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A PROOF OF THE CLASSIFICATION THEOREM OF
OVERTWISTED CONTACT STRUCTURES VIA CONVEX
SURFACE THEORY

YANG HuaNG

In [2], Eliashberg proved that two overtwisted contact structures on a
closed oriented 3-manifold are isotopic through contact structures if and
only if they are homotopic as 2-plane fields. We provide an alternative
proof of this theorem using the convex surface theory and bypasses.
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A contact manifold (M, ¢) is a smooth manifold with a contact structure
&, ie., a maximally non-integrable codimension 1 tangent distribution. In
particular, if the dimension of the manifold is three, it was realized through
the work of Bennequin and Eliashberg in [1, 3] that contact structures fall
into two classes: tight or overtwisted. Since then, dynamical systems and foli-
ation theory of surfaces embedded in contact 3-manifolds have been studied
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extensively to analyze this dichotomy. Based on these developments, Eliash-
berg gave a classification of overtwisted contact structures in [2], which we
now explain.

Let M be a closed oriented manifold and A C M be an oriented embedded
disc. Furthermore, we fix a point p € A. We denote by Cont® (M, A) the
space of cooriented, positive, overtwisted contact structures on M, which
are overtwisted along A, i.e., the contact distribution is tangent to A along
OA. Let Distr(M,A) be the space of cooriented 2-plane distributions on
M, which are tangent to A at p. Both spaces are equipped with the C°°-
topology.

Theorem 0.1 (Eliashberg). Let M be a closed, oriented 3-manifold. Then
the inclusion j : Cont® (M, \) — Distr(M, ) is a homotopy equivalence.

In particular, we have:

Theorem 0.2. Let M be a closed, oriented 3-manifold. If & and &' are two
positive overtwisted contact structures on M, then they are isotopic if and
only if they are homotopic as 2-plane fields.

Consequently, overtwisted contact structures are completely determined
by the homotopy classes of the underlying 2-plane fields. On the other hand,
the classification of tight contact structures is much more subtle and contains
more topological information about the ambient 3-manifold.

The goal of this paper is to provide an alternative proof of Theorem 0.2
based on convex surface theory. Convex surface theory was introduced by
Giroux in [8] building on the work of Eliashberg and Gromov [4]. Given a
closed oriented surface ¥, we consider contact structures on 3 x [0, 1] such
that ¥ x {0, 1} is convex. By studying the “film picture” of the characteristic
foliations on ¥ x {t} as t goes from 0 to 1, Giroux showed in [9] that, up to
an isotopy, there are only finitely many levels ¥ x {t;}, 0 < t; < --- < t, <1,
which are not convex. Moreover, for small € > 0, the characteristic foliations
on X x{t;—e} and X x{t;+e€},i =1,2,...,n, change by a bifurcation. In [10],
Honda gave an alternative description of the bifurcation of characteristic
foliations in terms of dividing sets. Namely, he defined an operation, called
the bypass attachment, which combinatorially acts on the dividing set. It
turns out that a bypass attachment is equivalent to a bifurcation on the
level of characteristic foliations. Hence, in order to study contact structures
on X% [0, 1] with convex boundary, it suffices to consider the isotopy classes of
contact structures given by sequences of bypass attachments. In particular,
we will study sequences of (overtwisted) bypass attachments on S? x [0, 1],
which is the main ingredient in our proof of Theorem 0.2.

This paper is organized as follows. In Section 1, we recall some basic
knowledge in contact geometry, in particular, convex surface theory and the
definition of a bypass. Section 2 gives an outline of our approach to the
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classification problem. Section 3 is devoted to establishing some necessary
local properties of the bypass attachment. Using techniques from previous
sections, we show in Section 4 that how to isotop homotopic overtwisted
contact structures, so that they agree in a neighborhood of the 2-skeleton.
Sections 5-7 are devoted to studying overtwisted contact structures on S? x
[0, 1] which is the technical part of this paper. We finally finish the proof of
Theorem 0.2 in Section 8.

1. Preliminaries

Let M be a closed, oriented 3-manifold. Throughout this paper, we only con-
sider cooriented, positive contact structures £ on M, i.e., those that satisfy
the following conditions:

(1) there exists a global 1-form « such that £ = ker(a).
(2) aAda > 0, i.e., the orientation induced by the contact form « agrees
with the orientation on M.

A contact structure ¢ is overtwisted if there exists an embedded disc D? C
M such that ¢ is tangent to D? on 0D?. Otherwise, ¢ is said to be tight. We
will focus on overtwisted contact structures for the rest of this paper.

Let X C M be a closed, embedded, oriented surface in M. The character-
istic foliation X¢ on X is by definition the integral of the singular line field
Ye(x) =& NT,X. One way to describe the contact structure near ¥ is to
look at its characteristic foliation.

Proposition 1.1 (Giroux). Let & and & be two contact structures that
induce the same characteristic foliation on X. Then there exists an isotopy

¢y M — M, t €[0,1] firing X such that ¢po = id and (¢1)+5o = &1-

Possibly after a C°°-small perturbation, we can always assume that X C
M is convex, i.e., there exists a vector field v transverse to X such that the
flow of v preserves the contact structure. Using this transverse contact vector
field v, we define the dividing set on ¥ to be I'y :={z € ¥ | v, € & }. Note
that the isotopy class of I's; does not depend on the choice of v. We refer to [8]
for a more detailed treatment of basic properties of convex surfaces. The
significance of dividing sets in contact geometry is made clear by Giroux’s
flexibility theorem.

Theorem 1.2 (Giroux). Assume X is convex with characteristic foliation
Y¢, contact vector field v, and dividing set I's,. Let % be another singular
foliation on X divided by I'ss. Then there exists an isotopy ¢ : M — M, t €
[0, 1] such that

(1) ¢o =id and ¢¢|ry, = id for all t.

(2) v is transverse to ¢¢(X) for all t.

(3) ¢1(X) has characteristic foliation F .



566 YANG HUANG

We now look at contact structures on ¥ x [0, 1] with convex boundary.
The first important result relating to this problem is the following theorem
due to Giroux.

Theorem 1.3 (Giroux). Let § be a contact structure on W = 3 x [0,1],
so that ¥ x {0,1} is convex. There ezists an isotopy relative to the boundary
¢s: W — W, s €[0,1], such that the surfaces $1(X x {t}) are convex for
all but finitely many t € [0, 1] where the characteristic foliations satisfy the
following properties:

(1) The singularities and closed orbits are all non-degenerate.

(2) The limit set of any half-orbit is either a singularity or a closed orbit.

(3) There exists a single “retrogradient” saddle-saddle connection, i.e.,
an orbit from a negative hyperbolic point to a positive hyperbolic point.

In the light of Giroux’s flexibility theorem, one should expect a corre-
sponding “film picture” of dividing sets on convex surfaces. It turns out
that the correct notion corresponding to a bifurcation is the bypass attach-
ment, which we now describe.

Definition 1.4. Let X be a convex surface and « be a Legendrian arc in
Y which intersects ', in three points, two of which are endpoints of a. A
bypass is a convex half-disc D with Legendrian boundary, where DNY = a,
D th X, and th(0D) = —1. We call a an admissible arc, and D a bypass
along « on X.

Remark 1.5. The admissible arc « in the above definition is also known as
the arc of attachment for a bypass in literature.

Remark 1.6. We do not distinguish isotopic admissible arcs ag and aj,
i.e., if there exists a path of admissible arcs oy, t € [0, 1] connecting them.

The following lemma shows how a bypass attachment combinatorially acts
on the dividing set.

Lemma 1.7 (Honda). Following the terminology from Definition 1.4, let
D be a bypass along a on 3. There exists a neighborhood of XU D C M
diffeomorphic to X x [0,1], such that ¥ x {0,1} are convez, and I'sy i
is obtained from I'sy oy by performing the bypass attachment operation as
depicted in Figure 1 in a neighborhood of c.

It is worthwhile to mention that there are two distinguished bypasses,
namely, the trivial bypass and the overtwisted bypass as depicted in Fig-
ure 2. The effect of a trivial bypass attachment is isotopic to an [-invariant
contact structure where no bypass is attached, while the overtwisted bypass
attachment immediately introduces an overtwisted disc in the local model,
hence, for example, is disallowed in tight contact manifolds.
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(a) (b)
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Figure 1. A bypass attachment along «. (a) The dividing
set on ¥ x {0} before the bypass is attached. (b) The dividing
set on ¥ x {1} after the bypass is attached.

(a) (b)
- s - ]

Figure 2. (a) The trivial bypass attachment. (b) The over-
twisted bypass attachment.

2. Outline of the proof

Let £ and & be two overtwisted contact structures on M, homotopic to each
other as 2-plane field distributions. Our approach to Theorem 0.2 has three
main steps.

Step 1. Fix a triangulation T of M. Isotop £ and £ through contact structures
such that T" becomes an overtwisted contact triangulation in the sense that
the 1-skeleton 7' is a Legendrian graph, the 2-skeleton T3 is convex and
each 3-cell is an overtwisted ball with respect to both contact structures.
We first show that if e(¢) = e(¢') € H?(M;Z), then one can isotop & and &,
so that they agree in a neighborhood of T(®).

