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DIFFERENTIABLE STACKS AND GERBES

Kai Behrend and Ping Xu

We introduce differentiable stacks and explain the relationship with
Lie groupoids. Then we study S1-bundles and S1-gerbes over differ-
entiable stacks. In particular, we establish the relationship between
S1-gerbes and groupoid S1-central extensions. We define connections
and curvings for groupoid S1-central extensions extending the corre-
sponding notions of Brylinski, Hitchin and Murray for S1-gerbes over
manifolds. We develop a Chern–Weil theory of characteristic classes in
this general setting by presenting a construction of Chern classes and
Dixmier–Douady classes in terms of analog of connections and curva-
tures. We also describe a prequantization result for both S1-bundles
and S1-gerbes extending the well-known result of Weil and Kostant.
In particular, we give an explicit construction of S1-central extensions
with prescribed curvature-like data.
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1. Introduction

Grothendieck introduced stacks to give geometric meaning to higher non-
commutative cohomology classes. This is also the context in which gerbes
first appeared [19]. However, most of the work on stacks so far remains
algebraic, although there is increasing evidence that differentiable stacks will
find many useful applications. One example of the notion of stack is that
of orbifolds. In algebraic geometry, these correspond to Deligne–Mumford
stacks [25]. In differential geometry, orbifolds or V -manifolds have been
studied for many years using local charts. Recently, it has been realized that
viewing orbifolds as a very special kind of Lie groupoids, i.e., étale proper
groupoids, a viewpoint largely due to Haefliger, is quite useful [35].

The notion of a groupoid is a generalization of the concepts of spaces
and groups. A groupoid consists of a space of objects (units) X0, and a
space of arrows X1 with source and target maps s, t : X1 → X0. There
is a multiplication defined only for composable pairs X2 = {(x, y)|t(x) =
s(y), for x, y ∈ X1} ⊂ X1 ×X1. There is also an inverse map. These struc-
tures satisfy the usual axioms. Lie groupoids are groupoids where both X0

and X1 are manifolds, s and t are surjective submersions, and all the struc-
ture maps are required to be smooth. A Lie groupoid X1 ⇒ X0 is said to be
proper if the map s× t : X1 → X0×X0 is proper (in algebraic geometry, this
would be called separated or Hausdorff). In the theory of groupoids, spaces
and groups are treated on equal footing. Simplifying somewhat, one could
say that a groupoid is a mixture of a space and a group; it has space-like
and group-like properties that interact in a delicate way. In a certain sense,
groupoids provide a uniform framework for many different geometric objects.
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For instance, when a Lie group acts on a manifold properly, the correspond-
ing equivariant cohomology theories, including K-theory, can be treated
using the transformation groupoid M � G ⇒ M . Here the structure maps
are s(x, g) = x, t(x, g) = xg, (x, g)(y, h) = (x, gh).

There exists a dictionary between differentiable stacks and Lie groupoids.
Roughly speaking, differentiable stacks are Lie groupoids up to Morita equiv-
alence. Any Lie groupoid X1 ⇒ X0 defines a differentiable stack X of X•-
torsors. Two differentiable stacks X and X ′ are isomorphic if and only if
the Lie groupoids X• and X ′• are Morita equivalent. In a certain sense, Lie
groupoids are like “local charts” on a differentiable stack. Establishing such
a dictionary consists of the first part of the paper. We note that this view-
point of connecting stacks with groupoids is somehow folklore (see [15, 34,
39, 40]). However, we feel that it is useful to spell it out in detail in the
differentiable geometry setting, which is of ultimate interest for our purpose.

Our main goal of this paper is to develop the theory of S1-gerbes over
differentiable stacks. Motivation comes from string theory in which “gerbes
with connections” appear naturally [13, 16, 23, 41].

For S1-gerbes over manifolds, there has been extensive work on this sub-
ject pioneered by Brylinski [5], Chatterjee [8], Hitchin [21], Murray [32]
and many others. Also, there is interesting work on equivariant S1-gerbes,
e.g., by Brylinski [6], Meinrenken [29], Gawedzki–Reis [17], Stienon [43]
and others, as well as on gerbes over orbifolds [27]. These endeavors make
the foundations of gerbes over differentiable stacks a very important sub-
ject. An important step is to geometrically realize a class H2(X, S1) (or
H3(X,Z) when X is Hausdorff). Such a geometrical realization is crucial in
applications to twisted K-theory [45]–[47].

Our method is to use the dictionary mentioned above, under which we
show that S1-gerbes are in one-to-one correspondence with Morita equiva-
lence classes of groupoid S1-central extensions. Thus it follows from a well-
known theorem of Giraud [19] that there is a bijection between H2(X, S1)
and Morita equivalence classes of Lie groupoid S1-central extensions. We
note that there are several independent investigations of similar topics; see
[7, 36, 37, 44, 50].

