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L∞-ALGEBRAS AND HIGHER ANALOGUES OF DIRAC
STRUCTURES AND COURANT ALGEBROIDS

Marco Zambon

We define a higher analogue of Dirac structures on a manifold
M . Under a regularity assumption, higher Dirac structures can be
described by a foliation and a (not necessarily closed, non-unique) dif-
ferential form on M , and are equivalent to (and simpler to handle than)
the multi-Dirac structures recently introduced in the context of field
theory by Vankerschaver et al.

We associate an L∞-algebra of observables to every higher Dirac
structure, extending work of Baez et al. on multisymplectic forms. Fur-
ther, applying a recent result of Getzler, we associate an L∞-algebra to
any manifold endowed with a closed differential form H, via a higher
analogue of split Courant algebroid twisted by H. Finally, we study the
relations between the L∞-algebras appearing above.
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1. Introduction

In the Hamiltonian formalism, many classical mechanical systems are
described by a manifold, which plays the role of phase space, endowed
with a symplectic structure and a choice of Hamiltonian function. How-
ever, symplectic structures are not suitable to describe all classical systems.
Mechanical systems with symmetries are described by Poisson structures —
integrable bivector fields — and system with constraints are described by
closed 2-forms. Systems with both symmetries and constraints are described
using Dirac structures, introduced by Ted Courant in the early 1990s [1].
Recall that, given a manifold M , TM⊕T ∗M is endowed a natural pairing on
the fibers and a bracket on its space of sections, called (untwisted) Courant
bracket. A Dirac structure is a maximal isotropic and involutive subbundle
of TM ⊕ T ∗M .

Given a Dirac manifold M , one defines the notion of Hamiltonian func-
tion — in physical terms, an observable for the system — and shows
that the set of Hamiltonian functions is endowed with a Poisson algebra
structure.

Higher analogues of symplectic structures are given by multisymplec-
tic structures [2, 3] (called p-plectic structures in [4]), i.e., closed forms
ω ∈ Ωp+1(M) such that the bundle map ω̃ : TM → ∧pT ∗M,X → ιXω is
injective. They are suitable to describe certain physical systems arising from
classical field theory, as was realized by Tulczyjew in the late 1960s. They are
also suitable to describe systems in which particles are replaced by higher
dimensional objects such as strings [4].

The recent work of Baez et al. [4] and then Rogers [5] shows that on
a p-plectic manifold M the observables — consisting of certain differential
forms — have naturally the structure of a Lie p-algebra, by which we mean
an L∞-algebra [6] concentrated in degrees −p + 1, . . . , 0. This extends the
fact, mentioned above, that the observables of classical mechanics form a
Lie algebra (indeed, a Poisson algebra).

The first part of the present paper arose from the geometric observation
that, exactly as symplectic structures are special cases of Dirac structures,
multisymplectic structures are special cases of higher analogues of Dirac
structures. More precisely, for every p ≥ 1 we consider

Ep := TM ⊕ ∧pT ∗M,
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a vector bundle endowed with a ∧p−1T ∗M -valued pairing and a bracket on
its space of sections. We regard Ep as a higher analogue of split Courant
algebroids. We also consider isotropic, involutive subbundles of Ep. When
the latter are Lagrangian, we refer to them as higher Dirac structures.

The following diagram displays the relations between the geometric struc-
tures mentioned so far:

In the first part of the paper (Sections 2–4) we introduce and study the
geometry of isotropic, involutive subbundles of Ep. Examples include Dirac
structures, closed forms together with a foliation, and a restrictive class of
multivector fields. The main results are

• Theorem 3.12: a description of all regular higher Dirac structures in
terms of familiar geometric data: a (not necessarily closed) differential
form and a foliation.

• Theorem 4.5: higher Dirac structures are equivalent to multi-Dirac
structures, at least in the regular case1.

Recall that multi-Dirac structures were recently introduced by Vanker-
schaver et al. [7]. They are the geometric structures that allow to describe the
implicit Euler–Lagrange equations (equations of motion) of a large class of
field theories, which include the treatment of non-holonomic constraints. By
the above equivalence, higher Dirac structures thus acquire a field-theoretic
motivation. Further, since higher Dirac structures are simpler to handle than
multi-Dirac structures (which contain some redundancy in their definition),
we expect our work to be useful in the context of field theory too.

The second part of the paper is concerned with the algebraic structure
on the observables, which turns out to be an L∞-algebra. Further, we inves-
tigate an L∞-algebra that can be associated to a manifold without any
geometric structure on it, except for a (possibly vanishing) closed differen-
tial form defining a twist. Recall that a closed 2-form on a manifold M (a
2-cocycle for the Lie algebroid TM) can be used to obtain a Lie algebroid
structure on E0 = TM×R [8, Section 1.1], so the sections of the latter form
a Lie algebra. Recall also that Roytenberg and Weinstein [9] associated a
Lie 2-algebra to every Courant algebroid (in particular to E1 = TM ⊕T ∗M
with Courant bracket twisted by a closed 3-form). Recently, Getzler [10]
gave an algebraic construction which extends Roytenberg and Weinstein’s
proof. Applying Getzler’s result in a straightforward way one can extend the
above results to all Ep’s.

Our main results in the second part of the paper (Section 5–9) are:

• Theorem 6.7: the observables associated to an isotropic, involutive
subbundle of Ep form a Lie p-algebra.

1Regularity is a technical assumption and is probably not necessary. The physically
most relevant examples of multi-Dirac structures are regular [7].
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• Propositions 8.1 and 8.4: to Ep = TM ⊕∧pT ∗M and to a closed p+2
form H on M , one can associate a Lie p + 1-algebra extending the
H-twisted Courant bracket.

• Theorem 7.1: there is a morphism (with one-dimensional kernel) from
the Lie algebra associated to E0 and a closed 2-form into the Lie 2-
algebra associated to the Courant algebroid E1 = TM ⊕ T ∗M with
the untwisted Courant bracket.

Rogers [11] observed that there is an injective morphism — which can be
interpreted as a prequantization map — from the Lie 2-algebra of observ-
ables on a 2-pletic manifold (M,ω) into the Lie 2-algebra associated to the
Courant algebroid E1 = TM ⊕ T ∗M endowed with the ω-twisted Courant
bracket. We conclude the paper with an attempt to put this into context.

2. Higher analogues of split Courant algebroids

Let M be a manifold and p ≥ 0 an integer. Consider the vector bundle

Ep := TM ⊕ ∧pT ∗M,

endowed with the symmetric pairing on its fibres

〈·, ·〉 : Ep × Ep → ∧p−1T ∗M,

given by

(2.1) 〈X + α, Y + β〉 = ιXβ + ιY α.

Endow the space of sections of Ep with the Dorfman bracket

(2.2) [[X + α, Y + β]] = [X,Y ] + LXβ − ιY dα.

The Dorfman bracket satisfies the Jacobi identity and Leibniz rules

[[e1, [[e2, e3]]]] = [[[[e1, e2]], e3]] + [[e2, [[e1, e3]]]],(2.3)

[[e1, fe2]] = f [[e1, e2]] + (prTM (e1)f)e2,(2.4)

[[fe1, e2]] = f [[e1, e2]] − (prTM (e2)f)e1 + df ∧ 〈e1, e2〉,(2.5)

where ei ∈ Γ(Ep), f ∈ C∞(M) and prTM : Ep → TM is the projection onto
the first factor.

The decomposition of the Dorfman bracket into its anti-symmetric and
symmetric parts is

(2.6) [[e1, e2]] = [[e1, e2]]Cou +
1
2
d〈e1, e2〉,

where

[[X + α, Y + β]]Cou := [X,Y ] + LXβ − LY α− 1
2
d(ιXβ − ιY α)

is known as Courant bracket.
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Remark 2.1. The Dorfman bracket on Ep was already considered by Haw-
igara [12, Section 3.2], Hitchin [13] and Gualtieri [14, Section 3.8] [15, Sec-
tion 2.1]. (Ep, 〈·, ·〉, [[·, ·]]) is an example of weak Courant–Dorfman algebra
as introduced by Ekstrand and Zabzine in [16, Appendix]. When p = 1, we
recover an instance of split Courant algebroid [17]. The Courant bracket has
been extended to the setting of multivector fields in [7, Section 4].

In [13–15], it is remarked that closed p+ 1-forms B on M provide sym-
metries of the Dorfman bracket (and of the pairing), by the gauge transfor-
mation eB : X + α 	→ X + α + ιXB. Further, the Dorfman bracket may be
twisted by a closed p+2-form H, just by adding a term ιY ιXH to the r.h.s.
of equation (2.2). We refer to the resulting bracket as H-twisted Dorfman
bracket (this notion will not be used until Section 7), and we use the term
Dorfman bracket to refer to the untwisted one given by equation (2.2).

3. Higher analogues of Dirac structures

In this section, we introduce a geometric structure that extends the notion
of Dirac structure and multisymplectic form. It is given by a subbundle of
Ep, which we require to be involutive and isotropic, since this is needed to
associate to it an L∞-algebra of observables in Section 6. Further, we con-
sider subbundles which are Lagrangian (i.e., maximal isotropic) and study
their geometry in detail.

Definition 3.1. Let p ≥ 1. Let L be a subbundle of Ep = TM ⊕ ∧pT ∗M .
• L is isotropic if for all sections Xi + αi:

(3.1) 〈X1 + α1, X2 + α2〉 = 0.

L is involutive if for all sections Xi + αi:

[[X1 + α1, X2 + α2]] ∈ Γ(L),

where [[·, ·]] denotes the Dorfman bracket (2.2).
• L is Lagrangian if

L = L⊥ := {e ∈ Ep : 〈e, L〉 = 0}.
(In this case, we also refer to L as a almost Dirac structure of order p.)
L a Dirac structure of order p or higher Dirac structure if it is
Lagrangian and involutive.

• L is regular if prTM (L) has constant rank along M .

3.1. Involutive isotropic subbundles. In this subsection, we make some
simple considerations on involutive isotropic subbundles and present some
examples.

The involutive, Lagrangian subbundles of E1 are the Dirac structures
introduced by Courant [1].
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When p = dim(M), isotropic subbundles are forced to lie inside TM⊕{0}
or {0} ⊕ ∧pT ∗M , hence they are uninteresting.

Now, for arbitrary p, we look at involutive, isotropic subbundles that
project isomorphically onto the first or second summand of Ep.

Proposition 3.2. Let p ≥ 1. Let ω be a closed p+ 1-form on M . Then

graph(ω) := {X − ιXω : X ∈ TM}
is an isotropic involutive subbundle of Ep. All isotropic involutive subbundles
L ⊂ Ep that project isomorphically onto TM under prTM : Ep → TM are
of the above form.

Proof. The subbundle graph(ω) is isotropic because 〈X − ιXω, Y − ιY ω〉 =
−ιXιY ω − ιY ιXω = 0. To see that L is involutive, use the fact that since ω
is closed d(ιXω) = LXω and compute

[[X − ιXω, Y − ιY ω]] = [X,Y ] − LX(ιY ω) + ιY (LXω) = [X,Y ] − ι[X,Y ]ω.

