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DARBOUX EQUATIONS IN EXTERIOR DOMAINS ∗

SAOUSSEN KALLEL-JALLOULI†

Abstract. We give sufficient conditions ensuring existence and regularity of a radial solution to
the following equation

det (φij) = F (|x| , φ, |∇φ|) , in Ω

φ|∂Ω = c

when Ω is an exterior domain.

1. Introduction. In this work, we consider the Dirichlet problem for real
Monge-Ampère equations in exterior domains. More precisely, let B ⊂ R

n be an
open ball, centered at the origin, that can be supposed, without loss of generality, to
be the unit ball . Our purpose is to establish the existence of radial, convex solution
u ∈ C2 (Rn \ B) of radially symmetric Monge-Ampère equation

{
det (φij) = F (|x| , φ, |∇φ|), in R

n \ B

φ|∂B = c
(1)

where F is a nonnegative continuous function. As usual, |x| denotes the Euclidean
length of x = (x1, ..., xn) and n is (all over this paper) the dimension of our Euclidean
space. Additional hypothesis on F are described in §2.

When Ω is a strictly convex domain, this problem has received considerable study.
Not many results are known about the solutions in unbounded domains. In the case
when F > 0, F.Finster and O.C. Schnürer [2] proved the existence of smooth, strictly
convex solution to (1) under some restrictions on F . We can also cite the work of T.
Kusano and Ch.A. Swanson [3] related to radially symmetric two-dimensional elliptic
Monge-Ampère equations.

Our attention will be directed toward the construction of radial solutions u (x) =
u (t) of (1), t = |x|. Direct computation (see [1]), shows that solving the equation (1)
in C2 is equivalent to solving the ordinary differential equation

{ [
(y′)n]′

= ntn−1F (t, y, y′), if t > 1

y (1) = c
(2)

Without loss of generality, we can take c = 0.
If we take as initial condition y′ (1) = 0, we can easily transform (2) into the

following integro-differential equation

y (r) =
∫ r

1

[∫ ρ

1

ntn−1F (t, y (t) , y′ (t)) dt

] 1
n

dρ (3)
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Example. Let F (r) = (r − 1)n−1−ε
r1−n, with ε > 0 small enough. Then,

u′ (r) =
[

n
n−ε

] 1
n

(r − 1)1−
ε
n . In this case F ∈ C0, but u /∈ C2.

This example shows that even when F depends only on r, it may not yield a C2

solution, if F is allowed to vanish in the domain. This implies that we should place
some restrictions on F.

Throughout this work, F satisfies some hypothesis be selected from the following
list:

(H1):
i) F (t, y, z) is a nonincreasing function with respect to both y and z for each fixed

(t, z) and (t, y), respectively.
ii)

∫ +∞
1 tn−1F (t, 0, 0)dt < +∞

(H2): F (t, y, z) ≤ C0t
−n−α |y|β |z|θ, with β ≥ 0, α > β, θ ≥ 0 and C0 ≤ α−β

n if
β + θ = n.

(H3):
i) F (t, y, z) is a nondecreasing function with respect to both y and z for each

fixed (t, z) and (t, y), respectively.
ii) There exists a constant a > 0 such that

∫ +∞

1

ntn−1F (t, (t − 1)a, a) dt ≤ an

(H4): F (t, y, z) = (t − 1)l
F̃ (t, y, z), with F̃ (1, y, 0) �= 0, for y ≥ 0, l ≥ n − 1,

F̃ ∈ C0.

An example of a Monge-Ampère equation satisfying (H3) is the Gauss curvature
equation ⎧⎨⎩ det (uij) = p (|x|)uγ

(
1 + |∇u|2

)δ

, x ∈ R
n \ B

u|∂B = 1
with γ, δ ≥ 0, 2δ + γ < n and p is a non-négative function satisfying:

∫ +∞

1

tn+γ−1p (t) dt < +∞

In the following, F̃ is used as introduced in (H4) . We shall prove

Theorem A. If (H4) and either (H1), (H2) or (H3) holds, equation (1) has an
infinitude of radial convex solutions u ∈ C2 such that u(x)

|x| has a positive finite limit
at ∞.

Theorem B. If we suppose, in addition to the hypothesis of Theorem A, that

F̃ ∈ Ck
(
(Rn \ B) × R

2
)

(4)

and
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either
l + 1

n
∈ N or

l + 1
n

≥ k + 1 (5)

then the solutions given by theorem A are in Ck+2

2. Proof of theorem A. To prove the existence of a radially symmetric convex
solution to the problem (1), we need to introduce the Frechet space C1 of all contin-
uously differentiable functions in [1, +∞[, with the topology of uniform convergence
of functions and their first derivatives on compact intervals. Consider now the closed
convex subset KR of C1

KR =
{
y ∈ C1 | y (1) = 0, 0 ≤ y′ (t) ≤ R

}
(6)

and the operator T : KR →C1 defined by

T (y) (r) =
∫ r

1

[∫ ρ

1

ntn−1F (t, y (t) , y′ (t)) dt

] 1
n

dρ, r ≥ 1 (7)

In order to prove that T has a fixed point y ∈ KR , we need to verify that T maps
KR continuously into a relatively compact subset of KR .