An S1-central extension of a Lie groupoid X1 ⇒ X0 is a Lie groupoid
R1 ⇒ X0 with a groupoid morphism π : R1 → X1 such that kerπ ∼= X0×S1

lies in the center of R1. It is easy to see that π : R1 → X1 is then naturally an
S1-principal bundle. A standard example is an S1-central extension of a Čech
groupoid: letN be a manifold and α ∈ H3(N,Z), and let {Ui} be a good cov-
ering of N . Then the groupoid

∐
ij Uij ⇒

∐
i Ui, where Uij = Ui ∩Uj , which

is called the Čech groupoid, is Morita equivalent to the manifold N . Then
the S1-gerbe corresponding to the class α can be realized as an S1-central
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extension of groupoids
∐
ij Uij ×S1 →∐

ij Uij ⇒
∐
i Ui, where the multipli-

cation on
∐
ij Uij × S1 is given by (xij , λ1)(xjk, λ2) = (xik, λ1λ2cijk), where

xij , xjk, xik are the same point x in the three-intersection Uijk considered
as elements in the two-intersections, and cijk : Uijk → S1 is a 2-cocycle,
which represents the Čech class in H2(N,S1) ∼= H3(N,Z) corresponding to
α. This is essentially the picture of an S1-gerbe over a manifold described
by Hitchin [21].

The exponential sequence Z → Ω0 → S1 induces a boundary map
H2(X•, S1)→ H3(X•,Z). The image inH3(X•,Z) of the class inH2(X•, S1)
of a groupoid S1-central extension R• is called the Dixmier–Douady class
of R•. The Dixmier–Douady class behaves well with respect to the pullback
and the tensor operations. A fundamental question is to develop a Chern–
Weil characteristic class theory to construct the Dixmier–Douady classes
geometrically. For this purpose, we need the de Rham double complex of
a Lie groupoid. Let X1 ⇒ X0 be a Lie groupoid. By Xp, we denote the
manifold of composable sequences of p arrows in the groupoid X1 ⇒ X0.
We have p+ 1 canonical maps, called face maps, Xp → Xp−1 giving rise to
a diagram

(1) . . . X2
������ X1 ���� X0 .

In fact,X• is a simplicial manifold [14]. Thus for any abelian sheaf F (e.g., Z,
R, or S1), we have the cohomology groupsHk(X•, F ). Just like for manifolds,
Hk(X,R) is canonically isomorphic to the de Rham cohomology of X1 ⇒
X0, which is defined by the double complex Ω•(X•), with boundary maps
d : Ωk(Xp)→ Ωk+1(Xp), the usual exterior derivative of differentiable forms,
and ∂ : Ωk(Xp) → Ωk(Xp+1), the alternating sum of the pull-back of face
maps. We denote the total differential by δ = (−1)pd+ ∂. The cohomology
groups of the total complex Hk

dR(X•) = Hk(Ω•(X•)) are called the de Rham
cohomology groups of X1 ⇒ X0. When X1 ⇒ X0 is the Čech groupoid
associated to an open covering of a manifold N , this is isomorphic to the
usual de Rham cohomology of the manifold N . On the other hand, when
X1 ⇒ X0 is a transformation groupoid G � M ⇒ M , then Hk

dR(X•) is
isomorphic to the equivariant cohomology Hk

G(M).
Following Murray [32] and Hitchin [21], for a given groupoid S1-central

extension, one can also define the notions of connections, curvings and
3-curvatures. A flat gerbe is one whose 3-curvature vanishes. In this case,
there exists a holonomy map as well. However, a substantial difference
between S1-gerbes over an arbitrary differential stack and S1-gerbes over
a manifold is that connections and curvings may not always exist. There-
fore, they may not be as useful as one expects in calculating Dixmier–Douady
classes. For this purpose, we need the notion of so-called pseudo-connections.
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Given an S1-central extension R1 → X1 ⇒ X0, a pseudo-connection consists
of a pair (θ,B), where θ ∈ Ω1(R1) is a connection 1-form for the S1-principal
bundle R1 → X1, and B ∈ Ω2(X0) is a 2-form. It is simple to check that
δ(θ+B) ∈ Z3

dR(R•) descends to Z3
dR(X•), i.e., there exist unique η ∈ Ω1(X2),

ω ∈ Ω2(X1) and Ω ∈ Ω3(X0) such that δ(θ + B) = π∗(η+ω+ Ω). Then
η+ω+ Ω is called the pseudo-curvature of the pseudo-connection θ +B. It
is simple to check that the class [η+ω+Ω] ∈ H3

dR(X•) is independent of the
choice of the pseudo-connection θ+B. One of the main results of this paper
is that [η+ω+ Ω] is indeed the Dixmier–Douady class, or more precisely,
the image of the Dixmier–Douady class under the canonical homomorphism
H3(X,Z)→ H3(X,R) ∼= H3