Let L ⊂ Ep be a subbundle that projects isomorphically onto TM , i.e.
L = {X + B(X) : X ∈ TM} for some B : TM → ∧pT ∗M . If L is isotropic
then the map

TM ⊗ TM → ∧p−1T ∗M, X ⊗ Y 	→ ιX(B(Y ))

is skew in X and Y , so B(X) = −ιXω defines a unique p+ 1-form ω, which
satisfies graph(ω) = L. If L is involutive then the above computation shows
that ω is a closed form. �

The following generalization of Proposition 3.2 is proven exactly as in the
last paragraph of the proof of Proposition 3.12. It provides a wide class of
regular isotropic, involutive subbundles.

Corollary 3.3. Fix p ≥ 1. Let ω ∈ Ωp+1(M) be a p + 1-form and S an
integrable distribution on M , such that dω|∧3S⊗∧p−1TM = 0. Then

L := {X − ιXω + α : X ∈ S, α ∈ ∧pS◦}
is an isotropic, involutive subbundle of Ep.

Proposition 3.4. Let 1 ≤ p ≤ dim(M) − 1. Let π ∈ Γ(∧p+1TM) be either
a Poisson bivector field, a dim(M)-multivector field or π = 0. Then

graph(π) := {ιαπ + α : α ∈ ∧pT ∗M}
is an isotropic involutive subbundle of Ep.

All isotropic involutive subbundles L ⊂ Ep that project isomorphically
onto ∧pT ∗M under pr∧pT ∗M : Ep → ∧pT ∗M are of the above form.

Proof. We write n := p + 1, so π is an n-vector field. Clearly, graph(π) is
isotropic in the cases π = 0 and n = 2. For the case n = dim(M) fix a point
x ∈M . We may assume that at x we have π = ∂

∂x1
∧· · ·∧ ∂

∂xn
where {xi}i≤n
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is a coordinate system on M . For each i denote dxC
i := dx1∧. . . ̂dxi · · ·∧dxn.

For i ≤ j at the point x we have

〈ιdxC
i
π + dxC

i , ιdxC
j
π + dxC

j 〉
(3.2)

= ((−1)(n−i)+(i−1) + (−1)(n−j)+(j−2))dx1 ∧ . . . ̂dxi . . .̂dxj · · · ∧ dxn = 0,

showing that graph(π) is isotropic.
It is known that graph(π) is involutive iff π is a Nambu–Poisson mul-

tivector field (see [12, Section 4.2]). For n = 2 the Nambu–Poisson mul-
tivector fields are exactly Poisson bivector field, and for n = dim(M) all
n-multivector fields are Nambu–Poisson. This concludes the first part of the
proof.

Conversely, assume that L ⊂ En−1 is an isotropic subbundle that projects
isomorphically onto ∧n−1T ∗M , i.e., L = {Aα+α : α ∈ ∧n−1T ∗M} for some
map A : ∧n−1 T ∗M → TM .

Assume that A is not identically zero, and that n = 2,dim(M). In this
case, we obtain a contradiction to the isotropicity of L, as follows. There
is a point x ∈ M with Ax = 0. Near x choose coordinates x1, . . . , xdim(M)

(note that dim(M) ≥ n + 1). Without loss of generality at x we might
assume that A(dx1∧· · ·∧dxn−1) does not vanish. It does not lie in the span
of ∂

∂x1
, . . . , ∂

∂xn−1
since we assume that L is isotropic, so by modifying the

coordinates xn, . . . , xdim(M) we may assume that A(dx1∧· · ·∧dxn−1) = ∂
∂xn

.
Then

〈Ax(dx1 ∧ · · · ∧ dxn−1) + dx1 ∧ · · · ∧ dxn−1, Ax(dx3 ∧ · · · ∧ dxn+1)

+ dx3 ∧ · · · ∧ dxn+1〉 = 0.

Indeed, the contraction of Ax(dx1∧· · ·∧dxn−1) = ∂
∂xn

with dx3∧· · ·∧dxn+1

contains the summand (−1)n−3 · dx3 ∧ · · · ∧ dxn−1 ∧ dxn+1, whereas the
contraction of any vector of TxM with dx1 ∧ · · · ∧ dxn−1 cannot contain
dxn+1. Hence, we obtain a contradiction to the isotropicity.

If A ≡ 0, then clearly L is isotropic. In the case n = 2, it is known that
L is isotropic iff it is the graph of a bivector field π. Now consider the case
n = dim(M). For any i, let Xi +dxC

i ∈ L. The isotropicity condition implies
that Xi = λi

∂
∂xi

for some λi ∈ R, and a computation similar to (3.2) implies
λi = (−1)n−iλn for all i, so that L = graph(π) for π = λn

∂
∂x1

∧ · · · ∧ ∂
∂xn

.
Hence, we have shown that L is isotropic iff L is the graph of an n-vector

field where π = 0, n = 2 or n = dim(M). As seen earlier, if graph(π) is
involutive then, in the case n = 2, π has to be a Poisson bivector field. �

We present a class of isotropic involutive subbundles, that are not neces-
sarily regular:
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Corollary 3.5. Let Ω be an top degree form on M , and f ∈ C∞(M) such
that Ωx = 0 at points of {x ∈M : f(x) = 0}. Then

L := {fX − ιXΩ : X ∈ TM}
is an involutive isotropic subbundle of Edim(M)−1.

Proof. Let x ∈ M . If f(x) = 0, then nearby L is the graph of 1
f Ω, which

being a top-form is closed. Hence, near x, L defines an isotropic involutive
subbundle by Proposition 3.2. Now suppose that f(x) = 0. Then Lx is just
0 +∧dim(M)−1T ∗

xM , so nearby L is the graph of a top multivector field, and
by Proposition 3.4 it is an isotropic involutive subbundle. �

Note that the isotropic subbundles described in Propositions 3.2, 3.4,
Corollary 3.5 are all Lagrangian (use Lemma A.1 below).

We end this subsection relating involutive isotropic subbundles with Lie
algebroids and Lie groupoids.

Proposition 3.6. Let L ⊂ Ep be an involutive isotropic subbundle. Then
(L, [[·, ·]], prTM ) is a Lie algebroid [18], where prTM : Ep → TM is the pro-
jection onto the first factor.

Proof. The restriction of the Dorfman bracket to Γ(L) is skew-symmetric
because of equation (2.6), and as seen in equation (2.3) the Dorfman
bracket satisfies the Jacobi identity. The Leibniz rule holds because of
equation (2.4). �

Recall that (integrable) Dirac structures give rise to presymplectic
groupoids in the sense of [19] and, restricting to the non-degenerate case,
that Poisson structures give rise to symplectic groupoids. We generalize this:

Proposition 3.7. Suppose that the Lie algebroid L of Proposition 3.6 inte-
grates to a source simply connected Lie groupoid Γ. Then Γ is canonically
endowed with a multiplicative closed p+ 1-form Ω.

Further, if L is the graph of a multivector field as in Proposition 3.4 or the
graph of a multisymplectic form (see Section 1), then Ω is a multisymplectic
form.

Proof. The first statement follows immediately from recent results of Arias
Abad–Crainic, applying [20, Thm. 6.1] to the vector bundle map τ : L →
∧pT ∗M given by the projection onto the second factor, which satisfies the
assumptions of the theorem since L isotropic and because the Lie algebroid
bracket on L is the restriction of the Dorfman bracket. Concretely, for all x ∈
M and e ∈ Lx, X1, . . . , Xp ∈ TxM , the multiplicative form Ω is determined
by the equation

(3.3) Ω(e,X1, . . . , Xp) = 〈pr∧pT ∗M (e), X1 ∧ · · · ∧Xp〉.
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Here, on the lhs, we identify the Lie algebroid L with ker(s∗)|M , where
s : Γ →M is the source map.

Now, assume that L is the graph of a multivector field π as in Proposition
3.3. First, given a non-zero e ∈ L, it follows that pr∧pT ∗M (e) is also non-zero,
so it pairs non-trivially with some X1 ∧ · · · ∧Xp ∈ ∧pTM . Second, given a
non-zero X1 ∈ TM , extend it to a non-zero element X1 ∧ · · · ∧Xp ∈ ∧pTM ,
and choose α ∈ ∧pT ∗M so that their pairing is non-trivial. Let e := ιαπ+α.
Then the expression (3.3) is non-zero. Since TΓ|M = TM ⊕ ker(s∗)|M and
Ω|∧p+1TM = 0, this shows that Ω is multisymplectic at points of M . To
make the same conclusion at every g ∈ Γ, use [19, equation (3.4)] that the
multiplicativity of Ω implies

Ωg((Rg)∗e, w1, . . . , wp) = Ωx(e, t∗(w1), . . . , t∗(wp))

for all e ∈ ker(s∗)|x and wi ∈ TgΓ. Here, t : Γ → M is the target map and
x := t(g) ∈M .

Last, assume that L is the graph of a multisymplectic form ω on M .
Given a non-zero e ∈ L, say e = X − ιXω, we have by equation (3.3) that
ιeΩ|∧pTM = −ιXω = 0. Given a non-zero X1 ∈ TM , there is X ∧X2 ∧ · · · ∧
Xp ∈ ∧pTM with which ιX1ω pairs non-trivially. Let e := X − ιXω. Then
the expression (3.3) is non-zero. This shows that Ω is multisymplectic at
points of M , and by the argument above on the whole of Γ. �

3.2. Higher Dirac structures. In this subsection, we characterize
Lagrangian subbundles L ⊂ Ep (i.e., almost Dirac structures of order p)
and their involutivity.

We start characterizing Lagrangian subbundles at the linear algebra level.
Recall first what happens in the case p = 1. Let T be a vector space. Any
L ⊂ T ⊕ T ∗ such that L = L⊥ is determined exactly by the subspace
S := prT (L) and a skew-symmetric bilinear form on it [21]. Further dim(S)
can assume any value between 0 and dim(T ). For p ≥ 2 the description is
more involved, however, it remains true that every Lagrangian subspace of
T ⊕ ∧pT ∗ can be described by means of a subspace S ⊂ T (satisfying a
dimensional constraint) and a (non-unique) p+ 1-form on T .

Proposition 3.8. Fix a vector space T and an integer p ≥ 1. There is a
bijection between

• Lagrangian subspaces L ⊂ T ⊕ ∧pT ∗
• pairs

⎧

⎪

⎨

⎪

⎩

S ⊂ T such that either dim(S) ≤ (dim(T ) − p) or S = T,

Ω ∈ ∧2S∗ ⊗ ∧p−1T ∗ such that Ω is the restriction of an element of
∧p+1T ∗.
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The correspondence is given by

L 	→
{

S := prT (L)
Ω given by ιXΩ = α|S⊗⊗p−1 T for all X + α ∈ L

(S,Ω) 	→ L := {X + α : X ∈ S, α|S⊗⊗p−1 T = ιXΩ}.
Here, we regard ∧nT ∗ as the subspace of

⊗n T ∗ := T ∗⊗· · ·⊗T ∗ consisting
of elements invariant under the odd representation of the permutation group
in n elements. Loosely speaking, the restriction on dim(S) arises as follows:
when it is not satisfied ∧pS◦ = {0} and S = T , and one can enlarge L to
an isotropic L′ ⊂ T ⊕ ∧pT ∗ such that prT (L′) is strictly larger than S. The
proof of Proposition 3.8 is presented in Appendix A.

