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EXISTENCE AND UNIQUENESS FOR A BOUSSINESQ SYSTEM
WITH A DISORDERED FORCING ∗

JOSÉ R. QUINTERO† AND JUAN C. MUÑOZ‡

Abstract. We study the existence, uniqueness, regularity and continuous dependence on initial
data of solutions for the Cauchy problem associated with the coupled system of Boussinesq type
equations forced by highly oscillatory smooth coefficients. The model considered describes two-way
propagation of long water waves with small amplitude on the surface of a one-dimensional channel
with rough bottom (disordered topography). The dependent variables in this model are the wave

elevation η and the potential velocity u measured at the fixed depth Z0 =
√

2/3.

1. Introduction. In this paper we are concerned with global existence, unique-
ness, regularity and continuous dependence on initial data of solutions to the Boussi-
nesq type system

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M(ξ)ηt + ∂ξ

[(
1 + αη

M(ξ)

)
u
]
− β

6 ∂2
ξ (M(ξ)ηt) = 0, (ξ, t) ∈ R × [0,∞)

ut + ηξ + α
2 ∂ξ

[(
u

M(ξ)

)2
]
− β

6 ∂2
ξ (ut) = 0, (ξ, t) ∈ R × [0,∞)

η(ξ, 0) = f(ξ), u(ξ, 0) = g(ξ), ξ ∈ R,

where the forcing coefficient M(ξ) is a C∞ bounded function with the property
infR M(ξ) > 0, and α and β are positive constants.

The system above governs the two-way propagation of small amplitude water
waves on the surface of a wide class of bottom profiles, including highly oscillatory
topographies (i.e. when the scale of variation of the bottom irregularities is small
compared to the typical wavelength observed on the water surface) [11]. It extends
the regime of application of other Boussinesq formulations for variable depth, such as
those by Peregrine [14] and Nwogu [13], which are valid provided that the mild slope
restriction holds (c.f. Mei [8], pag. 59).

Formally, the system in (1.1) is a weakly dispersive (β << 1), weakly nonli-
near (α << 1) approximation of the potential theory equations for an irrotational,
incompressible and inviscid fluid ([17] [11]). The function u(ξ, t) represents the
potential velocity measured at a fixed station located at the depth Z0 =

√
2/3. The

function η(ξ, t) denotes the wave elevation measured with respect to the undisturbed
free surface. The function M(ξ) in model (1.1) is topography dependent and it can be
characterized as a convolution between the function describing the coast depth and a
C∞ kernel. In case of constant depth, the coefficient M(ξ) is identically one and the
Boussinesq system (1.1) reduces to a system considered by Bona and Chen ([3]).

The computational complexity of system (1.1) is comparable to that of the terrain-
following Boussinesq system [12]. However, we point out that the symmetric disper-
sive terms in the motion equations in system (1.1) make easier to develop efficient
and unconditionally stable Boussinesq solvers for system (1.1). For instance, Bona
and Chen ([3]) derived a fourth order accurate and unconditionally stable scheme
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to compute numerical solutions of system (1.1) in a channel of constant depth (i.e.,
when M(ξ) ≡ 1) and arbitrary finite length. This is an important feature to be taken
into account in water wave simulations over large time intervals. We notice that this
scheme could be adapted for computing solutions of system (1.1) when the bottom is
rough. In contrast, the numerical solver employed in [10] for approximating solutions
of the terrain-following Boussinesq system ([12]) is conditionally stable. This imposes
a restriction on the size of the temporal and spatial grid points adopted in the finite
difference scheme in order to guarantee that the error produced by discretization does
not grow as long as time increases.

We also want to emphasize that the curvilinear coordinate system introduced in
the derivation of system (1.1) could remove the stiffness phenomenon (promoted by
a possible disordered topography) in numerical simulations for system (1.1). Based
on these facts, we consider the system (1.1) particularly interesting in computer sim-
ulations of weakly dispersive, weakly nonlinear waves propagating over a disordered
bottom. Details, properties and numerical experiments for the Boussinesq system
(1.1) will appear elsewhere [11].

Several authors have investigated the existence of solutions of Boussinesq type
equations for water waves propagating over shallow channels of constant depth, in
which coefficients in the motion equations considered are constant. Bona and Smith
showed the global existence, uniqueness and regularity of solutions and continuous
dependence of solutions on initial conditions for a Boussinesq model modeling two-
way wave propagation in a channel of constant depth ([2]). Also, Bona and Chen
studied the existence of solitary wave solutions of a family of Boussinesq models, by
using the concentration-compactness principle ([4]). Amick [1] and Schonbek [15]
analyzed the global existence, uniqueness and regularity of solutions for a Boussinesq
system of equations derived by Whitham ([17], page 466). On the other hand, large
time behavior of solutions for a generalization of the Boussinesq system of equations
(with dissipation) in dimension n ≥ 2, is explored by Rajopadhye et. al. ([16]).
However, theory on the existence and uniqueness of solutions for a Boussinesq system
forced by a highly oscillatory bottom, like the system (1.1) considered in the paper,
has not been addressed yet, to our knowledge. In a nutshell, the goal in this paper is
to start the study of the properties of the solutions for models, which include some
complicated physical phenomenon as dispersive waves in highly variable media.

Before we go on, we want to point out some features of the Boussinesq system
(1.1), which are clever in our analysis. First, as mentioned above, the function M(ξ) in
the coefficients of the system (1.1) is infinitely differentiable even though the function
describing the depth is discontinuous or non-differentiable. Moreover, the coefficient
M(ξ) is time independent, which makes the system (1.1) invariant under translations
in the time variable t. Second, the presence of the regularizing dispersive terms
∂2

ξ (M(ξ)ηt) and ∂2
ξ (ut), in both the mass and momentum conservation equations in

