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DEFORMATION QUANTIZATION
AND IRRATIONAL NUMBERS

Eli Hawkins and Alan Haynes

Diophantine approximation is the problem of approximating a real
number by rational numbers. We propose a version of this in which
the numerators are approximately related to the denominators by a
Laurent polynomial. Our definition is motivated by the problem of
constructing strict deformation quantizations of symplectic manifolds.
We show that this type of approximation exists for any real number and
also investigate what happens if the number is rational or a quadratic
irrational.

1. Introduction

LetM be a manifold with symplectic form ω ∈ Ω2(M). The starting point of
geometric quantization is a complex line bundle L→M (with a Hermitian
inner product and a compatible connection) whose curvature equals ω.
This can be used to construct a Hilbert space and some correspondence

between operators and functions on M. If M is the phase space of some
classical mechanical system, then these are supposed to be the state space
of quantum mechanics and a correspondence between quantum and classi-
cal observables. However, the rules for how quantum and classical physics
should correspond [3,7,11] are stated in terms of the classical limit in which
“Planck’s constant” h̄ approaches 0.
Changing Planck’s constant is equivalent to rescaling the symplectic form,

and this can be achieved by taking tensor powers of the line bundle. The
curvature of L⊗k is kω.
Using these tensor powers and identifying h̄ = 1

k , a strict deformation
quantization can be constructed. In particular, the commutator of operators
corresponds approximately to ih̄ times the Poisson bracket, which is defined
by treating ω as a matrix and inverting it.
Unfortunately, this procedure is not always possible. The line bundle L

only exists if the symplectic form ω satisfies an integrality condition —
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namely, that the integral of ω over any closed surface must be an integral
multiple of 2π.
What can we do if ω violates this condition? In particular, what if ω is

not even proportional to an integral form? The solution is to take some more
general sequence of line bundles, rather than just tensor powers of a fixed
line bundle. The sequence of values of h̄ may also be very different.
The point is that the quantum-classical correspondence only refers to the

classical limit, so the curvatures of the line bundles only need to approximate
multiples of ω.
The difficult part of this is topological. The Chern classes of these line bun-

dles are integral cohomology classes, so they lie on a lattice insideH2(M,R).
The condition on the classical limit means that these lattice points must con-
verge toward a given line in H2(M,R), namely, the set of multiples of [ω].
If H2(M,R) ∼= R2, then this is a matter of approximating a real number

by rational numbers — Diophantine approximation. To construct a strict
deformation quantization of M, we need a Diophantine approximation to
the ratio between the components of [ω].
This would be enough to satisfy some definitions of strict deformation

quantization, but those definitions do not impose very good behavior in the
classical limit. In particular, the Jacobi identity for the Poisson bracket is an
unnatural and unnecessary condition unless there is some stronger condition
on the classical limit. One of us [7] has proposed a definition of “order N
strict deformation quantization” where 2 ≤ N ≤ ∞. This leads to a stronger
condition on the sequence of Chern classes and a more restrictive version of
Diophantine approximation.
The purpose of this paper is to study this kind of approximation.
The above motivation was based on the standard construction of geo-

metric quantization, but the modified version of geometric quantization
in [6] only requires a weaker integrality condition: the integral of ω over
any S2 ⊂M should be a multiple of 2π.
On the other hand, it appears that some sort of integrality condition is

necessary from first principles, not just for some constrictions. In [7], one of
us proved this for the symplectic S2. In [5], Fedosov proved an integrality
condition for “asymptotic operator representations”.

1.1. Outline. In Section 2, Definition 2.1 is our definition for an “order N
rational approximation” to a real number α ∈ R; this is a more restrictive
form of Diophantine approximation. After some background on continued
fractions, Corollary 2.7 proves that these rational approximations always
exist.
In Section 3, we motivate this definition in two ways by considering the

strict deformation quantization of a symplectic manifold when the cohomol-
ogy class of the symplectic form is not a multiple of an integral class. When
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the cohomology class is integral, then a quantization can be constructed
using the tensor powers of a fixed line bundle, but for a more general sym-
plectic form, Theorem 3.4 shows that a quantization can be constructed
using a sequence of line bundles; rational approximation arises from the
sufficient conditions in this construction. On the other hand, Theorem 3.6
shows that infinite-order rational approximation arises as a necessary con-
dition for the existence of a deformation quantization with some additional
conditions.
In Section 4, we consider rational approximations. Proposition 4.1 classi-

fies the rational approximations when α is rational. When α is a quadratic
irrational (the solution to a quadratic equation with integer coefficients)
Theorem 4.2 classifies some rational approximations and 4.3 shows that
they exist. Finally, in Section 5, we discuss unanswered questions.

2. Rational approximation

2.1. Definition. Diophantine approximation is one of the oldest topics in
number theory. Given a number α ∈ R, the problem is to approximate α by
rational numbers; that is, we need a set of pairs of integers (r, s), such that

(2.1)
r

s
→ α

as s increases. This is a rather weak condition, so one usually considers the
stronger condition,

(2.2) r − sα→ 0.

As we explain in Section 3, the problem of deformation quantization
motivates us to define a more restrictive condition:

Definition 2.1. An order N ∈ N rational approximation of α ∈ R is an
infinite subset R ⊂ Z

2, such that there exist real numbers γ1, . . . , γN ∈ R

for which
r

s
= α+ γ1s

−1 + γ2s
−2 + · · ·+ γNs

−N + o
(
[|r|+ |s|]−N

)
,

as |r| + |s| → ∞, for (r, s) ∈ R. We will refer to the numbers s as the
denominators. An infinite-order rational approximation of α is a subset R
satisfying this condition for any N .

