
JOURNAL OF
SYMPLECTIC GEOMETRY
Volume 10, Number 4, 601–653, 2012

ON THE GROWTH RATE OF LEAF-WISE
INTERSECTIONS

Leonardo Macarini, Will J. Merry and Gabriel P. Paternain

We define a new variant of Rabinowitz Floer homology that is par-
ticularly well suited to studying the growth rate of leaf-wise intersec-
tions. We prove that for closed manifolds M whose loop space ΛM is
“complicated”, if Σ ⊆ T ∗M is a non-degenerate fibrewise starshaped
hypersurface and ϕ ∈ Hamc(T ∗M,ω) is a generic Hamiltonian diffeo-
morphism then the number of leaf-wise intersection points of ϕ in Σ
grows exponentially in time. Concrete examples of such manifolds are
(S2×S2)#(S2#S2), T

4#CP 2, or any surface of genus greater than one.

1. Introduction

Let M denote a closed connected orientable n-dimensional manifold with
cotangent bundle π : T ∗M → M . Let λ = pdq and Y = p∂p denote the
Liouville 1-form and Liouville vector field on T ∗M , respectively, and let
ω = dλ denote the canonical symplectic structure. Note that iY ω = λ.
Let Hamc(T ∗M,ω) denote the group of compactly supported Hamiltonian
diffeomorphisms of T ∗M .

Recall that a fibrewise starshaped hypersurface Σ is a closed con-
nected separating hypersurface in T ∗M such that Y is transverse to Σ
and points in the outwards direction. This is equivalent to requiring that
λΣ := λ|Σ is a positive contact form on Σ. Given a fibrewise starshaped
hypersurface Σ, let RΣ denote the Reeb vector field associated to the con-
tact 1-form λΣ. Let φΣ

t : Σ → Σ denote the flow of RΣ. We say that Σ is a
non-degenerate hypersurface if all the closed orbits of RΣ are transversely
non-degenerate (see Definition 2.4 below). Given p ∈ Σ, let Lp denote the
leaf of the characteristic foliation of Σ running through p. We can parame-
terize Lp via Lp := {φΣ

t (p) : t ∈ R}. A defining Hamiltonian for Σ is an
autonomous Hamiltonian F ∈ C∞(T ∗M,R) such that Σ = F−1(0) and such
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that the Hamiltonian vector field XF is compactly supported and satisfies
XF |Σ = RΣ.

Given ϕ ∈ Hamc(T ∗M,ω), we say that a point p ∈ Σ is a leaf-wise
intersection point for ϕ if there exists a real number η ∈ R such that

ϕ(φΣ
η (p)) = p.(1.1)

We say that p is a periodic leaf-wise intersection point if Lp is a closed leaf.
In this paper, we will only be interested in leaf-wise intersection points that
are not periodic. This is not a major restriction, as Albers and Frauenfelder
(see [7, Theorem 3.3] or Proposition 3.8 below) show that if n = dim M ≥ 2
and Σ ⊆ T ∗M is a non-degenerate fibrewise starshaped hypersurface then
a generic Hamiltonian diffeomorphism has no periodic leaf-wise intersection
points in Σ. Thus for simplicity the term “leaf-wise interection point” should
be understood as “non-periodic leaf-wise intersection point”, unless explic-
itly stated otherwise. With this convention in mind, the time-shift η ∈ R

of a leaf-wise intersection point p is the unique real number η such that (1.1)
is satisfied.1

A leaf-wise intersection point has zero time-shift if and only if it is a fixed
point of ϕ. A leaf-wise intersection point is called positive if its time-shift η
is strictly positive, and negative if its time-shift is strictly negative. In this
paper, we will only be interested in positive leaf-wise intersection points.
This is no great loss, as the negative leaf-wise intersection points of ϕ are
precisely the positive leaf-wise intersection points of ϕ−1.

Remark 1.1. Our definition of a leaf-wise intersection point is slightly
different to the standard one, where rather than referring to p as the leaf-
wise intersection point, instead the point p̄ := φΣ

η (p) is called “the leaf-wise
intersection point”. With this convention a point p̄ is a leaf-wise intersection
point if ϕ(p̄) ∈ Lp̄, which is perhaps a more natural definition. However using
the standard convention it would seem natural (see [11, p1]) to define the
“time-shift” of p̄ to be −η rather then η, and as a result with the standard
definition we would end up counting negative leaf-wise intersection points,
which is somehow less aesthetically pleasing (see the statement of Theorem
A below).

The leaf-wise intersection problem asks whether a given Hamiltonian dif-
feomorphism always has a leaf-wise intersection point in a given fibrewise
starshaped hypersurface, and if so, whether one can obtain a lower bound
on the number of such leaf-wise intersections. This problem was introduced

1Of course, without the implicit “non-periodic” in front of the term “leaf-wise inter-
section point” η is not unique: if φΣ

T (p) = p then ϕ(φΣ
η+kT (p)) = p for all k ∈ Z.
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by Moser in [47], and since then has been studied by a number of differ-
ent authors [7, 9–11, 13, 23, 25, 30, 33, 34, 36–38, 43, 55]. We refer to [8]
for a brief history of the problem and a discussion of the progress made so
far. Here, we mention only one result that is particularly relevant to our
paper: in [7] Albers and Frauenfelder establish that if the homology of the
free loop space is infinite-dimensional, then given a non-degenerate fibrewise
starshaped hypersurface Σ, a generic Hamiltonian diffeomorphism has infin-
itely many leaf-wise intersection points in Σ. This appears to have been the
first result which asserts the existence of infinitely many leaf-wise intersec-
tion points, instead of just a finite lower bound. In this paper we extend this
result to show that if the base manifold M satisfies a certain topological con-
dition (roughly that its loop space homology is sufficiently “complicated” —
concrete examples of such manifolds are (S2 × S2)#(S2 × S2), T

4#CP 2 or
any surface of genus greater than one), then not only do generic Hamilton-
ian diffeomorphisms have infinitely many leaf-wise intersection points in any
non-degenerate fibrewise starshaped hypersurface, but the number of such
leaf-wise intersection points “grows” exponentially with time. The precise
statements are given below in Theorem A and Corollaries B and C. To the
best of our knowledge this is the first result which establishes the existence
of “more” than just infinitely many leaf-wise intersection points.

Let us fix ϕ ∈ Hamc(T ∗M,ω). Suppose H ∈ C∞
c (S1 × T ∗M,R) is any

Hamiltonian that generates ϕ, i.e. φH1 = ϕ. If p is a positive leaf-wise
intersection point of ϕ with time-shift η then consider the (not necessarily
smooth) loop x ∈ C0(S1, T ∗M) defined by

x(t) :=

{
φΣ

2tη(p), 0 ≤ t ≤ 1/2,

φH2t−2(p), 1/2 ≤ t ≤ 1.

Obviously the curve x depends on the choice of Hamiltonian H generat-
ing ϕ, but asking which free homotopy class α ∈ [S1,M ] the projection
π ◦ x belongs to is independent of H (see Lemma 3.7 below). Thus it makes
sense to speak of leaf-wise intersection points belonging to α. Given T > 0
denote by by nΣ,α(ϕ, T ) the number of positive leaf-wise intersection points
that belong to α with time-shift 0 < η < T . As indicated above, in this
paper we study the growth rate of the function nΣ,α(ϕ, ·) for a given
ϕ ∈ Hamc(T ∗M,ω). In order to state our results we first need to introduce
several definitions. Denote by ΛT ∗M the free loop space of T ∗M . Given
H ∈ C∞

c (S1 × T ∗M,R), denote by AH : ΛT ∗M → R the standard Hamil-
tonian action functional

(1.2) AH(x) :=
∫
x∗λ−

∫ 1

0
H(t, x) dt.
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Denote by A(AH) the action spectrum of AH :

A(AH) := {AH(x) : x is a critical point of AH}.
Now suppose ϕ ∈ Hamc(T ∗M,ω). A theorem of Frauenfelder and Schlenk
[29, Corollary 6.2] says that if H,K ∈ C∞

c (S1 × T ∗M,R) both generate ϕ
then2

A(AH) = A(AK).

Thus we may define the action spectrum A(ϕ) of ϕ to be A(AH) for any
H ∈ C∞

c (S1 × T ∗M,R) generating ϕ. Now define

κ : Hamc(T ∗M,ω) → [0,∞)

by

(1.3) κ(ϕ) := sup{|η| : η ∈ A(ϕ)}.
Another way of measuring the “size” of an element ϕ ∈ Hamc(T ∗M,ω) is
given by the Hofer norm. We recall the definition: given H ∈ C∞

c (S1 ×
T ∗M,R), define

‖H‖+ :=
∫ 1

0
max

(q,p)∈T ∗M
H(t, q, p) dt, ‖H‖− := −

∫ 1

0
min

(q,p)∈T ∗M
H(t, q, p) dt;

‖H‖ := ‖H‖+ + ‖H‖−.
For ϕ ∈ Hamc(T ∗M,ω), the Hofer norm of ϕ is defined to be:

(1.4) ‖ϕ‖ := inf{‖H‖ : H generates ϕ}.
Let us combine these two measures together and define

(1.5) μ(ϕ) := 2κ(ϕ) + 6‖ϕ‖.
Write ΛM for the free loop space of M and ΛαM the subspace of loops
belonging to the free homotopy class α. Given a metric g on M define the
energy functional

Eg : ΛM → R;

Eg(q) :=
∫ 1

0

1
2
|q̇|2dt.

Given 0 < a <∞ and α ∈ [S1,M ], denote by

Λaα(M, g) :=
{
q ∈ ΛαM : Eg(q) ≤ 1

2
a2

}
.

2Strictly speaking their result pertains only to the subset of the action spectrum gen-
erated by contractible periodic points. But they work only with a weakly exact sym-
plectic manifold. In our case the symplectic form is exact (instead of just being weakly
exact), and thus the same proof carries through for the entire action spectrum. We also
remark that the same result is also true for closed symplectically aspherical manifolds
(see [52, Theorem 1.1], which builds on Seidel [53]), although this is considerably deeper.
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We will prove the following theorem.

Theorem A. Let M be a closed connected orientable manifold of dimension
n ≥ 2. Let Σ be a non-degenerate fibrewise starshaped hypersurface. Let
g be a Riemannian metric on M such that S∗

gM is non-degenerate and
contained in the interior of the compact region bounded by Σ. There exists a
constant c = c(Σ, g) > 0 such that the following property holds: suppose ϕ ∈
Hamc(T ∗M,R) is a generic Hamiltonian diffeomorphism (see Remark 1.4
for the meaning of the word “generic” in this context). Then for all T > 0
sufficiently large, it holds that

(1.6) nΣ,α(ϕ, T ) ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rank{ι : H(Λc(T−‖ϕ‖)
α (M, g); Z2) →

H(ΛαM,Λ4μ(ϕ)
α (M, g); Z2)}, α 
= 0,

rank{ι : H(Λc(T−‖ϕ‖)
0 (M, g),M ; Z2) →

H(Λ0M,Λ4μ(ϕ)
0 (M, g); Z2)}, α = 0.

Remark 1.2. The main novelty in the proof of Theorem A is the use of
monotone continuation maps in (our modified version of) Rabinowitz
Floer homology. These allow us to relate the Floer homology of the given
fibrewise starshaped hypersurface with that of a ‘simpler’ fibrewise star-
shaped hypersurface — namely S∗

gM — via a ‘sandwiching argument’.
Whilst the sandwiching argument is a standard method in Floer homology,
it is not applicable to Rabinowitz Floer homology, since monotone continu-
ation maps do not appear to exist in this theory. Our modification of Rabi-
nowitz Floer homology is precisely designed so that monotone continuation
maps do exist. See Remark 4.3 for more information.

Remark 1.3. Theorem A is proved only for Z2 coefficients. This is because
so far there is no treatment of coherent orientations for Rabinowitz Floer
homology, but we certainly expect the theorem to hold with any field of
coefficients. Because of this however, for the remainder of this paper the
notation H(X,A) for the singular homology of a pair (X,A) should always
be understood as shorthand for H(X,A; Z2).

Remark 1.4. As mentioned above, a generic Hamiltonian diffeomorphism
has no periodic leaf-wise intersection points, and hence it is sufficient to
prove Theorem A for Hamiltonian diffeomorphisms with no periodic leaf-
wise intersection points. In fact, we prove Theorem A for Hamiltonian dif-
feomorphisms that (a) have no periodic leaf-wise intersection points and
(b) are generated by Hamiltonians for which the corresponding Rabinowitz
action functional is Morse (this condition is also generic — again due to
Albers and Frauenfelder [11, Proposition 3.9]). The precise definition for
the subset of Hamiltonian diffeomorphisms for which we prove Theorem A
is given in Definition 6.3 below.
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Remark 1.5. A well known result which is essentially due to Morse [46]
says that for any Riemannian manifold (M, g) and for any a > 0 the space
Λa(M, g) is finite-dimensional. For the case of based loops a proof of this
can be found in Milnor’s book [45]. A complete proof for the free loop space
is given in [31]. Thus the growth rate of nΣ,α(ϕ, T ) is also bounded from
below by the growth rate of the function

T �→ rank{ι : H(Λc(T−‖ϕ‖)
α (M, g)) → H(ΛαM)}.

Under certain topological assumptions on M , the number on the right-
hand side of (1.6) grows exponentially with T . For instance, if M is simply
connected then a classical theorem of Gromov [32] implies that whenever the
Betti numbers (bi(ΛαM))i∈Z grow exponentially with i, the right-hand side
of (1.6) grows exponentially with T . In the simply connected case, various
results giving exponential growth of the Betti numbers (bi(Λ0M))i∈Z have
been obtained by Lambrechts [39,40]; a concrete example is (S2×S2)#(S2×
S2). In the non-simply connected case there are also plenty of examples
where the right-hand side of (1.6) with α = 0 still grows exponentially with
T ; see for instance [48]. To encapsulate the situation where Theorem A gives
exponential growth, following [28] we make the following definition.

Definition 1.6. Given a closed Riemannian manifold (M, g) and α ∈
[S1,M ] we define

CΛ,α(M, g) := lim inf
a→∞

log rank{ι : H(Λaα(M, g)) → H(ΛαM)}
a

∈ [0,∞].

Whilst the constant CΛ,α(M, g) depends on g, asking whether CΛ,α(M, g)
is positive or not is a purely topological question. Thus we say that M is
(Λ, α)-energy hyperbolic if CΛ,α(M, g) > 0 for some (and hence any)
Riemannian metric g on M .

The following result can be proved in exactly the same way as [48,
Theorem B], and gives a wide class of Riemannian manifolds M which are
(Λ, 0)-energy hyperbolic.

Proposition 1.7. Let M be a closed manifold of dimension n ≥ 3. Suppose
that M can be decomposed as N1#N2, where π1(N1) has a subgroup of finite
index ≥ 3, and N2 is a simply connected manifold that is not a homology
Z2-sphere. Then M is (Λ, 0)-energy hyperbolic.

Note that M = T
4#CP 2 satisfies the hypotheses of Proposition 1.7. An

immediate corollary of Remark 1.5 and Theorem A is the following result,
which, as far as we are aware, is new even in the case Σ = S∗

gM .

Corollary B. Let M be a closed connected orientable manifold of dimension
n ≥ 2 and fix α ∈ [S1,M ]. Assume M is (Λ, α)-energy hyperbolic.
Let Σ ⊆ T ∗M be a non-degenerate fibrewise starshaped hypersurface. If
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ϕ ∈ Ham(T ∗M,ω) is a generic Hamiltonian diffeomorphism then nΣ,α(ϕ, T )
grows exponentially with T .