(1.1), is crucial in the discussion of the local existence result. Third, we find a positive
energy type functional (depending on the coefficient M(ξ)) which is conserved in time
on solutions of a system equivalent to equations (1.1). The existence of this nonlinear
functional together with the fact that the variable coefficient M(ξ) is time independent
allows us to derive bounds for the wave elevation and the fluid velocity valid for all
time and extend the local solutions in time. This is a desirable property for a model
approximating water waves and a theoretical advantage of (1.1) with respect to other
models for arbitrary depths, such as that derived recently by Nachbin, for which is
unclear the existence of a conserved positive quantity ([12]). The technique used to
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derive our results was inspired by the work of Bona and Smith in [2].
The motivation for the present study relies on the variety of recent applications

of Boussinesq type systems considering rough bottom. It is important to note that
these shallow water models are not only of interest in ocean exploration but also in
meteorology where the waves propagate in the atmosphere. Some of these models
have been explored by using alternative techniques such as asymptotic approxima-
tion, stochastic analysis and numerical simulation. For instance, in [9] is studied the
O’Doherty-Anstey and the stabilization phenomena for dispersive waves propagating
along a channel with a highly variable depth, by using the terrain-following Boussinesq
formulation presented in [12]. In [10] is explored numerically the refocusing property
of solitary waves (i.e. waveform inversion), promoted by a one-dimensional disordered
media. Fouque, Garnier and Nachbin derived a stochastic theory for the refocusing
and pulse stabilization of weakly dispersive waves in a one-dimensional random media
([6]).

This paper is organized as follows. In Section 2, we present an outline of the
derivation of the Boussinesq system (1.1). As done by Hamilton in [7], a convenient
conformal curvilinear coordinates system is introduced to transform the physical chan-
nel onto a strip. As a result, the function describing the physical depth is substituted
by the smooth coefficient M(ξ) in the resulting motion equations (1.1). In Section
4, we introduce the main spaces necessary to study the existence and regularity of
solutions of system (1.1). Furthermore, we rewrite it as a pair of integral equations,
convenient for the analysis in later sections. In Section 5 we discuss the uniqueness
of a solution pair (η, u) of system (1.1). In Section 6, we prove the local existence of
solutions by applying the contraction mapping principle to the integral operator asso-
ciated with system (1.1). The regularity of the solutions is considered in Section 7. In
Section 8 we extend the local solutions in time by using a nonlinear functional which
conserves in time on solutions for a system equivalent to equations (1.1). Finally, in
Section 9 we analyze the continuous dependence of a solution of system (1.1) on the
initial data f(ξ) and g(ξ). The conclusions are given in Section 10.

2. Governing equations. We start by presenting the potential theory formu-
lation for Euler’s equations (in dimensionless variables) with a free surface and an
impermeable bottom topography [17]:

(2.1) β φxx + φyy = 0 for − H(x/γ) < y < αη(x, t), −∞ < x < ∞,

with the nonlinear free surface conditions

ηt + αφxηx − 1
β

φy = 0,(2.2)

η + φt +
α

2

(
φ2

x +
1
β

φ2
y

)
= 0(2.3)

at y = αη(x, t). Here φ(x, y, t) denotes the potential velocity and η(x, t) the wave ele-
vation measured with respect to the undisturbed free surface y = 0. The dimensionless
parameters α and β measure the strength of nonlinear and dispersive effects. The pa-
rameter γ measures the ratio inhomogeneities/wavelength. The Neumann condition
at the impermeable bottom is

(2.4) φy +
β

γ
H ′(x/γ)φx = 0.
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The bottom topography is described by y = −H(x/γ) where

H(x/γ) =
{

1 + n(x/γ), when 0 < x < L
1, when x ≤ 0 or x ≥ L.

The bottom profile is described by the (possibly rapidly varying) function −n(x/γ).
The topography is rapidly varying when γ � 1. The scale L represents the total length
of the irregular section of the coast. The undisturbed depth is given by y = − 1 and
the topography can be of large amplitude provided that |n| < 1. The fluctuations n
are not assumed to be small, nor continuous, nor slowly varying.

Consider a symmetric flow domain by reflecting the original one about the undis-
turbed free surface (c.f. Figure 2.1). This domain is denoted by Ωz where z = x+i

√
βy

and can be considered as the conformal image of the strip Ωw where w = ξ + iζ̃ with
|ζ̃| ≤ √

β. Then z = x(ξ, ζ̃) + i
√

βy(ξ, ζ̃) = x(ξ, ζ̃) + iỹ(ξ, ζ̃) with x and ỹ a pair of
harmonic functions on Ωw. Following the strategy suggested by Hamilton in [7], the
potential theory equations can be cast in the orthogonal curvilinear coordinates (ξ, ζ̃)
as [12]:

βφξξ + φζζ = 0, at 0 < ζ < 1 + αN(ξ, t),(2.5)

with free surface conditions

|J |Nt + αφξNξ − 1
β

φζ = 0, at ζ = 1 + αN(ξ, t)(2.6)

η + φt +
α

2|J |
(

φ2
ξ +

1
β

φ2
ζ

)
= 0, at ζ = 1 + αN(ξ, t)(2.7)

φζ = 0, at ζ = 0,(2.8)

where we defined ζ = ζ̃/
√

β + 1. This change of variables lets the origin of the
curvilinear coordinate system at the bottom. The Jacobian for the (ξ, ζ̃) → (x, ỹ)
coordinate transformation is represented by |J |, and ζ = 1 + αN(ξ, t) corresponds to
the position of the free surface in the curvilinear coordinate system.

By performing an asymptotic simplification in the equations (2.5)-(2.8) within
weakly nonlinear (α << 1), weakly dispersive (β << 1) regime, we find that the
free surface conditions (2.6)-(2.7) can be approximated to order O(α), O(β) by the
equations

η + ft − β

2
fξξt +

α

2M2(ξ)
f2

ξ = O(αβ, β2),(2.9)

M(ξ) ηt +
[(

1 +
α

M(ξ)
η

)
fξ

]
ξ

− β

6
fξξξξ = O(α2, αβ, β2),(2.10)

where M(ξ) ≡ ỹζ̃(ξ, 0) = 1 + m(ξ) with,

m(ξ;
√

β, γ) ≡ π

4
√

β

∫ ∞

−∞

n(x(ξ0,−
√

β)/γ)
cosh2 π

2
√

β
(ξ0 − ξ)

dξ0 = (K ∗ (n ◦ x)) (ξ).(2.11)

