Fourier series. This leads to considering some special theta functions
obtained by letting exactly one of the coefficients ag,...an_1 be non-zero. These
functions give rise to a basis of Hy. More precisely:

LEMMA 4.5. For j=0,...,N —1, let ﬂg»N)(z) be defined by the Fourier series

9V (2) = @N)VENTH2 ST e NN o5 4 Ni)).

n=—oo

Then 19§-N) € Hy, and the set {19;]\]), j=0...,N —1} is an orthonormal basis of
Hy.

We can carry out a similar construction by considering the Fourier series of the
functions fY where f € Hy. This results in a different basis of Hy:

LEMMA 4.6. For k=0,...,N —1, let 5,(§N)(z) be defined by the Fourier series

(2) = (@N)Y e N2 N mm NIk oz (k + Nm)).

m=—0o0

Then ﬁ,iN) € Hy, and the set {ﬁ,(cN), k=0...,N —1} is an orthonormal basis of
Hy.

It’s a beautiful fact that the matrix relating these two bases is the discrete Fourier
transform. We claim that

N—
(4.20) W2y =3 ek gy M),
j=0

=

<

We refer to [1] and especially [16], Proposition 3.17 for the reason for this.
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4.2.2. Matrix coefficients. We now turn to a calculation of matrix coefficients
of Toeplitz operators on the torus. We recall the following result of [6] (Corollary
4.8):

LEMMA 4.7. Let (z,y) be standard coordinates on the torus, so that z = x + iy
in the previous formulas. Let f(x,y) be a symbol that is in fact a smooth periodic

function of y alone. Then the 19§N) are eigenvectors of the B-T operator Ty = {T(N)}
with multiplier f,

T(N)ﬂSN) _ A§N)19§N)7 where )\EN) — Z an e*ﬂnz/QN e—2mj/N f‘y:—j/N

n=—oo
and where the a, are the Fourier coefficients of f (with respect to y).

Notice that in particular all such operators are normal. Similarly, the basis 5;(€N)
consists of eigenvectors of any Toeplitz operator with total symbol a function of x
alone.

Continuing our calculations of matrix coeflicients, let us now take a symbol f of
the form:

(4.21) f(z,y) = h(y) ¥, where [ € Z.

LEMMA 4.8. If f is of the form (4.21), then (fﬂ;N), 19§CN)> is zero unless k = (j+1)
mod N, in which case

(N) o(N) _ 2j+1
(FO57 550050 moan) = h(—w) +O(1/N).

More precisely, the matriz coefficient above is equal to

Bl

—7l?/2N —mAy /2N p
¢ (c )~

)

_da
where Ay = e

Proof. 1t is easy to verify the first statement, and, in case k = j 4+ [ mod N, one
computes that

1
OO0 ) = VIV [0 o)
where

2 > ) 5
W(y) = e ™ N 2Nl Gik/2NE

n=—oo

If h =1, then we have:

o0 1
milz (N N —l2? _on n . 2
(O 000 s ) = VEN TN ST [ Gt T g

n=—oo

(4.22) = VBN e [T g e,
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This is 1 + O(1/N) and therefore satisfies the desired estimate. To proceed in case h
is not constant, notice that by the Poisson summation formula ¥;; can be written as

e—wl2/2N oo

2 . 2541
\I/j,l — Z e—ﬂk /2N eQﬂ'lk‘[’y—‘rW]
V2N =
Therefore
s3]

(N) (V) _ —ml?/2N —nk?/2N ik 5 gy o 2+
077051y moan) = € Z € e™ TN h(—k) ~ h( 5N ).

k=—o0

COROLLARY 4.9. Let k1 < ko be two integers, and let hi(z) be smooth 1-periodic
functions, k1 <1 < ky. Then there exists a B-T operator on the torus, {T(N)}, with
principal symbol

l=k2

flay) = lu(y) ™

=k

and such that for each N the matriz entries of T™N) in the basis {19§N)} are given by
the formula

2j +1

N
(4.23) (T(N)19§- ),ﬂ(jﬂ)mouv) = hj(*w

) +ONT™),

where the estimate is uniform (in j, 1).