There is nothing special about the expression |r|+|s| here. It is simply the
easiest norm on R

2 to write down. Any other norm would give an equivalent
definition.
It is easy to see that the expansion coefficients γ1, . . . , γN are uniquely

determined by R. In the case of infinite order, this is an asymptotic expan-
sion of r as a function of s, although r need not actually be a function
of s.
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In terms of this definition, the condition (2.1) is the definition of an order
0 rational approximation, and (2.2) means an order 1 rational approximation
with γ1 = 0.

2.2. Continued fractions. In our investigation of finite- and infinite-order
rational approximations, we will use continued fractions. Every irrational
real number α has a simple continued fraction expansion

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

=: [a0; a1, a2, a3, . . . ],

where a0 is an integer and a1, a2, . . . is a sequence of positive integers. The
integers a0, a1, . . . are uniquely determined by α and are called the partial
quotients in this expansion. The rational numbers

pn

qn
:= [a0; a1, . . . , an], n ≥ 0

are called the principal convergents to α. We will always assume that qn > 0
and gcd(pn, qn) = 1 for each n. Finally, for n ≥ 0 we define the complete
quotients in the continued fraction expansion of α by

ζn := [an; an+1, . . .],

and we also define the quantities

ξn :=
qn−1

qn
.

The most basic facts about continued fractions are that

pn+1 = an+1pn + pn−1, qn+1 = an+1qn + qn−1, and(2.3)

1
2qnqn+1

≤
∣∣∣∣α− pn

qn

∣∣∣∣ ≤ 1
qnqn+1

.(2.4)

In our applications, we will also use the facts that

α− pn

qn
=

(−1)n
q2n(ζn+1 + ξn)

and(2.5)

ξn = [0; an, an−1, . . . , a1].(2.6)

Proofs of all of these facts can be found in [12]. The following proposition
gives a representation of natural numbers in terms of denominators of con-
vergents to α. This is known as the Ostrowski expansion of a natural number
with respect to α.
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Proposition 2.1. [12, Ch. II] Suppose α ∈ R is irrational. Then for every
s ∈ N there is a unique integer M ≥ 0 and a unique sequence {cn+1}∞n=0 of
integers such that qM ≤ s < qM+1 and

(2.7) s =
∞∑

n=0

cn+1qn,

with 0 ≤ c1 < a1 and 0 ≤ cn ≤ an for all n ≥ 1,

cn+1 = an+1 =⇒ cn = 0,

and
cn+1 = 0 for all n > M.

We can construct a similar expansion for real numbers. For n ≥ 0 let

(2.8) Dn := qnα− pn.

By (2.3) these quantities satisfy the identities

(2.9) an+1Dn = Dn+1 −Dn−1 for n ≥ 1,

and it is also not difficult to show that

(2.10) Dn = (−1)n‖qnα‖ for n ≥ 1,

where ‖ · ‖ denotes the distance to the nearest integer. The following propo-
sition provides us with a way of expanding real numbers in terms of the
quantities Dn. We will call this the Ostrowski expansion of a real number
with respect to α.

Proposition 2.2. [12, Ch. II] Suppose α ∈ [0, 1) is an irrational number
with continued fraction expansion denoted as above. For any γ ∈ [−α, 1−α)
that satisfies

(2.11) ‖sα− γ‖ > 0 for all s ∈ Z

there is a unique sequence {bn+1}∞n=0 of integers such that

γ =
∞∑

n=0

bn+1Dn,(2.12)

with 0 ≤ b1 < a1, 0 ≤ bn+1 ≤ an+1 for n ≥ 1, and
bn = 0 whenever bn+1 = an+1 for some n ≥ 1.

We point out that (2.3), (2.4) and (2.10) together imply that the series
(2.12) is absolutely convergent. The reason for our interest in Ostrowski
expansions is that they give us a precise and convenient way of working with
the quantities ‖sα− γ‖, s ≥ 1, as illustrated by the following proposition.
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Proposition 2.3 ( [2]). Let α ∈ [0, 1) be irrational and suppose that γ ∈
[−α, 1 − α) satisfies (2.11). Choose an integer s ∈ N and, referring to the
Ostrowski expansions (2.7) and (2.12), write δn+1 := cn+1− bn+1 for n ≥ 0.
Let m be the smallest integer for which δm+1 �= 0. If m ≥ 4 then

(2.13) ‖sα− γ‖ =
∣∣∣∣∣
∞∑

n=m

δn+1Dn

∣∣∣∣∣ = sgn(δm+1Dm) ·
∞∑

n=m

δn+1Dn.

Combining this proposition with (2.5) and (2.10) gives us the following
corollary.

Corollary 2.4. With the same notation as in Proposition 2.3, if m ≥ 4
then

‖sα− γ‖ = (−1)m sgn(δm+1) ·
∞∑

n=m

(−1)nδn+1

qn(ζn+1 + ξn)
.

The essence of Proposition 2.3 is that when m ≥ 4 the term δm+1Dm

dominates the rest of the series in (2.13). This can be exploited to give good
estimates for the quantities ‖sα− γ‖. For our purposes, we only need upper
bounds, and the following corollary of Proposition 2.3 (proved in [2]) will
suffice.

Corollary 2.5. With the same notation as in Proposition 2.3, if m ≥ 4
then

‖sα− γ‖ ≤ (|δm+1|+ 2)‖qmα‖.
2.3. Existence. Now we return to our problems about finite- and infinite-
order rational approximations. First, we show that every irrational number
has an infinite-order approximation.

Theorem 2.6. Let Ψ : N → R+ be a decreasing function, and suppose that
α ∈ [0, 1) is irrational. There exists a real number γ and a strictly increasing
sequence {sk}∞k=1, such that

‖skα− γ‖ ≤ Ψ(sk) for k ≥ 1.