If we don’t fix the free homotopy class α ∈ [S1,M ] then another source
of examples for which we obtain an exponential growth rate of leaf-wise
intersections occurs when the fundamental group modulo conjugacy of M
has exponential growth. In order to explain this more precisely, let us first
say that a smooth manifold M is Λ-energy hyperbolic if

CΛ(M, g) := lim inf
a→∞

log rank{ι : H(Λa(M, g)) → H(ΛM)}
a

> 0

for some (and hence any) Riemannian metric g on M . Next, note that
the fundamental group of M is necessarily finitely generated. Denote by
π̃1(M) ∼= [S1,M ] the fundamental group of M modulo conjugacy classes.
Given s ∈ π1(M), denote by s the image of s in π̃1(M). Given a finite set
of generators S ⊆ π1(M), let γS : N → N denote the growth function of
S, defined by

γS(k) := #{α ∈ π̃1(M) : ∃ s1, . . . , sk ∈ S ∪ S−1, α = s1s2 . . . sk}.
We define the growth rate ν(S) of S to be the number

ν(S) := lim
k→∞

log γS(k)
k

∈ [0,∞].

We say that π̃1(M) has exponential growth if ν(S) > 0 for some (and
hence any) finite set of generators S. There are many examples of manifolds
M for which π̃1(M) has exponential growth; for example any surface of genus
greater than one. One can show (see for instance [42, Lemma 4.15]) that if
π̃1(M) has exponential growth then M is Λ-energy hyperbolic. Define

nΣ(ϕ, T ) :=
∑

α∈[S1,M ]

nΣ,α(ϕ, T ).

Then we have:

Corollary C. Let M be a closed connected orientable manifold of dimen-
sion n ≥ 2. Assume π̃1(M) has exponential growth. Let Σ ⊆ T ∗M be a
non-degenerate fibrewise starshaped hypersurface. If ϕ ∈ Ham(T ∗M,ω) is
a generic Hamiltonian diffeomorphism then nΣ(ϕ, T ) grows exponentially
with T .

As with Corollary B, we believe this result is also new even in the case
Σ = S∗

gM .

Remark 1.8. Whilst in general our results are only valid for a generic
Hamiltonian diffeomorphism ϕ, it will be apparent in the proof below that
the case ϕ ≡ 1 is included3 . Thus as a special case of our results we obtain

3Indeed, we will consider the general case only after first proving the special case ϕ ≡ 1.
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the following fact: for a non-degenerate fibrewise starshaped hypersurface
Σ ⊆ T ∗M , where M is a (Λ, α)-energy hyperbolic manifold, the number of
closed Reeb orbits belonging to the free homotopy class α grows exponen-
tially with time. In fact, this even shows that the number of geometrically
distinct closed Reeb orbits grows exponentially with time. This result how-
ever is not new; it follows from an observation of Seidel [54, Section 4a] that
the growth rate of symplectic homology is invariant under Liouville
isomorphism. We refer to [54] for a definition of these terms, and for an
explanation as to why this yields a proof of the fact above. We emphasize
however that whilst the case ϕ ≡ 1 can be proved much more easily using
symplectic homology, it does not appear possible to attack the leaf-wise
intersection problem with symplectic homology; at the moment Rabinowitz
Floer homology seems to be the most effective way of dealing with these
types of problems.

2. Preliminaries

2.1. Sign conventions. For the convenience of the reader we begin by
gathering together the various sign conventions we use. Let M denote a
closed connected orientable n-dimensional manifold. Let π : T ∗M → M
denote the foot point map.

• We use the symplectic form ω = dλ on T ∗M , where λ = pdq is the
Liouville 1-form. We will denote by Y = p∂p the Liouville vector
field, which is the unique vector field satisfying iY ω = λ.

• We denote by ΛM and ΛT ∗M the free loop spaces on M and T ∗M
respectively:

ΛM := C∞(S1,M), ΛT ∗M := C∞(S1, T ∗M).

We denote by Λ̃M and Λ̃T ∗M the completions of these spaces with
respect to the Sobolev W 1,2 norm. Given α ∈ [S1,M ], we denote by

ΛαM := {q ∈ ΛM : [q] = α};
ΛαT ∗M := {x ∈ ΛT ∗M : [π ◦ x] = α}.

• An almost complex structure J on T ∗M is compatible with ω if
ω(J ·, ·) defines a Riemannian metric on T ∗M . We denote by J the
set of time-dependent almost complex structures J = (Jt)t∈S1 such
that each Jt is compatible with ω.

• Given J ∈ J we denote by 〈〈·, ·〉〉J the L2 inner product on ΛT ∗M×R

defined by

(2.1) 〈〈(ξ, b), (ξ′, b′)〉〉J :=
∫ 1

0
ω(Jξ, ξ′) dt+ bb′.
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• Given a Riemannian metric g on M we denote by 〈〈·, ·〉〉g the W 1,2

metric on Λ̃M × R defined by

〈〈(ζ, b), (ζ ′, b′)〉〉g := 〈ζ(0), ζ ′(0)〉 +
∫ 1

0
〈∇tζ,∇tζ

′〉dt+ bb′.

• In this paper, F will always denote an autonomous Hamiltonian
F : T ∗M → R, whereas H will always denote a time-dependent
Hamiltonian H : S1 × T ∗M → R.

• The symplectic gradient XF of a smooth function F : T ∗M → R is
defined by iXF

ω = −dF .
• Floer homology is defined using negative gradient flow lines of the

Rabinowitz action functional Af.
• The notation H(X,A) for the singular homology of a pair (X,A)

should always be understood as shorthand for H(X,A; Z2).
• We denote by R

+ := {η ∈ R : η > 0}.
• All sign conventions in this paper agree with the ones in [4].

2.2. Preliminaries on fibrewise starshaped hypersurfaces. We begin
by defining our central objects of interest.

Definition 2.1. A submanifold Σ2n−1 ⊆ T ∗M is called a fibrewise star-
shaped hypersurface if Σ is a closed connected separating hypersurface
with the property that the Liouville vector field Y is transverse to Σ and
points in the outward direction. This is equivalent to asking that λΣ := λ|Σ
is a positive contact form on Σ. Given a fibrewise starshaped hypersurface
Σ, we denote by RΣ the Reeb vector field of the contact 1-form λΣ, that
is, the unique vector field on Σ defined by the equations λΣ(RΣ) = 1 and
iRΣ

dλΣ = 0. Denote by D(Σ) the compact region of T ∗M bounded by Σ,
and D◦(Σ) := int(D(Σ)).

Another way to think about such hypersurfaces is the following. Fix a
metric g on M , and denote by S∗

gM the unit cotangent bundle of (M, g).
Then a hypersurface Σ ⊆ T ∗M is fibrewise starshaped if and only if there
exists a smooth function σ : S∗

gM → R
+ such that

(2.2) Σ = graph(σ) = {(q, σ(q, p)) : (q, p) ∈ S∗
gM}.

Definition 2.2. Given a fibrewise starshaped hypersurface Σ ⊆ T ∗M , let
D(Σ) ⊆ C∞(T ∗M,R) denote the set of all autonomous Hamiltonians F :
T ∗M → R such that F−1(0) = Σ, XF is compactly supported, and such
that XF |Σ = RΣ. We call such Hamiltonians defining Hamiltonians for
Σ. Let

D :=
⋃
Σ

D(Σ),

where the union is over all fibrewise starshaped hypersurfaces Σ ⊆ T ∗M .
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Given a fibrewise starshaped hypersurface Σ ⊆ T ∗M , denote by P(Σ) the
set of closed Reeb orbits of RΣ:

P(Σ) := {(x, T ) ∈ ΛT ∗M × R
+ : x(S1) ⊆ Σ, ẋ = TRΣ(x)}.

Given α ∈ [S1,M ] let

P(Σ, α) := {(x, T ) ∈ P(Σ) : [π ◦ x] = α}.
Denote by A(Σ) the action spectrum of Σ:

A(Σ) := {T ∈ R
+ : ∃ (x, T ) ∈ P(Σ)};

A(Σ, α) := {T ∈ R
+ : ∃ (x, T ) ∈ P(Σ, α)},

and set

�(Σ) := inf A(Σ), �(Σ, α) := inf A(Σ, α).

Note that �(Σ) > 0 for any fibrewise starshaped hypersurface.

Remark 2.3. The action spectrum is a closed nowhere dense subset of
R [52, Proposition 3.7]. Moreover it varies “lower-semicontinuously” with
respect to Σ in the following sense. Suppose Σ is given by the graph of a
smooth function σ : S∗

gM → R
+, where S∗

gM is the unit cotangent bundle
of M with respect to some metric g on M (see (2.2)). Then given any neigh-
bourhood V ⊆ R of A(Σ) there exists a neighbourhood U ⊆ C∞(S∗

gM,R+)
of σ (where the later space is equipped with the strong Whitney C∞-
topology) such that if σ̃ ∈ U then the fibrewise starshaped hypersurface
Σ̃ defined as the graph of σ̃ satisfies A(Σ̃) ⊆ V. See [19, Lemma 3.1].

The non-degeneracy assumption we will make is the following:

Definition 2.4. We say a pair (x, T ) ∈ P(Σ) is transversely non-
degenerate if 1 is not an eigenvalue of the restriction of dx(0)φ

RΣ
T to the con-

tact hyperplane ker(λΣ(x(0))) ⊆ Tx(0)Σ. We say that Σ is non-degenerate
if every element of P(Σ) is transversely non-degenerate.

Non-degeneracy is a generic property, in the following sense.

Theorem 2.5. Fix a metric g on M , and let S∗
gM denote the unit cotangent

bundle of (M, g). The subset of C∞(S∗
gM,R+) consisting of those smooth

functions σ : S∗
gM → R

+ with the property that the corresponding fibre-
wise starshaped hypersurface Σ defined by the graph of σ (see (2.2)) is non-
degenerate, is residual in C∞(S∗

gM,R+).

See [35, Proposition 6.1], [16, Lemma 2.1] or [17, Appendix B] for a
proof of Theorem 2.5.
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3. F-Rabinowitz Floer homology

3.1. The Rabinowitz action functional. We now define the (variant of
the) Rabinowitz action functional that we will use. Before doing so, we
introduce the following convention. Given an autonomous Hamiltonian F ∈
C∞(T ∗M,R) and a function χ ∈ C∞(S1, [0, 1]), we define Fχ : S1×T ∗M →
R by

Fχ(t, x) := χ(t)F (x).

Definition 3.1. Fix F ∈ C∞(T ∗M,R), f ∈ C∞(R,R) and χ ∈ C∞(S1,
[0,∞)). The Rabinowitz action functional associated to the triple
(F, f, χ) is the functional

AFχ,f : ΛT ∗M × R → R

defined by

AFχ,f (x, η) :=
∫
x∗λ− f(η)

∫ 1

0
Fχ(t, x) dt.

Suppose now H ∈ C∞(S1×T ∗M,R). The perturbed Rabinowitz action
functional associated to the quadruple (F, f, χ,H) is the functional

AHFχ,f : ΛT ∗M × R → R

defined by

AHFχ,f (x, η) :=
∫
x∗λ− f(η)

∫ 1

0
Fχ(t, x) dt−

∫ 1

0
H(t, x) dt.

Thus AFχ,f corresponds to the trivial perturbation H = 0.

Although in principle we could use any functions F, f, χ,H in the defi-
nition above, the definition only becomes interesting when we restrict the
class of functions we consider. Firstly, we will only ever use functions F ∈ D;
in particular they will always be constant outside a compact set4 . Here is
the definition of the class of functions f we will study.

Definition 3.2. Let F ⊆ C∞(R,R+) denote the set of smooth strictly
positive functions f : R → R

+ that are strictly increasing, satisfy
limη→−∞ f(η) = 0, and are such that the derivative f ′ satisfies 0 < f ′(η) ≤ 1
for all η ∈ R.

Remark 3.3. The reason for considering functions f of the following form
is to be able to define continuation maps in Rabinowitz Floer homology for
monotone homotopies. This will be explained in Section 4.2, see Remark 4.3
in particular. The idea of perturbing the Rabinowitz action functional with
such an auxiliary function is not new. For instance, in [18] a similar idea

4At least until Section 5, that is.
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was used; there however they used functions f ∈ C∞(R,R) that were of the
form

f(η) =

{
η |η| ≤ R− ε,

R |η| ≥ R,

for some R > ε > 0. They used these (and other more general) perturbations
in order to find the link between Rabinowitz Floer homology and symplectic
homology.

Next, we will only ever take χ to lie in a certain subset X of C∞(S1, [0,∞)).
In order to define X , let us first associate to any element χ ∈ C∞(S1, [0,∞))
the function χ̄ : [0, 1] → [0,∞) defined by

χ̄(t) :=
∫ t

0
χ(τ) dτ.

Let X ⊆ C(S1, [0,∞)) denote those functions χ whose associated function
χ̄ satisfies the following conditions:

(1) There exists t0 = t0(χ) ∈ (0, 1] such that χ̄(t) ≡ 1 on [t0, 1].
(2) On [0, t0] the function χ̄ is strictly increasing.
Note that the function χ ≡ 1 is an element of X . It will sometimes be

useful to restrict to the following subset X0 ⊆ X :

X0 := {χ ∈ X : t0(χ) < 1/2}.
Remark 3.4. Note that if χ ∈ X then there is a unique function ν : [0, 1) →
[0, t0) such that

χ̄(ν(t)) = t for all t ∈ [0, 1).

One can extend ν to a continuous function ν : [0, 1] → [0, t0] by setting
ν(1) := t0.

Finally, here is the definition of the class of functions H we will use.

Definition 3.5. Let H denote the set of compactly supported time-
dependent Hamiltonians H ∈ C∞

c (S1 × T ∗M,R), which have the additional
property that H(t, ·) ≡ 0 for t ∈ [0, 1/2].

It is easy to see that given any ϕ ∈ Hamc(T ∗M,ω) we can find H ∈ H
such that ϕ = φH1 [8, Lemma 2.3]. Note that the function H ≡ 0 is in H.

In order to ease the notation, let us write

F := D ×F × X ×H,
and refer to elements of F by the single letter f. Given f = (F, f, χ,H) ∈ F,
we will often (but not always) write Af as shorthand for the perturbed
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Rabinowitz action functional AHFχ,f . In fact, most of the time we will work
only with a subset F0 ⊆ F. Let

F′
0 := D ×F × X × {0};

F′′
0 := D ×F × X0 ×H;

F0 := F′
0 ∪ F′′

0.

In other words, an element f ∈ F lies in F0 if and only if either H = 0 or
χ ∈ X0.

Let f ∈ F. One readily checks that a pair (x, η) ∈ ΛT ∗M × R is a critical
point of Af if and only if

(3.1)

{
ẋ = f(η)χ(t)XF (x) +XH(t, x),
f ′(η)

∫ 1
0 χ(t)F (x) dt = 0.

Since f ′ > 0 everywhere, these equations are equivalent to

(3.2)

{
ẋ = f(η)χ(t)XF (x) +XH(t, x),∫ 1
0 χ(t)F (x) dt = 0.

In particular, if H = 0 then since F is autonomous, these equations become:

(3.3)

{
ẋ = f(η)χ(t)RΣ(x),
x(S1) ⊆ Σ,

where F ∈ D(Σ). Given −∞ ≤ a ≤ b ≤ ∞, denote by Crit(a,b)(Af)
the set of critical points (x, η) ∈ ΛT ∗M × R with Af(x, η) ∈ (a, b).
Write simply Crit(Af) instead of Crit(−∞,∞)(Af). Similarly denote by
A(Af) := Af(Crit(Af)) the action spectrum of Af. Given α ∈ [S1,M ],
let Crit(a,b)(Af, α) := Crit(a,b)(Af) ∩ (ΛαT ∗M × R) and A(Af, α) :=
Af(Crit(Af, α)).