Proof. For each [ there exists a sequence of periodic functions f; ,,, m =0,1,...
such that

(677”2/21\’ e—wAy/2N> Z N—™ fl,m(y) ~ hz(y)
m=0

where the left-hand side is considered a formal power series of 1/N (clearly fi0(y) =
hi(y)). By the Borel summation method, there exists an N-dependent function
fi(y, N) periodic and smooth in y such that f;(y, N) ~ > °_ N~™ f; (y), estimates
the C* topology. By the previous Lemma, the matrix coefficients of the Toeplitz op-
erator with N-dependent multiplier f(z,y; N) = ZE}? fily, N) > iz gatisfy (4.23).
Since the sum over [ is finite the estimates are uniform. O

4.2.3. Localization of pseudomodes. We now proceed to describe in concrete
terms the phase space localization of the pseudomodes constructed in §2. We begin
by pointing out that the 19§.N) concentrate, as N — oo, along the circles on the torus
defined by y =constant. This is because the ¥; are eigenvectors of Toeplitz operators
with symbols f = f(y). A precise statement is:

LEmMMA 4.10. Fiz yg = IJV—‘; a rational number modulo 1. Then the microsupport
of the sequence {1921;[1)\70) i k=1,2,...} equals the circle y = yo on the torus. The 6J(»N)
accumulate along circles x = g in an analogous fashion.

An even more precise statement is that the sequences of this lemma are Legendrian
states associated to the corresponding circles, in the sense of [7].
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Consider now a pseudomode, 1y, associated with a Toeplitz operator T™Y) on
the torus, with microsupport (zg,y0) € X. It follows from the previous lemma that
the components of ¥

N N

in the basis of the ¥J; concentrate around the values j where j/N = yo. Similarly, the
coefficients

0" = (g, BV

concentrate around the values j where j/N ~ x3. More precisely, the concentra-

tion occurs in a neighborhood of size O(v/N) of these values. As mentioned, the

sequence bg.N) is the finite Fourier transform of a\™’. Therefore, in these coordinates

the pseudomode is localized on both sides of the Fourier transform.

4.3. The complex projective line. We begin by reviewing the quantization
of P!, for completeness. The quantization of the complex projective line arises in con-
nection with the irreducible representations of SU(2). Recall that up to isomorphism
such irreducible representations are those realized in the spaces

Hy :={ f(w1,ws2) ; f a homogeneous polynomial of degree N }.
Specifically, if f € Hy and g € SU(2), then

(9- /)wr,we) = flg™" - (wr,w2))

where the action on the right-hand side is the natural action of SU(2) on C2. Here
N =0,1,2,--- is a non-negative integer. These representations are unitary if we put
on Hy the Hermitian inner product

(fi, f2) = /s% f1 fadVss,

where S3 C C? is the unit sphere and dVgs is its volume form. We note without proof
that the vectors

N+1 - ,
(4.24) G N) =/ =[O wl e T, 0<j<N
™

form an orthonormal basis of Hy (consisting of eigenvectors for the operator induced
by o3 € su(2), see below).

The circle group, S* C C, acts freely on S3, by complex multiplication. Therefore
S3 is a circle bundle over the abstract quotient, X := $3/S!, which can be identified
with the space P! of all complex lines through the origin in C2. There is a natural
Hermitian line bundle, L*, over P! (the one whose fiber at ¢ € P! is £ itself), and
in fact P = S3 C L* is the unit circle bundle. The dual bundle, L — P!, is the
so-called hyperplane bundle and, as it turns out, quantizes P! (meaning that the
natural connection on it has curvature the Fubini-Study symplectic form of P!). By
homogeneity, the functions on Hy transform very simply along the orbits of S*, and
the inner product above is invariant under S*. In fact we can regard the elements of
H precisely as the holomorphic sections of LY. We are therefore exactly in the
setting of the previous sections.
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The space P! is isomorphic to a two-dimensional sphere, as follows. Define a map:
(4.25) o : P! — su(2)

by the following rule: For each ¢ € P!, ®(I) is the matrix having £ as an eigenspace,
with associated eigenvalue /2, and ¢+ as another eigenspace, with associated eigen-
value —i/2. (The choice of spectrum is dictated by the normalization that the area
of §3/8? agrees with the one induced by the Killing form.) One can show that, if we
write £ = [wq,ws] € P!, where (wy,ws) € S3 is a representative, then the previous
map is:

_ b (o = wa* 2wiw
(4.26) O([wr, wa]) = 5 ( 2wawr  fwal* — Jwn|? )

It is a fact that ® is a moment map for the natural SU(2) action on P'. Recall also
that the matrices

1/0 4 1/0 -1 177 0
(427) Ul_§<7; 0)702_§<1 0>70—3_§<0 —Z>

form a standard orthogonal basis of su(2) (such that [o1,02] = 03, etc., and ||oj|| =
1/2) if we give to su(2) the SU-invariant inner product

(A,B) = f%TrAB.

Clearly @ is an equivariant diffeomorphism onto its image, which, geometrically, is
the sphere of radius 1/2 and, algebraically, a (co)adjoint orbit. (It turns out that the
symplectic form on P! is twice the area form. In general the symplectic form on an
orbit of radius s is the area form divided by s, see [19] pg. 54.) We will henceforth
identify P! with this sphere/co-adjoint orbit.

Let z; : su(2) — R be the j-th coordinate function, z;(A) = (A4,20;), so that
the image of ® is the sphere Z?Zl m? = %. The description of P! as a sphere means
that we can speak of restrictions of linear functions from su(2) to P!. In particular, a
crucial role in what follows will be played by the function I : P! — [0, 1] given by
(4.28) I1(6) = (®(¢),203) + %
The Hamilton flow of this function with respect to the natural symplectic structure
on P! (as a co-adjoint orbit) is given by the action of the one-parameter subgroup
exp(2tos), and geometrically is rotation around the o3 axis. Accordingly, we introduce
the polar angle, 0, regarded as a multivalued function on P! (undefined at the poles).
(I,0) are action-angle coordinates on P!, and, in particular, the symplectic form on
P! is

w=dI Ndb.

Any Berezin-Toeplitz operator gives rise to a sequence of matrices, namely, the
matrices representing the operator in the canonical basis, {|j, N)}, of Hy. We will
compute below (approximately) the matrix of a Toeplitz operator with principal sym-
bol a given function f : P! — C. We begin with some remarks about such functions.
Let

o0
(4.29) F0) =Y € fi(D)

l=—o0
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be the Fourier series expansion of f with respect to the action of S! by rotations
around the o3 axis. Although we are writing this expansion in action-angle variables,
each summand is a smooth function on the sphere, which imposes boundary conditions
on the f;. Specifically, one can prove that the functions f;(I) such that f;(I)e®? is
smooth as a function on P! are of the form

(4.30) file) = (2(1 - 2))"2 gi(x)

where g; has a smooth extension to a neighborhood of [0,1]. In fact, 21 + izy =
(i —22)1/2 e s0

(I(1 = D)2 = (21 + ixo)'.
Therefore, if (4.30) holds,
fDe" = gi(I) (2 + ixy)'
which is clearly smooth on the sphere if g; € C*°[0, 1].

Let us now turn to the computation of matrix elements of B-T operators on P!.
By linearity of Toeplitz quantization, it will suffice to compute the matrix of a Toeplitz
operator with symbol e? f;(I) for a given integer I. We begin with the case I = 0.

LEMMA 4.11. Let o be a smooth function on [0,1]. Then there is a B-T operator
on the sphere, {A(N)}, with principal symbol avo I, which is diagonal in the standard
basis of Hy and whose j-th diagonal entry is a(j/(1+ N)), 0 <j < N.