Step 2. We can assume that there exists a ball B3> C M such that & and ¢’
agree on M \ B3. Taking a small Darboux ball B3,; C B3, observe that | zs
and £’| gs can both be realized as attaching sequences of bypasses to Bgtd. In
Section 5, we will define the notion of a stable isotopy. Then we show that
both of sequences of bypass are stably isotopic to some power of the bypass
triangle attachment. Moreover, the boundary relative homotopy classes of
¢|gs and &'| g3, measured by the Hopf invariant, are uniquely determined by
the number of bypass triangles attached according to [11].
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Step 3. By elementary obstruction theory, the Hopf invariants of £|gs and
&'| g3 are not necessarily the same, but they can at most differ by an integral
multiple of the divisibility of the Euler class of either ¢ or £'. See Section 8
for the definition of the divisibility. We show that this ambiguity can be
resolved by further isotoping the contact structures in a neighborhood of
T2, This finishes the proof of Theorem 0.2.

3. Local properties of bypass attachments

Let M be an overtwisted contact 3-manifold. Let ¥ C M be a closed convex
surface with dividing set I's;. For convenience, we choose a metric on M and
denote M \ ¥ the metric closure of the open manifold M—3. In this paper,
we restrict ourself to the case that each connected component of M \ ¥ is
overtwisted! . In order to isotop convex surfaces through bypasses freely,
we must show that there are enough bypasses. In fact, bypasses exist along
any admissible Legendrian arc on ¥ provided that the contact structure is
overtwisted. This is the content of the following lemma.

Lemma 3.1. Suppose that M \ ¥ is overtwisted. For any admissible arc
a C X, there exists a bypass along « in M\ X. If ¥ separates M into two
overtwisted components, then there exists such a bypass in each component.

Proof. The technique for proving this lemma is essentially due to Etnyre
and Honda [5], and independently Torisu [12]. We construct a bypass D
along a as follows. Let D € M \ ¥ be an overtwisted disc.

First we push the interior of « slightly into M \ ¥ with the endpoints of
« fixed to obtain another Legendrian arc &, such that o and @ cobound a
convex bigon B with th(0B) = —2. Next, take a Legendrian arc y connecting
& and 8D in the complement of 3 U D U B, namely, the two endpoints of v
are contained in & and 9D respectively and the interior of v is disjoint from
> U D U B as depicted in Figure 3. Suppose N(v) = v x [—¢, €] is a band
with the core v x {0} identified with , such that the characteristic foliation
is non-singular and is given by v x {t}, t € [—¢,¢€|. In particular, v x {—€}
and « x {€} are both Legendrian. We want to glue N(v) to D and B, so that
the characteristic foliations match along the common boundary. In order to
do so, we recall the following lemma first observed by Fraser [6].

Lemma 3.2. Let S be an embedded disc in a contact manifold (M, &) with a
characteristic foliation &|g which consists only of one positive elliptic singu-
larity p and unstable orbits from p which exit transversely from 0S. If 61, do
are two unstable orbits meeting at p, and §; NS = p;, then, after a C°°-small
perturbation of S fizing 0S, we obtain S’ whose characteristic foliation has
ezactly one positive elliptic singularity p' and unstable orbits from p’ exiting

'Tn general, it is possible that all components of M\ ¥ are tight even if M is overtwisted.
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Figure 3. The Legendrian arc v connecting B and dD.

P1

D

Figure 4. A half-elliptic-half-hyperbolic singularity.

transversely from 0S, and for which the orbits passing through pi, pa meet
tangentially at p'.

We first glue N(v) to D as follows. Let p; = v N &D. By the Flexibility
Theorem, we may suppose that p; is a half-elliptic singular point of the
characteristic foliation |5 on D. Consider a slightly larger disc D’ > D
such that p; is an elliptic singularity of §|5,. Let S C D’ be a small disc
neighborhood of p;, which satisfies the conditions in Lemma 3.2. Applying
Lemma 3.2, we can perturb S to obtain a disc D on which the characteristic
foliation (in a neighborhood of p;) looks like the one depicted in Figure 4.

Now we can glue N () to D in the obvious way such that the characteristic
foliations match along the common boundary. We can apply the same trick
to glue N(v) to B. In the end, we obtain a half-disc, which we denote by
D U N(v) U B by abuse of notation, on which the characteristic foliation is
as depicted in Figure 5.
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Figure 5. The preferred characteristic foliation on D U
N(v)UB.

Figure 6. The bypass D along .

Note that since the characteristic foliation contains a flowline from the
negative half-elliptic-half-hyperbolic singularity to the positive half-elliptic-
half-hyperbolic singularity, the half-disc DUN (7)UB is not convex. However
we can perform a C°°-small perturbation in a neighborhood of p; and ps to
obtain a new half-disc D such that the singularities p; and po are eliminated.
The characteristic foliation on D is given by Figure 6, which is easily seen to
be of Morse-Smale type. Therefore D is convex with Legendrian boundary.
The dividing set I' on D has to separate the positive and negative singu-
larities and to be transverse to the characteristic foliation. So I' is, up to
isotopy, the half-circle as depicted in Figure 6 as desired, and therefore D is
a bypass along a. O

We then show the triviality of the trivial bypass, i.e., attaching a trivial
bypass does not change the isotopy class of the contact structure in a neigh-
borhood of the convex surface. The proof essentially follows the lines of the
proof of Proposition 4.9.7 in Geiges [7]. Here, the contact structure may be
either overtwisted or tight.

Lemma 3.3. Let (X x[0,1],€) be a contact manifold with the contact struc-
ture & obtained by attaching a trivial bypass on (X x {0},€|sxq0). Then



A PROOF OF THE CLASSIFICATION OF OVERTWISTED CONTACT STRUCTURES 571

(a) (b)

Figure 7. (a) The characteristic foliation on ¥ x {0}. The
trivial bypass is attached along the Legendrian arc in dash
line. (b) The characteristic foliation on ¥ x {1} after attaching
the trivial bypass. Here ex (resp. hy) denote the +-elliptic
(resp. -hyperbolic) singular points of the foliation.

there exists another contact structure é, which is isotopic to § relative to the
boundary, such that 3 x {t} is convex with respect to & for all t € [0, 1].

Proof. Since this is a local problem, we may assume that ¥ x [0,1] is a
neighborhood of the trivial bypass attachment. By Theorem 1.2, any Morse—
Smale-type characteristic foliation adapted to I'sx (o} can be realized as the
characteristic foliation of a contact structure isotopic to £ in a neighborhood
of ¥ x {0}. In particular, we can assume that the characteristic foliation on
¥ x {0} looks exactly the same as in Figure 7 (a) such that e_ does not
connect to any negative hyperbolic point other than h_ along the flow line.

Look at the characteristic foliations on ¥ x {t} as t goes from 0 to 1.
Generically, we can assume that the Morse-Smale condition fails at one
single level, say, ¥ x {1/2}, where an unstable saddle-saddle connection has
to appear as shown in Figure 8 (a).

Let  C ¥ x{1/2} be an open neighborhood of the flow line from h_ to e_
as depicted in Figure 8 (a). Observe that the characteristic foliation inside
Q is of Morse-Smale type, and therefore stable in the t-direction. According
to the proof of Proposition 4.9.72 in Geiges [7], for a small § > 0, there
exists an isotopy ¢s : 2 x [0,1] — X x [0,1], s € [0, 1], compactly supported
in Qx (1/2—28,1/2+26) C ¥ x [0,1] and ¢ = id, such that & = (¢1).&
satisfies the following:

(1) The characteristic foliation on Q x {¢} with respect to £ is isotopic to
the one in Figure 8 (b) for ¢t € [1/2 — §,1/2 + 4]. In particular, it is
non-singular.

2This is a stronger version of the usual Elimination Lemma.
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Figure 8. (a) The characteristic foliation on ¥ x {1/2},
where a saddle-saddle connect from h_ to hy exists. The
region 2 contains exactly two singular points {e_, h_}, which
are in elimination position. (b) The non-singular character-
istic foliation on €2 after the elimination.

(2) For t € (1/2 —20,1/2 —6) U (1/2 + 6,1/2 + 26), the characteristic
foliation on Q x {t} with respect to £ is almost Morse-Smale except
that there may exist a half-elliptic-half-hyperbolic point.

We remark here that the above conditions are achieved in [7] by isotoping
surfaces ¥ x {t}, t € [1/2 — 2§,1/2 + 26| while fixing the contact structure
&, but this is equivalent to isotoping ¢ while fixing ¥ x {¢}. We will switch
between these two equivalent point of view again in the proof of Proposi-
tion 4.3.

Now we can make ¥ x {t} convex for ¢t € [1/2 — §,1/2 + §] because
the only unstable saddle—saddle connection is eliminated and therefore the
characteristic foliation becomes Morse-Smale. For ¢t ¢ [1/2 — 0,1/2 + §],
there may exist half-elliptic-half-hyperbolic singular points, but we can
as well construct a contact structure realizing this type of singularity,
so that each Q x {t} stays convex. Hence, € constructed above is as
required. O

Remark 3.4. Let (X x [0, 1], ) be a contact manifold such that &|s, = {|x,
and ¥ x {t} is convex for all t € [0,1]. If ¥ # S! x S and ¢ is tight, then
it is a standard fact that & is isotopic to an I-invariant contact structure
relative to the boundary. However, if either ¥ = S x S! or € is overtwisted,
then the above fact is not true anymore. We will study this phenomenon in
detail in the case when ¥ = S? and ¢ is overtwisted in Section 6.
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4. Isotoping contact structures up to the 2-skeleton

We are now ready to take the first main step toward the proof of Theo-
rem 0.2. Since we will isotop contact structures skeleton by skeleton, we
start with the following definition.

Definition 4.1. Let (M,¢) be an overtwisted contact manifold, and 7' be
a triangulation of M. The triangulation T is called an overtwisted contact
triangulation if the following conditions hold:

(1) The 1-skeleton is a Legendrian graph.
(2) Each 2-simplex is convex with Legendrian boundary.
(3) Each 3-simplex is an overtwisted ball.