Furthermore, f(ξ, t) = φ(ξ, 0, t) represents the potential velocity at the bottom. We
point out that equations (2.9) and (2.10) correspond to those derived in [12] (bottom
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Fig. 2.1. The symmetric domain in the complex z-plane, where z = x(ξ, ζ̃)+iỹ(ξ, ζ̃). The lower
half (x ∈ [−5, 5], y ∈ [−3, 0]) is the physical channel with y = ζ̃ = 0 indicating the undisturbed
free surface. Superimposed in this complex z-plane domain are the (curvilinear) coordinate level
curves from the w-plane system ξζ̃. The polygonal line at the bottom of the figure is a schematic
representation of the topography (where ζ̃ = ± √

β). This figure was generated using SC-Toolbox
[5].

of page 915 and top of page 916). In the derivation of equations (2.9)-(2.10) we used
the relationship

|J |(ξ, t) = M(ξ)2 + O(α2),

which means that, at leading order, the Jacobian of the conformal coordinate trans-
formation is time independent. Note that the coefficient M(ξ) is smooth even when
the function describing the bottom y = −H(x/γ) is discontinuous or non differen-
tiable. The function M(ξ) is time independent and becomes identically one in the
case of a constant depth. Moreover, in applications this coefficient is bounded and
infR M(ξ) > 0. These properties will be important to obtain the regularity result and
the global existence result of solutions to the Boussinesq system (1.1).

Now, instead of using the terrain-following components of the velocity as in the
model derived by Nachbin [12], we express the system (2.9)-(2.10) in terms of the
potential velocity u(ξ, t) measured at a fixed intermediate depth, say ζ = Z0(ξ), with
0 < Z0(ξ) < 1 (see [11]) as:

M(ξ)ηt +
[(

1 +
α η

M(ξ)

)
u

]
ξ

+
β

2

[(
Z2

0 − 1
3

)
uξξ

]
ξ

= 0,(2.12)

ut + ηξ + α

(
u2

2M2(ξ)

)
ξ

+
β

2
(Z2

0 − 1)uξξt = 0,(2.13)

where only the terms up to O(α), O(β) have been retained in the equations. In [11]
one of the authors studies the impact of the selection of the depth Z0 on the dispersive
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characteristics of the model above. In particular, when Z2
0 = 2/3, system (2.12)-(2.13)

takes the form

M(ξ)ηt +
[(

1 +
α η

M(ξ)

)
u

]
ξ

+
β

6
uξξξ = 0,(2.14)

ut + ηξ + α

(
u2

2M2(ξ)

)
ξ

− β

6
uξξt = 0.(2.15)

Appropriate initial conditions for the system above are:

η(ξ, 0) = f(ξ), u(ξ, 0) = g(ξ), ξ ∈ R.

Formally, the equation (2.14) implies in

(2.16) uξ(ξ, t) = −M(ξ)ηt + O(α, β).

Putting this relationship into system (2.14)-(2.15), and retaining only the terms
of order O(α, β), we obtain the Boussinesq system (1.1).

Additional Boussinesq formulations are also derived by Muñoz and Nachbin in
[11] by changing the velocity variable (i.e. the depth Z0) in the model (2.12)-(2.13).
However, the theoretical advantage of system (1.1) comes from the presence of sym-
metric dispersive terms of the form ξξt, in both the mass and momentum conservation
equations. This fact will be important in the next sections in order to prove existence
and uniqueness of the Cauchy problem (1.1).

3. Numerical properties of the proposed Boussinesq system. In first
place, the linear dispersion relation between k and ω for system (1.1) is

(3.1) ω2 =
k2(

1 + β
6 k2
)2 ,

which implies that the phase velocity ω/k of the Fourier components of the wave
remains bounded for all wave number k. This issue will be crucial to consider the
stability of a numerical solver for the Boussinesq system (1.1). Further, we think
this system is appropriate for performing numerical simulations for system (1.1) even
though the topography is highly oscillatory, in which case the corresponding metric
coefficient M(ξ) and M ′(ξ) would be highly variable. In general, the presence of highly
oscillatory coefficients in the dispersive terms of a differential equation may introduce
small spurious oscillations in the numerical solutions which would accumulate and
become appreciable over a long period of time. This is connected with the stiffness
phenomenon. As a consequence, when we gradually decrease the length scale of the
topography irregularities, we obtain a wider spectrum range for the corresponding
system of ordinary differential equations in the Fourier space.

Our opinion is that this problem gets around in formulation (1.1) in a similar
way as in the terrain-following Boussinesq system in [12] (see [10]). The key is the
curvilinear coordinate system introduced in the full potential theory equations in
the derivation of model (1.1) (see Section 2). Although the topography dependent
coefficient M(ξ) is not completely removed from the dispersive terms of system (1.1),
they result to be expressed in conservative form. Thus we must not to calculate the
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derivatives of the function M(ξ) in a numerical scheme for system (1.1). In fact,
rewrite it as

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(I − β
6 ∂2

ξ )(M(ξ)ηt) = −∂ξ

[(
1 + αη

M(ξ)

)
u
]
, (ξ, t) ∈ R × [0,∞)

(I − β
6 ∂2

ξ )(ut) = −ηξ − α
2 ∂ξ

[(
u

M(ξ)

)2
]

, (ξ, t) ∈ R × [0,∞)

η(ξ, 0) = f(ξ), u(ξ, 0) = g(ξ), ξ ∈ R.

Then note that the field M(ξ)ηt can be computed from the first equation in system
(3.2) by inverting the linear operator (with constant coefficients) I− β

6 ∂2
ξ . To compute

the field ut, we must invert the same linear operator. For instance, this step can
be accomplished by solving two tridiagonal linear systems with the same topography
independent matrix forced by the nonlinear terms on the right side of equations (8.1).
Observe that we do not need to calculate the derivatives of the coefficient M(ξ) in any
part of the process described because the nonlinear terms are written in conservative
form. In [10] one of the authors shows that these facts are crucial in order to remove
the stiffness phenomenon in the case of the Boussinesq system in [12].

Furthermore, if we invert exactly the linear operator I − β
6 ∂2

ξ and use an acceler-
ation procedure in an analogous way as in [3], we may reduce the computational cost
at solving only one tridiagonal linear system whose matrix is topography independent
and constant in each time step. The computational cost per time step is of order
G, where G is the number of grid points used in the spatial discretization. This is
comparable to the cost of solving numerically the system in [12] by using the method
described in [10].