An immediate corollary of Proposition 3.8, which we present without
proof, is:

Corollary 3.9. Fix a vector space T and an integer p ≥ 1. For any
Lagrangian subspace L ⊂ T ⊕ ∧pT ∗ let (S,Ω) be the corresponding pair
as in Proposition 3.8, and ω ∈ ∧p+1T ∗ an arbitrary extension of Ω. Then L
can be described in terms of S and ω as

L = {X + ιXω + α : X ∈ S, α ∈ ∧pS◦}.
As an immediate consequence of Lemma A.1, we obtain the following

dimensional constraints on the singular distribution induced by a Lagrangian
subbundle:

Corollary 3.10. Let L ⊂ Ep be a Lagrangian subbundle. Denote S :=
prTM (L). Then

(a) dim(Sx) ∈ {0, 1, . . . , dim(M) − p, dim(M)} for all x ∈M

(b) dim(Lx) = dim(Sx) +
(

dim(M)−dim(Sx)
p

)

is constant for all x ∈M .

When p = 1, so that L is a maximal isotropic subbundle of TM ⊕ T ∗M ,
the dimensional constraints of Corollary 3.10 do not pose any restriction of
dim(Sx). (It is known, however, that dim(Sx) mod 2 must be constant on
M .) When p ≥ 2, Lagrangian subbundles of Ep are quite rigid.

Example 3.11. Let p = dim(M)− 1, and let L be a Lagrangian subbundle
of Ep. Corollary 3.10 a) implies that at every point dim(Sx) is either 0, 1
or dim(M). Assume that p ≥ 2. By Corollary 3.10 b), if rk(S) = 1 at one
point then rk(S) = 1 on the whole of M , and the rank 2 bundle L is equal
to S ⊕ ∧dim(M)−1S◦. Otherwise, at any point x we have either Sx = TxM
or Lx = 0 + ∧dim(M)−1T ∗M . In the first case by Corollary 3.9 we known
that, near x, L is the graph of a top form. In the second case L projects
isomorphically onto the second component ∧dim(M)−1T ∗M near x, so by
Proposition 3.4 it must be the graph of a dim(M)-vector field.
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Finally, we characterize when a regular Lagrangian subbundle is a higher
Dirac structure.

Theorem 3.12. Let M be a manifold, fix an integer p ≥ 1 and a Lagrangian
subbundle L ⊂ TM⊕∧pT ∗M . Assume that S := prTM (L) has constant rank
along M . Choose a form ω ∈ Ωp+1(M) such that S and ω describe L as in
Corollary 3.9.

Then L is involutive iff S is an involutive distribution and
dω|∧3S⊗∧p−1TM = 0.

Proof. First, note that, a p + 1-form ω as above always exists, as it can
be constructed as in Lemma A.2 choosing a (smooth) distribution C on M
complementary to S. We use the description of L given in Corollary 3.9.

Assume that L is involutive. By Proposition 3.6, S is an involutive distri-
bution. Let X,Y be sections of S. Using LXω = d(ιXω) + ιXdω we have

[[X + ιXω, Y + ιY ω]] = [X,Y ] + LX(ιY ω) − ιY (LXω) + ιY ιXdω

= [X,Y ] + ι[X,Y ]ω + ιY ιXdω.

Since this lies in L we have ιY ιXdω ∈ ∧pS◦ for all sections X,Y of S, which
is equivalent to dω|∧3S⊗∧p−1TM = 0.

Conversely, assume the above two conditions on S and dω. The above
computation shows that for all sections X,Y of S, the bracket [[X+ιXω, Y +
ιY ω]] lies in L. The brackets of X + ιXω with sections of ∧pS◦ lie in L since,
by the involutivity of S, locally ∧pS◦ admits a frame consisting of p-forms
αi, which are closed and which hence satisfy [[αi, ·]] = 0. Therefore L is
involutive. �

Note that, for p = 1 (so dω is a 3-form) we obtain the familiar statement
that a regular almost Dirac structure L is involutive iff prTM (L) is an involu-
tive distribution whose leaves are endowed with closed 2-forms (see [1, Thm.
2.3.6]).

4. Equivalence of higher Dirac and multi-Dirac structures

Recently, Vankerschaver et al. [7] introduced the notion of Multi-Dirac struc-
ture. In this section we show that, at least in the regular case, it is equivalent
to our notion of higher Dirac structure. This section does not affect any of
the following ones and might be skipped on a first reading.

We recall some definitions from [7, Section 4]. All along we fix an integer
p ≥ 1 and a manifold M . In the following, the indices r, s range from 1 to
p. Define

Pr := ∧rTM ⊕ ∧p+1−rT ∗M.
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Define a pairing Pr × Ps → ∧p+1−r−sT ∗M by

〈〈(Y, η), (Ȳ , η̄)〉〉 :=
1
2

(ιȲ η − (−1)rsιY η̄) .

If Vs ⊂ Ps, then (Vs)⊥,r ⊂ Pr is defined by

(4.1) (Vs)⊥,r := {(Y, η) ∈ Pr : 〈〈(Y, η) , Vs〉〉 = 0}.
Definition 4.1. An almost multi-Dirac structure of degree p on M consists
of subbundles (D1, . . . , Dp), where Dr ⊂ Pr for all r, satisfying

(4.2) Dr = (Ds)⊥,r

for all r, s with r + s ≤ p+ 1.

Proposition 4.2. Fix a manifold M and an integer p ≥ 1. There is a
bijection

{almost multi-Dirac structures of degree p}
∼= {almost Dirac structures L of order p s.t. L⊥,r

is a subbundle for r = 2, . . . , p}
(D1, . . . , Dp) 	→ D1.

The proof of Proposition 4.2 uses the following extension of Corollary 3.9:

Lemma 4.3. Fix a vector space T and an integer p ≥ 1. Let L be a
Lagrangian subspace of T ⊕∧pT ∗, and define Dr := (L)⊥,r for r = 1, . . . , p.
Choose ω ∈ ∧p+1T ∗ so that ω and S := prT (L) describe L as in Corollary
3.9. Then for all r we have

Dr = {Y + ιY ω + ξ : Y ∈ S ∧ (∧r−1T ), ξ ∈ ∧p+1−rS◦}.
Proof. “⊂:” We first claim that

pr∧rT (Dr) ⊂ S ∧ (∧r−1T ).

If S = T this obvious. If S = T , by Proposition 3.8 we have that ∧pS◦ ⊂ L
is non-zero. As (Y, η) ∈ Dr implies ιY (∧pS◦) = 0, we conclude that Y ∈
S ∧ (∧r−1T ).

Let (Y, η) ∈ Dr. For all (X,α) ∈ L, we have α− ιXω ∈ ∧pS◦ by Corollary
3.9, and since Y ∈ S∧ (∧r−1T ) we obtain ιY α = ιY (ιXω). Hence zero equals

〈〈(Y, η), (X,α)〉〉 = ιXη − (−1)rιY α = ιXη − (−1)rιY (ιXω)(4.3)

= ιX(η − ιY ω),

that is, η− ιY ω ∈ ∧p+1−rS◦. Note that, in the last equality of equation (4.3)
we used the total skew-symmetry of ω.

“⊃” follows from equation (4.3). �



L∞-ALGEBRAS AND HIGHER ANALOGUES 575

Proof of Proposition 4.2. The map in the statement of Proposition 4.2 is
well defined by equation (4.2) with r = s = 1. It is injective as Dr = (D1)⊥,r

is determined by D1 for r = 2, . . . , p, again by equation (4.2).
We now show that it is surjective. Let L be a Lagrangian subbundle of

Ep, and assume that Dr := (L)⊥,r is a smooth subbundle for r = 1, . . . , p.
We have to show that equation (4.2) holds for all r, s with r + s ≤ p+ 1. If
(Y, η) ∈ Dr and (Ȳ , η̄) ∈ Ds, then ιY η̄ = ιY (ιȲ ω) by Lemma 4.3, showing
〈〈Dr, Ds〉〉 = 0 and the inclusion “⊂”.

For the opposite inclusion take (Y, η) ∈ (Ds)⊥,r at some point x ∈ M .
In particular (Y, η) is orthogonal to ∧p+1−sS◦

x (where Sx := prTxML). The
latter does not vanish by Proposition 3.8 if Sx = TxM , and since r ≤ p+1−s
we conclude that Y ∈ Sx ∧ (∧r−1TxM). If Sx = TxM , the same conclusion
holds. A computation analogue to equation (4.3) implies that for all (Ȳ , η̄) ∈
Ds we have 0 = ιȲ (η − ιY ω). As such Ȳ span Sx ∧ (∧s−1TxM) by Lemma
4.3 applied to Ds, from s ≤ p + 1 − r it follows that η − ιY ω ∈ ∧p+1−rS◦

x.
Hence, by Lemma 4.3 (Y, η) ∈ Dr. �

In order to introduce the notion of integrability for almost multi-Dirac
structures, as in [7] define [[·, ·]]r,s : Γ(Pr) × Γ(Ps) → Γ(Pr+s−1) by

[[

(Y, η) ,
(

Ȳ , η̄
)]]

r,s

:=
(

[Y, Ȳ ], LY η̄ − (−1)(r−1)(s−1)LȲ η +
(−1)

2

r

d (ιȲ η + (−1)rsιY η̄)
)

.

Definition 4.4. An almost multi-Dirac structure (D1, . . . , Dp) is
integrable if

(4.4) [[Dr, Ds]]r,s ⊂ Dr+s−1

for all r, s with r + s ≤ p. In that case it is a multi-Dirac structure.

We call an almost multi-Dirac structure (D1, . . . , Dp) regular if prTM (D1)
has constant rank. By Lemma 4.3, this is equivalent to pr∧rTM (Dr) having
constant rank for r = 1, . . . , p. Under this regularity assumption, we obtain
an equivalence for integrable structures.

Theorem 4.5. Fix a manifold M and an integer p ≥ 1. The bijection of
Proposition 4.2 restricts to a bijection

{regular multi-Dirac structures of degree p}
∼= {regular Dirac structures of order p}

Proof. If (D1, . . . , Dp) is a multi-Dirac structure, by the remark at the end
of [7, Section 4], D1 is involutive w.r.t. the Courant bracket. Therefore, it is
involutive w.r.t. Dorfman bracket, that is, it is a Dirac structure of order p.