Remark 4.2. The overtwisted contact triangulation defined above is differ-
ent from the usual contact triangulation where the 3-simplexes are assumed
to be tight.

The goal for this section is to prove the following Proposition.

Proposition 4.3. Let M be a closed, oriented 3-manifold with a fixed tri-
angulation T. Let & and &' be homotopic overtwisted contact structures on
M. Then they are isotopic up to the 2-skeleton, i.e., there exists an isotopy
¢r M — M, t €[0,1], ¢po = id such that (¢1)& = & in a neighborhood
of T?.

Proof. Before we go into details of the proof, observe that if ¢, : M — M,
t € [0,1], ¢ = id is an isotopy, then (M, ¢1(€),T) and (M, &, ¢ (T)) carries
the same contact information. In fact, we will isotop the skeletons of the
triangulation 7" and think of them as isotopies of contact structures.

By a C%-small perturbation of the 1-skeleton T}, we can assume that
T® is a Legendrian graph with respect to & and ¢’. Performing stabilizations
to edges of T if necessary, we can further assume that £ = ¢ in a neigh-
borhood of T(M). For each 2-simplex o2 in T we can always stabilize the
Legendrian unknot do? sufficiently many times, so that tb(0o?) < 0. There-
fore a C°-small perturbation of 2 relative to do? makes it convex with
respect to & (resp. £') with dividing set F§2 (resp. Ffr;). Both FEQ and FSQ
are proper 1-submanifolds of 02 and generically the endpoints are contained
in the interior of the 1-simplexes. See Figure 9 for an example.

In order to make T an overtwisted contact triangulation for £ and &, we
still need to make sure that all 3-simplexes are overtwisted. We do this for &,
and the same argument applies to £’. Take an overtwisted disc D in (M, ¢).
We can assume that D is contained in a 3-simplex o3. Let o3 be another
3-simplex which shares a 2-face with o3, i.e., 0§ No3 = 02 is a 2-simplex. We
claim that by isotoping o2 relative to do? if necessary, we can make both
o3 and o} overtwisted. The fact that M is closed immediately implies that
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Figure 9. An example of the dividing set on a 2-simplex.

a finite steps of such isotopies will make T" an overtwisted contact triangu-
lation. To prove the claim, we first take a parallel copy of the overtwisted
disc D in an [-invariant neighborhood of D, denoted by D’. Pick an arc
7 connecting D’ to o2 inside azf. Let 2 be another 2-simplex obtained by
isotoping o2 across D’ along 7, i.e., 5% satisfying the following conditions:

(1) 96% = do2.
(2) o2 U&? bounds a neighborhood of D' U 7.
(3) &% is convex.

By replacing o2 with &2, we obtain two new 3-simplexes, each of which
contains an overtwisted disc in the interior as claimed.

Now by Giroux’s flexibility theorem, it suffices to isotop & and &', so that
they induce isotopic dividing sets on each 2-simplex relative to 7. To
achieve this goal, we define the difference 2-cocycle § by assigning to each
oriented 2-simplex o2 an integer x (R (FSQ)) —x(R- (FSQ)) — x(R+ (F;)) +
X(R— (FSQ)) Since ¢ is homotopic to & as 2-plane fields, [0] = e(§) —e(¢') =
0 € H?(M,Z). Hence, there exists an integral 1-cocycle 6, so that 2df = &
since the Euler class is always even.®> One should think of # as an element
in Hom(C1(M),Z).

3More precisely, if we fix a trivialization of TM and consider the Gauss map associated
to the contact distribution, then the Euler class of the contact distribution is exactly twice
the Poincaré dual of the Pontryagin submanifold of the Gauss map.
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(a) (b)

Figure 10. (a) The dividing set on o2 divides it into 4-
regions. The bottom edge is 0. (b) One possible dividing set
on &2 after positively stabilizing o' once.

Let 02 € T®? be an oriented convex 2-simplex and o! € do? be an ori-
ented 1-simplex with the induced orientation. We study the effect of stabiliz-
ing the 1-simplex o! to the overtwisted contact triangulation. If we positively
stabilize o' once and isotop ¢? accordingly to obtain a new 2-simplex &2,
then the dividing set ng on &2 is obtained from F§2 by adding a properly
embedded arc contained in the negative region with both endpoints on the
interior of o' as depicted in Figure 10. Similarly, if we negatively stabilize
o' once and isotop o2 accordingly as before, then the dividing set on the iso-
toped o2 is obtained from F§2 by adding a properly embedded arc contained
in the positive region and with both endpoints on the interior of o!.

Note that in general, the new overtwisted contact triangulation obtained
by +-stabilizing a 1-simplex o! is not unique. In fact, different choices may
give non-isotopic dividing sets on the isotoped o2 in the new triangulation.
However, for our purpose, we only care about the quantity x(R+) — x(R-)
on each 2-simplex and it is easy to see that different choices give the same
value to this quantity. Thus we will ignore this ambiguity by arbitrarily
choosing an isotopy of the 2-simplex.

We denote the overtwisted contact triangulation obtained by +-stabilizing
ol once in (M,¢) by Sai1 (&). As remarked at the beginning of the proof,

one should think of Sjl (&) as isotopies of £. It is easy to see that S;ﬁ (€)
changes X(R+(F§2)) - X(R_(Ff_z)) by +1 for any 2-simplex o2 € T, so
that 0! C 90?2 as an oriented boundary edge. The same holds for ¢ as well.

Now we argue that one can isotop & and &', so that x(R+(F§2)) -
X(R- (FEQ)) = X(R+(F§l2)) - X(R_(FSQ)) on each 2-simplex o2. This can
be done as follows. For each oriented 1-simplex o' € T} the 1-cocycle 0
sends it to an integer n = 6(o'). We perform n times the isotopy S:l (€)
to & and n times the isotopy S, (') to & at the same time. If we perform
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such operation to every l-simplex in 7', it is easy to see that the following
properties are satisfied:

(1) € = ¢ in a neighborhood of T,
(2) X<R+(F§2)) - X(R—(F§2)) = X(R—F(ng)) - X(R—(ng)), Vo2 € T,

The second property implies that FSQ can be obtained from F§2 by attach-
ing a sequence of bypasses for each 2-simplex o2. Recall that 7" is an over-
twisted contact triangulation and in particular each 3-simplex is an over-
twisted ball. Hence bypasses exist along any admissible arc in ¢? inside
any 3-simplex with 02 as a 2-face by Lemma 3.1. Therefore by isotoping
2-simplexes through bypasses, we can assume that £ and & induce isotopic
dividing sets on each 2-simplex relative to its boundary. The conclusion now
follows immediately from Giroux’s flexibility theorem. 0

5. Bypass triangle attachments

In this section, we study the effect of attaching a bypass triangle to the con-
tact structure, in particular, we give an alternative definition of the bypass
triangle attachment. We start with the definition of the bypass triangle
attachment.

Notation: Let ¥ be a convex surface and a C ¥ be an admissible arc.
We denote the bypass attachment along o on ¥ by o,. Let 8 be another
admissible arc on the convex surface obtained by attaching the bypass along
a on ¥. We denote the composition of bypass attachments by o, * 03, where
the composition rule is to attach the bypass along « first, then attach the
bypass along [ in the same direction. If (M,§) is a contact manifold with
convex boundary, then £ % g, denotes the contact structure obtained by
attaching a bypass along « to (M, ¢).

Remark 5.1. In general, bypass attachments are not commutative unless
the attaching arcs are disjoint.

Definition 5.2. Let X be a convex surface and o C % be an admissible
arc. A bypass triangle attachment along « is the composition of three bypass
attachments along admissible arcs «, o and o’ in a neighborhood of « as
depicted in Figure 11. We denote the bypass triangle attachment along «
by Aa = 0q *XO0q X Ou.

Remark 5.3. The second admissible arc o in the bypass bypass triangle
is also known as the arc of anti-bypass attachment to o.

Warning: When we define a bypass attachment o,, along o on (X,I'y), there
are several choices involved. Namely, we need to choose a multicurve, i.e.,
a 1-submanifold of X, representing the isotopy class of I's;, an admissible arc
representing the isotopy class of «, a neighborhood of a where o, is sup-
ported. Since the space of choices of a and its neighborhood is contractible
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(@) (b)

Oq
—_—

Q

Figure 11. (a) A neighborhood of a on ¥, along which
the first bypass o, is attached. (b) The second bypass o4
is attached along the dotted arc /. (¢) The third bypass o4~
is attached along the dotted arc o and finishes the bypass
triangle.

according to Theorem 1.2, we can neglect this ambiguity. However, the space
of choices of multicurves representing I's; is not necessarily contractible. This
point will be made clear in the next section. For the rest of this paper, I's:
always means a multicurve on ¥ rather than its isotopy class.

Remark 5.4. If ¥ = S? and I's, = S!, then the space of choices of multic-
urve is simply connected since there is a unique tight contact structure in a
neighborhood of S? up to isotopy.

Observe that, up to an isotopy supported in a neighborhood of the admis-
sible arc «, the bypass triangle attachment does not change I's.

In what follows, we look at bypass triangle attachments along different
admissible arcs, which leads to our alternative definition of the bypass tri-
angle attachment.

Lemma 5.5. Let &, and &3 be two (overtwisted) contact structures on S? x
[0,1], where a and 3 are admissible arcs on S? x {0}, such that

(1) S% x {0,1} is convez with respect to both &, and &g.