Proof. First, we construct a sequence {nk} of positive integers by setting
n1 = 4 and then, for k ≥ 1, choosing nk+1 to be the smallest integer greater
than nk + 1 for which

3
qnk+1

≤ Ψ(qnk+1).

Let γ ∈ R be the real number with Ostrowski expansion, in terms of α,
given by

bnk+1 = 1, for all k ∈ N, and

bn+1 = 0, for all n ∈ N � {nk},
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and for each k let sk be defined by

sk =
nk∑

n=0

bn+1qn =
k∑

m=1

qnm .

Then by Corollary 2.5 and inequality (2.4) we have that

‖skα− γ‖ ≤ 3‖qnk+1
α‖ ≤ 3

qnk+1+1
.

Since sk ≤ qnk+1 and Ψ is decreasing, the right-hand side here is less than
Ψ(sk). �

For example, by choosing Ψ(s) = e−s we obtain the following corollary.

Corollary 2.7. If α ∈ R is irrational, then there exists an infinite-order
rational approximation R to α with γj = 0 for all j ≥ 2. That is, there
exists a real number γ1 such that, for all N ∈ N,

r

s
= α+ γ1s

−1 + o
(
[|r|+ |s|]−N

)
, as |s| → ∞, (r, s) ∈ R.

Proof. With sk defined by Theorem 2.6, let rk be the nearest integer to αsk.
The rational approximation is then

R = {(rk, sk) | k ∈ N}.
�

The proof of Theorem 2.6 tells us how to construct infinite-order approxi-
mations to any irrational number. A more subtle problem is to try to con-
struct infinite-order approximations where the denominators do not grow
too quickly. In Section 6, we will demonstrate a construction for quadratic
irrationals which produces infinite-order approximations with denominators
that grow at most exponentially. By contrast, for the integers sk constructed

in the proof of Theorem 2.6 with Ψ(s) = e−s, we have that sk ≥ ee
. . .

(k
times).

3. Quantization

3.1. Definition. The idea of strict deformation quantization was conceived
by Rieffel [11]. There are several variations on his definition and several ways
of describing the structure. We will use a continuous field of C∗-algebras and
a quantization map.
This is the definition of quantization given in [7]:

Definition 3.1. Let A0 be a Poisson ∗-algebra of continuous functions on
a Poisson manifold M, large enough to separate points. An order N strict
deformation quantization (I, A,Q) ofM consists of: a locally compact subset
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I ⊆ R with 0 ∈ I an accumulation point, a continuous field of C∗-algebras
A over I, and a ∗-linear map Q : C∞0 (M)→ Γ(I, A) such that:
(1) At 0 ∈ I, this map is an inclusion Q0 : A0 ↪→ A0 ⊂ Cb(M) of A0 as a

dense ∗-subalgebra;
(2) for f, g ∈ A0, there exist functions C1(f, g), . . . , CN (f, g) ∈ A0 such

that

Qh̄(f)Qh̄(g) = Qh̄(fg + h̄C1(f, g) + · · ·+ h̄NCN (f, g)) + o(h̄N );

(3) for f, g ∈ A0,

C1(f, g)− C1(g, f) = i{f, g}.
An infinite-order strict deformation quantization satisfies these conditions
for any N .

It is easy to check that Cj(f, g) is uniquely determined by f and g, which
justifies this cumbersome notation. This uniqueness implies that Cj is bilin-
ear, but it is not necessarily bidifferential.
In practice, the given structure is usually the collection of algebras and

maps Qh̄ : A0 → Ah̄ for h̄ �= 0 ∈ I. The continuous field structure is then
constructed from this.

3.2. A construction. LetM be a compact, Kähler manifold with symplec-
tic form ω ∈ Ω2(M). Suppose that L→M is a Hermitian, holomorphic line
bundle with curvature, curvL = ω. The space L2

hol(M, L) of holomorphic
sections of L is finite-dimensional, so it is automatically a closed subspace of
the Hilbert space L2(M, L) of square-integrable sections of L (defined using
the Hermitian inner product and the Kähler volume form). Let

ΠL : L2(M, L)→ L2
hol(M, L)

be the orthogonal projection onto this subspace. There is an obvious repre-
sentation of the algebra of continuous functions C(M) on L2(M, L), defined
by pointwise multiplication. In particular, if f ∈ C(M) and ψ ∈ L2

hol(M, L),
then the product fψ ∈ L2(M, L) is square-integrable, so we can construct
a vector ΠL(fψ) ∈ L2

hol(M, L). This construction defines a map,

TL : C(M)→ L[L2
hol(M, L)],

TL(f)ψ := ΠL(fψ).

The tensor powers L⊗k are also positive, Hermitian, holomorphic line
bundles, but with the curvature rescaled:

curvL⊗k = kω.

For any smooth functions, f and g, the product TL⊗k(f)TL⊗k(g) can be
asymptotically expanded in k. To be precise:
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Theorem 3.1 ([13]). For any f, g ∈ C∞(M), there exist unique functions
Cω

j (f, g) ∈ C∞(M) for j = 0, 1, 2, . . . starting with Cω
0 (f, g) = fg such that

for any N ∈ N,

(3.1) TL⊗k(f)TL⊗k(g) =
N∑

j=0

k−j TL⊗k [Cω
j (f, g)] +O(k−N−1)

for all k ∈ N. Antisymmetrizing Cω
1 gives,

Cω
1 (f, g)− Cω

1 (g, f) = i{f, g}ω,

the Poisson bracket determined by ω as a symplectic form. The norm of
TL⊗k(f) converges to,

(3.2) lim
k→∞

‖TL⊗k(f)‖ = ‖f‖.