Given ϕ ∈ Hamc(T ∗M,ω) and a fibrewise starshaped hypersurface Σ, let

LW+(Σ, ϕ) := {p ∈ Σ : p is a positive leaf-wise intersection point for ϕ}.
The following lemma explains the advantage of choosing f ∈ F0.

Lemma 3.6. [7,17]
(1) Suppose f = (F, f, χ, 0) ∈ F′

0, with F ∈ D(Σ). Let ν : [0, 1] → [0, t0]
denote the function defined in Remark 3.4. Then (x, η) ∈ Crit(Af) if
and only if (x ◦ ν, f(η)) ∈ P(Σ). Moreover in this case

Af(x, η) = f(η) > 0.

(2) Now suppose f = (F, f, χ,H) ∈ F′′
0 with F ∈ D(Σ). Let ϕ := φH1 . Then

there is a surjective map

ef : Crit(Af) → LW+(Σ, ϕ)
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given by
ef(x, η) := x(0).

If the leaf Lx(0) is not closed then x(0) has time-shift f(η). If there are
no periodic leaf-wise intersection points then ef is injective. Moreover
if (x, η) ∈ Crit(Af) then:

(3.4) Af(x, η) = f(η) −
∫ 1

0
λ(XH(t, x)) −H(t, x) dt.

Let f = (F, f, χ,H) be as in part (2) of the previous lemma. As stated in
the Introduction, we want to be able to associate to a leaf-wise intersection
point p ∈ LW+(Σ, ϕ) a free homotopy class α ∈ [S1,M ]. It is natural to
define

LW+(Σ, ϕ, α) := ef(Crit(Af, α)).

The following lemma, based on a well known argument (see for example
[52, Proposition 3.1]) implies that LW+(Σ, ϕ, α) is well-defined.

Lemma 3.7. Suppose Σ is a fibrewise starshaped hypersurface and ϕ ∈
Hamc(T ∗M,ω). Suppose H0, H1 ∈ H both generate ϕ. Let F ∈ D(Σ), f ∈ F
and χ ∈ X0. Set fi := (F, f, χ,Hi) ∈ F′′

0 for i = 0, 1. Fix p ∈ LW+(Σ, ϕ) and
α ∈ [S1,M ]. Then there exists (x0, η0) ∈ Crit(Af0 , α) such that ef0(x0, η0) =
p if and only if there exists (x1, η1) ∈ Crit(Af1 , α) such that ef1(x1, η1) = p.

Proof. Suppose p ∈ LW+(Σ, ϕ). Thus there exists η ∈ R such that
ϕ(φFf(η)p) = p. Set Ki := Hi + f(η)Fχ for i = 0, 1. Then p is a fixed

point of φK0
1 and φK1

1 , and if xi(t) := φKi
t (p) then (xi, η) ∈ Crit(Afi). Note

that by construction K0(1, ·) ≡ 0 ≡ K1(1, ·). Thus, we may define a loop
(ϕt)t∈S1 ⊆ Hamc(T ∗M,ω) by

ϕt :=

{
φK0

2t , 0 ≤ t ≤ 1/2,

φK1
1−2t, 1/2 ≤ t ≤ 1.

The flow ϕt is the flow associated to the Hamiltonian G ∈ C∞
c (S1×T ∗M,R)

defined by

G(t, ·) :=

{
K0(2t, ·), 0 ≤ t ≤ 1/2,
−K1(1 − 2t, ·), 1/2 ≤ t ≤ 1.

Now consider the map eϕ : T ∗M → ΛT ∗M which sends a point in T ∗M to
its orbit under (ϕt). Then im(eϕ) is contained in a connected component of
ΛT ∗M (as M is connected). But from the proof of the Arnold conjecture
for cotangent bundles we know that for any 1-periodic compactly supported
Hamiltonian function there exists at least one contractible 1-periodic solu-
tion of the associated Hamiltonian system. Thus im(eϕ) ∩ Λ0T

∗M 
= ∅,
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and hence every loop in the image of eϕ is contractible; in particular the
loop eϕ(p) is contractible. But eϕ(p) is a reparametrization of the loop
x0 ∗x−1

1 . Thus necessarily x0 and x1 belong to the same component ΛαT ∗M
of ΛT ∗M . �
Next, we quote the following result due to Albers and Frauenfelder.

Proposition 3.8 ( [7] Theorem 3.3). Suppose dim M ≥ 2. Then if Σ is a
non-degenerate fibrewise starshaped hypersurface then there exists a generic
set G(Σ) ⊆ Hamc(T ∗M,ω) such that if ϕ ∈ G(Σ) then there are no periodic
leaf-wise intersection points:

LW+(Σ, ϕ) ∩ {x(t) : (x, T ) ∈ P(Σ), t ∈ S1} = ∅.
It will be important to be able to control the size of |Af(x, η)| in terms of

the size of |η| and vice versa for (x, η) ∈ Crit(Af). This leads to the following
definition.

Definition 3.9. Define a semi-norm κ : C∞
c (S1 × T ∗M,R) → [0,∞) by

κ(H) := sup
(t,x)∈S1×ΛT ∗M

∣∣∣∣
∫ 1

0
λ(XH(t, x)) −H(t, x) dt

∣∣∣∣ .
Note that

κ(H) = sup{|η| : η ∈ A(AH)},

where AH is the standard action functional (1.2). As remarked in the intro-
duction, since A(AH) depends only on the element φH1 ∈ Hamc(T ∗M,ω), we
may regard κ as being defined on Hamc(T ∗M,ω). Given a ≥ 0 let H(a) ⊆ H
denote the subset of elements H ∈ H with κ(H) ≤ a.

The following lemma is immediate from (3.4).

Lemma 3.10. Suppose f = (F, f, χ,H) ∈ F0 with H ∈ H(c) for some c > 0.
Then if (x, η) ∈ Crit(Af) and −∞ < a < b <∞,

η ∈ (a, b) ⇒ f(a) − c < Af(x, η) < f(b) + c.

Now suppose that a− c > 0. Then

Af(x, η) ∈ (a, b) ⇒ f−1(a− c) < η < f−1(b+ c).

Corollary 3.11. Fix 0 < c < a < b < ∞. Suppose f = (F, f, χ,H) ∈ F0

with H ∈ H(c). Then the set Crit(a,b)(Af) is compact.

Proof. Arguing similarly to Lemma 3.10, we see that if (x, η) ∈ Crit(a,b)(Af)
then η ∈ (f−1(a− c), f−1(b+ c)). In particular, |η| is bounded. Since F and
H are compactly supported and 0 is a regular value of F , there exists a
compact set V ⊆ T ∗M such that x(S1) ⊆ V for all (x, η) ∈ Crit(Af). Since
|η| is bounded, the Arzela–Ascoli theorem together with the first equation
in (3.2) then imply that Crit(a,b)(Af) is precompact, and hence compact. �
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In fact, it will be most convenient to actually require f(η) = η in the action
interval we work with.

Definition 3.12. Given a > 0 denote by F(a) ⊆ F the subset of functions
f ∈ F that satisfy f(η) = η for all η ∈ [a,∞).

We next address the non-degeneracy issue.

Definition 3.13. An element f ∈ F′
0 is called regular if Af is a Morse–

Bott function, and Crit(Af) is a discrete union of circles. If f = (F, f, χ, 0)
with F ∈ D(Σ) then f is regular if and only if Σ is non-degenerate in the
sense of Definition 2.4. In particular, a generic element of F′

0 is regular
(cf. Theorem 2.5). An element f ∈ F′′

0 is called regular if Af is a Morse
function. Given a fibrewise starshaped hypersurface Σ, there is a residual
subset R(Σ) ⊆ H such that if F ∈ D(Σ) and H ∈ R(Σ) then for any f ∈ F
and χ ∈ X0 the quadruple (F, f, χ,H) is regular. See [11, Proposition 3.9].
We denote by

F0,reg = F′
0,reg ∪ F′′

0,reg

the set of regular elements of F0.

Given J ∈ J we denote by ∇JAf the gradient of Af with respect to the
inner product 〈〈·, ·〉〉J (see (2.1)). A quick computation tells us that,

∇JAf(x, η) =
(
Jt(x)(ẋ−f(η)χ(t)XF (x)−XH(t, x)),−f ′(η)

∫ 1

0
χ(t)F (x) dt

)
.

Definition 3.14. A gradient flow line of Af (with respect to J ∈ J ) is a
map u : R → ΛT ∗M × R such that

(3.5) ∂su+ ∇JAf(u) = 0.

In components u = (x, η) this reads:

∂sx+ Jt(x)(∂tx− f(η)χ(t)XF (x) −XH(t, x)) = 0;

∂sη − f ′(η)
∫ 1

0
χ(t)F (x) dt = 0.

Given 0 < a < b < ∞, denote by M(a,b)(∇JAf) the set of gradient flow
lines u : R → ΛT ∗M × R of Af that satisfy a < Af(u(s)) < b for all s ∈ R.
Given α ∈ [S1,M ], let M(a,b)(∇JAf, α) denote the subset of M(a,b)(∇JAf)
consisting of those flow lines u = (x, η) that satisfy [π ◦ x(s, ·)] = α for all
s ∈ R.

Fix f ∈ F0,reg. It is well known that the non-degeneracy assumption that
Af is Morse(–Bott) implies that every element u ∈ M(a,b)(∇JAf) is asymp-
totically convergent at each end to elements of Crit(a,b)(Af). That is, the
limits

lim
s→±∞u(s, t) =: (x±(t), η±), lim

s→∞ ∂tu(s, t) = 0,
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exist, and the convergence is uniform in t, and the limits (x±, η±) belong to
Crit(a,b)(Af) (see for instance [50]). Moreover, if E(u) denotes the energy
of a gradient flow line:

E(u) :=
∫ ∞

−∞
‖∂su(s)‖2

J ds,

then if u ∈ M(a,b)(∇JAf) is asymptotically convergent to (x±, η±) ∈
Crit(a,b)(Af) it holds that

Af(x−, η−) −Af(x+, η+) = E(u) > 0.

Given u ∈ M(a,b)(∇JAf), the linearization of the gradient flow equation gives
rise to a Fredholm operator Du. There exists a residual subset Jreg(f) such
that if J ∈ Jreg(f) then for every 0 < a < b <∞ and every u ∈ M(a,b)(∇JAf)
the operator Du is surjective.

Definition 3.15. Suppose S is a fibrewise starshaped hypersurface. An
ω-compatible almost complex structure J on T ∗M is called convex on
T ∗M\D◦(S) if the following three conditions hold:

J(ξS) = ξS , ω(J(p)Y (p), Y (p)) = 1, dpφ
Y
t ◦ J(p) = J(p) ◦ dpφYt ,

for all p ∈ S.

Here φYt is the semi-flow of Y on T ∗M\D◦(S). Denote by J (S) ⊆ J the
set of all time dependent almost complex structures J = (Jt)t∈S1 such that
each Jt is convex and independent of t on T ∗M\D◦(S).

Our motivation for studying such almost complex structures is the follow-
ing lemma, which is based on a well-known argument using the maximum
principle.

Lemma 3.16. Suppose Σ, S are fibrewise starshaped hypersurfaces with
D(Σ) ⊆ D◦(S). Suppose f = (F, f,H, χ) ∈ F0,reg, where F ∈ D(Σ) is such
that supp(XF ) ⊆ D◦(S). Fix J ∈ J (S). Then for any 0 < a < b < ∞ and
any u ∈ M(a,b)(∇JAf) we have im(u) ⊆ D(S).

3.2. Floer homology of the Rabinowitz action functional. We now
define the Rabinowitz Floer chain complex associated to the action func-
tional Af for f ∈ F0,reg. The construction is slightly different depending as
to whether f ∈ F′

0,reg or f ∈ F′′
0,reg. We begin with the latter case, since this

is somewhat easier.
Fix f = (F, f, χ,H) ∈ F′′

0,reg, α ∈ [S1,M ] and 0 < a < b < ∞. Suppose
v := (x, η) is a critical point of Af. Then x is a 1-periodic orbit of the
time-dependent Hamiltonian G := f(η)Fχ + H. Since Af is Morse, x is a
non-degenerate orbit, and hence the Conley–Zehnder index μCZ(x;G)
of x as an orbit of G is a well-defined integer. See for instance [51] or [3]
(the latter in particular for non-contractible loops) for the definition of the
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Conley–Zehnder index, although note that our sign conventions match [2]
not [51] or [3]. We define μ(v) := μCZ(x;G). Let Critk(Af) denote those
critical points v with index μ(v) = k. Denote by CF (a,b)

k (Af, α) the Z2-vector
space

CF
(a,b)
k (Af, α) := Crit(a,b)k (Af, α) ⊗ Z2.

Choose J ∈ Jreg(f). Given v± ∈ Crit(a,b)(Af, α) denote by M(v−, v+) the
moduli space of maps u ∈ M(a,b)(∇JAf, α) that are asymptotically conver-
gent to v±, divided out by the translation R-action. Then M(v−, v+) carries
the structure of a smooth manifold of dimension μ(v−) − μ(v+) − 1. Under
certain conditions (see Theorem 3.18 below) the manifolds M(v−, v+) are
compact up to breaking. Assuming this is the case, the boundary operator
∂ on CF (a,b)(Af, α) is defined via:

∂v :=
∑

w∈Crit(a,b)(Af ,α)

#2M0(v, w)w, v 
= w

where M0(v, w) denotes the possibly empty zero-dimensional component of
M(v, w), and #2 denotes the cardinality taken modulo 2. It turns out that
∂ has degree −1 with respect to the grading μ. We denote by HF (a,b)(Af, α)
the resulting homology, which is independent of the choice of almost complex
structure J ∈ Jreg(f) we chose.

Now let us consider the case f = (F, f, χ, 0) ∈ F′
0,reg. Suppose v := (x, η)

is a critical point of Af. Then x is a 1-periodic orbit of the time-dependent
Hamiltonian G := f(η)Fχ. Since Af is Morse–Bott, x is a transversely
non-degenerate orbit, and hence the transverse Conley–Zehnder index
μτCZ(x;G) of x as an orbit of XG is a well-defined integer (see for instance [4,
Section 3] for the definition of the transverse Conley–Zehnder index).

Pick a Morse function h : Crit(Af) → R, and denote by Crit(h) ⊆ Crit(Af)
the set of critical points of h. Define an augmented grading μ : Crit(h) →
Z by

μ(v) := μτCZ(x;G) + ih(v), v = (x, η),

where ih(v) ∈ {0, 1} is the Morse index of v. Let Crit(a,b)k (h, α) := {v ∈
Crit(h) ∩ Crit(a,b)(Af, α) : μ(v) = k}. Given k ∈ Z, define

CF
(a,b)
k (Af, α) := Crit(a,b)k (h, α) ⊗ Z2.

One now defines the boundary operator in much the same way as before,
only this time one must take M(v−, v+) to be the moduli space of gradient
flow lines with cascades of h. We refer the reader to [27, Appendix A]
for more information. We emphasize once again that in order to be able to
define the Floer homology we need the manifolds M(v−, v+) to be compact
up to breaking, which is not always the case.
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3.3. Admissible quadruples.