Proof. The sequence of operators, Z = {Z(N) : Hy — Hy} such that
ZMj Ny = L |j,N 0<j<N
5 N) =557 1N <j<

(where |7, N) is defined in (4.24)) is a Berezin-Toeplitz operator with symbol I (see
Lemma 3.4 and the ensuing discussion in [6]). Let

AN — 2i /eitZ(N) a(t) dt,
s

where & is the Fourier transform of a compactly-supported smooth extension of «.
Since Z is a self-adjoint Toeplitz operator of order zero, {e?? (N)} is a unitary Toeplitz
operator of order zero (see for example Proposition 12 of [8]) and symbol ei®3. Tt is
easy to check that {A")} has the desired properties. O

To compute the matrix elements of operators with a smooth symbol e?? f;(T)
where [ # 0, we introduce the raising and lowering operators. Let

JY := i x the operator induced by o on Hy, k=1,2,3.

Then:

vazl(ub%—kuui) JQNZ%(@U i— i)

2 w1y
awl 8102

and
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In particular, the lowering and raising operators, JY = J&¥ +iJY are:

0 0
JN == et JN = _—
+ - Ows - Oowy
(and the vectors |j), j = 0,..., N are eigenvectors of J{', with eigenvalue j — &=1))

LEMMA 4.12. The matriz of JV, resp. Jiv, in the standard basts has zero entries
except along the supra-diagonal, resp. infra-diagonal, along which the entries are equal
to

mj=+j(IN—j+1), j=1,...,N.

Moreover, the sequence {%Jﬁ_ﬁ]} ts a B-T operator with symbol x1 £ ixs.

The first two statements follow a simple calculation; for the last statement we
refer to [6].

We are now in a position to describe the matrices of the B-T operators on the
sphere:

PROPOSITION 4.13. Let f : P! — C be a smooth function with a finite Fourier
series, (4.29), in action-angle variables, and let fi(x) = (x(1 — x))"/? g;(x) with g, €
C>[0,1]. Let MSEN) be the matriz of JY, described in the previous Lemma. Then

there exists a B-T operator, {T(N)}, with symbol f and such that the sequence of
matrices {TMN)} of {T™)} in the standard basis of Hy satisfies:

1]
N) _ (N) N —oc0
(4.31) T =3 (M) AN (g) + O(N )
1
where AN (g;) is the (N+1)x (N +1) diagonal matriz with diagonal entries g;(j /(N +
1)) and the estimate is in any matriz norm.

Proof. By linearity and the assumption that the sum (4.29) is finite it suffices to
prove the proposition for f of the form f(I,6) = €' f;(I). The case [ = 0 is covered
by Lemma 4.11. It suffices to consider the case [ > 0. Applying Lemma 4.11 to g
we obtain a diagonal B-T operator, {A®")(g;)}, with diagonal entries g;((j — 1)/N),
0 <j < N. It is clear that the B-T operator

T = (%JEN))Z o A

has the desired properties. Notice that one can choose any order of the products
appearing in (4.31) and still find a B-T operator with the desired properties. O

4.3.1. Linear Hamiltonians. Recall the moment map, ® : P! — su(2) given
by (4.26). Given M € sl(2,C), we can pull-back by ® the complex-valued linear
function on su(2),

1
su(2) > A —5 Tr(AM).
Let us denote the pull-back by Fy; : P! — C; specifically

VePt  Fyl) = —% Tr(®(£)M).
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We will call functions such as Fj; linear Hamiltonians. Since ® is a moment map,
the assignment M — F); is a Lie algebra morphism:

VMl, M, € 81(2,(:) F[M],MQ] = {F‘]\/j1 s FMQ}.

In particular, if we continue to denote by z; : P! — R the restriction to P of the
coordinate functions, then we have the identity: {z1, z2} = x3, and also its cyclic
permutations.

If M is semi-simple, there exists g € SU(2) such that gMg~! is diagonal, i.e.

Jg € SU(2), € C\O gMg™' = pos.