(2) &, = &3 in a neighborhood of S* x {0} and #Fg;x{o} = #I‘é@x{o} =1.
(3) &a is obtained by attaching a bypass triangle Ao to §als2x 10y, and &g

is obtained by attaching a bypass triangle Ag to fﬁ’s%{o}-
Then &, is isotopic to &g relative to the boundary.
Proof. Up to isotopy, there are only two different admissible arcs on

(5% x {0}, &als2xqoy) (or, (52 x {0}, €]52x0}))- Namely, one gives the trivial
bypass and the other gives the overtwisted bypass. We may assume without
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Figure 12. Two possible bypass triangle attachments on S2.

loss of generality that « is not isotopic to 8, and o, is the trivial bypass and
og is the overtwisted bypass. We complete the bypass triangles A, and Ag
as depicted in Figure 12.

Observe that o is isotopic to 3, o is isotopic to 3 and bypass attach-
ments along o and (3" are trivial according to Lemma 3.3, we have the
following isotopies:

7

Ny = O % Top % Ogr
X~ Oq X Oy
~ o3 *Uﬁ/
~ o3 *O’/g/ *O’ﬁ// = Aﬁ.

Since 5% x {0,1} are convex, we can make sure that the isotopies above are
supported in the interior of S? x [0, 1]. O

Definition 5.6. A minimal overtwisted ball (B3,£y,) is an overtwisted
ball where OB? has a tight neighborhood, and the contact structure &y is
obtained by attaching a bypass triangle to the standard tight ball (B3, £sq).

Remark 5.7. By Lemma 5.5, the minimal overtwisted ball is well defined
even if we do not specify the admissible arc along which the bypass triangle
is attached.

With the above preparation, we can now redefine the bypass triangle
attachment, which is more convenient for our purpose. Let (M, &) be a con-
tact 3-manifold with convex boundary 0M = X. Identify a collar neighbor-
hood of OM with ¥ x [—1,0] such that 9M = ¥ x {0} and the contact
vector field transverse to OM is identified with the [—1,0]-direction. Let
« C OM be an admissible arc along which the bypass triangle is attached.
Push « into the interior of M to obtain another admissible arc, paral-
lel to «, contained in ¥ x {—1/2}, which we still denote by a. Let N
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be a neighborhood of a in ¥ x {—1/2}. Consider the ball with corners
N x [-2/3,—1/3] C M. By rounding the corners, we obtain a smoothly
embedded tight ball (Bf’,g[Biv,) C (M,€), in particular, B3 has a tight
neighborhood in (M, &). Let (B3, &) be a minimal overtwisted ball. We
construct a new contact manifold (M,€) = (M \ B},€) Uy (B3, ), where
¢ is an orientation-reversing diffeomorphism identifying the standard tight
neighborhoods of OB} and dB3. It is easy to see that € is isotopic to the
contact structure obtained by attaching a bypass triangle to (M, £) along a.

Remark 5.8. The uniqueness of the tight contact structure on 3-ball, due to
Eliashberg, guarantees that the bypass triangle attachment described above
is well defined.

Using the above alternative description of the bypass triangle attachment,
we prove the following generalization of Lemma 5.5.

Lemma 5.9. Let (M, &) be a contact 3-manifold with convex boundary, and
let o, B be two admissible arcs on OM. Let &, (resp. £g) be the contact
structure on M obtained by attaching a bypass triangle /N, (resp. Ag) along
a (resp. B) to (M,§). Then &, is isotopic to £g relative to the boundary.

Proof. Without loss of generality, we can assume that o and 3 are disjoint.
If not, we take another admissible arc v which is disjoint from « and 3. We
then show that &, ~ &, and {g ~ £, which implies §, ~ £3.

As before, since M is convex, we can push a and [ slightly into the man-
ifold M, which we still denote by o and 3. Now let B3 C M and Bg C M be
smoothly embedded tight balls containing « and 3, respectively. Take a Leg-
endrian arc 7 connecting B3 and B3, i.e., the endpoints of 7 are contained
in 9B3 and BBE, respectively, and the interior of 7 is disjoint from B2 and
Bg. Moreover, we can assume that 7 N B3 € LPyps and 7N 83% € FaBg-

Let N(7) be a closed tubular neighborhood of 7. By rounding the corners
of B3 U Bg UN(7), we obtain a smoothly embedded ball B> ¢ M with tight
convex boundary. Using our cut-and-paste definition of the bypass triangle
attachment, it is easy to see that (B3,£,|ps) and (B3,&s|ps) are isotopic,
relative to the boundary, to the contact boundary sums (B2, &) # (B3, £t4)
and (B3, &aq)#4(B3, £4t), respectively. Hence, both are isotopic to the mini-
mal overtwisted ball. One simply extends the isotopy by identity to the rest
of M to conclude that {, ~ {3 on M. g

According to Lemma 5.9, the isotopy class of the contact structure
obtained by attaching a bypass triangle does not depend on the choice of the
attaching arcs. We shall write A for a bypass triangle attachment along an
arbitrary admissible arc. An immediate consequence of this fact is that the
bypass triangle attachment commutes with any bypass attachment. This is
the content of the following corollary:
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Corollary 5.10. Let (M,§) be contact 3-manifold with convex boundary,
and o be an admissible arc on OM. Then £ x g4 % A >~ € x A\ % 0.

Proof. By Lemma 5.9, we can arbitrarily choose an admissible arc § C 0M
along which the bypass triangle A is attached. In particular, we require that
B is disjoint from a. Hence, a neighborhood of 3 where Ag is supported in
is also disjoint from «. Thus, we have the following isotopies:

Exoax A= Exoa*xNg
~Ex Ag* o,
~Ex A *0g.
which proves the commutativity. O

Corollary 5.11. Let (S?x[0,1],&) be a contact manifold with convex bound-
ary, where &£ is isotopic to a sequence of bypass attachments o1 *oo* - - %0y,
i.e., there exists 0 = tg < t; < --- < t,, = 1 such that S®> x {t;} are convex for
0<i<n and S? x [ti—1,t;] with the restricted contact structure is isotopic
to the bypass attachment o;. Then & x A\ is isotopic to & for 0 < k < n,
where & s the contact structure isotopic to a sequence of bypass attachments
O1 % %0 * ANk Opq1--- %0y

Proof. This is an iterated application of Corollary 5.10. O

However, observe that subtracting a bypass triangle is in general not well
defined. So we need the following definition.

Definition 5.12. Two contact structures ¢ and & on S? x [0, 1] are stably
isotopic, denoted by & ~ &', if they become isotopic after attaching finitely
many bypass triangles to S2 x {1} simultaneously, i.e., & * A" ~ & x A" for
some n € N.

6. Overtwisted contact structures on S? x [0, 1] induced by
isotopies.

Let ¢ be an overtwisted contact structure on S? x [0, 1] such that S? x {0}
and S? x {1} are convex spheres. In general, any such & can be represented
by a sequence of bypass attachments. More precisely, by Theorem 1.3, there
exists an increasing sequence 0 = tg < t; < --- < t, = 1 such that S x {t;} is
convex and €|52X[ti—17ti] is isotopic to a bypass attachment o; fori =1, n.
In this section, we consider a special class of overtwisted contact structures
on S? x [0, 1] such that S? x {t} is convex for ¢ € [0, 1], in other words, there
is no bypass attached.

Let & be an I-invariant contact structure on S? x [0,1] with dividing
set [g on S? x {0}. Let ¢ : S? — S?%, ¢ € [0,1], be an isotopy such that
$o = id. We define a new contact structure ér, 0 = ®.(&) on S? x [0,1],
where ® : S? x [0,1] — S? x [0,1] is defined by (z,t) — (¢¢(z),t). Observe
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that 2 x {t} is convex with respect to &y ¢ for all ¢ € [0, 1] by construction.
Hence we obtain a smooth family of dividing sets I'gz, gy for ¢t € [0,1].
Conversely, a smooth family of dividing sets I'g2, 4y, t € [0,1] defines a
unique contact structure on S2 x [0, 1], which is isotopic to &ry ¢ constructed
above for some isotopy ¢y, t € [0, 1]. In practice, it is usually easier to keep
track of the dividing sets rather than the isotopy.

Definition 6.1. A contact structure & on S? x [0, 1] is induced by an isotopy
if S? x {t} is convex for all ¢ € [0, 1], or, equivalently, there exists an isotopy
® : 5?2 x[0,1] — 5% x [0,1] such that & is isotopic to &p, ¢ as constructed
above.

It is convenient to have the following lemma.

Lemma 6.2. Let &, & be two contact structures on S? x [0,1] induced by
isotopies and let Ty, T}, be dividing sets on S? x {t}, 0 <t < 1, with respect
to &, & respectively. If To =TI, T'1 =T} and there exists a path of smooth
families of multicurves I';, 0 < s < 1 satisfying the following:

(1) T} is a multicurve, i.e., a finite disjoint union of simple closed curves,

contained in S? x {t} for0<s<1,0<t<1.

(2) T9 =Ty, T} =T} for0<t <1,

(3) I'g =Ty, I' =T for0 < s <1.
then & is isotopic to & relative to the boundary.

Proof. By Giroux’s flexibility theorem, the path I'j, 0 < s <1 of multicurves
determines a path of contact structures & on 52 x [0, 1] such that £ = ¢,
€' = ¢, Hence € is isotopic to &’ relative to the boundary by Gray’s stability
theorem. O

We first consider a bypass attachment to the contact structures on S? x
[0, 1] induced by an isotopy.