Definition 3.17. Fix α ∈ [S1,M ]. A quadruple q = (f, a, b, J) consisting
of f ∈ F0,reg, J ∈ Jreg(f) and 0 < a < b < ∞ is called α-admissible if the
following conditions are satisfied:

(1) A(Af, α) ∩ {a, b} = ∅;
(2) The set Crit(a,b)(Af, α) is compact;
(3) There exist constants Cloop, Cmult > 0 such that for all u = (x, η) ∈

M(a,b)(∇JAf, α) it holds that ‖x‖L∞ < Cloop and ‖η‖L∞ < Cmult.
A quadruple q is simply called admissible if it is α-admissible for all α ∈
[S1,M ].

The next result follows by standard arguments in Floer homology, see for
instance [49].

Theorem 3.18. Fix α ∈ [S1,M ]. If q = (f, a, b, J) is an α-admissible
quadruple, then the Floer homology HF (a,b)(Af, α) is well-defined (that is,
the manifolds M(v−, v+) are compact up to breaking, see above).

We will now find conditions under which a quadruple q = (f, a, b, J) is
admissible. The first step is the following two preliminary lemmas, which
are minor modifications of the argument of [8, Lemma 2.11].

Lemma 3.19. Suppose f = (F, f, χ,H) ∈ F0 and J ∈ J . There exist con-
stants k, T > 0 depending only on F such that if x ∈ ΛT ∗M satisfies

x(supp(χ)) ⊆ Uk(F ) := F−1(−k, k)
then it holds that

2
3
(Af(x, η) − T‖∇JAf(x, η)‖J − κ(H))

≤ f(η) ≤ 2(Af(x, η) + T‖∇JAf(x, η)‖J + κ(H)).

Proof. In this proof and the next we denote by ‖ · ‖2 the norm

‖ξ‖2 :=
∫ 1

0
ω(Jξ, ξ) dt,

so that

‖(ξ, b)‖J =
√

‖ξ‖2
2 + b2.

There exists k > 0 such that
1
2

+ k ≤ λ(XF (p)) ≤ 3
2
− k for all p ∈ Uk(F ).

Set
T = T (F ) := ‖λ|Uk(F )‖∞.
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For any (x, η) ∈ ΛT ∗M × R with x(supp(χ)) ⊆ Uk(F ), we have

Af(x, η) =
∫ 1

0
λ(ẋ) dt− f(η)

∫ 1

0
Fχ(t, x) dt−

∫ 1

0
H(t, x) dt

= f(η)
∫ 1

0
λ(χ(t)XF (x)) dt+

∫ 1

0
λ(ẋ− f(η)χ(t)XF (x)) dt

− f(η)
∫ 1

0
χ(t)F (x) dt−

∫ 1

0
H(t, x) dt

≥ f(η)
∫ 1

0
χ(t)λ(XF (x)) dt

−
∣∣∣∣
∫ 1

0
λ(ẋ− f(η)χ(t)XF (x) −XH(t, x)) dt

∣∣∣∣
− f(η)

∫ 1

0
χ(t)F (x) dt− κ(H)

≥
(

1
2

+ k

)
f(η) − T‖ẋ− f(η)χ(t)XF (x) −XH(t, x)‖2

− f(η)k − κ(H)

≥ 1
2
f(η) − T‖ẋ− f(η)χ(t)XF (x) −XH(t, x)‖2 − κ(H)

≥ 1
2
f(η) − T‖∇JAf(x, η)‖J − κ(H),

and similarly

Af(x, η) =
∫ 1

0
λ(ẋ) dt− f(η)

∫ 1

0
Fχ(t, x) dt−

∫ 1

0
H(t, x) dt

= f(η)
∫ 1

0
λ(χ(t)XF (x)) dt+

∫ 1

0
λ(ẋ− f(η)χ(t)XF (t, x)) dt

− f(η)
∫ 1

0
χ(t)F (x) dt−

∫ 1

0
H(t, x) dt

≤ f(η)
∫ 1

0
χ(t)λ(XF (x)) dt

+
∣∣∣∣
∫ 1

0
λ(ẋ− f(η)χ(t)XF (x) −XH(t, x)) dt

∣∣∣∣
− f(η)

∫ 1

0
χ(t)F (x) dt+ κ(H)
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≤
(

3
2
− k

)
f(η) + T‖ẋ− f(η)χ(t)XF (x) −XH(t, x)‖2

+ f(η)k + κ(H)

≤ 3
2
f(η) + T‖∇JAf(x, η)‖J + κ(H).

�
Lemma 3.20. Suppose f = (F, f, χ,H) ∈ F0 and J ∈ J . For every k > 0
there exists ρ = ρ(k, F ) > 0 such that if (x, η) ∈ ΛT ∗M × R satisfies:

‖∇JAf(x, η)‖J ≤ ρf ′(η),

then x(supp(χ)) ⊆ Uk(F ).

Proof. To begin with, arguing exactly as in [8, Lemma 2.11, Claim 2]
(which only uses the loop component of the ∇JAf(x, η)), one sees that if
x(supp(χ)) ∩ (T ∗M\Uk(F )) 
= ∅ and x(supp(χ)) ∩ Uk/2(F ) 
= ∅ then

‖∇JAf(x, η)‖J ≥ k

2‖∇F‖∞ .

Next, if x(supp(χ)) ⊆ T ∗M\Uk/2(F ) then looking at the second component
of the gradient flow equation,

‖∇JAf(x, η)‖J ≥
∣∣∣∣f ′(η)

∫ 1

0
χ(t)F (x) dt

∣∣∣∣ ≥ f ′(η)
k

2
.

Thus if

ρ := ρ(k, F ) := min
{
k

2
,

k

2‖∇F‖L∞

}
,

then using the fact that f ′(η) ≤ 1 for all η ∈ R as f ∈ F , we see that
if ‖∇JAf(x, η)‖J ≤ ρf ′(η) then both of the two previous options cannot
happen, and hence we must have x(supp(χ)) ⊆ Uk(F ). �
Putting these two results together we deduce:

Corollary 3.21. Suppose f = (F, f, χ,H) ∈ F0 and J ∈ J . There exist
constants ρ, T > 0 depending only on F such that if (x, η) ∈ ΛT ∗M × R

satisfies
‖∇JAf(x, η)‖J < ρf ′(η)

then
2
3
(
Af(x, η) − T ‖∇JAf(x, η)‖J − κ(H)

)
≤ f(η) ≤ 2

(
Af(x, η) + T ‖∇JAf(x, η)‖J + κ(H)

)
.

Remark 3.22. The constants ρ(F ) and T (F ) depend continuously on F ,
and depend only on the behaviour of F close to F−1(0).
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We now further refine the class of functions f that we consider.

Definition 3.23. Given a, r > 0 let F(a, r) ⊆ F(a) denote those functions
that satisfy the additional condition:

• There exists A > 0 such that

(3.6) Af ′(−A) > r.

Remark 3.24. Given a > 0 it is possible to construct a function f ∈⋂
r>0 F(a, r). To do this one first considers a function f1 ∈ F(a) such that

f1(η) = eη for η ≤ log a/2. Then for each n ∈ N, n ≥ log a/2 one can
choose εn > 0 with εn → 0 such that f1 can be modified on each interval
(−n − 1/2,−n + 1/2) to a new function f ∈ F(a) with the property that
f ′(η) = 1 for η ∈ (−n− εn,−n+ εn).

A rough construction of this is as follows: given n > log a/2 let

δn :=
1
2

(
e−n+1/2 − e−n−1/2

)
.

Let f2 denote the (non-smooth) function such that f2 = f1 on R\
(⋃

n≥log a/2

(−n− 1/2,−n+ 1/2)
)

and on each interval (−n − 1/2,−n + 1/2) is the
piecewise linear function

f2(η) =

⎧⎪⎨
⎪⎩

e−n−1/2, −n− 1/2 < η ≤ −n− δn,

η + e−n−1/2 + n+ δn, −n− δn ≤ η ≤ −n+ δn,

e−n+1/2, −n+ δn ≤ η < −n+ 1/2.

Note that f2 is continuous by the choice of δn. Now set εn := 1
2δn.

Then one can construct a smooth function f ∈ F(a) such that f = f2

on R\
(⋃

n≥log a/2(−n− 1/2,−n− εn) ∪ (−n+ εn,−n+ 1
2)
)
. See Figure 1

below. By construction f ′(−n) = 1 for each n ≥ log a/2, and hence
f ∈ ⋂r>0 F(a, r).

The following lemma is elementary, but for the convenience of the reader
we include a proof.

Lemma 3.25. For any a, r > 0 the set F(a, r) is non-empty and path-
connected. If a′ ≤ a and r′ ≥ r then F(a′, r′) ⊆ F(a, r).

Proof. We have already proved that F(a, r) is non-empty (see Remark 3.24
above). To show that F(a, r) is path-connected, first observe that if f0, f1 ∈
F(a, r) both satisfy (3.6) with the same constant A > 0 then the linear
homotopy fs := sf1 + (1 − s)f0 is contained in F(a, r) for all s ∈ [0, 1]. It
therefore suffices to show that if f ∈ F(a, r) satisfies (3.6) with respect to
some A > 0, then given any B > A we can find a new function f1 ∈ F(a, r)
that satisfies (3.6) with respect to B, and such that we may find a homotopy
(fs)s∈[0,1] ⊆ F(a, r) with f0 = f .
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Figure 1. The function f

In order to do this, let (λs)s∈[0,1] denote a family of smooth functions
λs : R → R such that

λs(η) =

{
η, 0 ≤ η <∞,

η + s(B −A), −∞ ≤ η ≤ −sB;
0 < λ′s ≤ 1

(such functions λs exist as A < B). Set fs := f ◦ λs. We claim that fs ∈
F(a, r) for each s ∈ [0, 1]. It is clear that fs ∈ F(a) for each s ∈ [0, 1].
Moreover,

(A+ s(B−A))f ′s(−A− s(B−A)) = (A+ s(B−A))f ′(−A) ≥ Af ′(−A) > r.

Thus fs satisfies (3.6) with respect to A+ s(B −A) for each s ∈ [0, 1]. The
last statement of the lemma is immediate, and hence this completes the
proof. �

The next result uses the same idea as [18, Proposition 5.5], and shows that
for a suitable choice of f ∈ F one can bound the η component of gradient
flow lines with action in a fixed interval.

Proposition 3.26. Fix F ∈ D and 0 < a < b < ∞. Let ρ, T > 0 be the
constants associated to F from Corollary 3.21. Let f ∈ F

(
a
6 ,

b−a
min{ρ,a/4T}

)
and H ∈ H(a/2). Choose χ such that f := (F, f, χ,H) ∈ F0 and choose
J ∈ J . There exists a constant Cmult > 0 depending only on a, b, F and f ,
such that if u = (x, η) ∈ M(a,b)(∇JAf), then ‖η‖L∞ ≤ Cmult.

Proof. First note that

(3.7) lim
s→±∞ η(s) ≥ a

2
.
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Indeed, this follows from the fact that by (3.4),

Af(x±, η±) = f(η±) −
∫ 1

0
{λ(XH(t, x±)) −H(t, x±)}dt,

and hence

f(η±) ≥ Af(x±, η±) − κ(H) ≥ a

2
.

Since f ∈ F(a/6) one therefore has η± ≥ a/2.
It will be convenient to define

ρ1 := min
{
ρ,

a

4T

}
,

so that f ∈ F
(
a
6 ,

b−a
ρ1

)
. By definition of the set F

(
a
6 ,

b−a
ρ1

)
, there exists

A > 0 such that

(3.8) f ′(−A)A >
b− a

ρ1
.

Fix u ∈ M(a,b)(∇JAf). Define a function σu : R → [0,∞) by

(3.9) σu(s) := inf
{
σ ≥ 0 : ‖∇JAf(u(s+ σ))‖J ≤ ρ1f

′(η(s+ σ))
}

;

σu is well-defined as lims→∞ f ′(η(s)) = 1 (from (3.7) and the fact that
f ∈ F(a/6)), and lims→∞ ‖∇JAf(u(s))‖J = 0. Next define

iu(s) := inf
s≤r≤s+σu(s)

f ′(η(r)).

Note that

E(u) =
∫ ∞

−∞
‖∇JAf(u(s))‖2

J ds = lim
s→−∞Af(u(s)) − lim

s→∞Af(u(s)) ≤ b− a.

Next,

E(u) ≥
∫ s+σu(s)

s
‖∇JAf(u(r))‖2

J dr

≥
∫ s+σu(s)

s
ρ2

1f
′(η(r))2 dr

≥ ρ2
1iu(s)

2σu(s),

and hence

(3.10) σu(s) ≤ b− a

ρ2
1iu(s)2

.
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Now observe that

|η(s) − η(s+ σu(s))| ≤
∫ s+σu(s)

s
|∂rη(r)| dr

≤
(
σu(s)

∫ s+σu(s)

s
|∂rη(r)|2 dr

)1/2

≤
(
σu(s)

∫ s+σu(s)

s
‖∇JAf(u(r))‖2

J dr

)1/2

≤ (σu(s)E(u))1/2

≤ b− a

ρ1iu(s)
,

where the last line used (3.10). Next, Corollary 3.21 implies that for any
s ∈ R,

f(η(s+ σu(s)) ≥ 2
3
(
Af(u(s+ σu(s))) − T ‖∇JAf(u(s+ σu(s)))‖J − κ(H)

)
≥ 2

3

(
a− Tρ1f

′(η(s+ σu(s))) − a

2

)
.

Since ρ1 ≤ a/4T and f ′ ≤ 1, we deduce that

f(η(s+ σu(s)) ≥ a

6
.

Since f ∈ F(a/6) we see that

η(s+ σu(s)) ≥ a

6
> 0,

and thus
η(s) ≥ a

6
− b− a

ρ1iu(s)
> − b− a

ρ1iu(s)
.

In particular,

f ′(η(s))η(s) ≥ iu(s)η(s) > −(b− a)
ρ1

.

Using (3.7), if there exists some s0 ∈ R such that η(s0) < −A then by
continuity there exists s1 ∈ R such that η(s1) = −A. But then we obtain a
contradiction via (3.8)

−b− a

ρ1
> −f ′(−A)A = f ′(η(s1))η(s1) > −b− a

ρ1
.

It follows that η(s) > −A for all s ∈ R.
Now we address the upper bound. Define a new function σ̃u : R → [0,∞)

by

(3.11) σ̃u(s) := inf
{
σ ≥ 0 : ‖∇JAf(u(s+ σ))‖J ≤ ρ1f

′(−A)
}
.
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Arguing as above we see that for any s ∈ R,

σ̃u(s) ≤ b− a

ρ2
1f

′(−A)2
,

and hence

(3.12) |η(s) − η(s+ σ̃u(s))| ≤ b− a

ρ1f ′(−A)
< A,

where the last inequality used (3.8) again. Then by Corollary 3.21 we see
that for any s ∈ R,

f(η(s+ σ̃u(s)) ≤ 2
(
Af(u(s+ σ̃u(s))) + T ‖∇JAf(u(s+ σ̃u(s)))‖J + κ(H)

)
≤ 2(b+ Tρ1f

′(−A) + a/2) ≤ 2a+ 2b,

and hence η(s+ σ̃u(s)) ≤ 2a+ 2b. Thus by (3.12),

η(s) < 2a+ 2b+A.

We conclude that

sup
s∈R

|η(s)| < Cmult = Cmult(a, b, f) := 2a+ 2b+A.

�
Proposition 3.26 prompts the following definition.