For the converse, note that if L is a regular Dirac structure L then L⊥,r is
always a smooth subbundle by Corollary 4.3. So let (D1, . . . , Dp) be a regular
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almost multi-Dirac structure with the property that L := D1 is involutive.
Choose ω ∈ Ωp+1(M) so that (ω, S := prTM (L)) describe L as in Corollary
3.9. Such a differential form exists by the regularity assumption. To show
that condition (4.4) holds, let Y ∈ Γ(S ∧ (∧r−1T )) and Ȳ ∈ Γ(S ∧ (∧s−1T )).
We have

[[

Y + ιY ω, Ȳ + ιȲ ω
]]

r,s
=

(

[Y, Ȳ ], ι[Y,Ȳ ]ω + (−1)rιY ιȲ dω
)

,

see for instance [7, Proof of Theorem 4.5]. Now ιY ιȲ dω ∈ Γ(∧p+2−r−sS◦)
by Theorem 3.12, so the above lies in Dr+s−1 by Lemma 4.3. Further, the
involutivity of S implies that locally ∧p+1−sS◦ admits a frame consisting of
closed forms αi. For any choice of functions fi we have

[[Y + ιY ω, fiαi]]r,s = LY (fiαi) + (−1)r(s+1)dιY (fiαi) = ιY (dfi ∧ αi),

which lies in Γ(∧p+2−r−sS◦) since Y ∈ Γ(S ∧ (∧r−1T )) and αi ∈ Γ
(∧p+1−sS◦). �

Finally, we comment on how our definition of higher Dirac structure differs
from Hagiwara’s Nambu–Dirac structures [12], which also are an extension
of Courant’s notion of Dirac structure.

Remark 4.6. A Nambu–Dirac structure on a manifold M [12, Def. 3.1,
Definition 3.7] is an involutive subbundle L ⊂ Ep satisfying

〈X1 + α1, X2 + α2〉|∧p−1(prTM (L)) = 0,(4.5)

∧p(prTM (L)) = pr∧pTML
⊥,p,(4.6)

where L⊥,p ⊂ ∧pTM ⊕ T ∗M is defined as in equation (4.1). When p = 1,
Nambu–Dirac structures agree with Dirac structures. Graphs of closed forms
and of Nambu–Poisson multivector fields are Nambu–Dirac structures.

Our isotropicity condition (3.1) is clearly stronger than (4.5). Neverthe-
less, higher Dirac structures are usually not Nambu–Dirac structures, for
the former satisfy

prTM (L) ∧ (∧p−1TM) = pr∧pTML
⊥,p

by Lemma 4.3, and hence usually do not satisfy (4.6). A concrete instance
is given by the 3-dimensional Lagrangian subspace L ⊂ T ⊕ ∧2T ∗ given
as in Corollary 3.9 by T = R

4, S equal to the plane {x3 = x4 = 0} and
ω = dx1 ∧ dx2 ∧ dx3.

5. Review: L∞-algebras

In this section, we review briefly the notion of L∞-algebra, which generalizes
Lie algebras and was introduced by Lada and Stasheff [6] in the 1990s. We
will follow the conventions of Lada–Markl2 [22, Sections 2 and 5].

2Except that on graded vector spaces we take the grading inverse to theirs.
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Recall that a graded vector space is just a (finite dimensional, real) vector
space V = ⊕i∈ZVi with a direct sum decomposition into subspaces. An
element of Vi is said to have degree i, and we denote its degree by | · |.

For any n ≥ 1, V ⊗n is a graded vector space, and the symmetric group
acts on it by the so-called odd representation: the transposition of the k-th
and (k + 1)-th element acts by

v1 ⊗ · · · ⊗ vn 	→ −(−1)|vk||vk+1|v1 ⊗ · · · ⊗ vk+1 ⊗ vk ⊗ · · · ⊗ vn.

The nth graded exterior product of V is the graded vector space ∧nV , con-
sisting of elements of V ⊗n which are fixed by the odd representation of the
symmetric group.

Definition 5.1. An L∞-algebra is a graded vector space V =
⊕

i∈Z
Vi

endowed with a sequence of multi-brackets (n ≥ 1)

ln : ∧n V → V

of degree 2 − n, satisfying the following quadratic relations for each n ≥ 1:

∑

i+j=n+1

∑

σ∈Sh(i,n−i)

χ(σ)(−1)i(j−1)lj(li(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)) = 0.

(5.1)

Here, Sh(i, n − i) denotes the set of (i, n − i)-unshuffles, i.e., permutations
preserving the order of the first i elements and the order of the last n − i
elements. The sign χ(σ) is given by the action of σ on v1 ⊗ · · · ⊗ vn in the
odd representation.

Remark 5.2. (1) The quadratic relations imply that the unary bracket l1
squares to zero, so (V, l1) is a chain complex of vector spaces. Hence, L∞-
algebras can be viewed as chain complexes with the extra data given by the
multi-brackets ln for n ≥ 2.

(2) When V is concentrated in degree 0, (i.e., only V0 is non-trivial) then
∧nV is the usual n-th exterior product of V , and is concentrated in degree
zero. Hence, by degree reasons only the binary bracket [·, ·]2 is non-zero,
and the quadratic relations are simply the Jacobi identity, so we recover the
notion of Lie algebra.

For any p ≥ 1, we use the term Lie p-algebra to denote an L∞-algebra
whose underlying graded vector space is concentrated in degrees −p +
1, . . . , 0. Note that by degree reasons only the multi-brackets



578 M. ZAMBON

l1, . . . , lp+1 can be non-zero. In particular, a Lie 2-algebra consists of a graded
vector space V concentrated in degrees −1 and 0, together with maps

d := l1 : V → V,

[·, ·] := l2 : ∧2 V → V,

J := l3 : ∧3 V → V,

of degrees 1,0 and −1, respectively, subject to the quadratic relations.
An L∞-morphism φ : V � V ′ between L∞-algebras is a sequence of maps

(n ≥ 1)
φn : ∧n V → V ′

of degree 1−n, satisfying certain relations, which can be found in [22, Def.
5.2] in the case when V ′ has only the unary and binary bracket. The first of
these relations says that φ1 : V → V ′ must preserve the differentials (unary
brackets). We spell out the definition when V and V ′ are Lie 2-algebras.

Definition 5.3. Let (V, d, [·, ·], J) and (V ′, d′, [·, ·]′, J ′) be Lie 2-algebras. A
morphism φ : V � V ′ consists of linear maps

φ0 : V0 → V0,

φ1 : V−1 → V−1,

φ2 : ∧2 V0 → V−1,

such that

d′ ◦ φ1 = φ0 ◦ d,(5.2)

d′(φ2(x, y)) = φ0[x, y] − [φ0(x), φ0(y)]′ for all x, y ∈ V0,(5.3)

φ2(df, y) = φ1[f, y] − [φ1(f), φ0(y)]′ for all f ∈ V−1, y ∈ V0,(5.4)

and for all x, y, z ∈ V0:

φ0(J(x, y, z)) − J ′(φ0(x), φ0(y), φ0(z))(5.5)

= φ2(x, [y, z]) − φ2(y, [x, z]) + φ2(z, [x, y])

+ [φ0(x), φ2(y, z)]′ − [φ0(y), φ2(x, z)]′ + [φ0(z), φ2(x, y)]′.

6. L∞-algebras from higher analogues of Dirac structures

Courant [1, Section 2.5] associated to every Dirac structure on M a subset of
C∞(M), which we refer to as Hamiltonian functions or observables. Usually
the Hamiltonian vector field associated to such a function is not unique.
Nevertheless, the set of Hamiltonian functions is endowed with a Poisson
algebra structure (a Lie bracket compatible with the product of functions).
Baez et al. associate to a p-plectic form a set of Hamiltonian p−1-forms and
endow it with a bracket [4, Section 3]. Rogers shows that the bracket can be
extended to obtain a Lie p-algebra [5, Thm. 5.2]. In this section, we mimic
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Courant’s definition of the bracket and extend Roger’s results to arbitrary
isotropic involutive subbundles.

Let p ≥ 1 and let L be an isotropic, involutive subbundle of Ep = TM ⊕
∧pT ∗M .

Definition 6.1. A (p−1)-form α ∈ Ωp−1(M) is called Hamiltonian if there
exists a smooth vector field Xα such that Xα + dα ∈ Γ(L). We denote the
set of Hamiltonian forms by Ωp−1

ham(M,L). We refer to Xα as a Hamiltonian
vector field of α.

Remark 6.2. (a) Hamiltonian vector fields are unique only up to smooth
sections of L ∩ (TM ⊕ 0).

(b) For all X ∈ Lx ∩ (TxM ⊕ 0) and for all η ∈ pr∧pT ∗MLx ,

ιXη = 0.

Here, x ∈ M and pr∧pT ∗M denotes the projection of Ep
x onto the second

component. The above property follows from the fact that there exists Y ∈
TxM with Y + η ∈ Lx, so ιXη = 〈X +0, Y + η〉 = 0 by the isotropicity of L.

Definition 6.3. We define a bracket {·, ·} on Ωp−1
ham(M,L) by

{α, β} := ιXαdβ,

where Xα is any Hamiltonian vector field for α.

Lemma 6.4. The bracket {·, ·} is well-defined and skew-symmetric. It does
not satisfy the Jacobi identity, but rather

{α, {β, γ}} + c.p. = −d(ιXα{β, γ})

where “c.p.” denotes cyclic permutations.

Proof. The bracket is well-defined: by Remark 6.2 the ambiguity in the
choice of Xα is a section X of L ∩ (TM ⊕ 0) and ιXdβ = 0. Using
LY = ιY d+ dιY one computes

(6.1) [[Xα + dα,Xβ + dβ]] = [Xα, Xβ ] + d{α, β}.

Hence, [Xα, Xβ ] is a Hamiltonian vector field for {α, β}, showing that
Ωp−1

ham(M,L) is closed under {·, ·}. The bracket is skew symmetric because

0 = 〈Xα + dα,Xβ + dβ〉 = {α, β} + {β, α}.
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To compute the Jacobiator of {·, ·} we proceed as in3 [1, Proposi-
tion 2.5.3]. Since L is isotropic and involutive we have

0 = 〈[[Xα + dα , Xβ + dβ]], Xγ + dγ〉
= 〈[Xα, Xβ ] + d{α, β} , Xγ + dγ〉
= ι[Xα,Xβ ]dγ + ιXγd{α, β}
= ({α, {β, γ}} + c.p.) + d(ιXα{β, γ}).

Here the second equality uses equation (6.1) and the last equality uses
ι[Y,Z] = [LY , ιZ ]. �
Remark 6.5. Given a p-plectic form ω, Cantrijn, Ibort and de León [3,
Section 4] define the space of Hamiltonian (p−1)-forms α by the requirement
that dα = −ιXαω for a (necessarily unique) vector field Xα on M , and
define the semi-bracket {α, β}s by ιXβ

ιXαω. These notions coincide with
our Definition 6.1 and Definition 6.3 applied to graph(ω) := {X − ιXω :
X ∈ TM} ⊂ Ep.