dR(X•). Recently, Ginot–Stienon found an alter-
native proof of this result using 2-group bundles [18] (in fact they proved a
more general result for central G-extensions). We also describe a prequanti-
zation result, an analog of the Kostant–Weil [24, 48] theorem for S1-gerbes.
That is, given any integral 3-cocycle η+ω+Ω ∈ Z3

dR(X•), we describe a
sufficient condition that guarantees the 3-cocycle as the pseudo-curvature
of a groupoid S1-central extension R• with a pseudo-connection θ+B, and
classify all such pairs (R•, θ +B).
S1-central extensions of Lie groupoids also appear naturally in the Poisson

geometry. It was proved in [49] that a certain prequantization of a symplectic
groupoid naturally becomes an S1-central extension of groupoids with a con-
nection, which is indeed a contact groupoid. The proof utilizes Lie algebroids
as a tool. Lie algebroids are infinitesimal versions of Lie groupoids. It is
thus natural to study Lie groupoid central extensions via Lie algebroid cen-
tral extensions in a general framework. More precisely, let X1 ⇒ X0 be an
s-connected Lie groupoid with Lie algebroid A, and let η+ω ∈ Z3

dR(X•)
be a de Rham 3-cocycle, where η ∈ Ω1(X2) and ω ∈ Ω2(X1). Then
ω − dηr ∈ Ω2(Xt

1) is a right invariant t-fiberwise closed two-form on X1,
and therefore defines a Lie algebroid two-cocycle of A, which in turn defines
a Lie algebroid central extension Ã = A ⊕ (X0 × R) of A. Here ηr is a
t-fiberwise 1-form on X1 given by ηr(δx) = η(rx−1∗δx, 0x),∀δx ∈ TxXt

1, and
rx−1 denotes the right translation. A natural question is: under what con-
dition does this Lie algebroid central extension give rise to a Lie groupoid
central extension? The last part of the paper is devoted to investigating this
question. Our method is to adapt the method of characteristics developed
by Coste–Dazord–Weinstein [9]. As a consequence, we obtain a geomet-
rical characterization of the integrality condition of a de Rham 3-cocycle
η+ω ∈ Z3

dR(X•) of a Lie groupoid X1 ⇒ X0.
The results of this paper were announced in [3]. See also [4] for a con-

struction of S1-gerbes over the quotient stack [G/G] (G is a compact simple
Lie group and G acts on G by conjugations) as an example.
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2. Differentiable stacks

Our goal in this section is to define the notion of differentiable stack
and establish a dictionary between differentiable stacks and Lie groupoids.
Roughly speaking, differentiable stacks are Lie groupoids up to Morita equiv-
alence.

Our differentiable manifolds will not be assumed to necessarily be Haus-
dorff. We use the words C∞ and smooth interchangeably. The manifold con-
sisting of one point is denoted by ∗ or pt.

Let us start by recalling some terminology. A C∞-map f : U → X of C∞
manifolds is a submersion, if for all u ∈ U the derivative f∗ : TuU → Tf(u)X
is surjective. The relative dimension of the submersion f is the (locally con-
stant on U) dimension of the kernel of f∗. A submersive map of relative
dimension 0 is called étale. Thus, f is étale if and only if it is a local diffeo-
morphism.

Let S be the category of all C∞-manifolds with C∞-maps as morphisms.
Note that not all fiber products exist in S, but if at least one of the two
morphisms U → X or V → X is submersive, then the fiber product U ×X V
exists in S. In general, the fiber product U ×X V exists if U → X and
V → X satisfy the transversality condition.

We endow S with the Grothendieck topology given by the following notion
of covering family. Call a family {Ui → X} of morphisms in S with target
X a covering family of X, if all maps Ui → X are étale and the total map∐
i Ui → X is surjective.
One checks that the conditions for a Grothendieck topology (see Exposé II

in [1]) are satisfied. (Note that in the terminology of loc. cit. we have actu-
ally defined a pretopology. This pretopology gives rise to a Grothendieck
topology, as explained in loc. cit..) We call this topology the étale topology
on S.

One can also work with the topology of open covers. In this topology, all
covering families are open covers {Ui → X}, in the usual topological sense.
The notion of sheaf or stack over S obtained using this topology is the same
as using the étale topology.

A site is just a category endowed with a Grothendieck topology. So if we
refer to S as a site, we emphasize that we think of S together with its étale
topology.

A Lie groupoid is a groupoid in S, whose source and target maps are
submersions.

2.1. Groupoid fibrations. A category fibered in groupoids X → S is a
category X, together with a functor π : X → S, such that the following two
fibration axioms are satisfied:

(i) for every arrow V → U in S, and every object x of X lying over U
(i.e., π(x) = U), there exists an arrow y → x in X lying over V → U ,
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(ii) for every commutative triangle W → V → U in S and arrows z → x
lying over W → U and y → x lying over V → U , there exists a unique arrow
z → y lying over W → V , such that the composition z → y → x equals
z → x.