On the other side, we remark that the symmetric dispersive terms in the equations
in system (8.1) make possible to develop unconditionally stable numerical schemes,
at least when the channel is of arbitrary finite length, as in [3] where system (1.1) is
solved for M(ξ) ≡ 1 (flat bottom). This is not straightforward for the terrain-following
system in [12] and therefore it represents a significant advantage (in computational
cost) of system (1.1) in large time simulations of waves over a coast of disordered
depth.

Another advantage of the proposed Boussinesq formulation arises in laboratory
experiments, where the fluid velocity u at a finite depth (Z0 =

√
2/3) in model (1.1)

can be measured easier than the transversal weighted average of the terrain-following
component of the fluid velocity in the Boussinesq model in [12].

4. Some Preliminaries. The main spaces used in the discussion of the local
existence, uniqueness and global existence are the Hilbert space L2(R) = L2 and the
Banach space L2

T for T > 0, where the later space is defined as the set of functions
f : R × [0, T ] → R such that f(·, t) ∈ L2 for t ∈ [0, T ] and the map t → f(·, t) is
continuous from [0, T ] → L2. The norm in L2

T is given by

‖u‖L2
T

= sup
t∈[0,T ]

‖u(·, t)‖,

where ‖ · ‖ means ‖ · ‖L2 . Now, we say that u ∈ L∞, if u ∈ L2
T for any T > 0.

To discuss regularity of the solution, we consider the Banach space

Cs
b = {g : R → R : ∂r

ξ g is bounded for each 0 ≤ r ≤ s}
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with norm given by

‖g‖Cs
b

=
s∑

r=0

sup
ξ∈R

|∂r
ξg(ξ)|,

and the Banach space Cs
T defined as the set of functions u : R × [0, T ] → R such that

u(·, t) ∈ Cs
b for t ∈ [0, T ] and the map t → u(·, t) is continuous from [0, T ] → Cs

b .
The norm in Cs

T is given by

‖u‖Cs
T

= sup
t∈[0,T ]

‖u(·, t)‖Cs
b
.

We also requiere to define the space Cs,r
T as the set of functions u : R × [0, T ] → R

such that ∂j
t u ∈ Cs

T for 0 ≤ j ≤ r. The norm in Cs,r
T is given by

‖u‖Cs,r
T

=
r∑

j=0

‖∂j
t u‖Cs

T
.

We say that u ∈ Cs,∞
T , if u ∈ Cs,r

T for any r ∈ N. For s = 0, we denote C0
b := Cb and

C0
T := CT .

The global existence and uniqueness result for the Cauchy problem (1.1) fol-
lows from the local existence and uniqueness result and the existence of a conserved
quantity, which allows us to extend in time local solutions.

As mentioned above, the Boussinesq system in (1.1) can be rewritten as the
following coupled system of equations

(4.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
I − β

6 ∂2
ξ

)
M(ξ)ηt = −∂ξ

[(
1 + αη

M(ξ)

)
u
]

in R × [0,∞)

(
I − β

6 ∂2
ξ

)
ut = −∂ξ

[
η + α

2

(
u

M(ξ)

)2
]

in R × [0,∞).

Now, if we invert the operator I − β
6 ∂2

ξ and integrate over [0, t], we conclude that the
pair (η, u) satisfies the following system of integral equations,

η(ξ, t) = f(ξ) +
1

M(ξ)

∫ t

0

[
Kβ ∗

(
1 +

αη

M(ξ)

)
u

]
(ξ, s)ds,(4.2)

u(ξ, t) = g(ξ) +
∫ t

0

[
Kβ ∗

(
η +

αu2

2M2(ξ)

)]
(ξ, s)ds,

where ∗ denotes convolution over R and

Kβ(s) =
3
β

sign(s)e−
√

6
β |s|

.

We observe that the kernel Kβ is a solution in the sense of distributions of the differ-
ential equations

(4.3) K
′
+
√

6
β
|K| =

(
6
β

)
δ0 and K

′′ −
(

6
β

)
K =

(
6
β

)
δ
′
0.
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In particular,

K̂β(r) =
−6r

6 + βr2
,

where the hat denotes the Fourier transform of Kβ

K̂β(r) =
∫ ∞

−∞
Kβ(ξ)e−irξdξ.

Using this fact, we obtain a crucial result related with the convolution between L2

functions and the kernel Kβ.

Lemma 4.1. Let Kβ be defined as above. Then we have the following properties:
(i) If v ∈ L2, then Kβ ∗ v is bounded, Kβ ∗ v ∈ L2 and we have the estimates

‖Kβ ∗ v‖ ≤ c‖v‖, and sup
R

|Kβ ∗ v| ≤ c‖v‖.

(ii) If v, w ∈ L2, then Kβ ∗ (vw) is bounded, Kβ ∗ (vw) ∈ L2 and we have the
estimates

‖Kβ ∗ (vw)‖ ≤ c‖v‖‖w‖, and sup
R

|Kβ ∗ (vw)| ≤ c‖v‖‖w‖.

(iii) If v ∈ Cb, w ∈ L2, then Kβ ∗ (vw) is bounded, Kβ ∗ (vw) ∈ L2 and we have
the estimates

‖Kβ ∗ (vw)‖ ≤ c‖v‖Cb
‖w‖, and sup

R

|Kβ ∗ (vw)| ≤ C‖v‖Cb
‖w‖.

(iv) If v ∈ Cs
b , then Kβ ∗ v ∈ Cs+1

b and

‖Kβ ∗ v‖Cs+1
b

≤ c‖v‖Cs
b
.

Proof. (i) Let v ∈ L2. By the Cauchy-Schwartz inequality and Plancharel’s
theorem,

|(Kβ ∗ v)(ξ)| ≤
∫

R

|Kβ(ξ − s)||v(s)|ds ≤ ‖K̂β‖‖v‖.

On the other hand, by Plancharel’s theorem

‖Kβ ∗ v‖2 = ‖K̂β v̂‖2 ≤ sup
R

[
6r

6 + βr2

]2
‖v‖2.