Lemma 6.3. Let &y be a contact structure on S? x [0,1/2] induced by
an isotopy ¢y : S? — S%, t € [0,1/2], and (S? x [1/2,1],04) be a bypass
attachment along an admissible arc o C S? x {1/2}. Then there exists an
admissible arc & C S% x {0} such that (5% x [0,1],éry.0 * 04) is isotopic,
relative to the boundary, to (S% x [0,1], 04 * §F67<1>), where T'fy is the dividing
set obtained by attaching a bypass along a to I'y.

Proof. We basically re-foliate the contact manifold (S? x [0,1], éry.0 * 0a)-
Recall that o, attaches a bypass D on S? x {1/2}, so that 9D = aUf3 is the
union of two Legendrian arcs, where th(«) = —1, tb(8) = 0. We extend D to
a new bypass D on S? x {0} through the isotopy ¢ : S2 — S2, ¢t € [0,1/2],
by defining D = DU®(ax [0,1/2]), where & = qﬁl_/é(a) C 52 x{0} is the new
admissible arc along which D is attached, and ® : §2x[0,1/2] — S?x[0,1/2]
is defined by (x,t) — (¢(x),t). By attaching the new bypass D on 52 x {0},
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Figure 13. Two different bypass triangles attached to a sphere.

observe that the rest of S? x [0,1] can be foliated by convex surfaces, and
the contact structure is also induced by ®. Hence, &r, ¢ * 04 is isotopic to
og * §F67(I> as desired. O

Definition 6.4. The admissible arc & constructed in Lemma 6.3 is called a
push-down of a. Conversely, we call o a pull-up of a&.

The rest of this section is rather technical and can be skipped at the
first time reading. The only result needed for our proof of Theorem 0.2 is
Proposition 6.15.

We consider a subclass of the contact structures on S? x [0, 1] induced by
isotopies which we will be mainly interested in. Fix a metric on S2. With-
out loss of generality, we assume that there exists a small disc D?(y) C S
centered at y of radius ¢ and a codimension 0 submanifold Tgey {0y of
[g2, 40y such that f52x{0} C D2%(y) and D%(y) N Lg2yq0y = fs2x{0}- Let
v(s) € S? x {0}, s € [0,1] be an embedded oriented loop such that
v(0) = (1) = y. Let A(vy) be an annulus neighborhood of ~ containing
D?(y) and disjoint from other components of the dividing set as depicted
in Figure 13. We define an isotopy ¢; : S? — S2%, t € [0,1], supported in
A(y) which parallel transports D?(y) along v in A(7y). More precisely, by
applying the stereographic projection map, we can identify A(y) with an
annulus in R?. Then the parallel transportation is given by an affine map
¢ : 2 — 2 +y(t) —v(0) for any z € D?(y) and t € [0, 1].

Definition 6.5. With the small disc D?(y) D fs2x{0} such that szx{O} N
OD?(y) = (), the annulus A(y) D v and the isotopy ¢; : S?> — S? chosen as
above, we say that the contact structure §Fs2x{o}v‘1’ on S%x[0, 1] is induced by
a pure braid of the dividing set, where ® : S? x [0,1] — S% x [0, 1] is induced
by ¢; as before. We denote such contact structures by £F,‘I>(f, D2(y)7)" When
there is no confusion, we also abbreviate it by 51:7 D2

Remark 6.6. For any simply connected region D C S? x {0} containing
I's2, {0}, one can isotop so that D becomes a round disc with small radius
as required in Definition 6.5. The isotopy class of the contact structure on
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S2 % [0,1] induced by a pure braid of the dividing set only depends on the
choice of D D I'g2, 40y and the isotopy class of 7.

Remark 6.7. If ¢ is a contact structure on S? x [0,1] induced by a pure
braid of the dividing set, then I'g2y 10y = T's2 13-

Before we give a complete classification of contact structures on S? x [0, 1]
induced by pure braids of the dividing set, we make a digression into the
study of its homotopy classes using a generalized version of the Pontryagin—
Thom construction for manifolds with boundary. See [11] for more discus-
sions on the generalized Pontryagin—Thom construction.

We can always assume that the isotopy ¢:(T, D?(y),7) : 5% — S2,
t € [0, 1], discussed in Definition 6.5 is supported in a disc D? C S2. Trivialize
the tangent bundle of D? x [0, 1] by embedding it into R?, so that D? is con-
tained in the zy-plane. Consider the Gauss map G : (D? x [0, 1]751;,1:)3,7) —

S?. By Lemma 6.2, we can assume without loss of generality that the divid-
ing set is a disjoint union of round circles in D? x {t} for all 0 < t < 1,
and p = (1,0,0) € S%2 C R? is a regular value. Suppose the number of
connected components #I'p2, gy = m, then the Pontryagin submanifold
B = G~!(p) is an oriented framed monotone braid in the sense that B trans-
versely intersects D? x {t} in m points for any 0 < ¢ < 1, and each connected
component of the dividing set contains exactly one point. It is easy to check
that the pull-back framing is the blackboard framing, and consequently the
self-linking number of B is exactly writhe(B). It follows from the generalized
Pontryagin—Thom construction that the homotopy class of a contact struc-
ture on D? x [0, 1] relative to the boundary is uniquely determined by the
relative framed cobordism class of its Pontryagin submanifold 5, and hence is
uniquely determined by writhe(B) since Hy(D?x[0,1],9(D?x[0,1]); Z) = 0.
One may think of writhe(B) as a relative version of the Hopf invariant associ-
ated with boundary relative homotopy classes of maps D?x[0,1] ~ B3 — S2.

Example 6.8. If I'p2, oy is the disjoint union of two isolated circles, and
fDQX{O} = S C D2(y) is the circle on the left as depicted in Figure 14. The
isotopy ¢; parallel transports D?(y) along the oriented loop . We compute
the homotopy class of the contact structure 51:’ D2,y

According to the Pontryagin-Thom construction, since writhe(B) = —2,
the homotopy class of §1:7 D2,y is in general different from the [-invariant
contact structure, and the difference is measured by decreasing the Hopf
invariant by 2.4

“However, if the divisibility of the Euler class is 2, then ¢; gives a contact structure,
which is homotopic to the [-invariant contact structure. We will discuss the divisibility of
the Euler class in detail in Section 8.
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Figure 14. (a) The contact structure on S? x [0, 1] induced
by a full twist of the dividing circles, where {p;,p2} are pre-

images of the regular value p = (1,0,0) € S2. (b) The ori-
ented braid with the blackboard framing B as the Pontryagin

submanifold.
(a) (b)
m pP1 P2 P3
e A — - ~
D? % [0,1] D1 D2 D3

Figure 15. (a) A braiding by a full twist of the left-hand
side dividing circle along 7, where {p1,p2,p3} = G~ 1(p) is
the pre-image of the regular value p = (1,0,0) € S2. (b) The
oriented framed braid B as the Pontryagin submanifold.

Example 6.9. If I'p2, 0y is the disjoint union of three circles, and
fDQX{O} = S C D2?(y) is the circle on the left as depicted in Figure 15.

The isotopy ¢; parallel transports D?(y) along the oriented loop . We com-
pute the homotopy class of the contact structure &g ), »



A PROOF OF THE CLASSIFICATION OF OVERTWISTED CONTACT STRUCTURES 585

(a) (b)
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Figure 16. Contact structures induced by braiding the
dividing sets.

In this case, one computes that writhe(B) = 0, hence &5 1) 5 is homotopic
to the I-invariant contact structure.

Now we are ready to classify the contact structures induced by pure braids
of the dividing set up to stable isotopy in the sense of Definition 6.5. One goal
is to establish an isotopy equivalence relation between a pure braid of the
dividing set and the bypass triangle attachment. To start with, we consider
the contact structures induced by two special pure braids of the dividing
set as depicted in Figure 16. In Figure 16 (a), the dividing set T' ¢ D?(y)
is a single circle, and the dividing set contained in the disc bounded by v
and disjoint from I is also a single circle. In Figure 16 (b), the dividing set
I' C D?(y) consists of m isolated circles nested in another circle, and the
dividing set contained in the disc bounded by ~ and disjoint from I consists
of n isolated circles nested in another circle. We also assume that either m
or n is not zero. For technical reasons, it is convenient to have the following
definitions.

Definition 6.10. Given two disjoint embedded circles v,y C D?, we say
v <~ if and only if v is contained in the disc bounded by ~'.

Definition 6.11. Let I' C D? be a finite disjoint union of embedded circles.
The depth of I is the maximum length of chains v; < v9 < --- < 7;, where
~vi C T is a single circle for any 7 € {1,2,...,7}.

Observe that the depth of the dividing set in Figure 16 (a) is 1, and the
depth of the dividing set in Figure 16 (b) is 2. It turns out that to study the
contact structure induced by an arbitrary pure braid of the dividing set, it
suffices to consider a finite composition of these two special cases.

Lemma 6.12. If (5% x [0,1],& pe ) s a contact manifold with contact

structure induced by a pure braid of the dividing set where I C D? and v
are chosen as in Figure 16 (a), then (S? x [0,1], &5 po ) is isotopic relative

to the boundary to (S? x [0, 1], A?), where A? denotes the contact structure
obtained by attaching two bypass triangles on (S* x {0}, & pe 2% {03)-

Proof. Let o be an admissible arc as depicted in Figure 17 (b). Suppose that
both bypass triangles are attached along a.
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(a) (b)

Figure 17. (a) The contact structure is induced by paral-
lel transporting I' € D? along «. (b) Attaching two bypass
triangles along the admissible arc a.