The object y over V , whose existence is asserted in (i), is unique up to
a unique isomorphism by (ii). Any choice of such a y is called a pullback of
x via V → U , notation y = x | V , or y = f∗x, if the morphism V → U is
called f . Often it is convenient to choose pullbacks for all x and all V → U
(where U = π(x)).

Given a category fibered in groupoids X → S and an object U of S, the
category of all objects of X lying over U and all morphisms of X lying over
idU is called the fiber of X over U , notation XU , sometimes X(U). Note that
all fibers XU are (set-theoretic) groupoids. This follows from Property (ii),
above.

We call categories fibered in groupoids over S also simply groupoid fibra-
tions. The groupoid fibrations over S (see [20]) form a 2-category. Fibered
products exist. They satisfy a 2-categorical version of the universal mapping
property for fibered products (see [25]).

The notion of groupoid fibration is the mathematical formalization of the
notion of moduli problem. Let X → S be a groupoid fibration. If we consider
X as a moduli problem, then we think of an object x ∈ X lying over S ∈ S
as an X-family parametrized by S. The objects we wish to classify are the
objects of the category X(pt).

Standard examples of categories fibered in groupoids over S are:

Example 2.1. Let G be a Lie group. Let X = BG be the category of pairs
(S, P ), where S ∈ S is a C∞-manifold and P is a principal G-bundle over
S. A morphism from (S, P ) to (T,Q) is a commutative diagram

P

��

�� Q

��
S �� T

where P → Q is G-equivariant. The functor π : BG → S is defined by
(S, P ) 
→ S.

Example 2.2. Every manifold X defines a groupoid fibration FX over S.
The objects of FX are pairs (U, f), where U is a C∞-manifold and f : U → X
is a smooth map. Morphisms in FX are the commutative triangles

U ��

���
��

��
��

� V

��
X
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The functor FX → S is the projection onto the first component. The
groupoid fibration FX satisfies

FX(U) = HomS(U,X) .

By abuse of notation, we identify FX with X in the sequel.

Example 2.3. Let Mg be the following groupoid fibration: objects are fiber
bundles X → S endowed with a smoothly varying fiberwise complex struc-
ture, such that all fibers are Riemann surfaces of genus g. Morphisms are
commutative diagrams

X ��

��

Y

��
S �� T

such that X → Y ×T S is a conformal isomorphism. This groupoid fibration
is the moduli stack of Riemann surfaces of genus g. An object X → S of Mg

is a family of Riemann surfaces parametrized by S. The functor Mg → S
maps X → S to S.

Example 2.4. Any contravariant functor F : S → (sets) gives rise to
a category fibered in groupoids X → S defined as follows: objects of X

are pairs (U, x), where U is a C∞-manifold and x ∈ F (U). A morphism
(U, x)→ (V, y) is a C∞ map a : U → V such that F (a)(y) = x. The functor
π : X → S is defined by (U, x) 
→ U .

In particular, a sheaf over S defines a groupoid fibration over S in a
canonical way.

Definition 2.1. A groupoid fibration X over S is representable, if there
exists a manifold X such that X ∼= X (as groupoid fibrations over S).

Definition 2.2. A morphism of groupoid fibrations X → Y is called a rep-
resentable submersion, if for every manifold U and every morphism U → Y
the fibered product V = X×YU is representable and the induced morphism
of manifolds V → U is a submersion.

If the relative dimension V → U is always equal to n ∈ Z, then we call n
the relative dimension of X → Y.

Example 2.5. For a Lie group G, the canonical morphism ∗ → BG is a
representable submersion. Here the functor assigns to any smooth manifold
U the trivial G-bundle over U . We can think of ∗ → BG as the universal
G-bundle, because every G-bundle P → S gives rise to a 2-fibered product

P ��

��

S

��
∗ �� BG
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The following lemma will be useful in the future.

Lemma 2.1. (Descent) Let F be a sheaf over S. Let X be a manifold and
F → X a morphism. Suppose that {Ui → X} is a covering family of X
and that for every i the sheaf Fi = Ui ×X F is representable. Then F is
representable.

Proof. First note that we can choose a refinement of the covering {Ui → X}
consisting of open subsets of X. Replacing the covering by such a refinement,
we reduce to the case of a cover {Ui → X} consisting of open subsets.