(ii) Let v, w ∈ L2. By the Cauchy-Schwartz inequality,

|(Kβ ∗ (vw))(ξ)| ≤
∫

R

|Kβ(ξ − s)||v(s)||w(s)|ds ≤ sup
R

|Kβ|‖v‖‖w‖.

On the other hand, for any function g ∈ L1(R) we have the following elementary
property:

‖Kβ ∗ g‖ ≤ ‖Kβ‖‖g‖L1(R).
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The remaining inequality follows since vw ∈ L1(R).
(iii) Let v ∈ Cb and w ∈ L2. Since vw ∈ L2, the (i) implies that

|[Kβ ∗ (vw)](ξ)| ≤ C‖vw‖ ≤ C‖v‖Cb
‖w‖.

(iv) Let v ∈ Cs
b and let Φ = Kβ ∗ v. By using (4.3), we conclude that

Φ
′
= −

√
6
β

(|Kβ| ∗ v) +
(

6
β

)
v and Φ(k+2) =

(
6
β

)
Φ(k) +

(
6
β

)
v(k+1), k ≥ 0.

To get the estimates, one has to observe that

‖f ∗ g‖Cb
≤ ‖f‖Cb

||g||L1 .

5. Uniqueness. The goal of this section is to prove the uniqueness of the solu-
tions to the Cauchy problem (1.1). The main tools are the integral formulation (4.2),
estimatives in Lemma 4.1 for the kernel Kβ(r) and Gronwall’s inequality.

Theorem 5.1. Given f, g ∈ L2, there exists at most one solution pair (η, u)
defined on R × [0, T ] to the integral system (4.2) such that (η, u) ∈ L2

T × L2
T .

Proof. Let (ηi, ui) (i=1,2) be two solutions of the integral system (4.2). Let
η = η1 − η2 and u = u1 − u2. Then the pair (η, u) satisfies the couple system of
integral equations

η(ξ, t) =
1

M(ξ)

∫ t

0

[
Kβ ∗

((
1 +

αη2

M(ξ)

)
u +

(
α

M(ξ)

)
ηu1

)]
(ξ, s)ds,

u(ξ, t) =
∫ t

0

[
Kβ ∗

(
η +

(
α

2M2(ξ)

)
(u1 + u2)u

)]
(ξ, s)ds.

In consequence, we have that

‖η(·, t)‖ ≤ C(M, Kβ , α)
∫ t

0

[‖u(·, s)‖ + ‖η2(·, s)‖‖u(·, s)‖ + ‖η(·, s)‖‖u1(·, s)‖] ds,

‖u(·, t)‖ ≤ C(M, Kβ , α)
∫ t

0

[‖η(·, s)‖ + (‖u1(·, s)‖ + ‖u2(·, s)‖) ‖u(·, s)‖]ds.

Using previous inequalities and the hypotheses on ηi and ui we conclude that the pair
(η(·, t), u(·, t)) satisfies for t ∈ [0, T ],

(5.1) ‖η(·, t)‖ + ‖u(·, t)‖ ≤ D

∫ t

0

(‖η(·, s)‖ + ‖u(·, s)‖) ds,

where D ≤ C(M, Kβ , α)
(
1 + ‖η2‖L2

T
+ ‖u1‖L2

T
+ ‖u2‖L2

T

)
. Gronwall’s inequality

implies that ‖η(·, t)‖ + ‖u(·, t)‖ = 0 for t ∈ [0, T ].
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6. Local Existence. In this section, we demonstrate the existence of solutions
to the Cauchy problem associated with the Boussinesq system (1.1) in a small time
interval. This is achieved by applying the contraction mapping theorem to the integral
operator associated to the formulation (4.2). We consider initial data in L2 and in
Cs

b .

Theorem 6.1. Let f and g be functions in L2 and let b = ‖f‖ + ‖g‖. Then,
there exists T = T (b) such that the integral system (4.2) has a solution pair (η, u) ∈
L2

T × L2
T .

Proof. Let ET be defined as the Banach space ET = L2
T ×L2

T with product norm
and let A be the integral operator defined as

(6.1) A
⎛⎝η

u

⎞⎠ =

⎛⎜⎜⎝
f(ξ) + 1

M(ξ)

∫ t

0

[
Kβ ∗

(
1 + αη

M(ξ)

)
u
]
(ξ, s)ds

g(ξ) +
∫ t

0

[
Kβ ∗

(
η + αu2

2M2(ξ)

)]
(ξ, s)ds

⎞⎟⎟⎠ .

We will see that a solution of the integral system is characterized as a fixed point of
the operator A on ET by using the contraction mapping principle, for T small enough.

The first observation is that as a consequence of Lemma 4.1, A maps ET into
itself. On the other hand, given (η1, u1) and (η2, u2) in ET , we conclude that for some
positive constant C = C(M, α, Kβ),∥∥∥∥A(η1

u1

)
−A

(
η2

u2

)∥∥∥∥
ET

≤ CT
[
2 + ‖η2‖L2

T
+ 2‖u1‖L2

T
+ ‖u2‖L2

T

]
·

‖(η1, u1) − (η2, u2)‖ET .

In fact, using the Hölder inequality and Lemma 4.1, we get the following estimates,

∥∥∥∥A(η1

u1

)
−A

(
η2

u2

)∥∥∥∥
ET

=
∥∥∥∥∫ t

0

Kβ ∗
(

(η1 − η2) +
α(u1 − u2)(u1 + u2)

2M2(ξ)

)
(ξ, s) ds

∥∥∥∥
L2

T

+
∥∥∥∥∫ t

0

1
M(ξ)

Kβ ∗
(

(u1 − u2)
(

1 +
αη2

M(ξ)

)
+

α(η1 − η2)u1

M(ξ)

)
(ξ, s) ds

∥∥∥∥
L2

T

≤ TC
[(

1 + ‖η2‖L2
T

)
‖u1 − u2‖L2

T
+ ‖η1 − η2‖L2

T

(
1 + ‖u1‖L2

T

)

+
(
‖u1‖L2

T
+ ‖u2‖L2

T

)
‖u1 − u2‖L2

T

]

≤ TC
[
2 + ‖η2‖L2

T
+ 2‖u1‖L2

T
+ ‖u2‖L2

T

]
‖(η1, u1) − (η2, u2)‖ET

,

where C = C(M, Kβ , α). Now suppose that (ηi, ui) belongs to the closed ball BR(0)
of radius R around zero in ET , for i = 1, 2, then we have that∥∥∥∥A(η1

u1

)
−A

(
η2

u2

)∥∥∥∥
ET

≤ TC[2 + 4R] ‖(η1, u1) − (η2, u2)‖ET
.
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So, if we define Θ = TC[2 + 4R], then

(6.2)
∥∥∥∥A(η1

u1

)
−A

(
η2

u2

)∥∥∥∥
ET

≤ Θ ‖(η1, u1) − (η2, u2)‖ET
.