Remark 6.6. Given an p-plectic form, in [4, Def. 3.3] the hemi-bracket of
α, β ∈ Ωp−1

ham(M, graph(ω)) is also defined, by the formula LXαβ. This notion
does not extend to the setting of arbitrary isotropic subbundles of Ep, since
in that setting the Hamiltonian vector field Xα is not longer unique and the
above expression depends on it.

For instance, take M = R
4, consider the closed 3-form θ = dx1∧dx2∧dx3.

By Proposition 3.2, L = {X − ιXθ : X ∈ TM} is a isotropic, involutive
subbundle of E2. Both ∂

∂x4
∈ Γ(L ∩ TM) and the zero vector field are

Hamiltonian vector fields for α = 0, and the hemi-bracket of α with β =
x1dx4 + x4dx1 is not well-defined since

L ∂
∂x4

β = dx1 = 0 = L0β.

Rogers [5, Thm. 5.2] shows that for every p-plectic manifold there is an
associated L∞-algebra of observables. The statement and the proof general-
ize in a straightforward way to arbitrary isotropic, involutive subbundle of
Ep = TM ⊕ ∧pT ∗M .

Theorem 6.7. Let p ≥ 1 and L be a isotropic, involutive subbun-
dle of Ep = TM ⊕ ∧pT ∗M . Then the complex concentrated in degrees
−p+ 1, . . . , 0

C∞(M) d→ . . .
d→ Ωp−2(M) d→ Ωp−1

ham(M,L)

has a Lie p-algebra structure. The only non-vanishing multibrackets are given
by the de Rham differential on Ω≤p−2(M) and, for k = 2, . . . , p+ 1, by

lk(α1, . . . , αk) = ε(k)ιXαk
. . . ιXα3

{α1, α2}
3There the case p = 1 is treated, and the term ιXα{β, γ} vanishes by degree reasons.
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where α1, . . . , αk ∈ Ωp−1
ham(M,L) and ε(k) = (−1)

k
2
+1 if k is even, ε(k) =

(−1)
k−1
2 if k is odd.

Proof. The expressions for the multibrackets are totally skew-symmetric, as
a consequence of the fact that {·, ·} is skew-symmetric. This and the fact
that {·, ·} is independent of the choice of Hamiltonian vector fields imply
that the multibrackets are well-defined. Clearly, lk has degree 2 − k.

Now we check the L∞ relations (5.1). For n = 1, the relation holds due to
d2 = 0. Now consider the relation (5.1) for a fixed n ≥ 2, and let α1, . . . , αn

be homogeneous elements of the above complex. We will use repeatedly the
fact that, for k ≥ 2, the k-multibracket vanishes when one of its entries is
of negative degree. For j ∈ {2, . . . , n− 2} (so i ≥ 3), we have

lj(li(α1, . . . , αi), αi+1, . . . , αn) = 0,

as a consequence of the fact that k-multibrackets for k ≥ 3 take values in
negative degrees. For j = n, we have

ln(l1(α1), α2, . . . , αn) = 0 :

if |α1| = 0 then l1(α1) vanishes, otherwise l1(α1) = dα1 and its Hamiltonian
vector field vanishes.

We are left with the summands of (5.1) with j = 1 and j = n − 1.
When n = 2 we have just one summand l1(l2(ασ(1), ασ(2))), which vanishes
by degree reasons. For n ≥ 3 it is enough to assume that all the αi’s have
degree zero. We have

d(ln(α1, . . . , αn)) +
∑

σ∈Sh(2,n−2)

χ(σ)ln−1({ασ(1), ασ(2)}, ασ(3) . . . , ασ(n)).

Writing out explicitly the unshuffles in Sh(2, n − 2) and the multibrackets
we obtain

ε(n)d(ιXαn
. . . ιXα3

{α1, α2})

+ ε(n− 1)

⎡

⎣

∑

2≤i<j≤n

(−1)i+j−1ιXαn
. . . ι̂Xαj

. . . ι̂Xαi
. . . ιXα2

{{αi, αj}, α1}

+
∑

3≤j≤n

(−1)jιXαn
. . . ι̂Xαj

. . . ιXα3
{{α1, αj}, α2}

+ ιXαn
. . . . . . ιXα4

{{α1, α2}, α3}
⎤

⎦ .

By Lemma 6.8 we conclude that the above expression vanishes. �

The following Lemma, needed in the proof of Theorem 6.7, extends [5,
Lemma 3.7].
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Lemma 6.8. Let p ≥ 1 and L be a isotropic, involutive subbundle of Ep =
TM ⊕ ∧pT ∗M . Then for any n ≥ 3, and for all α1, . . . , αn ∈ Ωp−1

ham(M,L)
we have

d(ιXαn
. . . ιXα3

{α1, α2})

= (−1)n+1

⎡

⎣

∑

2≤i<j≤n

(−1)i+j−1ιXαn
. . . ι̂Xαj

. . . ι̂Xαi
. . . ιXα2

{{αi, αj}, α1}

+
∑

3≤j≤n

(−1)jιXαn
. . . ι̂Xαj

. . . ιXα3
{{α1, αj}, α2}

+ ιXαn
. . . . . . ιXα4

{{α1, α2}, α3}
⎤

⎦ .

Proof. We proceed by induction on n. For n = 3 the statement holds by
Lemma 6.4. So let n > 3. To shorten the notation, denote A := ιXαn−1

. . .

ιXα3
{α1, α2}. Then we have

(6.2) d(ιXαn
. . . ιXα3

{α1, α2}) = d(ιXαn
A) = LXαn

A− ιXαn
dA.

The first term on the r.h.s. of (6.2) becomes

LXαn
(ιXα3∧···∧Xαn−1

{α1, α2})

=
n−1
∑

i=3

(−1)i+1ιXαn−1
. . . ι̂Xαi

. . . ιXα3
ι[Xαn ,Xαi ]

{α1, α2}

+ ιXαn−1
. . . ιXα3

LXαn
{α1, α2}

=
n−1
∑

i=3

(−1)i+1ιXαn−1
. . . ι̂Xαi

. . . ιXα2
{{αn, αi}, α1}

+ ιXαn−1
. . . ιXα3

({{α2, αn}, α1} − {{α1, αn}, α2})

=
n−1
∑

i=2

(−1)iιXαn−1
. . . ι̂Xαi

. . . ιXα2
{{αi, αn}, α1}

− ιXαn−1
. . . ιXα3

{{α1, αn}, α2}.
Here in the second equality, we used [Xαn , Xαi ] = X{αn,αi} (see the proof of
Lemma 6.4) and

ιX{αn,αi}
{α1, α2} = −ιX{αn,αi}

ιXα2
dα1 = ιXα2

{{αn, αi}, α1},
as well as Cartan’s formula for the Lie derivative and Lemma 6.4.

The second term on the r.h.s. of (6.2) can be developed using the induction
hypothesis. The resulting expression for the l.h.s. of equation (6.2) is easily
seen to agree with the one in the statement of this lemma. �
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Remark 6.9. The observables associated by Theorem 6.7 to the zero p+1-
form on M are given by the abelian Lie algebra R for p = 1 and to the
complex C∞(M) d→ Ω1

closed(M) (with vanishing higher brackets) for p = 2.
It is a curious coincidence that they agree with the central extensions of
observables of p-plectic structures given in [23, Proposition 9.4] for p = 1
and 2, respectively.

A closed 2-form B on M induce an automorphism of the Courant alge-
broid TM ⊕ T ∗M by gauge transformations (see Section 1), and there-
fore acts on the set of Dirac structures. For instance, the Dirac structure
TM ⊕{0} is mapped to the graph of B. The Poisson algebras of observables
of these two Dirac structures are not isomorphic (unless B = 0).

Similarly, for p ≥ 1, gauge transformations of Ep by closed p + 1-forms
usually do not induce an isomorphism of the Lie p-algebra of observables.
We display a quite trivial operation which, on the other hand, does have
this property.

Lemma 6.10. Let λ ∈ R − {0} and consider

mλ : Ep → Ep

X + η 	→ X + λη

Let L ⊂ Ep be an involutive isotropic subbundle. Then mλ(L) is also an
involutive isotropic subbundle, and the Lie p-algebras of observables of L
and mλ(L) are isomorphic.

Proof. mλ is an automorphism of the Dorfman bracket [[·, ·]] and 〈mλ·,mλ·〉 =
λ〈·, ·〉. Hence, mλ(L) is also involutive and isotropic.

We consider the Lie p-algebras of observables associated to L and mλ(L),
respectively, as in Theorem 6.7. We denote them by OL and Omλ(L), respec-
tively. The underlying complexes coincide, both being

C∞(M) d→ Ω1(M) d→ . . .
d→ Ωp−1

ham(M,L).

Note that if α ∈ Ωp−1
ham(M,L) has Hamiltonian vector field XL

α , then λα is
a Hamiltonian (p−1)-form for mλ(L), and XL

α itself is a Hamiltonian vector
field for it. Hence, from Theorem 6.7 it is clear that the unary map given by
multiplication by λ

φ : (β0, . . . , βp−1) 	→ (λβ0, . . . , λβp−1)

intertwines the multibrackets of OL and Omλ(L), where βi ∈ Ωi(M) for
i < p − 1 and βp−1 ∈ Ωp−1

ham(M,L). Therefore, setting the higher maps to
zero, we obtain a strict morphism [24, Section 7] of Lie p-algebras, which
clearly is an isomorphism. �
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As an application of Lemma 6.10 we show that to any compact, connected,
orientable p + 1-dimensional manifold (p ≥ 1) there is an associated Lie
p-algebra. A dual version of this Lie p-algebra appeared in [25, Thm. 6.1].

Corollary 6.11. Let M be a compact, connected, orientable p +
1-dimensional manifold. For any volume form ω consider the Lie p-algebra
associated to graph(ω) by Theorem 6.7, whose underlying complex is

C∞(M) d→ Ω1(M) d→ . . .
d→ Ωp−1(M).

(Note that all p− 1-forms are Hamiltonian). Its isomorphism class is inde-
pendent of the choice of ω, and therefore depends only on the manifold M .

Proof. Let ω0 and ω1 be two volume forms on M . They define non-zero
cohomology classes in Hp+1(M,R) = R, so there is a (unique) λ ∈ R − {0}
such that [ω1] = λ[ω0]. By Moser’s theorem [26] there is a diffeomorphism
ψ of M such that ψ∗(ω1) = λω0. This explains the first isomorphism in

Lie p-algebra of ω1
∼= Lie p-algebra of λω0

∼= Lie p-algebra of ω0,

whereas the second one holds by Lemma 6.10. �

7. Relations to L∞-algebras arising from split Courant algebroids

In this section, we construct an L∞-morphism from a Lie algebra associ-
ated to E0 with the σ-twisted bracket, where σ is a closed 2-form, to a Lie
2-algebra associated to E1 with the untwisted Courant bracket (in other
words, the Courant bracket twisted by dσ = 0).