Let, as usual, Uij = Ui×XUj = Ui ∩Uj . Define Fij = Uij ×X F . Then
all Fij are representable. Moreover, all maps Fij → Fi and Fij → Fj are
(isomorphic to) embeddings of open subsets. Thus, we can glue the manifolds
Fi along the open submanifolds Fij to obtain a manifold representing F . �
Definition 2.3. A morphism of groupoid fibrations X → Y is an epimor-
phism if for every U → Y, where U is a manifold, there exists a surjective
submersion V → U and a 2-commutative diagram

V ��

��
������

U

��
X �� Y

Equivalently, V may be replaced by an open cover of U , in this statement.

Remark. Let X be a category fibered in groupoids over S. Given a manifold
U ∈ S and an object x ∈ XU (we write x|U), the choice of pullbacks of x for
all maps V → U defines a morphism U → X. Conversely, given a morphism
U → X, the image of idU is an object in the fiber XU . In this way we identify
morphisms U → X with objects in the fiber XU .

2.2. Stacks. Recall the definition of stack [25]:

Definition 2.4. Let X → S be a category fibered in groupoids. We call X

a stack over S, if the following three axioms are satisfied:
(i) for any C∞-manifold X ∈ S, any two objects x, y ∈ X lying over X,

and any two isomorphisms φ, ψ : x→ y over X, such φ | Ui = ψ | Ui, for all
Ui in a covering family Ui → X, we have that φ = ψ;

(ii) for any C∞-manifold X ∈ S, any two objects x, y ∈ X lying over X,
a covering family Ui → X and, for every i, an isomorphism φi : x | Ui →
y | Ui, such that φi | Uij = φj | Uij , for all i, j, there exists an isomorphism
φ : x→ y, such that φ | Ui = φi, for all i;

(iii) for every C∞-manifoldX, every covering family {Ui} ofX, every fam-
ily {xi} of objects xi in the fiber XUi and every family of morphisms {φij},
φij : xi | Uij → xj | Uij , satisfying the cocycle condition φjk ◦φij = φik
(which is an equation in the fiber XUijk

), there exists an object x over X,
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together with isomorphisms φi : x | Ui → xi such that φij ◦φi = φj (over
Uij).

Note that the isomorphism φ, whose existence is asserted in (ii) is unique,
by (i). Similarly, the object x, whose existence is asserted in (iii), is unique
up to a unique isomorphism, because of (i) and (ii). The object x is said to
be obtained by gluing the objects xi according to the gluing data φij .

Note also that there are choices to be made for all the pullbacks mentioned
in the definition of stacks, but no property depends on any of these choices.

Remark. To any covering family Ui of X, we can associate a groupoid
fibration R, together with a monomorphism R ⊂ X of groupoid fibrations,
the covering sieve given by Ui. The stack axioms may be reformulated in
terms of covering sieves: thus, a groupoid fibration X is a stack if and only
if for every covering sieve R ⊂ X, of every object X ∈ S, the functor

(2) HomS(X,X) −→ HomS(R,X)

is an equivalence of groupoids. More precisely, X satisfies Stack Axiom (i) if
and only if (2) is always faithful, X satisfies Stack Axiom (ii) if and only if
(2) is always full and X satisfies Stack Axiom (iii) if and only if (2) is always
essentially surjective.

The following lemma is useful in practice.

Lemma 2.2. Let f : X → Y be a morphism of stacks over S. Suppose
given a manifold U and a morphism U → Y which is an epimorphism. If
the fibered product V = X×YU is representable and V → U is a submersion,
then f is a representable submersion.

If V → U has relative dimension n, then so does f .

Proof. Let W → Y be an arbitrary morphism, where W is a manifold. First
we have to show that the fibered product F = X ×YW is representable. By
the fact that U → Y is an epimorphism, we can choose a covering family
{Wi →W} of W and morphisms φi : Wi → U making the diagram

Wi

��

φi ��

����
��
U

��
W �� Y

commute (which involves, of course, also a choice of a 2-arrow, for every i).
By Lemma 2.1, it suffices to prove that Fi = Wi ×W F is representable, for
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all i. But Fi = Wi ×U V , as can be seen from the Cartesian cube

Fi

��

��

���
���

V

��

���
��

�

Wi

��

�� U

��
F

����
��

�� X

���
���

W �� Y

and so, indeed, Fi, and hence F is representable.
Now the fact that F →W is a submersion, follows from the fact that for

every i the map Fi → Wi is a submersion, because being a submersion is a
local property. But Fi →Wi is a submersion as a pull back of the submersion
V → U . �

Example 2.6. Let G be a Lie group and H a closed Lie subgroup. The
induced morphism BH → BG is a representable submersion. To see this,
let us apply Lemma 2.2. Note that ∗ → BG is an epimorphism, because every
G-bundle is locally trivial. Note also that we have a Cartesian diagram

G/H

��

�� ∗

��
BH �� BG

because the reductions of structure group from G to H of the trivial G-
bundle over a manifold U are classified by the maps U → G/H. Since G/H
is a manifold, G/H → ∗ is a submersion, which finishes the proof. The
relative dimension of BH → BG is equal to dimG− dimH.