Now suppose that (η, u) ∈ BR(0). Then, by applying (6.2),∥∥∥∥A(η
u

)∥∥∥∥
ET

≤
∥∥∥∥A(η

u

)
−A

(
0
0

)∥∥∥∥
ET

+
∥∥∥∥(f

g

)∥∥∥∥
L2×L2

≤ Θ ‖(η, u)‖ET
+ ‖f‖ + ‖g‖

≤ ΘR + b.

In consequence, if we have that ΘR+b ≤ R, then A maps BR(0) into BR(0). To reach
previous condition, let Θ = 1

2 , T (b) = 1
2 (C[2 + 4R])−1 and R = 2b. Then we have

that ΘR + b ≤ R and that A is a contraction on BR(0). Under those conditions, the
contraction mapping principle assures the existence a fixed point for the operator A
on BR(0). In other words, there exists a solution (η, u) on ET of the integral system
(4.2), as desired.

Remark 6.1. The same type of estimates may be established in the space Cs
T to

obtain a local existence result in this space. More exactly,

Corollary 6.2. Suppose that f and g are functions in Cs
b . If b = ‖f‖Cs

b
+‖g‖Cs

b
.

Then, there exists T = T (b) such that the integral system (4.2) has a solution pair
(η, u) ∈ Cs

T × Cs
T .

7. Regularity of solutions. This section explores the regularity of the solutions
obtained in the Theorem 6.1. Again the regularizing properties of the kernel Kβ (in
Lemma 4.1) play an important role.

Theorem 7.1. Let (η, u) ∈ L2
T × L2

T be the solution of (4.2) on [0, T ] cor-
responding to initial data (f, g). Suppose that f, g ∈ L2 ∩ C2

b and M ∈ C2
b . Then

(η, u) ∈ C2,∞
T × C2,∞

T .

Proof. Suppose first that f, g ∈ L2 ∩ C2
b . Now, a straightforward computation

using Lemma 4.1 shows that for some constant C depending on Kβ, α and M

‖η(·, t)‖Cb
= sup

ξ∈R

|η(ξ, t)| ≤ ‖f‖Cb
+ C

∫ t

0

(1 + ‖η(·, s)‖) ‖u(·, s)‖ ds,

≤ ‖f‖Cb
+ CT

(
1 + ‖η‖L2

T

)
‖u‖L2

T
,

‖u(., t)‖Cb
= sup

ξ∈R

|u(ξ, t)| ≤ ‖g‖Cb
+ C

∫ t

0

(‖η(·, s)‖ + ‖u(·, s)‖2
)

ds

≤ ‖g‖Cb
+ CT

(
‖η‖L2

T
+ ‖u‖2

L2
T

)
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In other words, η, u ∈ C0
T . On the other hand, by equation (4.3) we have that

(Mη)ξ = (Mf)
′
+
∫ t

0

{(
6
β

)(
1 +

αη

M(ξ)

)
−
√(

6
β

)[
|Kβ| ∗

(
1 +

αη

M(ξ)

)
u

]}
ds,

(u)ξ = g
′
+
∫ t

0

{(
6
β

)(
η +

αu2

2M2(ξ)

)
−
√(

6
β

)[
|Kβ| ∗

(
η +

αu2

2M2(ξ)

)]}
ds.

Note that∣∣∣∣|Kβ | ∗
(

1 +
αη

M(ξ)

)
u

∣∣∣∣ ≤ ‖Kβ‖
∥∥∥∥(1 +

αη

M(ξ)

)
u

∥∥∥∥ ≤ C (1 + ‖η‖CT ) ‖u‖L2
T
,

and∣∣∣∣|Kβ| ∗
(

η +
αu2

2M2(ξ)

)∣∣∣∣ ≤ ‖Kβ‖
∥∥∥∥η +

αu2

2M2(ξ)

∥∥∥∥ ≤ C
(
‖η‖L2

T
+ ‖u‖CT ‖u‖L2

T

)
.

In consequence Mη, u ∈ C1
T . Using this fact and the recursive formulae for the second

derivatives

(Mη)ξξ = (Mf)
′′

+
(

6
β

)
M(η − f) +

(
6
β

)∫ t

0

[(
1 +

αη

M(ξ)

)
u

]
ξ

ds,

(u)ξξ = g
′′

+
(

6
β

)
(u − g) +

(
6
β

)∫ t

0

[
η +

αu2

2M2(ξ)

]
ξ

ds,

we also conclude that Mη, u ∈ C2
T . Under the assumptions on M , we obtain that η

is already in C2
T , as desired.

Finally, to establish that η, u ∈ C2,∞
T , we have to show that ∂j

t η, ∂j
t u ∈ C2

T for
any j ∈ N. Now, by the fundamental theorem of calculus we have that

ηt =
1
M

[
Kβ ∗

(
1 +

αη

M(ξ)

)
u

]
,

ut = Kβ ∗
(

η +
αu2

2M2(ξ)

)
.

Since
(
1 + αη

M(ξ)

)
u and η + αu2

2M2(ξ) belong to C2
T , we conclude that ηt and ut belong

to C2
T as well (by lemma 4.1). Now, one may show inductively that ∂m

t η and ∂m
t u

belong to C2
T , for each m ∈ N. Then, η, u ∈ C2,∞

T .
We want to point out that by using an induction argument on s, it is straightfor-

ward to prove that

Corollary 7.2. Let (η, u) ∈ L2
T × L2

T be the solution of (4.2) on [0, T ] cor-
responding to initial data (f, g). Suppose that f, g ∈ L2 ∩ Cs

b and M ∈ Cs
b for some

s ≥ 0. Then (η, u) ∈ Cs,∞
T × Cs,∞

T .
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The key fact to establish this result is that the (k + 2) derivative of Mη and u
are given by,

(Mη)(k+2) = (Mf)(k+2) +
(

6
β

)
(η − f)(k) +

(
6
β

)∫ t

0

[(
1 +

αη

M(ξ)

)
u

](k+1)

ds,

(u)(k+2) = g(k+2) +
(

6
β

)
(u − g)(k) +

(
6
β

)∫ t

0

[
η +

αu2

2M2(ξ)

](k+1)

ds.