Observe that A, = 04 * 04 * 0o, where oy, 0, and oy are all trivial
bypass attachments. Hence, the contact manifold (5% x [0,1],A2) can be
foliated by convex surfaces by Lemma 3.3. In other words, it is induced by
an isotopy. By Theorem 0.5° in [11], we know that attaching two bypass tri-
angles A2 decreases the Hopf invariant by 2. In Example 6.8, we checked by
Pontryagin—Thom construction that 51:, D2~ also decreases the Hopf invari-
ant by 2. Observe that the isotopy class relative to the boundary of a
2-strand oriented monotone braid with blackboard framing is uniquely deter-
mined by its self-linking number, which is equal to the Hopf invariant. Hence
A2 is isotopic (I>1:’ D2y in the region where both operations are supported.

By extending the isotopy by identity to the rest of S?, we conclude that
(52x[0,1], & pe ,) is isotopic relative to the boundary to (S2x[0,1],A%). O

Lemma 6.13. If (S? x [0,1],& pe ) s a contact manifold with contact
structure induced by a pure braid of the dividing set where I C D? and y
are chosen as in Figure 16 (b), then (S x [0, 1], &5 pe 7) 1s stably isotopic to
(52 % [0’ 1],A2(m—1)(n—1))‘

Proof. Let a C S% x {1} be an admissible arc as depicted in the left-hand
side of Figure 18 (a). By Lemma 6.3, if & is the push-down of «, then
§F7¢(1~17D377) % 0q =~ 04 * &v.¢, where IV is obtained from I' by attaching
a bypass along «. We remark here that §F’¢(f, D2.7) and & ¢ are contact
structures induced by the same isotopy, but are push-forwards of different
contact structures on S? x [0, 1]. Choose IV C D?l to be the m isolated

®The three-dimensional obstruction class o3 used in Theorem 0.5 in [11] is by definition
the relative version of the Hopf invariant t we have discussed above.
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Figure 18. (a) Pushing down the bypass attachment o,. (b)
Pulling up the bypass attachment og.

circles on the left and 4’ be an oriented loop as depicted in the right-hand
side of Figure 18 (a). Let &g p oy be the contact structure induced by an

isotopy which parallel transports IV C D?’ along 7'. Then Lemma 6.2 implies
that {rv ¢ is isotopic, relative to the boundary, to £z * 51:,7 D2 where  is
induced by an isotopy that rounds the outmost dividing circle. An iterated
application of Lemma 6.12 implies that ff,7 D2y A2Zm(n=1)

We next isotop the contact structure og * {5. Consider the n isolated
circles nested in a larger circle. Let T C D?” be the leftmost circle among
the n circles and " be an oriented loop as depicted in the right-hand side
of Figure 18 (b). We pull up & through an isotopy that paralle transports
I ¢ D?' along 4", and observe that the pull-up of & is isotopic to «. By
using Lemma 6.3 one more time, we obtain the isotopy of contact structures
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o6 * &g = En por % Oq. It is left to determine the isotopy class of the con-
tact structure &p pov . Since ~"" is oriented counterclockwise, by applying

Lemma 6.12 (n — 1) times, we obtain a stable isotopy &p, o o~ N2(-n)

(n—1)

ie., 51:,,7 D2’ o ¥ N2 is isotopic to the I-invariant contact structure.

To summarize what we have done so far, we have the following (stable)
isotopies of contact structures:

§0p2.y * Do = Epa(f,p2 ) * Ta ¥ Tar * Tar
>~ 0Og * fr‘/’q) X Ot X Ot
~ 05 * &g * §f,7D2/ﬁ, X ot * Ot
~og * &G * A2 gk g

(n—1)

2m
ng‘//’Dg”ﬁu*o—a*A * Ot * Oplt

~ AP gk AP gk g
~ A=D1 kg k T

= A2m=D(=1) A

Note that the third equation from the bottom is only a stable isotopy, so
that the (possibly) negative power of the bypass triangle attachment makes
sense. See Definition 5.12. We will use the same trick in the proof of the
following Proposition 6.14 without further mentioning. Hence by definition,
51"“,Dg,7 is stably isotopic to A2m=D(=1) a5 desired. O

We now completely classify contact structures on S? x [0,1] induced by
pure braids of the dividing set.

Proposition 6.14. If ($*x[0,1], & pe 7) is a contact manifold with contact
structure induced by a pure braid of the dividing set, then &t ” 18 stably

isotopic to (S? x [0,1], Al) for some | € N,

Proof. Recall that I' ¢ D? is a codimension 0 submanifold of I's2y 0y, and
7 is an oriented loop in the complement of I's2, 1oy as in Definition 6.5. Let
I’ be the union of components of gz, {0y contained in a disc bounded by
~ and outside of A(vy). We may choose the disc, so that —v is the oriented
boundary. Since the contact structure 51:7 D2y is induced by a pure braid of

the dividing set, we have I'g2, 19y = I'g2y(1}. Hence, we also view [ and
I’ as dividing sets on S? x {1}. Choose pairwise disjoint admissible arcs

Q1,02 Qpy Qg 1, - - -5 0 on S? x {1} such that the following conditions
hold:
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(1) a1,as,...,q,_1 are admissible arcs contained in D? such that by
attaching bypasses along these arcs, the depth of I' becomes at most
2.

(2) ap,ap41,- -+ ,af are admissible arcs contained in the disc bounded by

~ and outside of A(7y) such that by attaching bypasses along these
arcs, the depth of IV becomes at most 2.

Observe that we choose a1, as, ..., ax such that the isotopy class of each
«; is invariant under the time-1 map ¢; which is supported in A(y) \ D?.
Hence, by abuse of notation, we do not distinguish «; and its push-down
through ¢.(T', D?,7). By Lemma 6.3, we have the isotopy of contact struc-
tures 51:’D€2’,Y * Oy ¥ % Oy ™ Ogy * -+ % 0q, * &{p, Where { is the contact
structure induced by a finite composition of special pure braids of the divid-
ing set considered in Lemmas 6.12 and 6.13, Therefore £g is stable isotopic
to a power of the bypass triangle attachment, say A! for some [ € N. To
summarize, we have the following (stable) isotopies of contact structures,
relative to the boundary.

‘Sf,D?n/ x AF ~ éiD?W AV R A
= &5 p2 oy * (Oay % 0 % Oar) %+ % (O * Oat * 0gn)
~ (51:7[)277 * 0oy %k 0oy ) * (Ogr % Ogp) %o (aa;g * o)
2 (Oay %+ % Oay % &a) * (O % Oay) * - % (04 * 0ay)
~ (0q, %+ % 0q, *Al)*(ao/l #Oqy) ek (Opr * Ogp)
>~ Al * (Ual * Ua/l * Uall/) K oeee ok (Uak * Ua;g * Ua;c/)
= Abx AR,
Hence, §f7 D2 is stably isotopic to Al by definition. O
To conclude this section, we prove the following technical result which

asserts that under certain assumptions and up to possible bypass triangle
attachments, one can separate two bypasses.

Proposition 6.15. Let (S%,T') be a convex sphere with dividing set T
and o C (S?,T) be an admissible arc such that the bypass attachment o,
increases #I' by 2. Suppose that (S,1") is the new conver sphere obtained
by attaching o, to (S?,T) and suppose 3 C (S?,1") is another admissible arc
such that the bypass attachment oz decreases #I" by 2. Then there exists an
admissible arc 8 C (82,1 disjoint from a, a map ® : S%x[0,1] — 52 x[0,1]
induced by an isotopy, and an integerl € N such that oo*xog ~ Ua*O'B*Al*fq>
relative to the boundary.

Proof. Let § be the arc of anti-bypass attachment to o, contained in (S2,T")
as discussed in Remark 5.3. Then § intersects I in three points {p1, p2,ps}
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Figure 19. (a) The convex sphere (S%,T') with an admissible
arc a. (b) The convex sphere (S%,T") obtained by attaching
a bypass along «, where ¢ is the arc of the anti-bypass attach-
ment.

as depicted in Figure 19 (b). Let §; and d2 be subarcs of ¢ from p; to pe
and from py to ps, respectively. Observe that, in order to find an admissible
arc 3 C (S2,T') which is disjoint from o and satisfy all the conditions in
the lemma, it suffices to find an admissible arc on (52, T"), which we still
denote by 3, and which is disjoint from § and also satisfies the conditions
in the lemma. In fact, by symmetry, we only need 3 to be disjoint from 4.
Without loss of generality, we can assume that (3 intersects § transversely
and the intersection points are different from pi1, po and ps.

Claim: Up to isotopy and possibly a finite number of bypass triangle attach-
ments, one can arrange, so that 3 and &, do not cobound a bigon B on S>
as depicted in Figure 20 (a).

To verify the claim, note that if B is a trivial bigon, i.e., it contains no
component of the dividing set in the interior, then we can easily isotop 3 to
eliminate B. If otherwise, we consider a minimal bigon bounded by G and §;
in the sense that the interior of the bigon does not intersect with 3. Take a
disc D? C B containing all components of the dividing set [ in B, namely,
I'ND? =T and I'N(B\ D?) = (). By our assumption, the bypass attachment
og decreases #I' by 2, so 3 must intersect I in three points, which are
contained in three different connected components of I, respectively. One
can find an oriented loop v : [0,1] — S\ I with v(0) = (1) € D? such
that ~ intersects 8 in one point. Orient 7 in such a way that it goes from
v N B to (1) in the interior of B as depicted in Figure 20(b). Suppose that
® : 5% x[0,1] — S? x [0,1] is induced by an isotopy ¢;, which parallel
transports D? along ~. By pulling up the the bypass attachment o through
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Figure 20. (a) The admissible arc 3 together with §; bound
a minimal bigon, which contains other components of the
dividing set in the interior. (b) Choose a disc D? containing
all the dividing sets I in the bigon and an oriented loop 7, so
that it intersects (3 in exactly one point. (¢) The pull-up of 3
through the contact structure Ef, D2y bounds a trivial bigon
with (51.