Equation (3.1) for N = 0 and equation (3.2) imply that there exists a
unique minimal continuous field A of C∗-algebras over {0, . . . , 1

3 ,
1
2 , 1} ⊂ R

with A0 := C(M) and A1/k := L[L2
hol(M, L⊗k)], such that for any f ∈

C∞(M),

Q0(f) = f,

Q1/k(f) = TL⊗k(f)

defines a continuous section h̄ 
→ Qh̄(f). The rest of the theorem shows that
this is an infinite-order quantization ofM.

Theorem 3.2. For each j, Cω
j (f, g) is a bidifferential operator on f and g,

determined by ω. The value of Cω
j (f, g) at each point of M depends contin-

uously upon ω in the C∞ Fréchet topology (or in the Cm topology for some
m). As a function of ω, it is homogeneous of degree −j.
Proof. This follows from the results of [9], where it is shown that these are
the terms of a “star product with separation of variables” (although with
the order of multiplication reversed) and that the formal 2-form classifying
this product is simply constructed from ω. By the results of [8], this implies
that Cω

j can (in principle) be constructed from the complex structure, ω,
and finitely many of its derivatives. This implies the stated continuity.
The homogeneity is because the deformation parameter h̄ = 1/k and

symplectic form only enter the formal 2-form in the combination h̄−1ω, and
the star product can be constructed from the formal 2-form. �

This homogeneity implies that equation (3.1) can be stated more directly
in terms of curvL⊗k = kω as,

(3.3) TL⊗k(f)TL⊗k(g) =
N∑

j=0

TL⊗k [Ckω
j (f, g)] +O(k−N−1).
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This approach of taking tensor powers of a fixed line bundle gives a quan-
tization of M with the symplectic form ω, which is by definition a closed,
type (1, 1) differential form, but it is not arbitrary. Since the cohomology
class [ ω

2π ] = c1(L) ∈ H1,1(M) is the first Chern class of L, it must be
integral.
Constructing a quantization for a symplectic form ω without this inte-

grality property is more subtle. Instead of taking tensor powers of a fixed
line bundle we can take a more general sequence of line bundles, and instead
of identifying h̄ with 1

k , we can take a more general sequence of values.

Definition 3.2. Let {Lk}∞k=1 be some sequence of holomorphic, Hermitian
line bundles overM with positive curvatures ωk := curvLk. Let {h̄k ∈ R}∞k=1
be some non-repeating sequence with limk→∞ h̄k = 0. Define

I := {0, h̄k | k ∈ N} ⊂ R,

A0 := C(M), Ah̄k
:= L[L2

hol(M, Lk)], and for f ∈ C∞(M),

Q0(f) := f,

Qh̄k
(f) := TLk

(f).
(3.4)

Let A be the minimal continuous field of C∗-algebras over with fibers Ah̄

such that for any f , Q(f) is a continuous section (if such a continuous field
exists).

If the sequence of curvatures is reasonably well behaved, then the leading
order approximation to the commutator will be,

[TLk
(f), TLk

(g)] ≈ iTLk
({f, g}ωk

).

We want this to be (approximately) ih̄kTLk
({f, g}ω), therefore we need (for

any f, g ∈ C∞(M))
{f, g}ω = lim

k→∞
h̄−1

k {f, g}ωk
,

or equivalently,
ω = lim

k→∞
h̄kωk,

where the topology on Ω2(M) is the C0 topology given by a sup-norm defined
with an arbitrary metric. This means that the Kähler metrics given by these
curvatures must — after rescaling — converge to the Kähler metric given
by ω.
Recall that the Riemann and Ricci tensors of a Kähler manifold are deter-

mined by the metric and are invariant under rescaling the metric.

Lemma 3.3. If
• in the C0 topology

(3.5) ω = lim
k→∞

h̄kωk,
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• the magnitude of the Riemann tensor of the Kähler structure h̄kωk is
of order o(h̄−1

k ),
• and the magnitude of the derivative of the Ricci tensor is of order
o(h̄−2

k ),
then for all f ∈ C∞(M),

(3.6) lim
k→∞

‖TLk
(f)‖ = ‖f‖

and Definition 3.2 defines an order 1 strict deformation quantization of M
with the symplectic structure ω. In particular, if (3.5) holds in the C3 topol-
ogy, then these hypotheses are true and the conclusion holds.

Proof. The calculations in [6, Lemma 4.8] show that for any f, g ∈ C∞(M),

(3.7) TLk
(f)TLk

(g) = TLk
[fg + Cωk

1 (f, g)] + o(h̄k),

where Cωk
1 (f, g) is the contraction of the holomorphic derivative of f with

the antiholomorphic derivative of g using the Kähler metric defined by ωk.
In the notation of [6], s = h̄−1

k , the norms are taken using the rescaled
Kähler structure h̄kωk ≈ ω, K̂ is constructed from the Ricci tensor, and K2

is constructed from the Riemann tensor.
(Alternately, we can take s = 1. In that case, the norms are taken with

respect to the Kähler structure determined by ωk. This means that the norm
of the derivative of f is of order O(h̄k), the norm of the second derivative is
of order O(h̄2

k), and the norms of the Riemann tensor and its derivative are
rescaled by h̄k and h̄2

k, respectively.)
Since we are assuming (equation (3.5)) that h̄kωk = ω+o(1), the approx-

imation (3.7) is equivalent to

(3.8) TLk
(f)TLk

(g) = TLk
[fg + h̄kC

ω
1 (f, g)] + o(h̄k).

In particular,

(3.9) TLk
(f)TLk

(g) = TLk
(fg) +O(h̄k),

and

(3.10) [TLk
(f), TLk

(g)] = ih̄kTLk
({f, g}ω) + o(h̄k).

