JOURNAL OF SYMPLECTIC GEOMETRY Volume 11, Number 2, 163–166, 2013

SYMPLECTIC RIGIDITY AND WEAK COMMUTATIVITY

FRANCO CARDIN AND SIMONE VAZZOLER

We present a new and simple proof of Eliashberg–Gromov's theorem based on the notion of C^0 -commutativity introduced by Cardin and Viterbo in [1].

1. Introduction

The notion of C^0 -commutativity has been introduced in [1] in connection with the problem of finding variational solutions of multi-time Hamilton– Jacobi equations. The proof of the main theorem is essentially based on the use of Viterbo's capacities. In that paper, it has been foreseen that from the C^0 -commutativity framework Eliashberg–Gromov's theorem on symplectic rigidity could follow. An interesting proof of this fact has been recently worked out by Humilière (see [4]) using the concept of pseudorepresentations.

The question of the C^0 -closure of the group of symplectomorphisms is widely considered as the starting point of the study of symplectic topology; for this reason is important to enrich this particular area with new proofs, eventually trying to simplify the subject. This note presents a new proof of Eliashberg–Gromov's theorem, starting from the concept of C^0 commutativity and using simple algebraic arguments.

2. Weak commutativity and Eliashberg–Gromov's theorem

In the following, by a function of class $C^{1,1}$ we mean a C^1 function with Lipschitz derivative.

Definition 1. Let H, K be two autonomous Hamiltonians. We will say that H and $K C^{0}$ -commute if there exist two sequences H_n, K_n of C^{1} Hamiltonians C^{0} -converging to H and K, respectively, such that, in the C^{0} -topology:

(2.1)
$$\lim_{n \to \infty} \{H_n, K_n\} = 0.$$

F. CARDIN AND S. VAZZOLER

The previous definition is a good extension of the standard Poisson brackets since the following theorem holds.

Theorem 2 (Cardin, Viterbo [1]). Let H and K be two compactly supported Hamiltonians of class $C^{1,1}$. If they C^0 -commute then $\{H, K\} = 0$ in the usual sense.

The following lemma is the generalization of Theorem 2 to the affine at infinity case.

Lemma 3 (Humilière, [4]). Let u, v two affine maps $\mathbb{R}^{2n} \to \mathbb{R}$ and H_n, K_n be compactly supported Hamiltonians, such that

$$H_n \to H, K_n \to K, \{H_n + u, K_n + v\} \to 0.$$

Then $\{H + u, K + v\} = 0.$

In what follows, we will consider only sequences of compactly supported symplectomorphisms $\Phi^{(n)}$, more precisely such that $\operatorname{supp}(\Phi^{(n)} - \operatorname{Id})$ is compact.

Theorem 4 (Symplectic rigidity, [2,3]). The group of compactly supported symplectomorphisms is C^0 -closed in the group of all diffeomorphisms of \mathbb{R}^{2d} .

Proof. To fix the notations: $(q, p) = (q_1, \ldots, q_d, p_1, \ldots, p_d) \in \mathbb{R}^{2d}$ and denote by

(2.2)
$$(Q_1^{(n)}(q,p),\ldots,Q_d^{(n)}(q,p),P_1^{(n)}(q,p),\ldots,P_d^{(n)}(q,p)),$$

a sequence of symplectic transformations C^0 -converging to

$$(Q_1(q, p), \ldots, Q_d(q, p), P_1(q, p), \ldots, P_d(q, p)).$$

Note that we have to prove only $\{Q_i, P_i\} = 1$. In fact, the other relations $\{Q_i, Q_j\} = 0 = \{P_i, P_j\}$, and $\{Q_i, P_j\} = 0$ for $i \neq j$, are automatically satisfied in view of Lemma 3. Now we define a new sequence (using the previous one)

(2.3)
$$\begin{cases} \widetilde{Q}_i^{(n)} = Q_i^{(n)} + \frac{1}{\sqrt{d}} \sum_{k=1}^d P_k^{(n)}, \\ \widetilde{P}_i^{(n)} = P_i^{(n)} + \frac{1}{\sqrt{d}} \sum_{k=1}^d Q_k^{(n)}, \end{cases}$$

164

 \oplus

SYMPLECTIC RIGIDITY AND WEAK COMMUTATIVITY

that will C^0 -converge to

 \oplus

(2.4)
$$\begin{cases} \widetilde{Q}_i = Q_i + \frac{1}{\sqrt{d}} \sum_{k=1}^d P_k, \\ \widetilde{P}_i = P_i + \frac{1}{\sqrt{d}} \sum_{k=1}^d Q_k. \end{cases}$$

Clearly $\{\widetilde{Q}_i^{(n)},\widetilde{P}_i^{(n)}\}=0$, in fact

$$\begin{split} \{\widetilde{Q}_{i}^{(n)}, \widetilde{P}_{i}^{(n)}\} &= \{Q_{i}^{(n)}, P_{i}^{(n)}\} + \frac{1}{\sqrt{d}} \sum_{k=1}^{d} (\{P_{k}^{(n)}, P_{i}^{(n)}\} + \{Q_{i}^{(n)}, Q_{k}^{(n)}\}) \\ &+ \frac{1}{d} \sum_{k=1}^{d} \{P_{k}^{(n)}, Q_{k}^{(n)}\} = 1 - 1 = 0. \end{split}$$