Here’s a very concrete example. Take

. cosh(t/2) —isinh(¢/2)
V= explitos) = (z sinh(£/2)  cosh(t/2) )

and consider A = A(t) € s1(2,C) equal to
A =Vo V! =isinh(t) oy + cosh(t) o3.

The classical Hamiltonian, Fa : P! — C is F4 = isinh(t) z; + cosh(t) x3, and its
image is the interior of an ellipse,

{,C2 y2

cosh(t)? * sinh(t)?

(4.32) <

1
1

If we let TWY) : Hy — Hy be 1/N times the operator image of %A by the represen-

tation py, then, for all ¢, T(") is diagonalizable with real spectrum {% - % ;7=
0,...,N — 1}, which is contained in the major axis of the image of F4.

Notice that {RF4, SF4} = cosh(t) sinh(t) z2, and therefore for every point in the
image of F4 there is exactly one x where this Poisson bracket is negative. Therefore,
for each \ in the interior of the image the norm of the resolvent ||(T™Y) — XI)~!|| is
O(N®°). The image under F4 of the level curves of the Poisson bracket {RF4, SF4}
are ellipses crossing the line segment [f%, %] By comparing these ellipses with plots
of the level curves of the norm of the resolvant, this example indicates that there is
not a direct relationship between the norm of the resolvent and the size of the Poisson
bracket of the real and imaginary parts of the symbol.

Finally, notice that every A on the boundary of the elliptical region (4.32) satisfies
the hypotheses of Theorem 1.2. The set f~1()\) consists of exactly one point, where
{RF4, SFp} = cosh(t) sinh(t)xy = 0. However, one of the double brackets involving
real and imaginary parts of F4 is non-zero at this point. Thus Theorem 1.2 applies,
with k& = 2. Notice that, in spite of the estimates (1.9) the distance from A to spectrum
is O(1). This is in agreement with Theorem 3 of [10]: Thinking of P! as a real manifold
O, the symbol f has an obvious holomorphic extension to a complexification of O,
namely, the (co)adjoint orbit of SL(2,C) through o3.

5. Final Remarks.

5.1. On the numerical range. Let Ty = {T(N)} be a Berezin-Toeplitz op-
erator with symbol f : X — C. For each N, the numerical range of T™) is the
set

(5.1) Wi = {(TW ) s € Hy, [l =1}
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We define W, as the limit of the ranges Wy as N — oo:

DEFINITION 5.1. A complex number X\ is in Wy iff for all € > 0 there exists
K > 0 such that for all N > K

AN NWy # 0,

where Ac(A) is the disc of radius € centered at \.

PROPOSITION 5.2. W, is the convex hull of the image of the classical symbol, f.

Proof. It is well-known that, for each N, Wy is convex (see [12]). It follows easily
that W, is convex as well. Moreover, if z € X and 1Y is a coherent state at x, then

(TN )

(W, I)
This shows that W, contains the image of f.
To show that W, is actually the convex hull, consider a line of equation ax+by =

¢, and let A € W,. By definition, there exists a sequence Ay € Wy converging to A,
and therefore there exists a sequence of unit vectors {¢)y € Hy} such that

An = Ty y) — A

Let us write Ay = znx + iyn for the real and imaginary parts of Ay, and f = p; +ips
for the real and imaginary parts of the symbol f. Then

— f(2).

ary +byy = / (apy + bps) x| dm + O(1/N).
X

Assume that the region: az + by > ¢ does not intersect the image of f. Then for all
€ X ap(m) + bg(m) < ¢, and therefore

axN+byN§c/ [Yn|* dmy + O(1/N) = ¢+ O(1/N).
X

Letting N — oo, we obtain that az., + by < ¢, where A = £, + 1Yso. Thus A, and
therefore all of W, is on the same side of the line ax + by = ¢ as the image of f. O

5.2. The weak Szeg6 limit theorem. In the non-selfadjoint case, one has the
following version of the Szeg6 limit theorem for B-T operators:

PROPOSITION 5.3. Let Ty = {T™)} be a B-T operator with principal symbol
f: X — C, and let F(z) be a function of a complex variable analytic on a simply-
connected region containing the image of f. Then

1
dim H n

(5.2) TrF(T(N)):ﬁ/XFofdm—i—O(l/N),

where dm is the Liouville measure of X.