Definition 3.27. Given F ∈ D and 0 < a < b <∞, let

F(F, a, b) := F
(
a

6
,
b− a

ρ1

)
,

where ρ1 = min{ρ, a/4T} and ρ = ρ(F ) and T = T (F ) are the constants
from Corollary 3.21.

The following result is the main one of this section.

Theorem 3.28. Fix α ∈ [S1,M ]. Suppose f = (F, f, χ,H) ∈ F0,reg and
0 < a < b < ∞ are such that a, b /∈ A(Af, α). Suppose also that f ∈
F(F, a, b) where F ∈ D(Σ), and H ∈ H(a/2). Let S denote a fibrewise
starshaped hypersurface such that D(Σ) ⊆ D◦(S) and such that supp(XF ) ⊆
D◦(S). Choose J ∈ Jreg(f) ∩ J (S). Then the quadruple q := (f, a, b, J) is
α-admissible.

Proof. Immediate from Corollary 3.11, Lemma 3.16 and Proposition 3.26.
�

Remark 3.29. In fact, one can show using an argument based on Floer’s
bifurcation method (see [18, Proposition 4.11]) that in the situation
above, HF (a,b)(AHFχ,f , α) is actually independent of the choice of f ∈
F(F, a, b). Nevertheless, for the purposes of the present paper we do not
need this observation, and we will make no use of it.
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3.4. Truncating the function f . A posteriori, we discover that one
can truncate the function f at infinity without affecting the Floer homol-
ogy. Indeed, fix α ∈ [S1,M ] and a non-degenerate fibrewise starshaped
hypersurface Σ and 0 < a < b < ∞ such that a, b /∈ A(Σ, α). Choose
F ∈ D(Σ), f ∈ F(F, a, b) and χ ∈ X . Set f := (F, f, χ, 0) ∈ F′

0,reg. Suppose
R > 2a+2b+A+1, where A > 0 is the constant associated to f from (3.6).
Let f̄ : R → R

+ denote a smooth function such that f̄ ≡ f on (−∞, R− 1]
and such that f̄(η) = R for η ∈ [R + 1,∞), with 0 ≤ f̄ ′(η) ≤ 1 on all of R.
We will call such a function f̄ an R-truncation of f . Let f̄ := (F, f̄ , χ, 0).

Consider the Rabinowitz action functional Af̄. This functional will have
many more critical points than Af, as f̄ ′ is no longer strictly positive
everywhere (i.e. one can no longer deduce (3.2) from (3.1)). However, if
(x, η) is a critical point of Af̄ with f̄ ′(η) = 0 then we necessarily have
η ≥ R − 1, and hence Af̄(x, η) = f̄(η) ≥ R − 1 by Lemma 3.6.1. In par-
ticular, (x, η) /∈ Crit(a,b)(Af̄). We conclude that

Crit(a,b)(Af̄, α) = Crit(a,b)(Af, α).

In particular, this implies the Rabinowitz Floer complexes CF (a,b)(Af̄, α)
and CF (a,b)(Af, α) coincide as groups. Moreover, the proof of
Proposition 3.26 shows that the η-component of a gradient flow line u =
(x, η) ∈ M(a,b)(∇JAf̄) never escapes the interval (−A, 2a + 2b + A] (for
any J ∈ J ). In particular, η never escapes (−∞, R − 1). Since f ≡ f̄ on
(−∞, R−1], it follows that the differential of the two Floer complexes (with
respect to a suitably chosen almost complex structure) is also the same,
whence it follows that

HF (a,b)(Af̄, α) ∼= HF (a,b)(Af, α).

We will use this observation in the proof of Lemma 4.4 below.

3.5. Inclusion/Quotient maps. Let us make the following observation.
Suppose we are given a, b, c, d > 0 such that a < min{b, c} and d >
max{b, c}. Fix α ∈ [S1,M ]. Suppose Σ is a non-degenerate fibrewise star-
shaped hypersurface and F ∈ D(Σ), and suppose that a, b, c, d /∈ A(Σ, α) and
f ∈ F(F, a, d). Choose χ ∈ X and H ∈ H(a/2) such that f = (F, f, χ,H) ∈
F0,reg. Fix an almost complex structure J ∈ Jreg(f) ∩ J (S), where S is a
fibrewise starshaped hypersurface such that D(Σ) ⊆ D◦(S). Our hypotheses
imply that the three Floer homology groups

HF (a,b)(Af, α), HF (a,d)(Af, α) andHF (c,d)(Af, α)

are all well-defined. There are natural chain maps between the three groups
given by

CF (a,b)(Afi , α) inclusion→ CF (a,d)(Afi , α)
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and

CF (a,d)(Afi , α)
quotient→ CF (a,d)(Afi , α)/CF (a,c)(Afi , α) = CF (c,d)(Afi , α).

We denote by

(3.13) i : HF (a,b)(Af, α) → HF (c,d)(Af, α)

the induced map on homology given by the composition of these two maps.
It is clear that if

A(Σ, α) ∩ [a, c] = A(Σ, α) ∩ [b, d] = ∅
then i is an isomorphism.

3.6. The Floer homology groups HF (a,∞)(AF,f , α). In this section,
we extend the definition of HF (a,b) to cover the case b = ∞. Suppose
Σ ⊆ T ∗M is a non-degenerate fibrewise starshaped hypersurface. From this
moment on it will be convenient to work with just one function f , instead
of picking a function f for each action interval (a, b). For this purpose, set
� := �(Σ) and choose

(3.14) f ∈
⋂
r>0

F(�/12, r)

(such functions exist by Remark 3.24). This function f has the desirable
property5 that given any F ∈ D(Σ) and any �/2 < a < b < ∞ we have
f ∈ F(F, a, b).

Fix F ∈ D(Σ) and α ∈ [S1,M ]. Then for any �/2 < a < b <∞ such that
a, b /∈ A(Σ, α), the Floer homology HF (a,b)(AF,f , α) is defined. Moreover, if
c > b also satisfies c /∈ A(Σ, α), then from Section 3.5 there is a natural map
HF (a,b)(AF,f , α) → HF (a,c)(AF,f , α). These maps form a directed system,
and hence we can define

HF (a,∞)(AF,f , α) := lim−→
b→∞

HF (a,b)(AF,f , α).

We denote by

(3.15) ιba : HF (a,b)(AF,f , α) → HF (a,∞)(AF,f , α)

the induced map. Since we also have natural maps HF (a,c)(AF,f , α) →
HF (b,c)(AF,f , α), there is an induced map

πba : HF (a,∞)(AF,f , α) → HF (a,b)(AF,f , α).

For future use, given 3�/4 < a < b <∞ with a, b /∈ A(Σ, α) let us denote by

Z(a, b) := πb3	/4 ◦ ιa3	/4,
5As a result, from now on we will abandon the notation F(F, a, b) and solely work with

functions f satisfying (3.14) instead.
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so that Z(a, b) is a map

(3.16) Z(a, b) : HF (3	/4,a)(AF,f , α) → HF (b,∞)(AF,f , α).

Note that Z(a, b) = 0 if a < b.

4. Continuation homomorphisms

In this section, we develop the theory of continuation homomorphisms
for the Rabinowitz action functional Af. Continuation homomorphisms in
Floer theory were introduced originally by Floer in [26], and are a powerful
tool for proving invariance results for Floer homology. The main reason for
introducing the function f is that, as we will see below, these Floer homology
groups behave well with respect to monotone homotopies. This is in contrast
to the usual Rabinowitz Floer homology groups (see for instance [17]), for
which it is not known whether they behave well with respect to monotone
homotopies; see Remark 4.3 below.

4.1. Continuation maps. We begin with a discussion of continuation
maps in the most general form that we will need. From now on we will be
somewhat sloppy in our treatment of almost complex structures; wherever
possible we will suppress them from the notation and from our discussion.
Sometimes however we will be forced to include them in our notation (see
for instance (4.1) below). In general the reader should think of (Js)s∈[0,1] as
a generically chosen family of almost complex structures that all lie in J (S)
for some fixed large fibrewise starshaped hypersurface S. We will not specify
precisely what conditions (Js) must satisfy, and will content ourselves with
merely stating that these conditions are generically satisfied. In keeping with
our new policy of suppressing the mention of J , from now on we will refer to
a triple (f, a, b) as being admissible if (f, a, b, J) is admissible (in the sense
of Definition 3.17).

Suppose we are given a smooth family fs = (Fs, fs, χs, Hs) ⊆ F0 for
s ∈ [0, 1]. Assume that f0 and f1 lie in F0,reg. Let us fix once and for all a
smooth cut-off function β : R → [0, 1] such that β(s) = 0 for s ≤ 0 and
β(s) = 1 for s ≥ 1, and 0 ≤ β′(s) ≤ 2 for all s ∈ R. Let N (∇Afs , α) denote
the set of maps u = (x, η) : R → ΛαT ∗M × R that satisfy

∂su+ ∇Jβ(s)
Afβ(s)

(u) = 0.

It would be more accurate to write N (∇Jβ(s)
Afβ(s)

, α), but we omit the “Js”
and the “β” in order to make the notation slightly less cumbersome. Thus
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N (∇Afs , α) is the set of maps u = (x, η) : R → ΛαT ∗M × R that satisfy:

{
∂sx+ Jβ(s),t(x)(∂tx− fβ(s)(η)χβ(s)(t)XFβ(s)

(x) +XHβ(s)
(t, x)) = 0

∂sη − f ′β(s)(η(s))
∫ 1
0 Fβ(s)(x) dt = 0.

(4.1)

If u = (x, η) satisfies (4.1) and has finite energy E(u) < ∞ then as before
the limits

(4.2) lim
s→±∞u(s, t) =: v±(t) = (x±(t), η±), lim

s→±∞ ∂su(s, t) = 0

exist and are uniform in the t-variable. Moreover, v− ∈ Crit(Af0 , α) and
v+ ∈ Crit(Af1 , α).

Given u ∈ N (∇Afs , α) and −∞ ≤ s0 ≤ s1 ≤ ∞, set

Δs1
s0(u) :=

∫ s1

s0

(
∂

∂s
Afβ(s)

)
(u(s)) ds.

Write Δ(u) := Δ∞−∞(u). Following Ginzburg [30], given C ≥ 0 let us say
the family (fs) is C-bounded if for every u ∈ N (∇Afs , α) and every −∞ ≤
s0 ≤ s1 ≤ ∞ it holds that

Δs1
s0(u) ≤ C.

In order to explain the relevance of the term Δs1
s0(u), given a, b > 0 denote

by N b
a(∇Afs , α) the subset of N (∇Afs , α) consisting of those maps u that

satisfy
lim

s→−∞Afβ(s)
(u(s)) ≤ b, lim

s→∞Afβ(s)
(u(s)) ≥ a.

Then if u ∈ N b
a(∇Afs , α) one readily checks that

E(u) ≤ b− a+ Δ(u);(4.3)

sup
s∈R

Afβ(s)
(u(s)) ≤ b+ sup

s∈R

Δs
−∞(u);(4.4)

inf
s∈R

Afβ(s)
(u(s)) ≥ a− sup

s∈R

Δ∞
s (u).(4.5)

In particular,

lim
s→∞Afβ(s)

(u(s)) ≤ b+ Δ(u);

lim
s→∞Afβ(s))

(u(s)) ≥ a− Δ(u).

Definition 4.1. Fix a family (fs)s∈[0,1] as above, and fix a, b > 0 and C ≥ 0.
We say that {(fs), a, b, C} is an α-admissible family if

(1) The triples (f0, a, b) and (f1, a + C, b + C) are α-admissible. Thus
HF (a,b)(Af0 , α) and HF (a+C,b+C)(Af1 , α) are well-defined.

(2) The family (fs) is C-bounded.
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(3) There exist constants Cloop, Cmult > 0 such that if u = (x, η) ∈
N b
a(∇Afs , α) then it holds that ‖x‖L∞ < Cloop and ‖η‖L∞ < Cmult.

The following basic theorem follows from standard Floer homological
methods; see for instance [15, Section 4.4] or [30, Section 3.2.3].

Theorem 4.2 (Continuity properties of filtered Floer homology).
(1) Suppose {(fs), a, b, C} is an α-admissible family. Then there exists a

chain map

Ψ : CF (a,b)(Af0 , α) → CF (a+C,b+C)(Af1 , α)

which induces a homomorphism

ψ : HF (a,b)(Af0 , α) → HF (a+C,b+C)(Af1 , α).

(2) Suppose c, d > 0 are such that a ≤ c and b ≤ d. Suppose in addi-
tion that {(fs), c, d, C} is α-admissible. Then the following diagram
commutes:

HF (a,b)(Af0 , α)
ψ ��

i
��

HF (a+C,b+C)(Af1 , α)

i
��

HF (c,d)(Af0 , α)
ψ

�� HF (c+C,d+C)(Af1 , α)

Here the vertical maps are the maps from (3.13).

4.2. Monotone homotopies. In this section, we suppose we are given
two non-degenerate fibrewise starshaped hypersurfaces Σ and Σ′ with the
property that

D(Σ′) ⊆ D(Σ).

Let us first fix a smooth family (Σs)s∈[0,1] of fibrewise starshaped hyper-
surfaces such that:

(1) Σ0 = Σ and Σ1 = Σ′;
(2) For generic s ∈ [0, 1], Σs is non-degenerate;
(3) for any 0 ≤ s0 ≤ s1 ≤ 1 one has D(Σs1) ⊆ D(Σs0).

We will call such a family a concentric family of fibrewise starshaped hyper-
surfaces. Given such a family (Σs) it is possible6 to choose a smooth fam-
ily (Fs)s∈[0,1] ⊆ D of Hamiltonians such that Fs ∈ D(Σs) and such that
∂sFs(q, p) ≥ 0 for all (q, p) ∈ T ∗M . For the remainder of this section, we fix
such a family (Fs).

6For example, one could first let F̃s denote the Hamiltonian constructed at the start of

Section 5.1 (see (5.1)) below for Σ = Σs, and then set Fs := (F̃s)R as in Section 5.1 for
some R > 1.
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Set
� := min

s∈[0,1]
�(Σs) > 0,

and fix once and for all a function f ∈ ⋂r>0 F (�/12, r). By construction,
given any s ∈ [0, 1] such that Σs is non-degenerate, and any α ∈ [S1,M ],
χ ∈ X , and �/2 < a < b < ∞ such that A(Σs, α) ∩ {a, b} = ∅, the Floer
homology HF (a,b)(AFχ

s ,f
, α) is well defined. In this section, we will only ever

use χ ≡ 1, so let us set
fs := (Fs, f, 1, 0).

Now let us fix α ∈ [S1,M ]. Suppose we are given �/2 < a < b < ∞ such
that a, b /∈ A(Σ, α) ∪ A(Σ′, α). Then we claim there exists a chain map

Ψ1
0 : CF (a,b)(Af0 , α) → CF (a,b)(Af1 , α)

inducing a homomorphism

ψ1
0 : HF (a,b)(Af0 , α) → HF (a,b)(Af1 , α).

This follows readily from our discussion above. Indeed, we claim that
{(fs), a, b, 0} is an α-admissible family. Condition (1) of Definition 4.1 is
satisfied by assumption, and since ∂sFs ≥ 0 we have Δs1

s0(u) ≤ 0 for all
u ∈ N (∇Afs , α) and −∞ ≤ s0 ≤ s1 ≤ ∞, which shows Condition (2) is
satisfied.