&0, we obtain the following isotopy of contact structures (cf. proof of
Lemma 6.13):

op* fF”,@(D?,v) = §F’,4>(f,D§,7) * 03,

where I is obtained from I” by attaching a bypass along 3, and 3 is the
pull-up of 3, which is isotopic to the one depicted in Figure 20(c).

Since 3 and &; cobound a trivial bigon, a further isotopy of 3 will elim-
inate the bigon, so that 3’ does not intersect §; in this local picture. By
Proposition 6.14, the contact structure 51‘,7(1)@71)37” is stably isotopic to A"
for some n € N. Define @1 : 52 x [0,1] — S% x [0,1] by (z,t) — (¢; ' (z),1),
then it is easy to see that &pw g(p2 ) * v e-1(p2,4) 18 isotopic, relative to
the boundary, to an [-invariant contact structure. Since we will use this
trick many times, we simply write g1 for v g-1(p2 ) when there is no
confusion. To summarize, we have

o = 5F/,<1>(1~“,D€2,7) KOk o, o=1(D2,)
~ AT 0 S go1(D2,)
~ - n
~ U,@ * A * §F//7¢71(Dg77)_

By applying the above argument finitely many times, we can eliminate all
bigons bounded by § and d;. Hence, the claim is proved.

Let us assume that (§ intersects ¢; nontrivially, and § and §; do not
cobound any bigon on S2. We consider the following two cases separately.
Case 1. Suppose [ does not intersect any of the three components of the
dividing set generated by the bypass attachment o,. Let I'1, 'y and I's be
the three dividing circles that intersect with §. If § intersects 01 in exactly
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Figure 21. (a) The convex sphere (S%,T”) with an admissi-
ble arc [ intersecting d; in exactly one point. (b) Choose a
disc D? containing I'y and an oriented loop +, along which we
apply the isotopy. (c) The pull-up of 3 through the contact
structure {p p2 -, bounds a trivial bigon with d;.

one point as depicted in Figure 21(a), then we choose a disc D? D I'y and
an oriented loop v in the complement of the dividing set as depicted in
Figure 21(b) such that o5 ~ {p g1, p2,4) * 05 % -1 ~ A™ x o5 * Ep-1 by
arguments as before for some m € N, where B intersects §' in exactly two
points and cobound a trivial bigon as depicted in Figure 21(c). Hence, an
obvious further isotopy of 3 makes it disjoint from d; as desired.

If 6 intersects d1 in more than one point, we orient 3, so that it starts from
the point ¢ = BN T as depicted in Figure 22(a). Let ¢; and g2 be the first
and the second intersection points of 3 with 1, respectively. Note that since
we assume ( and §; do not cobound any bigon, there is no more intersection
point 5 N d; along §; between ¢; and go. Let qqi, ¢i¢ and ¢igs be oriented
subarcs of # and g2qi be an oriented subarc of §;. We obtain a closed,
oriented (but not embedded) loop v = qq1 U q1¢3 U g2q1 U q1¢ by gluing the
arcs together. To apply Proposition 6.14 in this case, we take an embedded
loop close to 7 as depicted in Figure 22(b), which we still denote by ~y. Let
D? be a small disc containing I'; as usual. Again by pulling up the bypass
attachment og through {rv ¢, p2,4), we have (stable) isotopies of contact
structures o ~ v a(r;,p2 ) * 05 % Ep-1 ~ AT x o5 % €p—1 for some r € N|

where [5‘ and J; bound a trivial bigon. Hence, an obvious further isotopy
eliminates the trivial bigon and decreases #((3 N 1) by 2. By applying the
above argument finitely many times, we can reduce to the case where
intersects 01 in exactly one point, but we have already solved the problem
in this case. We conclude that under the hypothesis at the beginning of this
case, there exists a ﬁ~ disjoint with d; such that o, * 0g ~ 04 * o5 * Al £
for some isotopy ® and an integer | € N.

Case 2. Suppose [ nontrivially intersects the union of the three components
of the dividing set generated by the bypass attachment o,. Without loss of
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Figure 22. (a) The convex sphere (5%, T”) with an admissi-
ble arc g intersecting d; in at least two points, say, q; and ¢o.
(b) The embedded, oriented loop v approximating the bro-
ken loop qg1 U q1g2 U 241 U ¢1q. (¢) The pull-up of # through
the contact structure &{p, p2 ., bounds a trivial bigon with 4;.

generality, we pick an intersection point r as depicted in Figure 23(a). Orient
0 so that it starts from r. Let r1 be the first intersection point of 8 and 4;.
Then 3, §; and IV bound a triangle Arrip;. By the assumption that there
exists no bigon bounded by 8 and §1, the interior of the triangle Arrip,
does not intersect with . If the interior of the triangle Arrip; contains no
components of the dividing set, then it is easy to isotop [ so that #(5MNdy)
decreases by 1. If otherwise, take a small disc D? C Arryp; containing all
components of the dividing set T' in Arripi, ie., Arripy \ D? does not
intersect with the dividing set I". Let v be an oriented loop based at a
point in D2, which does not intersect with the dividing set, and intersects 3
exactly once. By pulling up the bypass attachment o3 through fq)(f’ p2,4)> We

have (stable) isotopies of contact structures o ~ éF’,@(f,DZ,w) * 05k Ep-1 ~

o5% A" x€gp-1, so that 3, 81 and I bound a trivial triangle in the sense that
the interior of the triangle does not intersect with the dividing set. Hence,
we can further isotop § to eliminate the trivial triangle and hence decrease
#(B~ N 1) by 1. By applying such isotopies finitely many times, we obtain
an admissible arc B such that #(ﬁ~ N 1) = 0 and satisfy all the conditions
of the proposition. O

7. Classification of overtwisted contact structures on S% x [0, 1]

We have established enough techniques to classify overtwisted contact struc-
tures on S? x [0, 1].

Proposition 7.1. Let £ be an overtwisted contact structure on S* x [0, 1]
such that S? x {0,1} is conver with Lozyqop = Ds2xquy = S'. Then & ~ A"
for some n € N, where A" denotes the contact structure on S x [0,1]
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Figure 23. (a) The admissible arc [, the dividing set T’
and d; cobound a topological triangle Arrip;, which may
contain other components of the dividing set in the interior.
(b) Choose the disc D? to contain all the components of
the dividing set in the topological triangle Arrip;, and an
oriented loop v which intersects 3 in exactly one point. (c) By
applying the isotopy along -y, the admissible arc 8 becomes
(3, which bounds a trivial triangle with the dividing set and

1.
TN /’/“\\I @
" ce o
¢y (1) (11T av)

Figure 24. Four types of admissible arcs a on (S%,T).

obtained by attaching n bypass triangles to S? x {0} with the standard tight
neighborhood.

Proof. By Giroux’s criterion of tightness, both S? x {0} and $? x {1} have
neighborhoods which are tight. Take an increasing sequence 0 = ty < t;
< -+ < t, = 1 such that £ is isotopic to a sequence of bypass attachments
Oag * Oay * +++ % 0, ,, Where a; C S? x {t;} are admissible arcs along
which a bypass is attached. Define the complexity of a bypass sequence to
be ¢ = maxo<i<n # 52 1,}- The idea is to show that if ¢ > 3, then we
can always decrease ¢ by 2 by isotoping the bypass sequence and suitably
attaching bypass triangles.

To achieve this goal, we divide the admissible arcs on (S2,T) into four
types (I), (II), (IIT) and (IV), according to the number of components of
I’ intersecting the admissible arc as depicted in Figure 24, where we only
draw the dividing set that intersects the admissible arc. Observe that bypass
attachment of type (I) increases #I' by 2, bypass attachment of type (II)
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(a) (b)

Figure 25. Eliminating bypasses of type (II) and (III).

and (IIT) do not change #I', and bypass attachment of type (IV) decreases
#I" by 2. Hence, the complexity of a sequence of bypass attachments changes
only if the types of bypasses in the sequence change. By repeated application
of Lemma 6.3, we may assume that contact structures induced by isotopies
are contained in a neighborhood of S? x {1}. By assumption, S? x {1}
has a tight neighborhood. Hence according to Remark 5.4, we shall only
consider sequences of bypass attachments modulo contact structures induced
by isotopies.

Claim 1: We can isotop the sequence of bypass attachments such that only
bypasses of types (I) and (IV) appear.

To prove the claim, we first show that a bypass attachment of type (III)
can be eliminated. Take an admissible arc a of type (III). If the bypass
attachment along « is trivial, then by Lemma 3.3, the bypass attachment o,
is induced by an isotopy. Otherwise there exists an admissible arc 3 disjoint
from « as depicted in Figure 25(a)® such that if one attaches a bypass along
«, followed by a bypass attached along 3, then the later bypass attachment
is trivial.

By the disjointness of admissible arcs o and 3, we obtain the following
isotopies of contact structures:

Oa X~ 0q %03

EO'/g*O'a.

Observe that og * 0, is a composition of types (I) and (IV) bypass attach-
ments. Hence, a finite number of such isotopies will eliminate all bypass
attachments of type (III) in a sequence.

Similarly suppose that o, is the bypass attachment of type (II) in a
sequence and is nontrivial. Then there must exist other components of the
dividing set as shown in Figure 25(b). Choose an admissible arc /3 disjoint
from « as depicted in Figure 25(b) such that if one attaches a bypass along
«, followed by a bypass attached along 3, then the later bypass attachment
is trivial. By the disjointness of a and [ again, we obtain the following

5In literature, we say 3 is obtained from « by left rotation.