We consider again Ep := TM ⊕ ∧pT ∗M . For p = 0 we have E0 =
TM ⊕R. Fix a closed 2-form σ ∈ Ω2

closed(M). Then Γ(E0) with the σ-twisted
Dorfman bracket

[X + f, Y + g]σ = [X,Y ] + (X(g) − Y (f)) + σ(X,Y )

is an honest Lie algebra. (See [14, Section 3.8], where a geometric interpre-
tation in terms of circle bundles is given too.)

For p = 1 we have the (untwisted) Courant algebroid E1 = TM ⊕ T ∗M .
Roytenberg and Weinstein [9] associated to it an L∞-algebra. In the version
given in [11, Thm. 4.4], the underlying complex is

(7.1) C∞(M) d→ Γ(E1),

where d is the de Rham differential. The binary bracket [·, ·]′ is given by the
Courant bracket [[·, ·]]Cou on Γ(E1) and by

[e, f ]′ = −[f, e]′ :=
1
2
〈e, df〉

for e ∈ Γ(E1) and f ∈ C∞(M). The trinary bracket J ′ is given by

J ′(e1, e2, e3) = −1
6
(〈[[e1, e2]]Cou, e3〉 + c.p.)
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for elements of Γ(E1), where “c.p.” denotes cyclic permutation. All other
brackets vanish.

We show that there is a canonical morphism between these two Lie
2-algebras:

Theorem 7.1. Let M be a manifold and σ ∈ Ω2
closed(M). There is a canon-

ical morphism of Lie 2-algebras

(7.2) φ : (Γ(E0), [·, ·]σ) � (C∞(M) d→ Γ(E1), [·, ·]′, J ′)

given by

φ0 : Γ(E0) → Γ(E1), (X, f) 	→ (X, df)

φ2 : ∧2 Γ(E0) → C∞(M), (X, f), (Y, g) 	→ 1
2
(

X(g) − Y (f)
)

+ σ(X,Y ).

Proof. We check that the conditions of Definition 5.3 are satisfied. Equation
(5.2) is satisfied because Γ(E0) is concentrated in degree zero.

Equation (5.3) is satisfied because for any X + f, Y + g ∈ Γ(E0) we have

φ0[X + f, Y + g]σ − [[φ0(X + f), φ0(Y + g)]]Cou

= ([X,Y ] + d(X(g) − Y (f) + σ(X,Y ))) −
(

[X,Y ] +
1
2
d(X(g) − Y (f))

)

= d(φ2(X + f, Y + g)).

Equation (5.4) is satisfied because Γ(E◦) is concentrated in degree zero.
We are left with checking equation (5.5). Let X+f, Y +g, Z+h ∈ Γ(E1).

We want to show that

−J ′(X + df, Y + dg, Z + dh)(7.3)
!= φ2(X + f, [Y, Z] + Y (h) − Z(g) + σ(Y, Z)) + c.p.

+ [X + df, φ2(Y + g, Z + h)]′ + c.p.

where as usual “c.p.” denotes cyclic permutation. The l.h.s. of equation (7.3)
is equal to

1
6
(〈[[X + df, Y + dg]]Cou, Z + dh〉) + c.p.

=
1
6

(

[X,Y ](h) +
1
2
Z(X(g)) − 1

2
Z(Y (f))

)

+ c.p.

=
1
4
[X,Y ](h) + c.p.
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The r.h.s. is equal to
1
2
(X(Y (h) − Z(g) + σ(Y, Z)) − [Y, Z](f)) + σ(X, [Y, Z]) + c.p.

+
1
2
X

(

1
2
(Y (h) − Z(g)) + σ(Y, Z)

)

+ c.p.

=
3
4
X(Y (h) − Z(g)) − 1

2
[Y, Z](f) + c.p.

+ σ(X, [Y, Z]) +X(σ(Y, Z)) + c.p.

=
1
4
[X,Y ](h) + c.p.

+ dσ(X,Y, Z).

Since σ is a closed form, we conclude that equation (7.3) is satisfied. �

8. L∞-algebras from higher analogues of split Courant algebroids

In this section we apply Getzler’s recent construction [10] to obtain an L∞
structure on the complex concentrated in degrees −r + 1, . . . , 0

(8.1) C∞(M) d→ · · · d→ Ωr−2(M) d→ Γ(Er−1) = χ(M) ⊕ Ωr−1(M),

for any manifold M and integer r ≥ 2. When r = 2 we obtain exactly the
Lie 2-algebra given just before Theorem 7.1.

Let us first recall Getlzer’s recent theorem [10, Thm. 3]. Let (V, δ,{ , })
be a differential graded Lie algebra (DGLA). Getlzer endows the graded4

vector space V − := ⊕i<0Vi with multibrackets satisfying the relations [10,
Def. 1], which after a degree shift provide V −[−1] with a L∞-algebra struc-
ture in the sense of our Definition 5.1. Note that, V −[−1] is concentrated in
non-positive degrees: its degree 0 component is V−1, its degree −1 compo-
nent is V−2, and so on. The multibrackets are built out of a derived bracket
construction using the restriction of the operator δ to V0, and the Bernoulli
numbers appear as coefficients.

Now let M be a manifold, fix an integer r ≥ 2, and consider the graded
manifold

T ∗[r]T [1]M

(see [27,29] [28, Section 2] for background material on graded manifolds).
T ∗[r]T [1]M is endowed with a canonical Poisson structure of degree −r:
there is a bracket { , } of degree −r on the graded commutative algebra of
functions C := C(T ∗[r]T [1]M) such that

(C , · , { , })

4We take the opposite grading as in [10] so that our differential δ has degree 1.
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is a Poisson algebra of degree r [30, Def. 1.1]. This means that { , } defines
a (degree zero) graded Lie algebra structure on C[r], the graded vector space
defined by the degree shift (C[r])i := Cr+i, and that {a, ·} is a degree |a| − r
derivation of the product for any homogeneous element a ∈ C.

More concretely, choose coordinates xi on M , inducing fiber coordi-
nates vi on T [1]M , and conjugate coordinates Pi and pi on the fibers of
T ∗[r]T [1]M → T [1]M . The degrees of these generators of C are

|xi| = 0, |vi| = 1, |Pi| = r, |pi| = r − 1.

Then

{Pi, xi} = 1 = −{xi, Pi},
{pi, vi} = 1 = −(−1)r−1{vi, pi}

for all i, and all the other brackets between generators vanish. Note that
the coordinate vi corresponds canonically to dxi ∈ Ω1(M) and that pi cor-
responds canonically to ∂

∂xi
∈ χ(M). Also, note that C is concentrated in

non-negative degrees, and that there are canonical identifications

(8.2) Ci = Ωi(M) for 0 ≤ i < r − 1, Cr−1 = Ωr−1(M) ⊕ χ(M).

Indeed, for i < r − 1 the elements of degree i are sums of expressions of
the form f(x)vj1 . . . vji , while for i = r − 1 they are sums of expressions
f(x)vj1 . . . vjr−1 + g(x)pj .

The degree r+1 function S :=
∑

viPi, given by the De Rham differential
on M , satisfies {S,S} = 0, hence {S, } squares to zero. This and the fact
that (C[r],{ , }) is a graded Lie algebra imply that

(8.3) (C[r], δ := {S, },{ , }).

is a DGLA. Hence, Getlzer’s construction can be applied to (8.3), endowing
(C[r])−[−1] = (⊕0≤i≤r−1Ci)[r − 1] (the complex displayed in (8.1)) with an
L∞-algebra structure.

We write out explicitly the multibrackets. The twisted case will be con-
sidered in Proposition 8.4 below.

Proposition 8.1. Let M be a manifold, r ≥ 2 an integer. There exists
a Lie r-algebra structure on the complex (8.1) concentrated in degrees
−r + 1, . . . , 0, i.e.,

C∞(M) d→ · · · d→ Ωr−2(M) d→ Γ(Er−1) = χ(M) ⊕ Ωr−1(M),

whose only non-vanishing brackets (up to permutations of the entries) are
• unary bracket: the de Rham differential in negative degrees.
• binary bracket:

for ei ∈ Γ(Er−1) the Courant bracket as in equation (2.6),

[e1, e2] = [[e1, e2]]Cou;
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for e = (X,α) ∈ Γ(Er−1) and ξ ∈ Ω•<r−1(M),

[e, ξ] =
1
2
LXξ.

• trinary bracket:
for ei ∈ Γ(Er−1),

[e0, e1, e2] = −1
6

(〈[[e0, e1]]Cou, e2〉 + c.p.) ;

for ξ ∈ Ω•<r−1(M) and ei = (Xi, αi) ∈ Γ(Er−1),

[ξ, e1, e2] = −1
6

(

1
2
(ιX1LX2 − ιX2LX1) + ι[X1,X2]

)

ξ.

• n-ary bracket for n ≥ 3 with n an odd integer:
for ei = (Xi, αi) ∈ Γ(Er−1), [e0, . . . , en−1] =

∑

i[X0, . . . , αi, . . . ,
Xn−1], with

[α,X1, . . . , Xn−1]

=
(−1)

n+1
2 12Bn−1

(n− 1)(n− 2)

×
∑

1≤i<j≤n−1

(−1)i+j+1ιXn−1 . . . ι̂Xj . . . ι̂Xi . . . ιX1 [α,Xi, Xj ];

for ξ ∈ Ω•<r−1(M) and ei = (Xi, αi) ∈ Γ(Er−1),

[ξ, e1, . . . , en−1]

=
(−1)

n+1
2 12Bn−1

(n− 1)(n− 2)

×
∑

1≤i<j≤n−1

(−1)i+j+1ιXn−1 . . . ι̂Xj . . . ι̂Xi . . . ιX1
[ξ,Xi, Xj ].

Here the B’s denote the Bernoulli numbers.

Remark 8.2. Bering [31, Section 5.6] shows that the vector fields and
differential forms on a manifold M are naturally endowed with multibrack-
ets forming an algebraic structure which generalizes L∞-algebras: the qua-
dratic relations satisfied by Bering’s multibrackets have Bernoulli numbers
as coefficients. The multibrackets appearing in Proposition 8.1 are similar
to Bering’s, and they differ not only in the coefficients, but also in that the
expression for [ξ, e1, . . . , en−1] (for n ≥ 3) does not appear among Bering’s
brackets. This is a consequence of the fact that Getzler’s multibracket are
constructed not out of δ, but out of its restriction to V0.
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Remark 8.3. We write more explicitly the trinary bracket of elements
ei = (Xi, αi) ∈ Γ(Er−1): we have [e0, e1, e2] = [α0, X1, X2] − [α1, X0, X2] +
[α2, X0, X1] with

[α0, X1, X2] = −1
6

(

1
2
(ιX1LX2 − ιX2LX1) + ι[X1,X2] + ιX1ιX2d

)

α0.