By the reasoning in [6, Lemma 7.9], equation (3.10) implies that the nor-
malized trace of TLk

(f) converges to the normalized integral of f . By the
reasoning in [6, Theorem 7.10], this and equation (3.9) imply that equa-
tion (3.4) does define sections of a unique minimal continuous field over I,
and that equation (3.6) is true. Finally, equation (3.10) is the statement that
this is a quantization for the symplectic structure ω, and equation (3.8) is
the statement that this is a first-order quantization.
In particular, if h̄kωk converges in the C3 topology, this implies that the

Riemann tensor and its derivative converge (and are bounded) in the C0

topology, so all three hypotheses are satisfied. �
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The question now is how well behaved the sequence {ωk}∞k=1 must be to
give an order N quantization.
The obvious generalization of equation (3.3) would be

(3.11) TLk
(f)TLk

(g) =
N∑

j=0

TLk
[Cωk

j (f, g)] + o(h̄N
k ),

where Cωk
j is as defined in Theorem 3.1. Unfortunately, the proof of

Theorem 3.1 in [13] uses functions on a circle bundle over M . This is a
good way of working with all powers of a fixed line bundle, but it does not
apply to a more general sequence of line bundles, so it is not clear how to
prove equation (3.11).

Theorem 3.4. If (for some N ≥ 2) there exists a Laurent polynomial ρ(h̄) ∈
ωh̄−1 +Ω2(M)[h̄] such that

(3.12) ωk = ρ(h̄k) + o(h̄N−2
k )

in the C∞ topology, and equation (3.11) is true, then Definition 3.2 gives an
order N strict deformation quantization.

Likewise, if there is an asymptotic expansion ωk ∼ ωh̄−1
k + · · · in the C∞

topology and equation (3.11) is true, then Definition 3.2 gives an infinite-
order strict deformation quantization.

Proof. This implies in particular that

ω = lim
k→∞

h̄kωk

in the C∞ topology, so the hypotheses of Lemma 3.3 are satisfied and Defi-
nition 3.2 at least gives an order 1 strict deformation quantization.
Next, note that because ρ(h̄) begins with an h̄−1 term, its reciprocal

begins with an h̄ term, and ω−1
k is actually approximated with an error of

order o(h̄N
k ). By Theorem 3.2, for any f, g ∈ C∞(M) and j ∈ N,

Cωk
j (f, g) = C

ρ(h̄k)
j (f, g) + o(h̄N

k ).

Inserting this into equation (3.11) and using equation (3.6) gives

TLk
(f)TLk

(g) =
N∑

j=0

TLk
[Cρ(h̄k)

j (f, g)] + o(h̄N
k ).

Each Cρ(h̄k)
j (f, g) can be expanded in powers of h̄k, and this gives an expan-

sion,

TLk
(f)TLk

(g) =
N∑

j=0

h̄j
kTLk

[Cj(f, g)] + o(h̄N
k ),

for some functions Cj(f, g) ∈ C∞(M). This shows that the quantization is
of order N .



DEFORMATION QUANTIZATION AND IRRATIONAL NUMBERS 13

Finally, if there is an asymptotic expansion for ωk, then the hypotheses
are satisfied for any N . The quantization constructed by Definition 3.2 is
of order N for any N — and so it is an infinite-order strict deformation
quantization. �

If the hypotheses of Theorem 3.4 are satisfied, then the sequence of inte-
gral Dolbeault cohomology classes

c1(Lk) = [ωk
2π ] ∈ H1,1(M)

has the property that it can be approximated to order o(h̄N−2
k ) by a Laurent

polynomial in H1,1(M)[h̄−1
k , h̄k] with leading term [ ω

2π ]h̄
−1
k .

(Note that the sequence of numbers h̄k does not really carry any additional
information here. It is the ratios between components of c1(Lk) that are
interesting here.)
The simplest non-trivial case occurs when dimH1,1(M) = 2, so let us con-

sider that case and identify H1,1(M) = R2. The integral part of Dolbeault
cohomology is identified with Z

2 ⊂ R2.
Suppose that [ ω

2π ] = (α, 1) for some real number α ∈ R. Denote the Chern
classes by c1(Lk) = (rk, sk). The condition on sk is that there exist some
expansions

sk = h̄−1
k + · · ·+ o(h̄N−2

k ),

and this is easily satisfied by choosing h̄k = s−1
k . With this choice, the

condition on rk becomes

rk = αh̄−1
k + · · ·+ o(h̄N−2

k )

= αsk + γ1 + γ2s
−1
k + · · ·+ γN−1s

−N+1
k + o(s−N+2

k ),

for some real numbers γ1, . . . , γN−1 ∈ R. Equivalently,

rk
sk

= α+ γ1s
−1
k + · · ·+ γN−1s

−N+1
k + o(s−N+1

k ).

In other words, the set of pairs (rk, sk) must be an order N − 1 rational
approximation to the real number α.
Likewise, for an infinite-order quantization, we need an infinite-order

rational approximation.
There is a plausible converse construction. The cohomology of a compact

manifold is finite-dimensional, so there exists a finite set of line bundles
whose Chern classes generate the integral part of H1,1(M). If we begin with
a sequence of integral cohomology classes that can be expanded to order
N − 1, then this generating set of line bundles can be used to construct
a corresponding sequence of line bundles. However, it is not clear whether
equation (3.11) would be satisfied.
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3.3. An obstruction.