Remark 4.3. The innocent looking fact that ∂sFs ≥ 0 implies Δs1
s0(u) ≤ 0

is in fact the key point of the present paper, and the whole point of per-
turbing the Rabinowitz action functional with a positive function f . In
the setting of ‘standard’ Rabinowitz Floer homology, the corresponding
expression for Δs1

s0(u) is given by − ∫ s1s0 η(s) ∫ 1
0 ∂sFβ(s)(x(s)) ds instead of

− ∫ s1s0 f(η(s))
∫ 1
0 ∂sFβ(s)(x(s)) ds. Since the Lagrange multiplier η(s) could

very well become negative, one cannot conclude from ∂sFs ≥ 0 that
Δs1
s0(u) ≤ 0 in the standard case.

The existence of a constant Cloop > 0 satisfying the requirements of Con-
dition (3) follows from the choice of a correct almost complex structure, and
we will say nothing about this (see the opening paragraph of Section 4).
Equations (4.3)–(4.5) show that the proof of Proposition 3.26 goes through
without change to establish the existence of a constant Cmult > 0 such that
Condition (3) of Definition 4.1 is satisfied. Thus Theorem 4.2 proves the
claim.

Note that there is nothing special about s = 0 and s = 1; in general
given any 0 ≤ s0 ≤ s1 ≤ 1 such that Σs0 and Σs1 are non-degenerate and
a, b /∈ A(Σs0 , α) ∪ A(Σs1 , α), this construction gives a map

Ψs1
s0 : CF (a,b)(Afs0

, α) → CF (a,b)(Afs1
, α)
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inducing a map

ψs1s0 : HF (a,b)(Afs0
, α) → HF (a,b)(Afs1

, α).

In fact, we can say rather more about the homomorphisms (ψs1s0 ). As
with Theorem 4.2 itself, these two properties follow from standard Floer
homological methods. See for instance [15, Section 4.4] or [30, Section 3.2.3].

(1) Firstly, the maps (ψs1s0 ) are actually independent of choice of (Σs) in
the following sense. Suppose (Σ̃s)s∈[0,1] is another family of fibrewise
starshaped hypersurfaces satisfying the three conditions above, with
corresponding defining Hamiltonians (F̃s). Let

�̃ := min
s∈[0,1]

�(Σ̃s).

Suppose that7 f ∈ ⋂r>0 F(�̃/12, r). Set f̃s := (F̃s, f, 1, 0). Then
{(̃fs), a, b, 0} is also an α-admissible family, and hence gives rise to
another family of chain maps (Ψ̃s1

s0). These chain maps are chain homo-
topic to the original chain maps, and hence they induce the same map
on homology.

(2) The induced maps (ψs1s0 ) enjoy the following functorial properties
whenever they are defined:

ψs2s0 = ψs2s1 ◦ ψs1s0 , whenever 0 ≤ s0 ≤ s1 ≤ s2 ≤ 1;
ψs0s0 = 1.

The proof of the next lemma requires a little more work, but is by now
standard.

Lemma 4.4. Suppose in addition that a, b /∈ A(Σs, α) for all s ∈ [0, 1].
Then the homomorphism ψ1

0 is actually an isomorphism.

Proof. Let ρs, Ts > 0 be the constants for Fs from Corollary 3.21 (note ρs
and Ts depend continuously on s, cf. Remark 3.22). Let

ρ1 := min
{

min
s
ρs,

a

4 maxs Ts

}
.

Our choice of f guarantees that there exists 0 < ε < a/4 and A > 0 such
that

f(η) = η, for all η ≥ a− 4ε
6

;(4.6)

Af ′(−A) >
b− a+ ε

ρ1
.(4.7)

7This caveat is added solely to ensure that the relevant homology groups are well-
defined.
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Shrinking ε if necessary, we may assume in addition that

(4.8) A(Σs, α) ∩ [a, a+ ε] = A(Σs, α) ∩ [b, b+ ε] = ∅
for all s ∈ [0, 1]. Now choose R > 2a + 2b + A + 1 and let f̄ denote an
R-truncation of f (see Section 3.4). Set gs := (F1−s, f̄ , 1, 0). Our choice of
R implies that for every s ∈ [0, 1] such that Σs is non-degenerate, the Floer
homology HF (a,b)(Ags , α) is well defined, and moreover

HF (a,b)(Af0 , α) ∼= HF (a,b)(Ag1 , α);

HF (a,b)(Af1 , α) ∼= HF (a,b)(Ag0 , α).

Now we compute that for u ∈ N (∇Ags , α) and −∞ ≤ s0 ≤ s1 ≤ ∞,

Δs1
s0(u) = −

∫ s1

s0

f̄(η)
∫ 1

0

(
∂sFβ(1−s)(x)

)
dt ds

≤ 2R sup
s∈[0,1]

‖∂sFs‖∞ .

Choose N ∈ N and a subdivision 0 < i0 < i1 < · · · < iN = 1 such that

(4.9) max
0≤p≤N−1

|ip+1 − ip| ≤ ε

2R sups∈[0,1] ‖∂sFs‖∞
,

and such that Σip is non-degenerate for each p = 0, 1, . . . , N . Now set

gps :=
(
F(1−s)ip+1−sip , f̄ , 1, 0

)
.

We claim that {(gps), a, b, ε} is an α-admissible family for each p = 0, 1, . . . , N − 1.
Indeed, Condition (1) of Definition 4.1 is obviously satisfied, and Condition
(2) is satisfied by (4.9). Finally, the reader is invited to check that our two
assumptions (4.6) and (4.7) together with equations (4.3)–(4.5) mean that
the proof of Proposition 3.26 goes through to ensure that Condition (3) is
satisfied for each p = 0, 1, . . . , N − 1.

As a result, Theorem 4.2 implies that for each p = 0, 1, . . . , N − 1 there
exists a chain map

Φip
ip+1

: CF (a,b)(Afip+1
, α) → CF (a+ε,b+ε)(Afip

, α)

inducing a homomorphism

φ
ip
ip+1

: HF (a,b)(Afip+1
, α) → HF (a+ε,b+ε)(Afip

, α).

Next, note that (4.8) and (3.13) imply that

i : HF (a,b)(Afip
, α) ∼= HF (a+ε,b+ε)(Afip

, α) for all p = 0, 1, . . . , N,

and consequently we may think of φipip+1
as a map

φ
ip
ip+1

: HF (a,b)(Afip+1
, α) → HF (a,b)(Afip

, α).
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It is now easy to see from the two properties about the continuation maps
given just before the statement of the lemma that φipip+1

is an isomorphism

with inverse given by ψip+1

ip
. It thus follows that if

φ0
1 := φ

iN−1

iN
◦ · · · ◦ φi1i2 ◦ φi0i1 ,

then φ0
1 is the desired inverse to ψ1

0. �

We will be interested in a slight generalization of this.

Proposition 4.5. Suppose we are given two smooth strictly decreasing fam-
ilies (as)s∈[0,1] and (bs)s∈[0,1] such that �/2 < as < bs < ∞ for all s ∈ [0, 1]
and such that as, bs /∈ A(Σs, α) for all s ∈ [0, 1]. Then there exists a chain
map

Θ1
0 : CF (a0,b0)(Af0 , α) → CF (a1,b1)(Af1 , α)

inducing an isomorphism

θ1
0 : HF (a0,b0)(Af0 , α) → HF (a1,b1)(Af1 , α).

Moreover the following diagram commutes:

HF (a0,b0)(Af0 , α)
ψ1

0 ��

θ10 ����������������
HF (a0,b0)(Af1 , α)

HF (a1,b1)(Af1 , α)

i

����������������

where
i : HF (a1,b1)(Af1 , α) → HF (a0,b0)(Af‘ , α)

is the map from (3.13).

Proof. The trick here is to use a “staircase” method to deal with the fact
that the endpoints are changing. This is explained in detail in [41, p. 118],
but the general idea is the following. There exists N ∈ N and sequences

0 = i0 < i1 < · · · < iN = 1;
0 = j0 < j1 < · · · < jN = 1;
0 = k0 < k1 < · · · < kN = 1

such that for all p ∈ {0, 1, . . . , N − 1}, Σkp is non-degenerate and

A(Σs, α) ∩ [aip+1 , aip ] = A(Σs, α) ∩ [bjp+1 , bjp ] = ∅ for all s ∈ [kp, kp+1].
(4.10)

We already know from the previous lemma how to build isomorphisms

ψp : HF (aip ,bjp )(Σkp , α) → HF (aip ,bjp )(Σkp+1 , α),
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and (4.10) implies that

HF (aip ,bip )(Σkp+1 , α) ∼= HF (aip+1
,bjp+1

)(Σkp+1 , α).

Thus, we obtain isomorphisms

θp : HF (aip ,bjp )(Σkp , α) → HF (aip+1
,bjp+1

)(Σkp+1 , α),

and the proposition follows with

θ1
0 := θN−1 ◦ · · · ◦ θ1 ◦ θ0.

�

4.3. Leaf-wise intersections. In this section, we start with a single non-
degenerate fibrewise starshaped hypersurface Σ. As before, set � := �(Σ) and
fix once and for all a function f ∈ ⋂r>0 F (�/12, r) and a defining Hamil-
tonian F ∈ D(Σ). Given a class α ∈ [S1,M ] and a map ϕ ∈ Hamc(T ∗M,ω),
let us denote by nΣ,α(ϕ, (a, b)) the number of positive leaf-wise intersections
points of ϕ in Σ that belong to α and have time-shift T ∈ (a, b). The fol-
lowing lemma explains the link between the Floer homology of a suitable
perturbed Rabinowitz action functional AHFχ,f and the number of positive
leaf-wise intersections of ϕ. The proof is immediate from Lemma 3.6.2 and
Theorem 3.28.

Lemma 4.6. Suppose ϕ ∈ Hamc(T ∗M,ω) is generated by H ∈ H. Choose
χ ∈ X0 and set f := (F, f, χ,H). Fix �/2 < a < b <∞ such that H ∈ H(a/2)
and a, b /∈ A(Af, α). If f ∈ F′′

0,reg (which we can assume is the case for a
generic ϕ) then HF (a,b)(Af, α) is well-defined. Moreover, provided ϕ has no
periodic leaf-wise intersection points (which again, we may assume is the
case for a generic ϕ by Proposition 3.8) one has

nΣ,α(ϕ, (a, b)) ≥ dim HF (a,b)(Af, α).

Now set g := (F, f, χ, 0), and note that g ∈ F′
0,reg. Our next application of

continuation homomorphisms is to interpolate between the Floer homology
of the perturbed Rabinowitz action functional Af and the non-perturbed one
Ag. This lemma is a simple consequence of Theorem 4.2.

Lemma 4.7. Assume in addition that

a− ‖H‖− , a+ ‖H‖+ , b− ‖H‖− , b+ ‖H‖+ /∈ A(Σ, α),

Thus both HF (a−‖H‖−,b−‖H‖−)(Ag, α) and HF (a+‖H‖+,b+‖H‖+)(Ag, α) are
well-defined. Assume moreover that not only is H ∈ H(a/2) but actually

(4.11) 2 ‖H‖ + κ(H) ≤ a

2
.



GROWTH RATE OF LEAF-WISE INTERSECTIONS 637

Then there exists a commutative diagram

HF (a−‖H‖−,b−‖H‖−)(Ag , α) ��

�����������������
HF (a+‖H‖+,b+‖H‖+)(Ag , α)

HF (a,b)(Af , α)

�����������������

Proof. Let us first build the continuation map

(4.12) HF (a−‖H‖−,b−‖H‖−)(Ag, α) → HF (a,b)(Af, α).

Set
fs := (F, f, χ, sH) for s ∈ [0, 1].

We will verify that {(fs), a−‖H‖− , b−‖H‖− , ‖H‖−} forms an α-admissible
family in the sense of Definition 4.1. Condition (1) is satisfied by assumption.
Suppose u ∈ N (∇Afs , α) and −∞ ≤ s0 ≤ s1 ≤ ∞. This time we have

Δs1
s0(u) = −

∫ s1

s0

β′(s)
∫ 1

0
H(t, x) dt ds

≤
∫ 1

0
β′(s) ‖H‖− ds

= ‖H‖− .
Thus Condition (2) is satisfied. The reader may check that the stronger
assumption (4.11) implies that the proof of Proposition 3.26 goes through
to provide the necessary constant Cmult > 0 to satisfy Condition (3). The
existence of the map (4.12) now follows from Theorem 4.2. The second map
is defined similarly. �

Now set h := (F, f, 1, 0). We now want to interpolate between the Floer
homology of Ag and the Floer homology of Ah.

Lemma 4.8. Suppose �/2 < a < b < ∞ satisfy a, b /∈ A(Σ, α). Then there
exists an isomorphism

HF (a,b)(Ag, α) → HF (a,b)(Ah, α).

This lemma is proved in a similar fashion (in fact it is slightly easier) to
the proof of Lemma 4.4, and as such we omit the proof. Putting the results
of this section together we deduce:

Corollary 4.9. Assume the hypotheses of Lemma 4.7. Then

nΣ,α(ϕ, (a, b))

≥ rank
{
i : HF (a−‖H‖−,b−‖H‖−)(Ah, α) → HF (a+‖H‖+,b+‖H‖+)(Ah, α)

}
.
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5. The convex case.

5.1. L∞ estimates for Hamiltonians that are not constant outside
a compact set. Throughout this section, assume Σ ⊆ T ∗M is a strictly
fibrewise convex non-degenerate fibrewise starshaped hypersurface. By
this we mean a fibrewise starshaped hypersurface with the additional prop-
erty that for each q ∈M the hypersurface Σ ∩ T ∗

qM in T ∗
qM has a positive

definite second fundamental form. Let � := �(Σ), and fix once and for all a
function f ∈ ⋂r>0 F(�/12, r).

For each q ∈ M , let rq : T ∗
qM → R denote the function that is homoge-

neous of degree 2 and satisfies rq|Σ∩T ∗
q M ≡ 1. The function (q, p) �→ rq(p) is

C1 on all of T ∗M , but not necessarily smooth at the zero section. In order
to correct this, let ρ : R → R denote a smooth function such that ρ(s) = 0
for s ≤ ε, and ρ′(s) > 0 for s > ε, and ρ(s) = s for s ≥ 2ε, where ε is some
sufficiently small positive number. Then define F : T ∗M → R by

(5.1) F (q, p) :=
1
2
(ρ(rq(p)) − 1).

If (q, p) ∈ Σ then

λ(XF (q, p)) = ω(Y (q, p), XF (q, p)) = d(q,p)F (Y (q, p)) = rq(p) = 1.

Of course, the function F is not compactly supported, and thus F /∈ D(Σ),
and hence F cannot a priori be used to compute the F-Rabinowitz Floer
homology of Σ. In order to make it compactly supported, we truncate it
at infinity. Given R > 1, let FR : T ∗M → R denote a function such
that FR(q, p) = F (q, p) on {F ≤ R − 1} and such that FR(q, p) = R on
{F ≥ R + 1}. Then FR ∈ D(Σ), and the aim of this section is to compute
HF (3	/4,∞)(AFR,f , α) for each α ∈ [S1,M ].

The following result is highly non-trivial, and is taken from [4, Section 3]
(the function f makes no difference here, given that we know a priori that
the η-component of elements u ∈ M(a,b)(∇JAFR1

,f ) are uniformly bounded).

Theorem 5.1. Let S denote a fibrewise starshaped hypersurface such that
D(Σ) ⊆ D◦(S) and such that supp(XF ) ⊆ D◦(S). Choose J ∈ J (S). Choose
0 < a < b < ∞ such that a, b /∈ A(Σ, α). Then there exists R1, R0 > 1 with
R1 > R0 + 1 such that if u = (x, η) ∈ M(a,b)(∇JAFR1

,f ) then x(R × S1) ⊆
{F ≤ R0}.