Two stacks X and Y over S are said to be isomorphic if they are equiva-
lent as categories over S. This means that there exist morphisms f : X → Y
and g : Y→ X and 2-isomorphisms θ : f ◦ g ⇒ idY and η : g ◦ f ⇒ idX .

Proposition 2.1. For stacks X and Y over S to be isomorphic, it suffices
that there exists a morphism f : X → Y satisfying the two conditions:

(i) for any two objects x, x′ of X, lying over the same object U of S, and
any arrow η : f(x) → f(x′) in YU , there exists a unique arrow x → x′
mapping to η under f (we say f is fully faithful or a monomorphism);

(ii) for every object y of Y, lying over S ∈ S, there exists a covering
family {Ui} of S and objects xi of X lying over Ui, such that f(xi) ∼= y | Ui,
for all i (we say that f is an epimorphism).

A morphism satisfying both these conditions is called an isomorphism of
stacks.
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2.3. Differentiable stacks. Let X be a groupoid fibration over S. Recall
that we may think of x/S equivalently as a morphism of groupoid fibrations
x : S → X.

For x/S and y/T , consider the fibered product

Isom(x, y) ��

��
����

		
T

y

��
S

x �� X

For an X-family x, parametrized by S, we call Isom(x, x) ⇒ S the symmetry
groupoid of x. A priori, Isom(x, x) is just a groupoid fibration over S, but it
may be hoped that it is (represented by) a Lie groupoid. Note that we have
a Cartesian diagram

Isom(x, x) ��

��
				




S × S

��
X

Δ �� X ×X

Thus, ultimately, properties of the diagonal Δ : X → X × X, will assure
that the symmetry groupoids Isom(x, x) are manifolds, at least if S → X is
sufficiently well-behaved.

Lemma 2.3. Let f : X → Y be a representable submersion of stacks over
S. Then the following are equivalent:

(i) f is an epimorphism;
(ii) for every manifold U → Y the submersion V → U , where V is the

fibered product V = X ×YU , is surjective;
(iii) for some manifold U → Y, where U → Y is an epimorphism, the

submersion V → U is surjective.
A representable submersion satisfying these conditions is called a surjec-

tive representable submersion.

Proof. This follows from the fact that a submersion between manifolds is an
epimorphism of stacks if and only if it is surjective. We also use that to be
an epimorphism is a local property. �

Definition 2.5. A stack X over S is called differentiable or a C∞-stack,
if there exists a manifold X and a surjective representable submersion x :
X → X. Such a manifold X, together with the structure morphism X → X

is called a presentation of X or an atlas for X, and such a family x/X is
called a versal family.

Alternatively, one can describe a differentiable stack in a slightly weaker
condition.
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Proposition 2.2. A stack over S is a differentiable stack, if there exists
an X-family x/X, such that

(i) the symmetry groupoid Isom(x, x) is representable, and the projections
Isom(x, x)→ X are submersions;

(ii) the morphism x : X → X is an epimorphism. That is, for every X-
family y/S, there exists a covering family Ui of S, and morphisms φi : Ui →
X, such that y | Ui ∼= φ∗ix.

Proof. Given such an X-family x/X, it suffices to show that x : X → X is
representable submersion. This follows from Lemma 2.2 since x : X → X is
epimorphism, X ×X X is representable and X ×X X → X is a submersion.

The converse is obvious. �

The 2-category of differentiable stacks is the full sub-2-category of the
2-category of groupoid fibrations over S consisting of differentiable stacks.

Given a differentiable stack X, a versal family x/X gives rise to a Lie
groupoid Isom(x, x) ⇒ X in a canonical way. The points of Isom(x, x) are by
definition triples (y, φ, y′), where y and y′ are points of X and φ : x|y → x|y′
is a morphism in the groupoid X∗ (the fiber of X over ∗ ∈ S). So it is clear
how to define the composition:

(3) (y, φ, y′) ◦ (y′, ψ, y′′) = (y, ψ ◦ φ, y′′) .
To see that this, indeed, defines the structure of a Lie groupoid on
Isom(x, x) ⇒ X, the quickest way is to note that for every manifold U ,
evaluating at U we get a (set-theoretic) groupoid Isom(x, x)(U) ⇒ X(U),
defined by the same formula (3) and compatible with all maps V → U .

A morphism X → Y of differentiable stack is representable if one of the
following equivalent conditions is satisfied:

(1) there is a presentation Y → Y such that X ×Y Y is representable;
(2) for any representable submersion Y → Y, X ×Y Y is representable.

For instance, the diagonal map X → X × X of a differentiable stack X is
always representable.

A representable morphism X → Y is called proper if there exists a pre-
sentation Y → Y such that the base change X → Y is proper. If this is the
case, X → Y is proper for all representable submersion Y → Y.