Proof. Let X1, X2, · · · ∈ χ(M) and ξ1, ξ2, . . . be differential forms on M . In
the following we identify them with elements of C as indicated in equation
(8.2), and we adopt the notation introduced in the text before Proposition
8.1. The following holds:

(a) If ξi ∈ Ωki(M) for k1, k2 arbitrary, we have

{X1 + ξ1, X2 + ξ2} = ιX1ξ2 + (−1)r−1−k1ιX2ξ1.

In particular, when ξ1, ξ2 ∈ Ωr−1(M), we obtain the pairing 〈·, ·〉 as
in equation (2.1).

(b) For any differential form ξ1, the identity

{S, ξ1} = dξ1

is immediate in coordinates.
(c) If ξ1, ξ2 ∈ Ωr−1(M), we have

{{S, X1 + ξ1}, X2 + ξ2} = [[X1 + ξ1, X2 + ξ2]],

the Dorfman bracket as in equation (2.2). This holds by the following
identities, which we write for ξi ∈ Ωki(M) for arbitrary k1, k2:

{{S, X1}, X2} = [X1, X2] and {{S, ξ1}, ξ2} = 0

are checked in coordinates, and

{{S, X1}, ξ2} = {S,{X1, ξ2}} + {X1,{S, ξ2}}
= d(ιX1ξ2) + ιX1dξ2 = LX1ξ2,

{{S, ξ1}, X2} = −(−1)r−1−k1{X2,{S, ξ1}} = −(−1)r−1−k1ιX2dξ1.

(d) For n ≥ 3, and letting ai be either a vector field Xi or a differential
form ξi of arbitrary degree (not a sum of both),

{{ . . .{S, a1}, . . .}, an} = 0

except when exactly one of a1, a2, a3 is a differential form and all the
remaining ai’s are vector fields.
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Using this it is straighforward to write out the (graded symmetric) multi-
brackets of [10, Thm. 3], which we denote by (·, . . . , ·). More precisely, (b)
gives the unary bracket, (c) gives the binary bracket, (c) and (d) give the
trinary bracket. For the higher brackets (n ≥ 3 odd) one uses (d) and then
(a) to compute

(α,X1, . . . , Xn−1)

=
cn−1

c2

∑

σ∈Sectionigman−1, σ1<σ2

× (−1)σ{{ . . .{(α,Xσ1 , Xσ2), Xσ3}, . . .}, Xσn−1}
= (−1)(

n−2
2 )(n− 3)!

cn−1

c2

∑

1≤i<j≤n−1

× (−1)i+j+1ιXn−1 . . . ι̂Xj . . . ι̂Xi . . . ιX1
(ξ,Xi, Xj),

where we abbreviate cn−1 := (−1)(
n+1

2 )
(n−1)! Bn−1. The computation for [ξ, e1, . . . ,

en−1] with ξ ∈ Ω•<r−1(M) delivers the same expression and uses the fact
that n is odd. The coefficient can be simplified:

(−1)(
n−2

2 )(n− 3)!
cn−1

c2
=

12
(n− 1)(n− 2)

Bn−1

since n is odd and c2 = 1
12 .

This gives us the (graded symmetric) multibrackets (·, . . . , ·) of [10]. As
pointed out in [10], multiplying the n-ary bracket by (−1)(

n−1
2 ) delivers

(graded symmetric) multibrackets that satisfy the Jacobi rules given just
before [32, Def. 4.2].

These Jacobi rules coincide with Voronov’s [33, Def. 1], and according
to [33, Rem. 2.1], the passage from these (graded symmetric) multibrackets
to the (graded skew-symmetric) multibrackets satisfying our Definition 5.1
is given as follows: multiply the multibracket of elements x1, . . . , xn by

(8.4) (−1)x̃1(n−1)+x̃2(n−2)+···+x̃n−1 ,

where x̃i denotes the degree of xi as an element of (8.1), a complex con-
centrated in degrees −r + 1, . . . , 0. One easily checks that in all the cases
relevant to us (8.4) does not introduce any sign.

In conclusion, to pass from the conventions of [10] to the conventions of
our Definition 5.1 we just have to multiply the n-ary bracket (·, . . . , ·) by
(−1)(

n−1
2 ), which for n = 1, 2 equals 1 and for n odd equals (−1)

n−1
2 . �
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Now, let H ∈ Ωr+1
closed(M) be a closed r + 1-form. H can be viewed as an

element H of Cr+1, and {S −H,S −H} = −2{S,H} = −2dH = 0. Hence

(8.5)
(C[r], δ := {S −H, },{ , })

is a DGLA, and again we can apply Getzler’s construction. We obtain an
L∞-algebra structure that extends the H-twisted Courant bracket:

Proposition 8.4. Let M be a manifold, r ≥ 2 an integer and H ∈
Ωr+1

closed(M). There exists a Lie r-algebra structure on the complex (8.1) con-
centrated in degrees −r+1, . . . , 0, whose only non-vanishing brackets (up to
permutations of the entries) are those given in Proposition 8.1 and addition-
ally for ei = (Xi, αi) ∈ Γ(Er−1):

• binary bracket:
[e1, e2] = ιX2ιX1H

• n-ary bracket for n ≥ 3 with n an odd integer:

[e1, . . . , en] = (−1)
n−1

2 · n ·Bn−1 · ιXn . . . ιX1H.

Proof. It is easy to see (in coordinates, or using that T [1]M ⊂ T ∗[r]T [1]M
is Lagrangian) that for any n ≥ 1, letting ai be either a vector field Xi or a
differential form ξi of arbitrary degree (not a sum of both), one has:

{{ . . .{H, a1}, . . .}, an} = 0

except when all of the ai’s are vector fields Xi’s. In this case one obtains

(8.6) (−1)(
n
2)ιXn . . . ιX1H

using (a) in the proof of Proposition 8.1. Denoting by (·, . . . , ·) the (graded
symmetric) multibrackets as in [10] from the DGLA (8.5), we see that
(X1, . . . , Xn) is equal to (8.6) multiplied by −n! · cn−1. In order to pass
from the conventions of [10] to those of our Definition 5.1 we multiply by
(−1)(

n−1
2 ) and obtain the formulae in the statement. �

For any B ∈ Ωr(M), the gauge transformation of Er−1 given by e−B : X+
α 	→ X + α − ιXB maps the H-twisted Courant bracket to the (H + dB)-
twisted Courant bracket. Defining properly the notion of higher Courant
algebroid — of which the Er’s should be the main examples – and extending
to this general setting Proposition 8.1, will presumably imply that the L∞-
algebras defined by cohomologous differential forms are isomorphic. We show
this directly:

Proposition 8.5. Let M be a manifold, r ≥ 2 an integer and H ∈
Ωr+1

closed(M). For any B ∈ Ωr(M), there is a strict isomorphism
(the Lie-r algebra defined by H) → (the Lie-r algebra defined by H + dB)
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between the Lie-r algebra structures defined as in Proposition 8.4 on the
complex (8.1). Explicitly, the isomorphism is given by e−B on Γ(Er−1) and
is the identity elsewhere.

Proof. View B as an element B ∈ Cr. As {B, } is a degree zero derivation
of the graded Lie algebra (C[r],{ , }) and is nilpotent, it follows that the
exponential Φ := e{B, } is an automorphism. Therefore, it is an isomorphism
of DGLAs

Φ: (C[r], δ := {S −H, },{ , }) → (C[r],ΦδΦ−1,{ , }).

From the formulas for the multibrackets in Getzler’s [10, Thm. 3] it is then
clear that Φ|(⊕0≤i≤r−1Ci)[r−1] is a strict isomorphism between the L∞-algebras
induced by these two DGLAs.

The differential ΦδΦ−1 on C is not equal to {S−(H+{S,B}), }, which is
the differential associated to H + dB ∈ Ωr+1

closed(M) as in (8.5). However, on
⊕0≤i≤r−1Ci the two differentials do agree. (This follows from the fact that on
⊕0≤i≤r−1Ci we have Φ(y) = y + {B, y}.) This assures that the L∞-algebras
induced by the two differentials agree. �

9. Open questions: the relation between the L∞-algebras of
Sections 6–8

In this section, we speculate about the relations among the L∞-algebras
that appeared in Sections 6–8 and their higher analogues, and relate them
to prequantization.

Let M be a manifold. Given an integer n ≥ 0 and H ∈ Ωn+2
closed(M), we use

the notation En
H to denote the vector bundle En = TM ⊕∧nT ∗M with the

H-twisted Dorfman bracket [·, ·]H . In particular, En
0 denotes TM ⊕∧nT ∗M

with the untwisted Dorfman bracket (2.2).

9.1. Relations between L∞-algebras. To any n ≥ 0 and H ∈ Ωn+2
closed

(M), we associated in Proposition 8.4 a Lie n+ 1-algebra SEn
H . We ask:

Is there a natural L∞-morphism D from SEn
H to SEn+1

0 ?

When n = 0 the answer is affirmative by Theorem 7.1.
Let p ≥ 1 and L ⊂ Ep

0 an involutive isotropic subbundle. Denote by
OL⊂Ep

0 the Lie p-algebra associated in Theorem 6.7. Since L is an involutive
subbundle of Ep

0 it is natural to ask:

What is the relation between OL⊂Ep
0 and SEp

0 ?
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When L is equal to graph(H) for a p-plectic form H, we expect the relation
to be given by an L∞-morphism

P : Ograph(H)⊂Ep
0 � SEp−1

H

with the property that the unary map of the L∞-morphism D◦P , restricted
to the degree zero component, coincide with

(9.1) Ωp−1
ham(M, graph(H)) → Γ(Ep

0), α 	→ Xα − dα.

We summarize the situation in this diagram:

SEp−1
H

D ������������ SEp
0

Ograph(H)⊂Ep
0

P

��
��
��
�� D◦P

����������������

Remark 9.1. In the case p = 1 (so H is a symplectic form) the embedding
P exists and is given as follows. We have two honest Lie algebras

Ograph(H)⊂E1
0 = (C∞(M), {·, ·}), SE0

H = (Γ(TM ⊕ R), [·, ·]H),

where {·, ·} is the usual Poisson bracket defined by H. The map

P : C∞(M) → Γ(TM ⊕ R), f 	→ (Xf ,−f)

is a Lie algebra morphism. Lie 2-algebra morphism D is given by Theorem
7.1. One computes that the composition consists only of a unary map, given
by the Lie algebra morphism (9.1).

Remark 9.2. We interpret P as a prequantization map. Indeed, for p = 1
and integral form H, the Lie algebra SE0

H can be identified with the space
of S1-invariant vector fields on a circle bundle over M [14, Section 3.8].
The composition of P with the action of vector fields on the S1-equivariant
complex valued functions is then a faithful representation of the Lie algebra
Ograph(H)⊂E1

0 = C∞(M), i.e., a prequantization representation. For p = 2
the morphism P is described by Rogers in [11, Thm. 5.2] and [23, Thm.
7.1], to which we refer for the interpretation as a prequantization map.