In other words, as far as the gradient flow lines u ∈ M(a,b)(∇JAF,f ) are
concerned, we might as well not have truncated F at all. This result is not
obvious; although Lemma 3.16 implies that there certainly exists R2 > 0
such that if u = (x, η) ∈ M(a,b)(∇JAFR1

,f ) then x(R × S1) ⊆ {F ≤ R2},
there is absolutely no reason at all why we should have R1 > R2+1. In order
to prove this result, one must first show that one can obtain L∞ bounds for
the Hamiltonian F without first truncating it at infinity, and then show
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that these bounds are unaffected if we then subsequently truncate F at some
sufficiently large R > 0. This last statement is only true because we restrict
to the action interval (a, b). In other words, this proves the Floer homology
HF (a,b)(AF,f , α) is well-defined if we use the Hamiltonian F , and moreover
with a little more work this shows that the Floer homology HF (a,b)(AF,f , α)
is isomorphic to Floer homology HF (a,b)(AFR,f , α). An alternative proof of
Theorem 5.1 is given in [43, Section 6]. Anyway, because of Theorem 5.1, we
may as well work directly with the Hamiltonian F , rather than truncating
it at infinity. This is crucial for Theorem 5.12 below.

5.2. The f-free time action functional. The Hamiltonian F has positive
definite fibrewise second differential, and thus the Fenchel transform L :
TM → R is well-defined. Explicitly, L is the unique Lagrangian on TM
defined by

L(q, v) := max
p∈TqM

{p(v) − F (q, p)} .

The Legendre transformation associated to L is the diffeomorphism
TM ∼= T ∗M given by (q, v) �→ (

q, ∂L∂v (q, v)
)
. One can recover F from L

via

F (q, p) =
∂L

∂v
(q, v)(v) − L(q, v) where

∂L

∂v
(q, v) = p.

Fix a Riemannian metric g on M for the remainder of this section. There
exist constants c0, c1 > 0 such that for all (q, v) ∈ TM ,

d2
v(L|TqM ) ≥ c01;(5.2)

|∇vvL(q, v)| ≤ c1, |∇vqL(q, v)| ≤ c1(1 + |v|), |∇qqL(q, v)| ≤ c1(1 + |v|2),
(5.3)

where ∇vv, ∇vq and ∇qq denote the components of the Hessian of L asso-
ciated to the horizontal–vertical splitting of TTM induced by g. See [4,
Section 10].

Define the f-free time action functional SL,f : ΛM × R → R by

SL,f (q, η) := f(η)
∫ 1

0
L

(
q,

q̇

f(η)

)
dt.

Denote by Crit(SL,f ) the set of critical points of SL,f . We wish to do Morse
theory with SL,f , and as such we will work with the completion Λ̃M of ΛM
in the Sobolev W 1,2-norm. Given a > 0 and α ∈ [S1,M ] let us abbreviate

(5.4) S
a
α := {(q, η) ∈ Λ̃αM × R : SL,f (q, η) < a}.

It is convenient to define

EL(q, v) :=
∂L

∂v
(q, v)(v) − L(q, v);
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one calls EL the energy of L. If ∂L
∂v (q, v) = p then F (q, p) = EL(q, v).

Here is another way to interpret the elements of Crit(SL,f ). Given (q, η) ∈
ΛM × R, let γ : R/f(η)Z →M denote the curve

γ(t) := q(t/f(η)).

Then (q, η) ∈ Crit(SL,f ) if and only if γ satisfies the Euler–Lagrange
equations for L:

(5.5)
d

dt

∂L

∂v
(γ(t), γ̇(t)) =

∂L

∂q
(γ(t), γ̇(t)),

and has energy equal to 0:

EL(γ(t), γ̇(t)) ≡ 0.

The condition that Σ is non-degenerate translates to the following statement
about the critical points of SL.f :

Lemma 5.2. Every critical point (q, η) of SL,f is non-degenerate in the
sense that the space of non-zero Jacobi vector fields along the corresponding
solution γ of (5.5) is one-dimensional, spanned by (γ̇, 0).

Let us denote by iSL,f
(q, η) the Morse index of a critical point (q, η) of

SL,f . Since L is a fibrewise strictly convex superlinear Lagrangian, the Morse
index iSL.f

(q, η) is finite for every (q, η) ∈ Crit(SL,f ) [24]. The following
lemma clarifies the relationship between the functionals SL,f and AF,f .

Lemma 5.3. There exists a map Z = Z(L, f) : Λ̃M × R → Λ̃T ∗M ×
R such that (π∗ × 1) ◦ Z = 1 (where π∗ : Λ̃T ∗M → Λ̃M is the induced
map (π∗(x))(t) := π(x(t))), and such that Z restricts to define a bijection
Crit(SL.f ) → Crit(AF,f ). Moreover, given any (x, η) ∈ Λ̃T ∗M × R, we have

AF,f (x, η) ≤ SL,f (π ◦ x, η))
with equality if and only if (x, η) = Z(π ◦ x, η).

Finally, the map Z preserves the grading: for any (q, η) ∈ Crit(SL,f ), if
Z(q, η) =: (x, η) then

iSL,f
(q, η) = μτCZ(x; f(η)F ).

Proof. The map Z is defined by

Z(q, η) :=
((

q,
∂L

∂v
(q, q̇)

)
, η

)
.

See [4, Lemma 5.1] or [43, Lemma 4.1]. The last statement follows from [44,
Section 1.3]. The key ingredient is Duistermaat’s Morse index theorem
[24]. �
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As mentioned above, one would like to do Morse theory with SL,f . There are
two issues that need to be sorted before we can proceed. The first problem
is that in general the functional SL,f is not of class C2 on Λ̃M × R. Nev-
ertheless, one has the following result, which is due to Abbondandolo and
Schwarz [5, Theorem 4.1] (see also the discussion before Proposition 11.2
in [4]).

Proposition 5.4. Let f ∈ F . Then there exists a smooth pseudo-

gradient for SL,f on Λ̃M ×R. In other words, there exists a smooth vector
field V on Λ̃M × R such that:

(1) V is bounded;
(2) d(q,η)SL,f (V (q, η)) ≥ 1

2 min
{

1,
∥∥d(q,η)SL,f

∥∥
g

}
for all (q, η) ∈ Λ̃M×R;

(3) the set Crit(V ) of zeros of V coincides with Crit(SL,f ), and the lin-
earization of V at a rest point (q, η) of V agrees with the Hessian of
SL,f at (q, η).

Secondly, we need to verify that we can choose a pseudo-gradient V such
that the pair (SL,f , V ) satisfies the Palais–Smale condition. Recall that
we say that the pair (SL,f , V ) satisfies the Palais–Smale condition at the level
T ∈ R if every sequence (qi, ηi) ⊆ Λ̃M × R such that SL,f (qi, ηi) → T and
d(qi,ηi)SL,f (V (qi, ηi)) → 0 admits a convergent subsequence. The fact that
(SL,f , V ) satisfies the Palais–Smale condition at any T > 0 is essentially a
consequence of the fact that the Mañé critical value c(L) of L is negative.
Let us first recall the definition of the Mañé critical value.

Definition 5.5. Let K : TN → R denote a fibrewise strictly convex and
superlinear Lagrangian. Define the action AK of K to be the functional

AK : {γ : [0, T ] → N, γ absolutely continuous, T > 0} → R;

AK(γ) :=
∫ T

0
K(γ(t), γ̇(t)) dt.

The Mañé critical value c(K) of K is the real number defined by

c(K) := inf {k ∈ R : AK+k(γ) ≥ 0

∀ a.c. closed curves γ defined on [0, T ], ∀T > 0} .
The next lemma follows straight from the definition.

Lemma 5.6. Suppose c(K) ≤ 0. Then for any f ∈ F it holds that

inf
(q,η)∈Λ̃M×R

SK,f (q, η) > −∞.

In our case, the Mañé critical value is strictly negative.

Lemma 5.7. The Mañé critical value of L is strictly negative.
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Proof. The proof is based on the following alternative characterization of the
critical value, which is due to Contreras et al [21]. Suppose K : TM → R

is a fibrewise strictly convex superlinear Lagrangian. Then K is the Fenchel
transform of a unique Hamiltonian P : T ∗M → R. Then

c(K) = inf
u∈C∞(M)

sup
q∈M

P (q, dqu).

In our case since D(Σ) = D(F−1(0)) contains the zero section, taking u to
be a constant function we have

c(L) ≤ inf
u∈C∞(M)

sup
q∈M

F (q, dqu) ≤ sup
q∈M

F (q, 0q) < 0.

�

The following theorem is essentially taken from [20, 22, Propositions 3.8
and 3.12]; see also [14].

Theorem 5.8. Let V denote a smooth pseudo-gradient for SL,f . Then the
pair (SL,f , V ) satisfies the Palais–Smale condition at the level T on Λ̃M×R

for any T > 0.

Remark 5.9. In fact, if α 
= 0 then the pair (SL,f , V ) satisfies the Palais–
Smale condition on Λ̃αM × R even at the level T = 0.

Proof. (of Theorem 5.8).
Suppose we are given a sequence (qi, ηi) ⊆ Λ̃M×R such that SL,f (qi, ηi) →

T for some T > 0 and d(qi,ηi)SL,f (V (qi, ηi)) → 0. Passing to a subsequence
we may assume that

(5.6) 0 ≤ SL,f (qi, ηi) ≤ C,
∥∥d(qi,ηi)SL,f

∥∥
g
≤ 1
i

for all i ∈ N,

where C is the positive constant. We first check that (ηi) is uniformly
bounded below. Equations (5.2) and (5.3) imply that there exist constants
d0, d1, d2, d3 > 0 such that

d0 |v|2 − d1 ≤ L(q, v) ≤ d2 |v|2 + d3, for all (q, v) ∈ TM.

Compactness of M implies, up to passing to a subsequence, that limi qi(0) =
q0 for some q0 ∈ M . Write γi(t) := qi(t/f(ηi)), so that γi : R/f(ηi)Z → M .
We will write li and ei for the length and energy of the curves γi, given
by

li :=
∫ f(ηi)

0
|γ̇i(t)| dt, ei :=

∫ f(ηi)

0

1
2
|γ̇i(t)|2 dt.

The Cauchy–Schwarz inequality implies that

(5.7) l2i ≤ 2f(ηi)ei.
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Note that

(5.8) 2d2ei + d3f(ηi) ≥ SL,f (qi, ηi) =
∫ f(ηi)

0
L(γi, γ̇i) dt ≥ 2d0ei − d1f(ηi).

Assume for contradiction that (ηi) is not uniformly bounded below. Up to
passing to a subsequence, we may assume that ηi → −∞. We will now prove
that after passing to a further subsequence if necessary, ei → 0. Then (5.8)
implies that SL,f (qi, ηi) → 0, which contradicts the fact that T > 0.

To see this we argue as follows. Firstly, (5.6) implies that (ei) is bounded.
Since (ei) is bounded, (5.7) implies that li → 0, and thus up to passing to a
subsequence, we may assume that qi(S1) ⊆ U ∼= R

n (where n = dim M) for
all i. Thus for the remainder of the proof we work on R

n. We can therefore
speak of the partial derivatives Lq = ∂L

∂q and Lv = ∂L
∂v . The assumptions

(5.2) and (5.3) imply that there exist constants c2, c3, c4 > 0 such that in
the coordinates on U ,

c2 := sup
q∈U,v∈TqM

|Lq(q, v)|
1 + |v|2 <∞;(5.9)

c3 := sup
q∈U,v∈TqM

|Lvq(q, v)|
1 + |v|2 <∞;

c4 := inf
q∈U,v∈TqM

v · Lvv(q, v) · v
|v|2 > 0.

Arguing as in [20, Lemma 3.2(ii)], we have for any two points q, q′ ∈ U and
any v ∈ TqM that

(5.10) Lv(q, v) · v ≥ Lv(q′, 0) · v − c3 |v|
∣∣q − q′

∣∣− c3 |v|2
∣∣q − q′

∣∣+ c4 |v|2 .

Let ξi(t) := qi(t) − qi(0), so that (ξi, 0) ∈ T(qi,ηi)(Λ̃R
n × R). Put ζi(t) :=

ξi(t/f(ηi)), so that ζ̇i(t) = γ̇i(t). Then (5.6) implies that

(5.11)
∣∣d(qi,ηi)SL,f (ξi, 0)

∣∣ ≤ 1
i
‖(ξi, 0)‖g ≤

1
i

√
2f(ηi)ei.

Next, a straightforward computation (see [20, p. 331]) tells us that

d(qi,ηi)SL,f (ξi, 0) =
∫ f(ηi)

0

(
Lq(γi, γ̇i)ζi + Lv(γi, γ̇i)ζ̇i

)
dt.
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We apply (5.9) and (5.10) with (q, v) = (γi, γ̇i) and q′ = γi(0) to obtain:

d(qi,ηi)SL,f (ξi, 0) ≥ −c2
∫ f(ηi)

0

(
1 + |γ̇i|2

)
|γi − γi(0)| dt

+

(∫ f(ηi)

0
Lq(γi(0), 0) · γ̇idt

)

− c3

∫ f(ηi)

0
|γ̇i| |γi − γi(0)| dt− c3∫ f(ηi)

0
|γ̇i|2 |γi − γi(0)| dt+ 2c4ei

≥ −c2lif(ηi) + 0 − c3l
2
i − 2(c2 + c3)liei + 2c4ei.

Combining this last equation with (5.11) and dividing through by
√
f(ηi),

we see that

−c2li
√
f(ηi) − c3

l2i√
f(ηi)

− 2(c2 + c3)
liei√
f(ηi)

+ 2c4
ei√
f(ηi)

≤ 1
i

√
2ei.

Equation (5.7) implies the first three terms on the left-hand side are
bounded. Since the right-hand side is also bounded, we see that

ei√
f(ηi)

is bounded, and thus ei → 0 as claimed.
We have now proved that (ηi) is bounded below. Next, we check that (ηi)

is bounded above. Indeed, we have

SL,f (qi, ηi) = SL+c(L),f (qi, ηi) − c(L)f(ηi).

Since f(η) ≡ η on [a,∞), and since SL+c(L),f is bounded below (Lemma 5.6)
and c(L) < 0, we must have (ηi) bounded above.

Thus (ηi) is a bounded sequence, and thus up to passing to a subsequence,
we may assume that ηi → η for some η ∈ R. From this point on the proof is
essentially identical to [20, Proposition 3.12], and thus we will omit further
details. �
Note that Lemma 5.3 implies that Crit(SL,f , α) ∩ S

3	/4
α = ∅. Using this

observation together with Theorem 5.8, and arguing as in [4, Proposition
11.3] we conclude:

Corollary 5.10. The pair (Λ̃αM × R,S
3	/4
α ) is homotopy equivalent to

(ΛαM, ∅) if α 
= 0, and to (Λ0M,M) if α = 0, where we view M ⊆ Λ0M as
the constant loops.

We are now in a position of being able to define the Morse homology
of SL,f . Suppose �/2 < a < b < ∞ and α ∈ [S1,M ]. The relative Morse
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homology of (SL,f , α) on the action interval (a, b) will be well-defined when-
ever a, b /∈ A(Σ, α). Fix a smooth pseudo-gradient V of SL,f . Pick a Morse
function m : Crit(SL,f ) → R, and denote by Crit(m) ⊆ Crit(SL,f ) the set of
critical points of m. Define an augmented grading i : Crit(m) → Z by

i(w) := iSL,f
(w) + im(w), w = (q, η),

where im(w) ∈ {0, 1} is the Morse index of w, seen as a critical point of m.
Let Crit(a,b)k (m,α) := {w ∈ Crit(m) ∩ Crit(a,b)(SL,f , α) : i(w) = k}. Given
k ∈ Z, let

CM
(a,b)
k (SL,f , α) := Crit(a,b)k (m,α) ⊗ Z2.