Definition 3.3. A formal deformation quantization [1, 14] of a Poisson
manifold M is an associative C[[h̄]]-linear product on the space of formal
power series C∞(M)[[h̄]] of the form

f ∗ g = fg +
∞∑

j=1

h̄jCj(f, g)

such that C1(f, g)− C1(g, f) = i{f, g}.
Note that we are not imposing any other conditions, such as requiring Cj

to be bidifferential.
Suppose that A0 ⊆ C∞b (M) is a Poisson subalgebra of bounded smooth

functions, whose restriction to any compact coordinate patch gives all
smooth functions there. Any infinite-order strict deformation quantization
(I, A,Q) of A0 determines a formal deformation quantization: For any
f, g ∈ A0,

Qh̄(f)Qh̄(g) ∼ Qh̄(f ∗ g),
where ∼ means that for any N ∈ N if the formal power series on the left is
truncated at order h̄N , then the norm of the difference of the two sides is
bounded by a multiple of h̄N+1.
WhenM is symplectic, any formal deformation quantization determines

[4,5,10] a characteristic cohomology class θ ∈ h̄−1H2(M)[[h̄]] which is given
to leading order by the symplectic form as

θ =
[ω]
2πh̄

+ · · · .
(This is related to Fedosov’s notation by θ = − Ω

2πh̄ .) Two formal deformation
quantizations determine the same cohomology class if and only if they are
isomorphic by an isomorphism that reduces modulo h̄ to the identity on
C∞(M).
Let n := 1

2 dimM. Any formal deformation quantization of a symplectic
manifold admits a natural C[[h̄]]-linear trace

Tr : C∞c (M)[[h̄]]→ h̄−n
C[[h̄]].

This is given to leading order by the symplectic volume form,

Tr f =
1

n!h̄n

∫
M
f ωn + · · · .

This trace is the subject of the algebraic index theorem. Let

e0 = e20 ∈ Matm[C∞(M)]

be an idempotent matrix of smooth functions. Under the ∗-product, it is
only approximately idempotent (modulo h̄). However, this can be corrected
to a ∗-product idempotent eh̄, such that eh̄ ≡ e0 mod h̄.
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Suppose, for simplicity, that M is compact. The trace of the ∗-product
naturally extends to matrices, so Tr eh̄ is a meaningful expression, and this is
what the algebraic index theorem computes. To state it, we need one more
definition: since e0 is an idempotent matrix of functions, it determines a
vector subbundle of C

m ×M, whose fiber at x ∈ M is the image e0(x)Cm;
write ch e0 for the Chern character of this bundle.

Theorem 3.5 ([5, 10]). Let ∗ be any formal deformation quantization of
a compact symplectic manifold M, with characteristic class θ. Let e0 ∈
Matm[C∞(M)] be any idempotent. For any ∗-idempotent, eh̄ ≡ e0 mod h̄,
the trace is

Tr eh̄ =
∫

M
ch e0 ∧ eθ ∧ Â(TM).

Fedosov [5] has applied this theorem to find a constraint on “asymp-
totic operator representations” of formal deformation quantizations when
θ = [ ω

2π ]. His notion of an asymptotic operator representation of a for-
mal deformation quantization is almost equivalent to an infinite-order strict
deformation quantization corresponding to the given formal deformation
quantization. The following is a simple adaptation of Fedosov’s result.

Theorem 3.6. Let M be a compact symplectic manifold and (I, A,Q) an
infinite-order strict deformation quantization ofM; let θ and Tr be the char-
acteristic class and trace of the corresponding formal deformation quantiza-
tion; let c1(ω) be the first Chern class of the holomorphic tangent bundle
determined by any almost complex structure compatible with the symplec-
tic form. If, for each h̄ �= 0 ∈ I, Ah̄ is represented on a finite-dimensional
Hilbert space such that the operator trace tr in those representations is related
to the formal trace by, for any f ∈ C∞(M),

(3.13) trQh̄(f) ∼ Tr f,

then
θ + 1

2c1(ω) ∈ h̄−1H2(M)[[h̄]]

is the asymptotic expansion of a map from I � {0} to integral deRham
cohomology.

Proof. If e0 ∈ Matm[C∞(M)] is any idempotent, then there exists [7,
Lemma 5.3] an idempotent section e = e2 ∈ Matm[Γ(I, A)] such that
e(0) = e0 and which has an asymptotic expansion eh̄ ∈ C∞(M)[[h̄]]:

Qh̄[e(h̄)] ∼ Qh̄(eh̄).

The condition (3.13) implies that

tr e(h̄) ∼ Tr eh̄.
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The matrix eh̄ is automatically an idempotent with eh̄ ≡ e0 mod h̄, so
Theorem 3.5 applies and tells us that

rk e(h̄) = tr e(h̄) ∼
∫

M
ch e0 ∧ eθ ∧ Â(TM).

The left side is obviously integer-valued.
Let J be an almost complex structure compatible with ω. Let TJM be

the corresponding holomorphic tangent bundle, so that c1(TJM) = c1(ω).
The Â class can be factorized as Â(TM) = e

1
2
c1(ω) ∧ td(TJM), so for any

idempotent e0,∫
M
ch e0 ∧ eθ ∧ Â(TM) =

∫
M
ch e0 ∧ eθ+ 1

2
c1(ω) ∧ td(TJM)

is asymptotically integral.
The bundle Λ∗T ∗JM is a spinor bundle and defines a Spinc-structure on

M, which defines an orientation class ε ∈ K0(M). By the Atiyah-Singer
index theorem,

∫
M · · · ∧ td(ω) is ch ε, the Chern character of ε.