9.2. The twisted case. We pose three questions about higher analogues
of twisted Dirac structures. Let H be a closed p+1-form for p ≥ 2. Let L′ ⊂
Ep−1

H be an isotropic subbundle, involutive w.r.t. the H-twisted Dorfman
bracket.

Can one associate to L′ an L∞-algebra of observables OL′⊂Ep−1
H ?

To the author’s knowledge, this is not known even in the simplest case, i.e.,
when p = 2 and L′ is the graph of an H-twisted Poisson structure [34]. In
that case, one defines in the usual manner a skew-symmetric bracket {·, ·}
on C∞(M). It does not satisfy the Jacobi identity but rather [34, equation
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(4)] {{f, g}, h} + c.p. = −H(Xf , Xg, Xh), hence it is natural to wonder if
one can extend this bracket to an L∞-structure.

Is there a natural L∞-morphism D′ from OL′⊂Ep−1
H to Ograph(H)⊂Ep

0 ?

This question is motivated by the fact that L′ plays the role of a primitive of
H. In the simple case that L′ is the graph of a symplectic form the answer is
affirmative, by the morphism from (C∞(M), {·, ·}) to C∞(M) d→ Ω1

closed(M)
(a complex with no higher brackets) with vanishing unary map and binary
map φ2(f, g) = {f, g}.

Is there an L∞-morphism from OL′⊂Ep−1
H to SEp−1

H , assuming that L′
is the graph of a non-degenerate differential form?

Such a morphism would be interesting because it could be interpreted as a
weaker (because not injective) version of a prequantization map for (M,L′).

We summarize the discussion of this whole section in the following dia-
gram, in which for the sake of concreteness and simplicity we take H ∈
Ω3

closed(M) to be a 2-plectic form and L′ ⊂ TM ⊕ T ∗M to be a H-twisted
Dirac structure. The arrows denote L∞-morphisms.

SE1
H

D �������������� SE2
0

OL′⊂E1
H

D′
��������

���	�	�	�	�	�	�	

Ograph(H)⊂E2
0

P

��
��
��
�� D◦P

��
������������

We conclude presenting an interesting example in which the geometric
set-up described above applies.

Example 9.3. Let G be a Lie group whose Lie algebra g is endowed with a
non-degenerate bi-invariant quadratic form (·, ·)g. There is a well-defined
closed Cartan 3-form H, which on g = TeG is given by H(u, v, w) =
1
2(u, [v, w])g [35, Section 2.3]. There is also a canonical H-twisted Dirac
structure L′ ⊂ TG⊕T ∗G: it is given by L′ = {(vr − vl)+ 1

2(vr + vl)∗ : v ∈ g}
where vr, vl denote the right and left translations of v ∈ g and the qua-
dratic form is used to identify a tangent vector X ∈ TG with a covector
X∗ ∈ T ∗G [34] [35, Ex. 3.4].

Appendix A. The proof of Proposition 3.8

In this appendix, we present the proof of Proposition 3.8. We start giving
an alternative characterization of Lagrangian subspaces.
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Lemma A.1. Let T be a vector space and p ≥ 1. For all subspaces L ⊂
T ⊕ ∧pT ∗, denoting S := prTL, the following holds:

L is Lagrangian ⇔

⎧

⎪

⎨

⎪

⎩

L is isotropic,
L ∩ ∧pT ∗ = ∧pS◦,
dim(S) ≤ (dim(T ) − p) or S = T.

Proof. “⇒:” Assume first that L is Lagrangian. It is straightforward to check
that for any subspace F ⊂ T ⊕ ∧pT ∗ we have

(A.1) F⊥ ∩ ∧pT ∗ = ∧p(prT (F ))◦.

We apply this to F = L = L⊥ and derive L ∩ ∧pT ∗ = ∧pS◦.
Hence, we are left with showing that S satisfies dim(S) ≤ dim(T ) −

p or S = T . We argue by contradiction: we assume that ∧pS◦ = {0} and
S is strictly included in T , and deduce from this that prT (L⊥) ⊂ S, which
contradicts L = L⊥. Let {Xj}j≤dim(T ) be a basis of T whose first dim(S)
elements form a basis of S. Let Y be a basis element not lying in S (it exists
since S = T ). It is enough to prove the following claim:

Y + β ∈ L⊥, where β = −
dim(S)
∑

j=1

⎛

⎝X∗
j ∧

⎛

⎝

p
∑

q=0

1
q + 1

ιY α
q
j

⎞

⎠

⎞

⎠ ,

because it implies that Y ∈ prT (L⊥). Here {X∗
j }j≤dim(T ) denotes the basis

of T ∗ dual to {Xj}j≤dim(T ), and for all j ≤ dim(S), αj ∈ ∧pT ∗ is such that
Xj + αj ∈ L. Further, we adopt the following notation: for any α ∈ ∧pT ∗,
αq denotes the component of α, written in the basis of ∧pT ∗ induced by
{X∗

j }j≤dim(T ), for which the number of X∗
j ’s with j ≤ dim(S) is exactly q.

To prove the claim fix j0 ≤ dim(S). We have

ιXj0
β = −

p
∑

q=0

1
q + 1

ιY α
q
j0

+
dim(S)
∑

j=1

X∗
j ∧

⎛

⎝

p
∑

q=0

1
q + 1

ιXj0
ιY α

q
j

⎞

⎠

= −
p

∑

q=0

1
q + 1

ιY α
q
j0
− ιY

dim(S)
∑

j=1

X∗
j ∧

⎛

⎝

p
∑

q=0

1
q + 1

ιXjα
q
j0

⎞

⎠

= −
p

∑

q=0

1
q + 1

ιY α
q
j0
−

p
∑

q=0

q

q + 1
ιY α

q
j0

= −ιY αj0 ,

where in the second equality we used ιXj0
αq

j = −ιXjα
q
j0

and in the third
∑dim(S)

j=1 X∗
j ∧(ιXjα

q
j0

) = qαq
j0

. Hence, 〈Y +β,Xj+αj〉 = 0 for all j ≤ dim(S).
Since L∩∧pT ∗ = ∧pS◦ = {0}, we have L = span{Xj +αj}j≤dim(S), and we
conclude that Y + β ∈ L⊥, proving the claim.
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“⇐:” We need to show that L is Lagrangian, i.e., L = L⊥. We claim
that prT (L⊥) = S. If S = T this is clear, so we prove the claim in the case
dim(S) ≤ dim(T ) − p, for which we have ∧pS◦ = {0}. Since ∧pS◦ ⊂ L,
this implies that prT (L⊥) ⊂ S. By the isotropicity of L we therefore have
prT (L⊥) = S, as claimed.

Hence, if X + β ∈ L⊥ there exists α ∈ ∧pT ∗ such that X + α ∈ L ⊂ L⊥.
So β − α ∈ L⊥ ∩ ∧pT ∗ = ∧pS◦ ⊂ L, where the equality holds by equation
(A.1). Therefore X + β = (X + α) + (β − α) is the sum of two elements of
L, showing L⊥ ⊂ L. �

Lemma A.2. Let S ⊂ T a subspace and p ≥ 1. Let Ω ∈ ∧2S∗ ⊗ ∧p−1T ∗.
Then Ω admits an extension to S∗ ⊗ ∧pT ∗ iff it admits an extension to
∧p+1T ∗.

Proof. If there exists α ∈ ∧p+1T ∗ with α|S⊗S⊗⊗p−1 T = Ω, the clearly
α|S⊗⊗p T is an element of S∗ ⊗ ∧pT ∗ with the required property.

Conversely, let β′ ∈ S∗ ⊗ ∧pT ∗ be an extension of Ω. We choose a com-
plement C to S in T , and by the identification S∗ ∼= C◦ from β′ we obtain
an element β ∈ T ∗ ⊗ ∧pT ∗. The skew-symmetrization β̄ ∈ ∧p+1T ∗ of β is
given as follows:

β̄(x0, . . . , xp) =
1

p+ 1

p
∑

j=0

(−1)jβ(xj , x0, . . . , x̂j , . . . , xp)

for all xi ∈ T . In general β̄ does not restrict to Ω, but a weighted sum
of its component does, as we now show. We have β̄ =

∑p+1
q=0 β̄

q. Here, for
any basis {Xj}j≤dim(T ) of T whose first dim(S) elements span S and whose
remaining elements span C, taking {X∗

j }j≤dim(T ) to be the dual basis of
T ∗, we denote by β̄q the component of β̄ for which, in the basis of ∧pT ∗
induced by {X∗

j }j≤dim(T ), the number of X∗
j ’s with j ≤ dim(S) is exactly q.

We have β̄0 = 0, since β is an extension of β′. For q = 1, . . . , p+ 1, vectors
x0, . . . , xq−1 ∈ S and xq, . . . , xp ∈ C we have5

β̄q(x0, . . . , xp) = β̄(x0, . . . , xp) =
q

p+ 1
β(x0, . . . , xp).

Therefore,
∑p+1

q=1
p+1

q β̄q is an element of ∧p+1T ∗ whose restriction to S ⊗
⊗p T agrees with β′, and in particular its restriction to S ⊗ S ⊗ ⊗p−1 T
agrees with Ω. �

Proof of Proposition 3.8. We make use of the characterization of Lagrangian
subspaces given in Lemma A.1.

5This of course does not imply that β is totally skew, as the element x0 of S is plugged
in the first slot of β.
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We first show that the correspondence “L 	→ (S,Ω)” is well-defined. Let
L be a Lagrangian subspace. The dimension restriction on S follows from
Lemma A.1. Since L ∩ ∧pT ∗ = ∧pS◦, for any X ∈ S, the definition of ιXΩ
in Proposition 3.8 is independent of the choice of α with X + α ∈ L, and
determines a unique Ω ∈ ⊗2S∗ ⊗ ∧p−1T ∗. Clearly, Ω is skew in the first
two components: if X + α, Y + β ∈ L then the isotropicity of L implies
ιY ιXΩ = ιY α = −ιXβ = −ιXιY Ω. By construction, Ω is the restriction of
an element of S∗ ⊗ ∧pT ∗, hence by Lemma A.2 it is the restriction of an
element of ∧p+1T ∗

Next, we show that the correspondence “(S,Ω) 	→ L” is well-defined. Let
(S,Ω) a pair as in the statement of Proposition 3.8. This pair maps to a
subspace L which is isotropic, due to the skew-symmetry of Ω in its first 2
components. By inspection we have L∩∧pT ∗ = ∧pS◦, and further S agrees
with prT (L) because Ω is the restriction of an element of S∗⊗∧pT ∗. Hence,
L is Lagrangian by Lemma A.1.

The maps “L 	→ (S,Ω)” and “(S,Ω) 	→ L” are inverses of each other. �
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The author thanks Klaus Bering, Yaël Frégier, David Iglesias, Camille Laurent, João Mar-
tins, Claude Roger, Chris Rogers, Florian Schätz, Pavol Ševera and Joris Vankerschaver
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