Remark 7.1. As mentioned above, due to the equation (2.11) the free surface
coefficient M(ξ) is a C∞ function. However, we point out that the proof of Theorem
7.1 only requires the second order derivatives of the coefficient M(ξ).

8. Global existence. As a general principle, global existence results in time
follows as a consequence of the local existence results and the existence of a conserved
quantity in time which is related with the space norm. For this particular problem, it is
not straightforward to find a conserved quantity. However, if we have a solution of the
Boussinesq system (1.1) (η, u) and we perform the substitution u(ξ, t) = M(ξ)v(ξ, t),
then the pair (η, v) satisfies the following system with g̃ = g

M ,

(8.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
M(ξ)ηt + ∂ξ

[(
1 + αη

M(ξ)

)
Mv
]
− β

6 ∂2
ξ (M(ξ)ηt) = 0, (ξ, t) ∈ R × [0,∞)

M(ξ)vt + ηξ + α
2 ∂ξ

[
v2
]− β

6 ∂2
ξ (M(ξ)vt) = 0, (ξ, t) ∈ R × [0,∞)

η(ξ, 0) = f(ξ), v(ξ, 0) = g̃(ξ), ξ ∈ R,

Formulation above has analogous numerical properties as system (1.1) (see Section 3)
and therefore it is a good candidate for simulating multiscale phenomena of weakly
nonlinear, weakly dispersive waves in a channel of disordered depth.

Now, for solutions (η, v) of this system, we have the existence of a non linear
functional, which is conserved in time on solutions of the integral system. The energy
type functional is given by

(8.2) E(t) = E(t, η, v) =
1
2

∫
R

[(
1 +

αη(ξ, t)
M(ξ)

)
[M(ξ)v(ξ, t)]2 + M(ξ)η2(ξ, t)

]
dξ.

Lemma 8.1. Let (η, v) be a solution of (8.1) with η, v ∈ L2
T ∩ C2

T and let E be
defined as (8.2). Then E(t) = E(0), for all t in [0, T ].
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Proof. Differentiating with respect to t, we have that

E ′
(t) =

∫
R

[(
1 +

αη

M(ξ)

)
M2(ξ)vvt +

α

2
M(ξ)v2ηt + M(ξ)ηηt

]
dξ

=
∫

R

{
M(ξ)vt

[(
1 +

αη

M(ξ)

)
M(ξ)v − β

6
∂ξ [M(ξ)ηt]

]

+M(ξ)ηt

[
η +

α

2
v2 − β

6
∂ξ [M(ξ)vt]

]
+

β

6
∂ξ [(M(ξ)vt)(M(ξ)ηt)]

}
dξ

=
∫

R

{[(
1 +

αη

M(ξ)

)
M(ξ)v − β

6
∂ξ [M(ξ)ηt]

] [
η +

α

2
v2 − β

6
∂ξ [M(ξ)vt]

]}
ξ

dξ

= 0.

In other words, E(t) = E(0).

Theorem 8.2. Let f, g̃ ∈ L2 ∩ C2
b (R) and suppose that

(8.3) sup
R

[
α|f(ξ)|
M(ξ)

]
≤ ρ < 1.

Then there exists a unique classical solution (η, v) of the initial value problem (8.1)
which, with its temporal derivatives of all orders, lies in L∞ × L∞ and in C2

T × C2
T

for each T > 0.

Proof. Let B1 an upper bound for ‖f‖ + ‖g̃‖, which will be chosen properly
below. By the local existence result, there is a solution (η, v) in ET for T = T (B1).
Since η ∈ CT , the map, t → η(·, t) from [0, T ] to Cb is continuous. Then, there exists
at least for some small time interval, [0, t0], in which for t ∈ [0, t0],

0 < 1 − ρ ≤ 1 +
αη(ξ, t)
M(ξ)

≤ 1 + ρ,

Since −1 < −ρ ≤ infξ∈R

αη(ξ,t0)
M(ξ) ≤ αη(ξ,t0)

M(ξ) ≤ supξ∈R

αη(ξ,t0)
M(ξ) ≤ ρ < 1, this argument

may be repeated with the general conclusion

(8.4)
α |η(ξ, t)|

M(ξ)
≤ ρ < 1,

as long as the solution continue to exist, independent of t ≥ 0. In fact, let t ≤ t0.
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Then,

1
2
(‖v(·, t)‖2 + ‖η(·, t)‖2

)
=

1
2

∫
R

{
v2(ξ, t) + η2(ξ, t)

}
dξ

≤ 1
2

∫
R

{
1

(1 − ρ) infR M2

(
1 +

αη(ξ, t)
M(ξ)

)
[M(ξ)v(ξ, t)]2

+
(

M(ξ)
infR M

)
η2(ξ, t)

}
dξ

≤ max
{

1
(1 − ρ) infR M2

,
1

infR M

}
E(t)

≤ max
{

1
(1 − ρ) infR M2

,
1

infR M

}
E(0) :=

1
8
B2

1 .(8.5)

Now, consider the pair (η̃, ṽ) ∈ CT × CT , where η̃(ξ, t) = η(ξ, t + t0) and ṽ(ξ, t) =
v(ξ, t + t0). Since B1 is now fixed, then previous estimates applied to (η̃, ṽ) implies
that (8.4) holds for t0 ≤ t ≤ 2t0, and so for 0 ≤ t ≤ T , because

‖v(·, t0)‖ + ‖η(·, t0)‖ = ‖ṽ(·, 0)‖ + ‖η̃(·, 0)‖ ≤ B1.