The Picard group (of complex line bundles) Pic(M) is a multiplicative
subgroup of the ringK0(M). It can also be identified withH2(M;Z). Taking
the Chern character is equivalent to exponentiating; i.e., there is a commu-
tative diagram:

H2(M;Z) Pic(M)

exp

⏐⏐	
⏐⏐	

Hev(M) ch←−−−− K0(M).
So, for any σ ∈ H2(M) = Pic(M)⊗ R,∫

M
ch e0 ∧ eσ ∧ td(TJM) = 〈ch e0 ∧ eσ, ch ε〉 = 〈ch e0 ∧ chσ, ch ε〉

= 〈[e0] ∪ σ, ε〉 = 〈σ, [e0] ∩ ε〉.
Since ε ∈ K0(M) is an orientation, by Poincaré duality, any class in

K0(M) is the cap product of ε with a class in K0(M), and any class in
K0(M) is a formal difference of projections. Furthermore, σ ∈ H2(M) =
Pic(M) ⊗ R is integral if and only if it pairs integrally with any class in
K0(M).
Now, for any N ∈ N, let σN be the partial sum of θ+ 1

2c1(ω) up to order
h̄N . This shows that ‖〈σN , [e0] ∩ ε〉‖ = O(h̄N+1), for h̄ ∈ I � {0}. (The
double bars again denote the distance from the integers.) Since this is true
for any e0, this implies that the distance from σN (h̄) to the nearest integral
cohomology class is of order O(h̄N+1).
For any h̄ ∈ I � {0}, define ρ(h̄) to be the nearest integral class to σ0(h̄).

Because the difference σN (h̄)−σ0(h̄) is of order O(h̄), for h̄ sufficiently small,
ρ(h̄) is also the nearest integral class to σN (h̄). Therefore σN (h̄) − ρ(h̄) =



DEFORMATION QUANTIZATION AND IRRATIONAL NUMBERS 17

O(h̄N+1), for any N . This shows that θ+ 1
2c1(ω) is the asymptotic expansion

of ρ. �
This is not a completely general result, because of the assumption that

each Ah̄�=0 is represented on a finite-dimensional Hilbert space. This is not
true for the example of the non-commutative torus. However, this does give
a non-trivial asymptotic integrality condition on the characteristic class θ;
if a formal deformation quantization does not satisfy this condition, then it
cannot come from a strict deformation quantization with these properties.
To see how this relates to rational approximations, again consider the

simplest case, when H2(M;Z) ∼= Z2 and suppose that [ ω
2π ] = (α, 1). Theo-

rem 3.6 tells us that

θ + c1(ω) = (α, 1)h̄−1 + · · ·
is the asymptotic expansion of some map (r, s) : I � {0} → Z2. The second
component of θ+c1(ω) is a formal Laurent series consisting of h̄−1 and non-
negative powers of h̄. This can be functionally inverted and inserted into
the first component. That is, r can be written as a formal power series in
s. This power series is the asymptotic expansion of r in terms of s, so the
range of (r, s) is an infinite-order rational approximation to α.

4. Examples

4.1. The rational case. Suppose that α = a/b where a, b ∈ Z and
gcd(a, b) = 1.
The obvious infinite-order rational approximation to this is {(ka, kb) | k ∈

Z}. This can also be modified by adding integer constants. In fact, that is
all that we can do.

Proposition 4.1. Let α = a/b with a, b ∈ Z. If R is a first-order rational
approximation to α, then there exists d ∈ Z such that

(4.1) br = as+ d

for all but finitely many (r, s) ∈ R. Moreover, R is an infinite-order rational
approximation.

Proof. Being a first-order rational approximation means that there exists a
real number γ1 ∈ R such that for all (r, s) ∈ R,

r

s
=
a

b
+
γ1

s
+ o(s−1).

Multiplying by s and b gives,

(4.2) br = as+ γ1b+ o(1).

Since the first two terms are integers, this means that

‖γ1b‖ = o(1),
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where ‖ · ‖ again denotes the distance from Z. However, since the left-hand
side is a constant, this shows that ‖γ1b‖ = 0, that is, d := γ1b ∈ Z.
Inserting this back into equation (4.2) gives that br = as+ d+ o(1), but

since the first three terms are integers, the error o(1) must be 0 for |r|+ |s|
sufficiently large. This gives equation (4.1).
Since

r

s
=
a

b
+
d

bs
,

this satisfies the definition of an infinite-order rational approximation, with
coefficients γj = 0 for j ≥ 2. �

4.2. Quadratic irrationals. First consider the “golden ratio” φ := 1+
√

5
2 .

Its continued fraction expansion is simply φ = [1; 1, 1, . . . ]. The partial quo-
tients are an = 1 for all n, so equation (2.3) shows that the principal con-
vergents are given by Fibonacci numbers,

pn = Fn+2 and qn = Fn+1,

which are defined recursively by F0 = 0, F1 = 1, and

Fn = Fn−1 + Fn−2,

or explicitly as

(4.3) Fn = 1√
5
[φn − (−φ)−n].

The golden ratio is a root of the polynomial equation φ2 − φ− 1 = 0, so
consider the related homogeneous polynomial r2 − rs − s2. Equation (4.3)
shows that consecutive Fibonacci numbers satisfy

F 2
n+1 − Fn+1Fn − F 2

n = (Fn+1 − φFn)(Fn+1 + φ−1Fn) = (−1)n.
This shows that, ∣∣∣∣Fn+1

Fn
− φ

∣∣∣∣ ≤ 1
φF 2

n

,

for n ≥ 1, so the set of principal convergents gives a first order rational
approximation. However, it is not a second-order rational approximation,
because

Fn+1

Fn
− φ ≈ (−1)n√

5F 2
n

is not a nice function of Fn.
Instead, this alternates between two nice functions of Fn, so let

R := {(F2k+1, F2k) | k ∈ N}.
These pairs of numbers are generated by starting from (2, 1) and applying
the recursion

(4.4) (r, s) 
→ (2r + s, r + s).
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These satisfy
r2 − rs− s2 = 1,

so this set is just

R = {(r, s) ∈ N
2 | r2 − rs− s2 = 1}.