Proof. The idea of the proof is standard; we include some details for completeness
and to verify that the usual proof is valid in the current setting. As in the theory of
pseudodifferential operators, for each A not in the image of f one can construct a B-T
operator, B), such that the Schwartz kernel of

R = B o (T — \) — Iy,
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is a smooth section of the bundle Hom(L", L¥) — X which is rapidly decreasing in
N (together with all its derivatives). The principal symbol of {BE\N)} is (f — N7t
Multiplying on the right by (T™) — X\)~! we obtain

(T™ — )71 = By + 5V

where {S(N )} has the same properties as RE\N). Let T be a simple closed curve,
positively oriented, contained in a region where F'(z) is analytic and containing the
image of f. Then

F(T™) = %F A) B dA+ 5~ %F

The trace of the second term on the right-hand side is O(N~°°), while

1
dim H n

Tr f FO)BM dx = ]{ F(\) Tr BM d.
T I

dim H

But it is known that dlmH Tr B( ) = varx Jx(f =A)"tdm + O(1/N), where the
estimate is uniform for A on compact sets away from the image of f. O
In particular, if A is a complex number away from the image of f, one has:

1 1
Vol X Jx f—A

(5.3) Te[(TW) — N7 = dm + O(1/N).

dim H n
Clearly the left-hand side of this equation is a sequence of analytic functions in A
defined away from the union of the spectra of the T™). On the other hand, the
integral [, ffl)\ dm is analytic away from the image of f. Examples show that the

spectral radius of T™") has a limit, R, such that the image of f is not contained in the
circle of radius R. It is not immediate to extend (5.3) to A with |[A\| > R but inside
the image of f.

Appendix A. Hermite distributions and symbol calculus.

Oscillatory integrals and symbols

We place ourselves in the setting of §2.2: Let R C Z be a closed conic isotropic
submanifold, and Y < X the reduced isotropic submanifold of X. Hermite distri-
butions in I™(P,R) are defined locally as oscillatory integrals. To write down an
explicit form for these integrals, we’ll choose Darboux coordinates (q,p) € R?" for X
with ¢ = (¢/,¢") € R! x R*~! such that Y = {¢” = p = 0}. Here | = dimY. For P
we then have coordinates z = (g, p, ), and we can always find a function h(p, q) such
that a|p=0 = df — dh|p=o. The lift of ¥ to the isotropic R is given by specifying that
0 =h(q,0).

Now we’ll introduce phase coordinates (7,7;,72) € Ry x R*™! x R", and a phase
function

d(z,7,m) =7(0 — h(q,p)) +m - ¢" +m2 - p,

which parametrizes R. A distribution u € I"™(P,R) can be written locally as

u(z) = / e0CTN a(, 7m/7) dr i,
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where the amplitude a(z, 7, u) is rapidly decreasing in v and has a expansion in 7 of
the form

a(z,m,m) ~ 72N 770 (2,).
=0

The symplectic spinor symbol o(u) should be thought of as ag written in a suitably
invariant way. The choice of ¢ defines for each p € R a canonical isomorphism between
T*(R"~! x R") and the symplectic normal N,, by which the Hy(N,) portion of the
symbol may be pulled back to a rapidly decreasing function of n. This gives the n
dependence of ag, while the half-form portion of the symbol encodes the dependence
on z € P in a coordinate-independent way.