Fix a Riemannian metric g0 on Crit(m) for which the negative gradient
flow φ−∇m

t of m is Morse–Smale. Then up to a perturbation of the pseudo-
gradient vector field V and the metric g0, we obtain a boundary operator

∂ : CM (a,b)
k (SL,f , α) → CM

(a,b)
k−1 (SL,f , α)

satisfying ∂2 = 0. We denote by HM (a,b)(SL,f , α) the homology of this
chain complex. As our notation suggests, the homology is independent of
the auxiliary choices we made when defining the chain complex and its
boundary operator. The Morse homology theorem tells us that there
exists an isomorphism

(5.12) θ(a,b) : HM (a,b)(SL,f , α) → H(Sbα,S
a
α).

See [1,4] for more details.

5.3. The Abbondandolo–Schwarz isomorphism. Fix �/2 < a < b <
∞ and α ∈ [S1,M ] such that a, b /∈ A(Σ, α). Both the Morse homology
HM (a,b)(SL,f , α) and the Floer homology HF (a,b)(AF,f , α) are defined. We
now relate the two chain complexes via an “Abbondandolo–Schwarz” chain
map8 Φ(a,b)

SA : CM (a,b)(SL,f , α) → CF (a,b)(AF,f , α).

Remark 5.11. In the discussion that follows for simplicity we will suppress
the fact that we are in a Morse–Bott situation. In reality we need to consider
flow lines with cascades in the construction below, and we need to choose
the Morse functions m on Crit(SL,f ) and h on Crit(AF,f ) to satisfy certain
compatibility conditions. This extra subtlety is dealt with fully in [4], and
there are no changes whatsoever in the present situation.

This chain map Φ(a,b)
SA is defined by counting solutions of the following

mixed problem: given a critical point w of m and a critical point v of h, we
8The reader may wonder why we defy the standard alphabetical ordering naming con-

vention here. This chain map is called “ΦSA” because it goes from the chain complex of
the “S” functional to the chain complex of the “A” functional. There is another chain
map that goes the other way round; this one is denoted by “ΦAS” See [4, Section 7]
or [43, Theorem 5.1]. The chain map ΦAS is not used in the present paper however.
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consider the moduli space of maps u = (x, η) : [0,∞) → Λ̃T ∗M×R that solve
the Rabinowitz Floer equation ∂su + ∇AF,f (u) = 0 on (0,∞) and satisfy
the boundary conditions (a) lims→∞ u(s) = v and (b) (π ◦ x(0), η(0)) ∈
W u(w;−V ). Lemma 5.3, together with its differential version allows one
to prove the necessary compactness for such solutions. This method was
invented by Abbondandolo and Schwarz in [3], and extended to Rabinowitz
Floer homology by the same authors in [4]. The upshot is the following
theorem, whose proof involves no ideas not already present in either of the
two aforementioned references, and thus will be omitted.

Theorem 5.12. There exists a chain complex isomorphism

Φ(a,b)
SA : CM (a,b)(SL,f , α) → CF (a,b)(AF,f , α)

of the form

Φ(a,b)
SA w =

∑
v∈Crit(a,b)(h,α)

nSA(w, v)v ∀v ∈ Crit(a,b)(h, α),

where nSA(w, v) ∈ Z2 is zero if i(w) 
= μ(v) or if SL,f (w) ≤ AF,f (v), unless
v = Z(w), in which case nSA(w,Z(w)) = 1.

Denote by φ
(a,b)
SA = [Φ(a,b)

SA ] the induced map on homology. The
Abbondandolo–Schwarz map is functorial in the following sense. Fix �/2 <
a < b < ∞ and �/2 < c < d < ∞, such that a ≤ c, b ≤ d, and
a, b, c, d /∈ A(Σ, α). Then the following diagram commutes, where the hori-
zontal maps are all induced by inclusion, and θ(a,b) denotes the isomorphism
(5.12),

HF (a,b)(AF,f , α) �� HF (c,d)(AF,f , α)

HM (a,b)(SL,f , α) ��

θ(a,b)

��

φ
(a,b)
SA

��

HM (c,d)(SL,f , α)

θ(c,d)

��

φ
(c,d)
SA

��

H(Sbα,S
a
α) �� H(Sdα,S

c
α)

In order to fit in with our earlier notation (3.16), let us denote by

(5.13) Z̃(a, b) : H(Saα,S
3	/4
α ) → H(ΛαM × R,Sbα),

the map on singular homology induced from inclusion. As before Z̃(a, b) = 0
if a < b.

Anyway, passing to the direct limit, we conclude the following result,
which is the main one of this section.

Theorem 5.13. In the situation above one has:
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(1) HF (3	/4,∞)(AF,f , α) ∼=
{
H(ΛαM) α 
= 0,
H(Λ0M,M) α = 0.

(2) Suppose a, b > 3�/4 with a, b /∈ A(Σ, α). Then it holds that

rank
{
Z(a, b) : HF (3	/4,a)(AF,f , α) → HF (b,∞)(AF,f , α)

}
= rank

{
Z̃(a, b) : H(Saα,S

3	/4
α ) → H(ΛαM × R,Sbα)

}
.

6. Proof of Theorem A

In this section, we complete the proof of Theorem A from the Introduction.
To begin with however we introduce the following definition.

Definition 6.1. Given a starshaped hypersurface Σ ⊆ T ∗M , T > 0 and
α ∈ [S1,M ], define

δ(Σ, T, α) := inf
{∣∣T ′ − T ′′∣∣ : T ′ 
= T ′′, T ′, T ′′ ∈ A(Σ, α) ∩ [0, T ]

}
.

If Σ is non-degenerate then δ(Σ, T, α) > 0 for every (finite) T > 0 and
α ∈ [S1,M ].

We now proceed with the proof of Theorem A. Let Σ denote a non-
degenerate fibrewise starshaped hypersurface. Let g denote a Riemannian
metric on M such that S∗

gM is non-degenerate and such that the unit disc
bundle D(S∗

gM) is contained in D◦(Σ). We denote by Fg : T ∗M → R the
Hamiltonian

(6.1) Fg(q, p) :=
1
2

(
|p|2g − 1

)
.

A theorem of Abraham [6] (first properly proved by Anosov in [12]) states
that the set Rnon-degenerate(M) of all Riemannian metrics g on M such that
S∗
gM is non-degenerate is a residual subset of the set R(M) of all Riemann-

ian metrics on M , so such metrics certainly exist9 .

Remark 6.2. The point of choosing such a metric g comes down to the
fact that we can compute the Floer homology HF (a,∞)(AFg ,f , α) (see The-
orem 5.13 above). Since we proved Theorem 5.13 for any strictly fibrewise
convex non-degenerate hypersurface S, we could equally well work with such
any such hypersurface S satisfying D(S) ⊆ D◦(Σ) rather than a unit cotan-
gent bundle. However for aesthetic reasons we prefer to work with a unit
cotangent bundle, even if it means quoting the theorem of Abraham men-
tioned above.

Recall that G(Σ) ⊆ Hamc(T ∗M,ω) denotes the generic subset of Hamil-
tonian diffeomorphisms ϕ with no periodic leaf-wise intersection points (cf.
Proposition 3.8).

9Note that this result does not follow from Theorem 2.5 stated above.
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Definition 6.3. Let O(Σ) ⊆ G(Σ) denote the set of Hamiltonian diffeomor-
phisms ϕ 
= 1 such that there exists H ∈ R(Σ) ⊆ H (cf. Definition 3.13)
that generates ϕ. Since G(Σ) is a generic subset of Hamc(T ∗M,ω) and R(Σ)
is a generic subset of H, O(Σ) is a generic subset of Hamc(T ∗M,ω).

We will prove Theorem A for Hamiltonian diffeomorphisms ϕ ∈ O(Σ).

Proof of Theorem A. Let φYt denote the flow of the Liouville vector field
Y . Given t > 0 let (S∗

gM)t := φYt (S∗
gM), so that ((S∗

gM)t)t≥0 forms10 a
concentric family in the language of Section 4.2. Note that if

F tg(q, p) :=
1
2

(
|p|2 − e2t

)
,

then F tg ∈ D((S∗
gM)t), and (F tg)t≥0 satisfies ∂tF tg ≤ 0.

Let us now fix ϕ ∈ O(Σ) and α ∈ [S1,M ]. Choose s > 0 such that
D(Σ) ⊆ D◦((S∗

gM)s) and such that

0 < e−s(μ(ϕ) − ‖ϕ‖) < 1
2
�(S∗

gM,α).

Recall we defined the quantity μ(ϕ) = 2κ(ϕ) + 6‖ϕ‖ in (1.5), where κ(ϕ)
was defined in (1.3), and the Hofer norm ‖ϕ‖ was defined in (1.4). Recall
also from the Introduction that for any H ∈ C∞

c (S1 × T ∗M,R), the value
of κ(H) (cf. Definition 3.9) depends only on φH1 ∈ Hamc(T ∗M,ω).

Now fix T > 0 such that

e−s(T − ‖ϕ‖) > 2μ(ϕ).

Next, we will choose some H ∈ R(Σ) generating ϕ with ‖H‖ − ‖ϕ‖ suffi-
ciently small. More precisely, we first ask that ‖ϕ‖ ≥ 5

6 ‖H‖, and then in
addition that

(6.2) 0 ≤ e−s(‖H‖ − ‖ϕ‖) ≤ min
{

1
2
�(S∗

gM,α), δ(S∗
gM,α, e−sT ), μ(ϕ)

}
.

Set
� := min

{
�(Σ), e−s�(S∗

gM)
}

and choose

f ∈
⋂
r>0

F
(
�

12
, r

)
.

Finally choose F ∈ D(Σ) and χ ∈ X0. Set

f := (F, f, χ,H), g := (F, f, χ, 0), h := (F, f, 1, 0),

i = (Fg, f, 1, 0), j := (F sg , f, 1, 0).

10Technically speaking this not quite the same as a concentric family as defined in
Section 4.2, as the hypersurfaces get larger as t increases, not smaller.
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We will tacitly assume that all the action values μ(ϕ) − ‖H‖+ , T −
‖H‖+ , μ(ϕ), T that appear in the diagram below do not lie in the relevant
action spectrums, so that all the Floer homology groups are well-defined.
We now splice together the various commutative diagrams from Section 4
to create one big commutative diagram (we omit all the α’s for clarity):

HF (μ(ϕ)−‖H‖+,T−‖H‖+)(Af)

��
HF (μ(ϕ)−‖H‖,T−‖H‖)(Ag) ��

�����������������

∼=
��

HF (μ(ϕ),T )(Ag)

∼=
��

HF (μ(ϕ)−‖H‖,μ(ϕ)−‖H‖)(Aj)
��

θ

��

HF (μ(ϕ)−‖H‖,T−‖H‖)(Ah) ��

��

HF (μ(ϕ),T )(Ah)

��
HF (e−s(μ(ϕ)−‖H‖),e−s(T−‖H‖))(Ai)

��

Z

����������������������������������
HF (μ(ϕ)−‖H‖,T−‖H‖)(Ai)

�� HF (μ(ϕ),T )(Ai)

ι

��
HF (μ(ϕ),∞)(Ai)

Here the top right-hand triangle is the commutative diagram from Lemma 4.7.
For this to be well-defined recall we needed

2 ‖H‖ + κ(H) ≤ μ(ϕ) − ‖H‖+ ,

and this is guaranteed by our requirement that ‖ϕ‖ ≥ 5
6 ‖H‖. The square

just below this triangle, comes from Lemma 4.8; the vertical maps are iso-
morphisms. The map θ on the left-hand side is the map from Proposition 4.5;
thus θ is an isomorphism. The map ι in the bottom right is the map (3.15).
Note that by (6.2) one has

HF (e−s(μ(ϕ)−‖H‖),e−s(T−‖H‖))(Ai, α) ∼= HF (3	/4,e−s(T−‖H‖))(Ai, α)

∼= HF (3	/4,e−s(T−‖ϕ‖))(Ai, α).

Thus the diagonal map Z at the bottom of the diagram is the map

Z(e−s(T − ‖ϕ‖), μ(ϕ)) : HF (3	/4,e−s(T−‖ϕ‖))(Ai, α) → HF (μ(ϕ),∞)(Ai, α)

from (3.16). Since θ and the two vertical maps in the top-most square are
isomorphisms, we can read off from the diagram (see Corollary 4.9) that

nΣ,α(ϕ, T ) ≥ nΣ,α(ϕ, (μ(ϕ) − ‖H‖+ , T − ‖H‖+))

≥ rank
{
HF (μ(ϕ)−‖H‖,T−‖H‖)(Ag, α) → HF (μ(ϕ),T )(Ag, α)

}
≥ rankZ(e−s(T − ‖ϕ‖), μ(ϕ)).
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By Theorem 5.13, we have

rankZ(e−s(T − ‖ϕ‖), μ(ϕ)) = rank Z̃(e−s(T − ‖ϕ‖), μ(ϕ)),

where Z̃(e−s(T − ‖ϕ‖), μ(ϕ)) is the map (5.13). Here the relevant free time
action functional is defined using the Lagrangian Lg : TM → R, which by
definition is the Fenchel transform of the Hamiltonian Fg from (6.1), and is

given by Lg(q, v) := 1
2

(
|v|2g + 1

)
.

Recall we denote by Eg : ΛM → R the functional Eg(q) :=
∫ 1
0

1
2 |q̇|2g dt,

and that we use the special notation

Λaα(M, g) :=
{
q ∈ ΛαM : Eg(q) ≤ 1

2
a2

}
.

Denote by pr1 : ΛM ×R → ΛM the first projection, and given a ∈ R denote
by ia : ΛM → ΛM × R the map ia(q) := (q, a). We complete the proof of
Theorem A with the following elementary observation.

Lemma 6.4. Suppose a, b > 3�/4. Then if Z̃(a, b) denotes the map (5.13)
then it holds that

rank
{
Z̃(a, b) : H(Saα,S

3	/4
α ) → H(ΛαM × R,Sbα)

}
≥ rank

{
ι : H(Λaα(M, g),Λ3	/4

α (M, g)) → H(ΛαM,Λ2b
α (M, g))

}
.

Proof. We first show that for any c ≥ 3�/4 (we will apply this with c = 3�/4
and c = a) we have

ic
(
Λcg(M, g)

) ⊆ S
c
α.

Indeed, for any η ≥ c one has

SLg ,f (q, η) =
1
η
Eg(q) +

η

2
,

and hence
SLg ,f (ic(q)) =

1
c
Eg(q) +

c

2
≤ 1
c
· 1
2
c2 +

c

2
= c.

Secondly, we claim that

pr1 (Saα) ⊆ Λ2a
α (M, g).

To see this, note that in general SLg ,f (q, η) = 1
f(η)Eg(q) + f(η)

2 , and thus if
SLg ,f (q, η) ≤ a then as 1

f(η)Eg(q) ≥ 0 we have f(η) ≤ 2a, and hence

Eg(q) = f(η)
(
SLg ,f (q, η) −

f(η)
2

)
≤ 2a(a− 0) = 2a2.

The result now follows from the observation that

rank Z̃(a, b) ≥ rank ((pr1)∗ ◦ Z̃(a, b) ◦ (ia)∗). �
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