If y ∈ KR , (7) implies that T (y) (1) = 0 and

0 ≤ (Ty)′ (r) =
[∫ r

1

ntn−1F (t, y (t) , y′ (t)) dt

] 1
n

We shall need to verify that we can find a constant R > 0 such that

[∫ +∞

1

nsn−1F (s, y (s) , y′ (s)) ds

] 1
n

≤ R, ∀y ∈ KR (8)

* If F satisfies (H1), we can write using (H1) (i),

(Ty)′ (r) ≤
[∫ r

1

nsn−1F (s, 0, 0)ds

] 1
n

by (H1) (ii), it suffices then to take

R =
[
n

∫ +∞

1

sn−1F (s, 0, 0)ds

] 1
n

and we get
(Ty)′ (r) ≤ R

* When F satisfies (H2), then, since
y (r) =

∫ r

1
y′ (t) dt,

we get by (6),
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|y (r)| ≤ (r − 1)R,
so,

(Ty)′ (r) ≤
[∫ r

1

nC0s
−α−1 (s − 1)β Rβ+θds

] 1
n

≤
(

n

α − β
C0

) 1
n

R
β+θ

n

In order to get (8), it suffices to take R small enough when (β + θ) > n, big
enough when (β + θ) < n. In the case when β + θ = n and C0 ≤ α−β

n , any positive
constant R lead to

(Ty)′ (r) ≤ R
* Finally, if F satisfies (H3), then, assumption (H3) (i) shows that

(Ty)′ (r) ≤ [∫ r

1
nsn−1F (s, (s − 1)R, R) ds

] 1
n

it suffices then to take R = a to ensure by (H3) (ii) the inequality (8).

To establish the continuity of T , let (yk) be a sequence in KR with lim
k→+∞

yk =

y ∈ C1 in the C1-topology. By the dominated convergence theorem, we have then

lim
k→+∞

∫ r

1

nsn−1F (s, yk (s) , y′
k (s)) ds =

∫ r

1

nsn−1F (s, y (s) , y′ (s)) ds

uniformly on [1, +∞[, from which Tyk and (Tyk)
′ converge uniformly to Ty and

(Ty)′, respectively, on compact intervals in [1, +∞[. this means that Tyk converges
to Ty in the C1-topology.

The relative compactness of T (KR) is a consequence of Ascoli’s Theorem; we
need only verify the local uniform boundedness and local equicontinuity of the sets
T (KR) and T (KR)′ =

{
(Ty)′ , y ∈ KR

}
.

Let us denote G (t) = nF (t, u (t) , u′ (t)) and G̃ (t) = nF̃ (t, u (t) , u′ (t)).
For every y ∈ KR, 1 ≤ t1 ≤ t2, the inequality a

1
n − b

1
n ≤ (a − b)

1
n , true for

a ≥ b ≥ 0, implies

(Ty)′ (t2) − (Ty)′ (t1) =
(∫ t2

1
tn−1G (t) dt

) 1
n −

(∫ t1
1

tn−1G (t) dt
) 1

n

≤
(∫ t2

t1
tn−1G (t) dt

) 1
n

* If F satisfies (H1), then
G (t) ≤ nF (t, 0, 0)

and

(Ty)′ (t2) − (Ty)′ (t1) ≤
(∫ t2

t1
ntn−1F (t, 0, 0)dt

) 1
n → 0, as t1,t2 → ∞

* If F satisfies (H2), then,

(Ty)′ (t2) − (Ty)′ (t1) ≤
(∫ t2

t1
nC0t

n−1t−n−α (t − 1)β
Rβ+θdt

) 1
n

≤ C1

(∫ t2
t1

tβ−α−1dt
) 1

n → 0, as t1,t2 → ∞
* Finally, when F satisfies (H3) , then by (i), since R = a,

G (t) ≤ nF (t, (t − 1)a, a)
and
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(Ty)′ (t2) − (Ty)′ (t1) ≤
(∫ t2

t1
ntn−1F (t, (t − 1)a, a) dt

) 1
n → 0, as t1,t2 → ∞

Then, in all these cases, for any compact interval I in [1, +∞[ and arbitrary ε > 0,
there is a corresponding δ > 0, independent of t1, t2 and y ∈ KR, such that∣∣(Ty)′ (t2) − (Ty)′ (t1)

∣∣ ≤ ε
for all t1,t2 ∈ I with |t1 − t2| < δ.
The local equicontinuity of T (KR) can be verified in the same way, and the local

uniform boundedness is obvious.
Therefore the Schauder-Tychonoff fixed point theorem ([5]; lemma 1 and [6];

Theorem 4.5.1.) implies that T has a fixed point u ∈ KR, satisfying the integro-
differential equation (3) for any R such that (8) holds. It remains to prove that
u′ ∈ C1.