In consequence, this choosing of B1 and that estimate (8.4) holds for 0 ≤ t ≤ T
assure that, ‖v(·, t)‖+‖η(·, t)‖ ≤ B1, independent of t. Thus, the contraction mapping
principle in Theorem 6.1 may be repeated using η(·, T ) and u(·, T ) as the initial data,
to extend (η, u) to the interval [0, 2T (B1)]. Continuing in the way, a global solution to
the integral system (4.2) can be defined. Moreover, estimate (8.4) implies that the
solution lies in L∞ × L∞. By differentiating successively the integral equation with
respect to t, one can show that temporal derivatives lie in L∞ × L∞. The regularity
claimed follows by Theorem 7.1.

Remark 8.1. Condition (8.3) is natural from the physical point of view. In
first place, αf(ξ)/M(ξ) > −1 means that the channel does not run dry at the start.
Moreover, the dimensionless parameter α is small for small amplitude waves. Thus,
it is reasonable to suppose that αf(ξ)/M(ξ) < 1.

9. Continuous dependence on initial conditions. We prove the following
theorem.

Theorem 9.1. Let (η1, v1) and (η2, v2) in (L2
T ,L2

T ), the solution pairs to the
system of equations in (8.1), corresponding to the initial data (f1, g1) and (f2, g2)
which satisfy the hypotheses of Theorem 8.2. Then we have that

(9.1) ‖η‖L2
T

+ ‖v‖L2
T
≤ (‖f‖ + ‖g‖)eDT ,

where η = η1 − η2, v = v1 − v2, f = f1 − f2 and g = g1 − g2. Furthermore, the
constant D may be bounded independently of the time.

Proof. Proceeding in a similar way as in the uniqueness proof, we obtain that the
pair (η, v) satisfies for any t ∈ [0, T ] the system of integral equations

η(ξ, t) = f(ξ) +
1

M(ξ)

∫ t

0

Kβ ∗
[(

1 + α
η2

M

)
Mv + αηv1

]
(ξ, s) ds,(9.2)

v(ξ, t) = g(ξ) +
1

M(ξ)

∫ t

0

Kβ ∗
(
η +

α

2
(v1 + v2)v

)
(ξ, s) ds.(9.3)
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Therefore by using the estimates of the kernel Kβ in Lemma 4.1 we obtain

‖η(·, t)‖ ≤ ‖f‖ + C(M, Kβ, α)
∫ t

0

[‖v(·, s)‖ + ‖η2(·, s)‖‖v(·, s)‖ + ‖η(·, s)‖‖v1(·, s)‖] ds,

‖v(·, t)‖ ≤ ‖g‖ + C(M, Kβ, α)
∫ t

0

[‖η(·, s)‖ + (‖v1(·, s)‖ + ‖v2(·, s)‖) ‖v(·, s)‖]ds.

Using previous inequalities and the hypotheses on ηi and vi we conclude that the pair
(η(·, t), u(·, t)) satisfies for any t ∈ [0, T ],

(9.4) ‖η(·, t)‖ + ‖v(·, t)‖ ≤ ‖f‖ + ‖g‖ + D

∫ t

0

(‖η(·, s)‖ + ‖v(·, s)‖) ds,

where D ≤ C(M, Kβ, α)
(
1 + ‖η2‖L2

T
+ ‖v1‖L2

T
+ ‖v2‖L2

T

)
. Gronwall’s inequality

implies the estimate (9.1). Since the initial data satisfy the hypotheses of Theorem
8.2 we also have the estimates

(9.5) ‖vi‖L2
T
≤ 1

2
B1, ‖ηi‖L2

T
≤ 1

2
B1, i = 1, 2,

where B1 is the (time independent) constant defined in Theorem 8.2 (c.f. equation
(8.5)).

Remark 9.1. Note that the constant B1 depends only on the dimensionless
parameter α, the coefficient M(ξ), the initial wave elevation and the initial energy
E(t = 0).

10. Conclusions. We established global existence and uniqueness of solutions
of a Boussinesq type system forced by highly oscillatory coefficients. In the analysis,
we have shown that the solution pair (η, u) of the Boussinesq system (1.1) corresponds
to a fixed point of the nonlinear operator A(η, u), defined in Section 6. When the
time T > 0 is small enough, the operator A(η, u) is a contraction in a small enough
ball of the space L2

T × L2
T . Thus, the local existence of solutions is guaranteed by

the contraction mapping principle. The main ingredient in the uniqueness proof was
the Gronwall’s inequality. For smooth enough initial data, the local solutions were
extended in time by using the nonlinear energy type functional E(t) (defined in Section
8), which is conserved in time along solutions of equations (8.1) obtained through a
change of variables in system (1.1). The existence of this quantity is one of the
more significant theoretical property of this particular Boussinesq formulation. The
global solutions were found to be classical provided the initial data belong to the
space L2(R) ∩ C2

b (R) and satisfy the condition (8.3). Within the proof of the global
existence we found the interesting fact that the wave elevation and the fluid velocity
remain bounded independently of time, provided that the initial wave elevation is
bounded.

We point out that the technique used in this work can not be extended to other
Boussinesq formulations such as the one given by equations (2.12)-(2.13) due to the
absence of the regularizing term in ξξt in the mass conservation equation (2.12). In
such a case, the space ET = L2

T × L2
T is not left invariant by the integral operator

associated with this Boussinesq system. The existence of global solutions to system
(2.12)-(2.13) is an open problem to be considered in a further work.
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System (1.1) is a modification of the terrain-following formulation in [12] with
interesting advantages from the numerical point of view. The stiffness problem pro-
moted by the topography is removed by introducing an appropriate system of curvi-
linear coordinates in the derivation of system (1.1) from the full potential theory
equations. Furthermore, we can adapt the unconditionally stable and fourth order
accurate algorithm described in [3] for approximating solutions of system (1.1) when
the channel is of finite length. The computational cost per time step is of order
G where G is the number of grid points used in the spatial discretization. This is
comparable to other existing Boussinesq solvers such as that in [10]. To understand
numerical and theoretical aspects for system (1.1) would become important in order
to study water waves models which are weakly nonlinear and weakly dispersive in
presence of a rough medium.
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[9] J.C. Muñoz Grajales and A. Nachbin, Dispersive wave attenuation and refocusing due to

disordered orographic forcing, to appear in SIAM J. Appl. Math.
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