The construction of w in §3.1 gives u such that o, = v, ® kK, ® e. Here e is a
Gaussian in Hoo(Z,) which can be explicitly computed in terms of the metric. The
component k, € Ho(E,) satisfies L(k,) = 0 according to the construction. This does
not fix x,, but we are free to assume that x,, is also Gaussian. Here L is the operator
on Hy (E,) given by the Heisenberg representation of the Hamiltonian vector field &
of 0g. But according to Theorem 11.4 of [5], {z is just the lift of the Hamiltonian
vector field Z¢ on X up to Z. So L could be written explicitly in terms of f.

By this construction of u, the leading amplitude ag(z,7) is a Gaussian function
of n:

ag(z,1) = c(z)e” 1A 1/2

where A is a symmetric matrix with positive definite real part. Arguing as in the
proof of Theorem 3.12 in [7], we can write uny = Iy (u) as

un((q,p, h(g,p)) = eNh@P) /e_iN"e%(z,T, n//7) do dr dn,

(near ¢’ = p = 0) and apply stationary phase to the N — oo limit. The asymptotic
result is that
'U/N(q,p7 h(q,p)) ~ C(q/)Nn_l/2_1/28_N(q/lﬁp)A((I”ﬁD)t/Q’

where ¢(¢’) is independent of N. In particular, at a point zg € P lying above Y, we
have

(A1) un(z0) ~ c(zo)N"~1/271/2,

A review of the Hermite calculus
The composition of Hermite distributions is described in Theorem 9.4 of [5], which
implies that

II: I'"™(R,R) — I"(R,R).

The symbol calculus corresponding to this composition is based on symplectic linear
algebra found in §6 of [5], where the reader can find full details. Since the symbol
calculus is somewhat involved, we begin with a review of the general details of the
symbol map before applying it to our case.
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Let V and W be symplectic vector spaces, ' C V' x W~ a Lagrangian subspace
and ¥ C W an isotropic subspace. We think of I" as a canonical relation from W to
V; T'o 3 is an isotropic subspace of V. We will make the simplifying assumption that

(A.2) Up={weX; (0,w)el} =0,

valid in the applications of the calculus to this paper.

We assume given a symplectic spinor on ¥ and a half-form on I'. Recall that
if Hyo(V) denotes the space of C*° vectors in the metaplectic representation of the
metaplectic group of the symplectic vector space V', the space of symplectic spinors
on ¥ is Hae(3°/%) @ AV2(R).

Under the assumption (A.2), the (linear) symbol map of the Hermite calculus is
a linear map

(A3)  Ho(Z°/2) o N2(2) @ AV*() - Ho(ToR)°/Ton) @ AT o %),
Our first goal here is to describe the map (A.3). There are two ingredients in its

construction, which will be examined separately. First however we must introduce
the following vector spaces:

DEFINITION A.1. Uy = {w e X°; (O,w) e} CW, and

U := image of Uy in 2°/¥ 2 Uj.

These spaces enter the calculus in the following way:

LEMMA A.2. The subspace
UcCx°/%
is isotropic, and there is a natural identification

(A4) U° /U= (To%)°/Tox.

The first ingredient in the symbol map is a canonical isomorphism:

LEMMA A.3. Under (A.2), there exists a canonical isomorphism

A e NPT = AU e NV Tow).

Proof. Let
(A.5) p:TeX—-U;

be the map p((v,w),w1) = w—w;. One can show that the image of this map is exactly
Uy. Moreover, because of (A.2), the projection ((v,w),w;) — v is an isomorphism

ker(p) =T o X.
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This is the non-trivial vertical arrow in the diagram:

0
!
0— ker(p) —-TodX— Ul— 0
(A.6) |
F'oX®

!
0

The horizontal sequence is just the natural short exact sequence associated to the
surjection p.

Having established the existence of these exact sequences the desired isomorphism
follows from the behavior of the functor /\1/ % when applied to short exact sequences
and to direct sums. O

The second ingredient in the Hermite calculus is the following:

LEMMA A.4. Under the assumption (A.2), there exists a canonical map
——1/2
Se/w) - A ) e S(Ten)/ron).