For t > 1, we have

u′ (t) =
[∫ t

1

sn−1 (s − 1)l G̃ (s) ds

] 1
n

Since G̃ (1) �= 0, then u′ ∈ C1 ]1, +∞[ and

u′′ (t) = tn−1 (t − 1)l
G̃ (t)

[∫ t

1 sn−1 (s − 1)l G̃ (s) ds
] 1

n−1

= tn−1 (t − 1)
l+1
n −1

G̃ (t)
[∫ 1

0
[(t − 1) s + 1]n−1

slG̃ ((t − 1) s + 1) ds
] 1

n−1

which gives

lim
t→1+

u′′ (t) =

⎧⎨⎩
0, if l > n − 1[

1
l+1

] 1
n−1

G̃ (1)
1
n if l = n − 1

Hence, u ∈ C2 [1, +∞[. It is not to be noted that u is a solution of (1) satisfying
u (1) = 0 and u′ (1) = 0.

Furthermore, the relation (3) and the inequality (8) imply that the limit

lim
t→+∞

u (t)
t

= lim
t→+∞u′ (t) =

[∫ +∞

1

nsn−1F (s, u (s) , u′ (s)) ds

] 1
n

is positive and finite, proving the asymptotic property in theorem A.
Since any non-negative constant b will serve as initial value y′ (1) = b, there exists

an infinitude of radial convex solutions to our problem.

3. Proof of theorem B. In this section, we study the regularity of the solution
u given by theorem A. To prove the Ck+2 regularity of u, let us proceed by induction
on k ∈ N. For k = 0, we have established in section 2, that u ∈ C2. Suppose that

F̃ ∈ Ck−1 ⇒ u ∈ Ck+1

for some fixed k ≥ 1. Assume now that F̃ ∈ Ck. It follows in particular that
u ∈ Ck+1. Hence, from the integral formula (7) and the hypothesis (H4), we get
u ∈ Ck+2 (]1, +∞[). It remains to check the regularity of u at the boundary t = 1.

The following preliminary result will be needed

Lemma ([4] corollary 4.2). The kth derivative of g
1
n , can be written as a sum of

terms of the form
g

1
n−λPλ

(
g′, g′′, ..., g(k+1−λ)

)
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where Pλ is a monomial of degree λ ≤ k and of weighted degree k.

Now, using the notation

Hy (t) =
∫ 1

0

[(t − 1) s + 1]n−1
slG̃y ((t − 1) s + 1)ds, (9)

we can write

u′ (t) = (t − 1)
l+1

n H
1
n
u (t)

where, by the induction hypothesis, Hu ∈ Ck. Then,

u(k+1) (t) =
k∑

i=0

(
k
i

) [
(t − 1)

1+l
n

](i) (
H

1
n
u

)(k−i)

(t)

furthermore, applying the above lemma, we get the following(
H

1
n
u

)(l)

=
l∑

i=2

ciH
1
n−i
u Pi

(
H ′

u, ..., H
(l+1−i)
u

)
+ 1

nH
1
n−1
u H

(l)
u , ∀l ≤ k

Since, ∀j ≤ k,

(Hu)(j) (t) =
j∑

i=0

ci,j

∫ 1

0

(
[(t − 1) s + 1]n−1

)(j−i)

sl+iG̃u

(i)
((t − 1) s + 1) ds

it suffices then to prove that

f (t) = (t − 1)
1+l
n hk ∈ C1 ([1, +∞[)

where hk (t) =
∫ 1

0
[(t − 1) s + 1]n−1 sl+kG̃u

(k)
((t − 1) s + 1) ds.

Differentiating f , yields

∀t > 1, f ′ (t) = (t − 1)
1+l
n −1

[
tn−1G̃u

(k)
(t) + chk (t)

]
which implies

lim
r→1+

f ′ (t) =

⎧⎨⎩
0 if l > n − 1

G̃u

(k)
(1)

[
1 + c

∫ 1

0 sl+kds
]
, if l = n − 1

Consequently, f ∈ C1 ([1, +∞[) . Which completes the proof of theorem B.
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