In this case, r is an algebraic function of s,

r =
s+

√
5s2 + 4
2

=
1 +

√
5 + 4s−2

2
s.

For s >
√

5
2 , this is given exactly by a Laurent series,

r = φs+
√
5
2

∞∑
j=1

(−8
5)

j

j!(2j − 1)!!
s1−2j ,

therefore this R is an infinite-order rational approximation to φ.
The growth of the denominators F2k as k →∞ is extremely different from

the rational case. Instead of growing linearly with k, they grow exponentially:
F2k ≈ 1√

5
φ2k.

For any d �= 0 ∈ Z, there exist natural numbers r, s ∈ N with r2−rs−s2 =
d. The recursion (4.4) preserves this polynomial, and therefore the set

Rd := {(r, s) ∈ N
2 | r2 − rs− s2 = d}

is infinite, and for the same reasons, it is an infinite-order rational approxi-
mation to φ.
In general, the behavior for quadratic irrationals is similar.

Theorem 4.2. If R is any second-order rational approximation to a qua-
dratic irrational α with γ1 = 0, then R is actually an infinite-order rational
approximation, and there exist a, b, c, d ∈ Z such that

ar2 + brs+ cs2 = d

for all but finitely many (r, s) ∈ R.

Proof. Being a quadratic irrational means that there exist a, b, c ∈ Z such
that 0 = aα2 + bα+ c. Inserting (r, s) ∈ R into the corresponding homoge-
neous polynomial gives

ar2 + brs+ cs2 = a(αs+ γ2s
−1 + o(s−1))2 + b(αs+ γ2s

−1 + o(s−1))s+ cs2

= (2aα+ b)γ2 + o(1).

Since the left side is always an integer, this implies that ‖(2aα+ b)γ2‖ =
o(1), but since this is a constant, that implies that d := (2aα + b)γ2 ∈ Z.
Now, the integers ar2 + brs+ cs2 − d converge to 0 as |r|+ |s| → ∞, which
means that they must almost all equal 0.
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This shows in particular that for large enough s

r =
−bs±√

(b2 − 4ac)s2 + 4ad
2a

,

where the sign is chosen such that α = −b±√b2−4ac
2a . Then, we have that

r

s
=
−b±√b2 − 4ac

√
1 + 4ad

s

2a
,

and expanding
√
1 + 4ad

s as a power series in 4ad/s thus exhibits that R is
an infinite-order rational approximation to α. �
Theorem 4.3. Every quadratic irrational real number α has an infinite-
order approximation with denominators that grow at most exponentially.

Proof. A quadratic irrational real number has an eventually periodic con-
tinued fraction expansion (see [12, Theorem III.1.2]). Therefore, we write

α = [0; a1, . . . , aK , aK+1, . . . , aK+L],

for some integers K and L, and let

γ2 :=
(−1)K+1

ζK+1 + [0; aK+L, . . . , aK+1]
.

Now by equations (2.5) and (2.6), for any positive integer k,

∣∣∣∣∣α−
pK+2kL

qK+2kL
+

γ2

q2K+2kL

∣∣∣∣∣

(4.5)

=

∣∣∣∣∣
(−1)K+2kL

q2K+2kL(ζK+2kL+1 + ξK+2kL)
+

(−1)K+1

q2K+2kL(ζK+1 + [0; aK+L, . . . , aK+1])

∣∣∣∣∣
=

1
q2K+2kL

∣∣∣∣ 1
ζK+1 + [0; aK+2kL, . . . , a1]

− 1
ζK+1 + [0; aK+L, . . . , aK+1]

∣∣∣∣ .
Now since

lim
k→∞

[0; aK+2kL, . . . , a1] = [0; aK+L, . . . , aK+1],

this proves that the quantity in (4.5) is o(q−2
K+2kL) as k →∞. In other words,

the set
R = {(pK+2kL, qK+2kL) | k ∈ N}

is an order 2 rational approximation to α, with γ1 = 0 and γ2 as above. By
Theorem 4.2, it is actually an infinite-order approximation.
Since the continued fraction for α is periodic, there is a constant M such

that an ≤M for all n. By (2.3) we have that

qK+2kL = O(MK+2kL),
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which verifies that the denominators in R grow no more than exponentially.
�

Note that in the proof of this theorem we used equation (2.5), which corre-
sponded in our situation with taking γ = 0 in Corollary 2.4. It may be the
case that using the full generality of Corollary 2.4 could produce infinite-
order approximations to other real numbers that grow more slowly than
those constructed in the proof of Theorem 2.6.

5. Further questions

This was only a beginning at investigating this topic. Although we have
shown that infinite-order rational approximation always exist, there are
other basic questions that remain to be answered.

5.1. Growth. Given a number α, how fast do its rational approximations
grow? That is, if an order N rational approximation to α is arranged into a
sequence, then how fast must the numbers grow?
We have seen that a rational number has infinite-order approximations

that grow linearly and a quadratic irrational has approximations that grow
exponentially. Does the existence of a linearly or exponentially growing
approximation imply that α is rational or quadratic?

5.2. Uniqueness. To what extent are the expansion coefficients γ1, γ2, . . .
restricted by α?
Corollary 2.7 shows that there always exists at least one approximation

with γj = 0 for j ≥ 2. Proposition 4.1 shows that, for α rational, the
expansion must be of this form, and γ1 is greatly restricted. Theorem 4.2
shows that if α is quadratic and γ1 = 0, then the other expansion coefficients
are determined by a single integer.

5.3. Generalization. Theorems 3.4 and 3.6 actually motivate a more gen-
eral definition. Rather than considering only a single real number, we could
take a point α ∈ RPn and look for a sequence in Zn+1 that converges modulo
R
× to α. All of the questions about rational approximations can be asked

again in this more general context.
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