Proof. This is based on Lemma (A.2) and the following generalization of a map
defined by Kostant:

Claim: Let A (in our case we will take A = 3°/3) be a symplectic vector space, and
U C A an isotropic subspace. Then there is a natural map

—1/2

(A7) Hoo(A) = N\ "(U)® Hyo(U°JU) .

The desired map follows from these two claims, if we recall that U = U; (because of
(A.2). O

To obtain the symbol map (A.3), tensor the maps from the lemmas and use the
fact that the symplectic form on W defines a natural identification

A

e Ny =c.

Proof of Proposition 2.5.

Given v € I"™(P,R), we want to calculate the symbol of v = II(v) € I[}(R,R).
In order to apply the symbol calculus reviewed above, we need to rewrite II(v) as
the composition of a Lagrangian distribution with a Hermite. Thus we introduce
m: P x P — P, the projection through the left factor, and F: Px P —- Px P x P
the map F(p1,p2) = (p1,p2,p2). We can then write

II(v) = T F (I K u),

where (abusing notation slightly) IT here denotes the integral kernel.
For the symbol calculation it suffices to localize to p € R C T*P. To simplify
notation we will introduce vector spaces

V=T,T"P), W=VxVxV.
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In W two copies of V' carry the opposite symplectic form, but to simplify notation we
just denote the vector space. We define the vector spaces R,, Z,, E,, etc. as in §3.1.
Note that Z, is a symplectic subspace of V, and R, is isotropic in Z,. Locally, the
symbol of v € I(P,R) can be written

o), =rve@r®A
€ NY2(R,) ® Huo(E,) @ Hoo (Z5).

As an integral kernel, IT € I(P x P, ZPA) with symbol

o(ll) =Vdz@e®ee N'*(Z,) © Ho(Z5) ® Hoo(Z2),

where dz is the canonical volume form given by the symplectic form on Z,.
The operator 7, F* is a Lagrangian FIO with canonical relation

I'={(v;v,w,w); vyw eV} CV x W.

(To see that it’s Lagrangian one needs to keep track of the signs of the symplectic
forms). The combination IT X « is a Hermite distribution associated to the isotropic

Y= {(Zaz>y); S Zp,y S Rp}

Note that I'o ¥ = R,,.

First we’ll describe the spaces that play a role in Lemmas Al-4. To begin, note
that R) was calculated in Lemma 2.3 to be Z; & E,, where E, is the symplectic
normal of R, as a subspace of Z,. Then we see that

S0/ = 722 x 22 % (Z5 & E,).
Then
U ={(0,v,v); ve Z;} CW,

and U is the same set as a subspace of ¥°/%, so that U°/U = Z) & E, = R} /R,,.
Introducing the map p as above, we see that

Image(p) =U7 =U1&(V x Z,x Z,) CW,
and kerp = R,,.

With these identifications, we can decompose the pieces in the symbol map (A.2).
First of all, in Lemma A.3 the map reduces to the identity map on

N2(Z5) & N2 (Ro) © N2(V),
combined with the obvious decomposition

N2V =N (zZ,) 0 NT(Z).
Also note that since £°/¥ = Z, x Z, x (Z, ® E,) we have

Hoo(3°/%) = Hwo(Z) © Hoo(Z,) © Hoo(Z) @ Hoo(E)p).
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This means we can break the symbol map (A.2) into three pieces. The first is the
identity map

Hu(E,) @ N'?R, — Hoo(E,) © N'/°R,,.

The second is a canonical pairing (A.6) applied to the symplectic space Zy x Z, with
the diagonal as Lagrangian subspace:

—1/2

Hoo(Z7) © Hoo(Zp) = N\ 7(25).

Finally, the third is the natural identification

——1/2
A

defined by the symplectic forms.

Applying this to the symbol of II(u), the third piece shows some natural half-
forms canceling, the second gives contributes a factor (e, \) which can be absorbed by
changing the half-form component v — v/. And the first map then gives the stated
conclusion:

(z) e N2 (22 o N (Z,) 0 NP (V) =,

oc(Il(v)) =v @Kk ®e.
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