Example 2.7. Let Xg be the following groupoid fibration: objects are fiber
bundles X → S with fibers being isomorphic to a fixed connected surface Y
of genus g. Morphisms are commutative diagrams

X ��

��

Y

��
S �� T
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such that X → Y ×T S is an isomorphism. Consider the constant family
Y → ∗. Then ∗ Y→ Xg is an epimorphism, because every family of surfaces

is locally trivial. But ∗ Y→ Xg is not a representable submersion since the
symmetry groupoid of this family is the diffeomorphism group of Y , which
is not a finite dimensional manifold. So Xg is not a differentiable stack.
2.4. Torsors for Lie groupoids. Next, we show how to get a differentiable
stack starting from a Lie groupoid. (This is, in fact, a generalization of
passing from G to BG.)

Definition 2.6. Let Γ ⇒ M be a Lie groupoid and S a manifold. A (right)
Γ-torsor over S is a manifold P , together with a surjective submersion π :
P → S and a (right) action of Γ on P , such that for all p, p′ ∈ P , such that
π(p) = π(p′), there exists a unique γ ∈ Γ, such that p · γ is defined and
p · γ = p′. Similarly, one defines a left Γ-torsor.

We call the map P →M of the Γ-torsor P the anchor map and denote it
by a : P →M . (In the theory of symplectic groupoids the anchor map is also
called the “momentum map” [30].) The surjective submersion π : P → S is
called the structure map.

Remark. Think of a Γ-torsor as follows. View an element p ∈ P as an arrow
eminating at π(p) and terminating at a(p). Then view the action of Γ on P
as composing arrows.

Definition 2.7. Let π : P → S and ρ : Q→ T be Γ-torsors. A morphism of
Γ-torsors from Q to P is given by a commutative diagram of differentiable
maps

(4)
Q

��

φ �� P

��
T �� S

such that φ is Γ-equivariant.

Note that for a morphism of Γ-torsors the diagram (4) is necessarily a
pullback diagram.

The Γ-torsors form a category with respect to this notion of morphism. In
particular, we now know what it means for two Γ-torsors to be isomorphic.

Example 2.8. (trivial torsors) Let f : S →M be a smooth map. Given f ,
we can induce over S in a canonical way a Γ-torsor, which we call the trivial
Γ-torsor given by f .

Simply define P to be the fibered product P = S ×f,M,s Γ. The structure
map π : P → S is the first projection. The anchor map of the Γ-action is the
second projection followed by the target map t. The action is then defined by

(s, γ) · δ = (s, γ · δ) .
One checks that this is, indeed, a Γ-torsor over S.
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Of course, we can take S = M and f the identity map of M . Then we
get the universal trivial Γ-torsor, whose base is M . The structure morphism
and the anchor map of the universal Γ-torsor are, respectively, t, s : Γ→M .

Let π : P → S be an arbitrary Γ-torsor over the manifold S. One checks
that every section s : S → P of π can be used to construct an isomorphism
between the Γ-torsor P and the trivial Γ-torsor over S given by a ◦ s, where
a : P →M is the anchor map of P .

Since every surjective submersion admits local sections, we see that every
Γ-torsor is locally trivial.

Let us denote the category of Γ-torsors by BΓ. There is a canonical functor
BΓ→ S given by mapping a torsor P → S to the underlying manifold S.

The following proposition provides us with plenty of examples of differen-
tiable stacks. Theorem 2.1 below indeed shows that it provides us with all
examples of differentiable stacks.

Proposition 2.3. For every Lie groupoid Γ ⇒ M , the category of Γ-torsors
BΓ is a differentiable stack.

Proof. The fact that BΓ is fibered in groupoids over S follows from the fact
that diagrams such as (4) are always Cartesian. Note that given a Γ-torsor
P → S and a morphism of manifolds T → S, T ×S P → T is naturally a
Γ-torsor over T .

To check the stack axioms, one has to prove that one can glue together
Γ-torsors and morphisms of Γ-torsors. This is rather standard and will be
omitted.

Finally, we need to prove that BΓ admits a presentation. For this, we take
the universal trivial torsor. We shall construct a morphism M → BΓ. This
means defining for every manifold S a map M(S)→ BΓ(S). This we do by
assigning to any smooth map a : S → M (i.e. object of M(S)) the trivial
Γ-torsor over S, which is an object of BΓ(S). Alternatively, we can use
the universal trivial Γ-torsor, which gives rise to the morphism M → BΓ
directly, via the correspondence between objects of the fiber BΓ(U) and
morphisms U → BΓ(U) (see the remark following Definition 2.3).