Again using Lemma 3, we obtain $\{\widetilde{Q}_i, \widetilde{P}_i\} = 0$: passing to the limit,

$$\begin{split} \{\widetilde{Q}_i, \widetilde{P}_i\} &= \{Q_i, P_i\} + \frac{1}{\sqrt{d}} \sum_{k=1}^d (\{P_k, P_i\} + \{Q_i, Q_k\}) + \frac{1}{d} \sum_{k=1}^d \{P_k, Q_k\} \\ &= \{Q_i, P_i\} + \frac{1}{d} \sum_{k=1}^d \{P_k, Q_k\} = 0. \end{split}$$

Define (just to simplify the notations) $C_i(q, p) = \{Q_i, P_i\}$. For every fixed $(q, p) \in \mathbb{R}^{2d}$, the last homogeneous linear system reads

(2.5)
$$\begin{pmatrix} d-1 & -1 & \dots & -1 \\ -1 & d-1 & \dots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \dots & d-1 \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

This system has $C_1 = C_2 = \cdots = C_d$ as solution; in fact, the $d \times d$ matrix has determinant equal to zero: if we sum the last d - 1 rows we get the opposite of the first row; in particular the rank of the matrix is d - 1, so the subspace of solutions has dimension 1 and is exactly the space of equal components vectors. Recalling the Jacobi identity

(2.6)
$$\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0,$$

we obtain, considering terms like $\{Q_i, \{Q_j, P_j\}\}$ for $i \neq j$,

(2.7)
$$0 = \{Q_i, \{Q_j, P_j\}\} + \{Q_j, \{P_j, Q_i\}\} + \{P_j, \{Q_i, Q_j\}\}$$
and since $\{Q_i, P_j\} = \{Q_i, Q_j\} = 0$, we get
(2.8) $\{Q_i, \{Q_j, P_j\}\} = 0.$

165

 \oplus

F. CARDIN AND S. VAZZOLER

In the same way, considering $\{P_i, \{Q_j, P_j\}\}$ we obtain

(2.9)
$$\{P_i, \{Q_j, P_j\}\} = 0.$$

Once we have set $C_1(q,p) = C_2(q,p) = \cdots = C_d(q,p) = C(q,p)$, using the previous relations, we have

(2.10)
$$\begin{cases} \{Q_1, C\} = 0\\ \{Q_2, C\} = 0\\ \vdots\\ \{P_{d-1}, C\} = 0\\ \{P_d, C\} = 0, \end{cases}$$

which is a homogeneous linear system of the type $A \cdot DC = 0$

(2.11)
$$\begin{pmatrix} -Q_{1,p_1} & \dots & -Q_{1,p_d} & Q_{1,q_1} & \dots & Q_{1,q_d} \\ -Q_{2,p_1} & \dots & -Q_{2,p_d} & Q_{2,q_1} & \dots & Q_{2,q_d} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ -P_{d,p_1} & \dots & -P_{d,p_d} & P_{d,q_1} & \dots & P_{d,q_d} \end{pmatrix} \begin{pmatrix} C_{,q_1} \\ C_{,q_2} \\ \vdots \\ C_{,p_d} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

From the fact that $\Phi : (q, p) \mapsto (Q_1, \ldots, Q_d, P_1, \ldots, P_d)$ is a diffeomorphism we have det $A \neq 0$ (because $A = D\Phi \cdot \mathbb{E}$ where \mathbb{E} is the symplectic matrix) and so C(q, p) = C, a constant. It remains to show that C = 1. This comes from the fact that outside a compact set of \mathbb{R}^{2d} we have $(Q_1, \ldots, Q_d, P_1, \ldots, P_d) = (q_1, \ldots, q_d, p_1, \ldots, p_d)$ and so $\{q_i, q_j\} = \{p_i, p_j\} = 0$ and $\{q_i, p_j\} = \delta_{ij}$ outside this compact set. From the fact that the Poisson brackets are (at least) continuous, it follows that we must have C = 1. \Box

References

- F. Cardin and C. Viterbo, Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Math. J. 144(2) (2008), 235–284.
- [2] Y.M. Eliashberg, A theorem on the structure of wave fronts and its application in symplectic topology, Funktsional. Anal. Prilozhen. 21(3) (1987), 65–72.
- [3] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82(2) (1985), 307–347.
- [4] V. Humilière, Hamiltonian pseudo-representations, Comment. Math. Helv. 84(3) (2009), 571–585.

UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI MATEMATICA PURA E APPLICATA VIA TRIESTE, 63 35121 PADOVA ITALY *E-mail address*: cardin@math.unipd.it *E-mail address*: svazzole@gmail.com Received 04/14/2011, accepted 11/08/2011

166