596 YANG HUANG

isotopies of contact structures:

Oa > 0q %03

ZO'/g*O'a.

Observe that og * 0, is a composition of bypass attachments both of type
(ITT), hence by a further isotopy will turn o, into a composition of bypass
attachments of types (I) and (IV). A finite number of such isotopies will
eliminate bypasses of type (II). The claim follows.

From now on, we assume that any bypass attachment in o, * 0, * -+ - *
Oa,_, €ither increases or decreases #I" by 2.

Assume that the complexity of the bypass sequence is achieved at level
S? x {t,} for some r € {0,1,...,n} and is at least 5, i.e., #2041,y =
¢ > 5. Then it is easy to see that o,, , is type (I) and o,, is type (IV).
By Proposition 6.15, we can always assume that a,. is disjoint from «;,_4
modulo finitely many bypass triangle attachments. Hence, we can view both
a,_1 and o, as admissible arcs on S? x {t,_1}. To finish the proof of the
proposition, it suffices to prove the following claim.

Claim 2: We can isotop the composition of bypass attachments o4, , * 0,4,
such that the local maximum of #I" at S? x {t,} decreases by at least 2.

To prove the claim, let v C I'g2, (4, _,} be the dividing circle which non-
trivially intersects a,_1. We do a case-by-case analysis depending on the
number of points «, intersecting with ~.

Case 1: If a, intersects v in at most one point, then one easily check that
by applying isotopy oa, , * 0a, =~ O, * 0q, , to the sequence of bypass
attachments, #I'g2, 14,y decreases by 4.

Case 2: If «, intersects v in exactly two points, then once again we apply
the isotopy 0q,_, *0q, =~ 04, *0a,_, to the sequence of bypass attachments.
Now observe that o, *0,,_, is a composition of bypass attachments of type
(III). In the proof of the claim above, we see that any bypass attachment of
type (III) is isotopic to a composition of a bypass attachment of type (IV)
followed by a bypass attachment of type (I). Such an isotopy also decreases
the local maximum of #I" by 4.

Case 3: If o, also intersects ~ in three points, we consider a disc D bounded
by v and «,_1 as depicted in Figure 26(a). If D contains no component of
the dividing set in the interior, then o4, _, *04, is isotopic to a bypass triangle
attachment, more precisely, there exists a trivial bypass along an admissible
arc 6 on S2 x {t,} such that o,,_, * 04, * 05 is a bypass triangle attachment
along «,._1. Suppose D contains at least one connected component of the
dividing set. Let 3 be an admissible arc on S? x {t,_1} disjoint from c,_1
and «, such that it intersects v in two points and the dividing set contained
in D in one point as depicted in Figure 26(b).
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Figure 26. Reducing the complexity of the sequence of bypasses.

We have the following isotopies of contact structures due to Lemma 5.9
and the disjointness of admissible arcs:

Oap1 % 0a, * N> 0o | *0q, x DNg
=0q,_1 ¥O0q, *O’B *Uﬁ’ *0’5//
=03 %0, 1 *0q, *0g *0gn.

One can check that the last five bypass attachments above are all of type
(IIT). Hence, we can further isotop as before to eliminate type (III) bypass
attachments to decrease the local maximum of #I" by 2.

To summarize, we have proved that any sequence of bypass attachments
Tug * Oay %+ % 0q,_, on S% x [0,1] is stably isotopic to another sequence of
bypass attachments whose complexity is at most 3, which is clearly isotopic

to a power of bypass triangle attachments. Thus, the proposition is proved.
O

8. Proof of the main theorem

Now we are ready to finish the proof of Theorem 0.2.
Proof of Theorem 0.2. By Proposition 4.3, we can isotop & and £, so that
they agree in a neighborhood of the 2-skeleton. Without loss of generality, we
can furthermore assume that there exists an embedded closed ball B3 ¢ M
such that

(1) 0B? is convex and has a tight neighborhood in M with respect to

both £ and ¢£’.

(2) ¢=¢in M\ B3

(3) The restriction of £ and & to M \ B3 and to B? are all overtwisted.

Take a small ball B2 C B? in a Darboux chart, so that both 5’33 and
¢'| ps are tight. We identify B3\ B2 with S? x [0, 1] and represent the contact
structures ¢| p3\ps and ' B3\B3 by two sequences of bypass attachments.
By Proposition 7.1, both &|gs\ps and &'| s\ g3 are stably isotopic to some
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Figure 27. Dividing set on a convex surface of genus g.

power of the bypass triangle attachment, in other words, there are isotopies
of contact structures &|gs\ s * A" =~ A" and &'|ga\ gs ¥ A% ~ AT for
some n,m,r, s € N. By assumption, the restriction of ¢ and ¢ to M \ B? are
overtwisted, so there exist bypass triangle attachments along any admissible
arc on 0B? according to Lemma 3.1. By simultaneously attaching sufficiently
many bypass triangles to &| p3\p3 and | B3\B3, we can further assume that
f‘BB\Bg >~ An, 5/’33\32 ~ A™ and f = fl on M \ B?’.

Let d be the largest integer such that the Euler class e(§) = e({) €
H?(M;Z) divided by d is still an integral class. Such a d is known as the
divisibility of the Euler class. Combining Proposition 2.11 and Theorem 0.5
in [11], we have d|(m — n). To complete the proof of the theorem, we need
to show that &|yp ps is isotopic to &|yn ps * A? relative to the boundary.
Since d = g.c.d.{e(X)|X € Hy(M)}, it suffices to prove the following more
general fact.

Lemma 8.1. Let ¥ be a closed surface of genus g and n be an I-invariant
contact structure on ¥ x [0,1]. Then n* Al is stably isotopic to n relative to
the boundary, where I = e(n)(X).

Proof. Since we only consider stable isotopies of contact structures, one can
prescribe any dividing set I's on ¥ such that the Euler class evaluates on
> to I. In particular, we consider the dividing set on ¥ as depicted in Fig-
ure 27, namely, there are g + 1 circles v1 U --- U 7441 dividing ¥ into two
punctured discs, in each of which there are p and ¢ isolated circles, respec-
tively. We call the left most circles in the sets of p and ¢ isolated circles
I'y and T'1, respectively. We also choose admissible arcs {aq, as,...,ap-1}
and {1, 02, ...,04-1}, and orient 7;, 1 <i < g+ 1, in a way as depicted in
Figure 27.

An easy calculation shows that | = 2(p — ¢). Choose small discs Dzo, Dzl
in X such that DE,O NI'y =Ty and D?,l NIy, =TI'y. Observe that the bypass
triangle attachment along any o; and §; consists of three trivial bypass
attachments, hence is isotopic to contact structures induced by a pure braid
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of the dividing set. More precisely, let ,", i = 1,2,..., g+ 1, be an oriented
loop in the negative region, which is parallel to ;. We have the following

i ies of con r res A k- x A ~ - BN
sotoples of contact structures AZ, ap_1 77¢(F07D?,oﬂ1 U-Uyy)

Mo (ro,D2 00 ) ¥ ¥ (Do, D20 17, )7 where we think of 7" U--- U+, as an
oriented loop homologous to the union of the ;’s. Similarly one can study the
bypass triangle attachments along the 3;’s, but with an opposite orientation.
Let 'y;r be an oriented loop in the positive region, which is parallel to ~; for
1 <i < g+ 1. We have the following (stable) isotopies of contact structures
Aglaesxg? o~ Na(r1,02 | i u-uni) = Mare,D2 4™ Mary,D2 | A, )
Here we only have a stable isotopy because of our choice of the orientation of
;. To summarize the computations above, we obtain the following (stable)
isotopies of contact structures:

n*Al:n*(Azl*--.*Ag@_l)*(Aglz*...*Agil)

~ * koo ek _
N (77<I>(F0,D€270,71 ) 77¢>(F07D3,mg+1))

¥ <n¢(F17D3,mf) ¥ Mgy, p2 v;ﬂ))

€,1?

= (”@(FO,DSW;) * ”@(Fl,DS,l,wf))

* P * _ *
<n<1>(F07D310,’yg+1) nq)(FhDap'Y;:Ll))

where the last step follows from the fact that isotopies that parallel transport
Dzo and D?’l are disjoint.

Now it suffices to prove that (Do, D2 ;) *e(ry, D2, 7) is stably isotopic
to an [I-invariant contact structure for 1 < ¢ < g + 1. To see this, take an
annular neighborhood A; of v; containing Dio and Dzl and an admissible
arc 0; which intersects I'g, I'1, and ~; as depicted in Figure 28. We can
assume that the isotopies ® (T, De2,0> 7v; ) and ®(T'q, D?,h ~;") are supported

in A;. For simplicity of notation, we denote the composition Mo (1, D2y A7) *

nq)(rl,Dgylij—) by ,,7’71‘
By pushing down the bypass attachment os, through 7,,, we have the
following isotopies of contact structures:

Ny * DNg, = My, * 05, % Og1 % Ogp
~ O'Si *’I’]@(%) * 0'51/_ *0'5;/
=0, xOg5 kO5n = A&‘u
where 8; is the push-down of §; which is isotopic to &;, and the No(y;) 18
easily seen to be isotopic to an I-invariant contact structure. The argument

works for all i € {1,2,...,¢9 + 1}, hence we establish the stable isotopy as
desired. 0
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Figure 28. An annulus neighborhood A; of ~; containing I'y
and I'y.
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