Now that we have a morphism M → BΓ from a manifold M , it remains
to prove that this morphism is a surjective representable submersion. To
prove that M → BΓ is an epimorphism, means proving that every Γ-torsor
is locally trivial. This we have done already. By Proposition 2.2, it now
suffices to prove that the fibered product

X

��

��






��
M

��
M �� BΓ

is representable and that the maps X ⇒ M are submersions.
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Let S be an arbitrary manifold. Then X(S) is the set of triples (a, γ, b),
where a, b : S → M are C∞ maps and γ : Qa → Qb is a morphism of
Γ-torsors over S, where Qa and Qb are the trivial Γ-torsors over S given by
a and b, respectively. One checks that this set is canonically identified with
Γ(S), the set of C∞-maps from S to Γ.

Thus, we have that X ∼= Γ as stacks over S, and so X is representable.
To check that the two projections X →M are submersions, note that they
are identified with s, t : Γ → M , under this isomorphism. Since s and t are
submersions, we are done. �

Remark. (1) Note that in the course of the proof we have seen that we
have a Cartesian diagram

Γ

s

��

t ��






��
M

��
M �� BΓ

Thus Γ ⇒ M is (isomorphic to) the Lie groupoid arising from the atlas
M → BΓ.

(2) From the above proof, we see that for a given a : S → M the corre-
sponding trivial torsor over S corresponds to the composition of morphisms

S
a−→M

π−→ BΓ.

Theorem 2.1. Let X be a differentiable stack and x/X a versal family for
X. Then

X ∼= BIsom(x, x) ,
as groupoid fibrations over S.

Proof. We shall prove that the functor f :

X −→ BIsom(x, x),(5)

y 
−→ Isom(x, y),

provides us with the required isomorphism of groupoid fibrations.
Since x : X → X is a representable submersion, it follows that

Isom(x, y) is representable. The fact that Isom(x, x) acts simply transitively
on Isom(x, y) is clear. Thus, Isom(x, y) is, in fact, an Isom(x, x)-torsor.

It remains to prove that (5) is an equivalence of categories. Since both
groupoid fibrations are stacks, we can use the local criterion: Proposition 2.1,
i.e., to prove that f is a monomorphism and an epimorphism.

For the monomorphism property, let y, y′ : S → X be two objects of X

lying over S. Let Q and Q′ be the Isom(x, x)-torsors induced by y and y′
over S. We need to show that any isomorphism of torsors φ : Q→ Q′ comes
from a 2-isomorphism θ : y → y′. This follows from the fact that Isom(y, y′)
is a sheaf: choose a covering {Ui} of S trivializing the torsor Q. Then φ
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gives rise to isomorphisms θi : y | Ui → y′ | Ui. One checks that the θi glue
together, giving rise to θ.

For the epimorphism property, suppose Q → S is an Isom(x, x)-torsor
over S. Then there exists a cover {Ui} of S and sections si : Ui → Q,
trivializing Q over {Ui}. The sections si induce morphisms xi : Ui → X

(which are the compositions Ui → X
x→ X) identifying Q | Ui with x∗iX.

Thus we see that every Isom(x, x)-torsor over S comes locally from objects
of X, proving that f is an epimorphism. �

Definition 2.8. For a differentiable stack X, if the diagonal X → X ×X is
proper, we call X separated or Hausdorff.

For a differentiable stack X, the diagonal X → X × X is always rep-
resentable. Indeed if X1 ⇒ X0 is a Lie groupoid representing X, then
X×X×X (X0×X0) ∼= X1 and the base change map is s× t : X1 → X0×X0.
Hence X is separated if and only if X1 ⇒ X0 is a proper groupoid.

In the definition of Metzler [34], all differentiable stacks are required
to be separated. We believe that this is too restrictive. Many interesting
differentiable stacks are not separated.

2.5. Morita equivalence. We have now established procedures to go back
and forth between Lie groupoids and differentiable stacks. Given a differen-
tiable stack X, we choose a presentation X0 → X and form the associated
Lie groupoid X1 ⇒ X0 by taking the fibered product. Conversely, starting
with a Lie groupoid Γ ⇒ M , we construct the differentiable stack BΓ of Γ-
torsors, which comes with a canonical presentation, giving back the groupoid
Γ ⇒ M we started with (up to isomorphism). It remains to see when exactly
two different Lie groupoids give rise to isomorphic differentiable stacks, or
put another way, what relationship there is between various Lie groupoids
arising from various presentations of a differentiable stack.

Definition 2.9. Let X• and Y• be Lie groupoids. A morphism φ• : X• → Y•
is called a Morita morphism, if

(i) φ0 : X0 → Y0 is a surjective submersion;
(ii) the diagram

X1

��

�� X0 ×X0

��
Y1

�� Y0 × Y0

is cartesian.

Definition 2.10. Two Lie groupoids X• and Y• are called Morita equiva-
lent, if there exists a third Lie groupoid Z• and Morita morphisms Z• → X•
and Z• → Y•
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Theorem 2.2. Let X• and Y• be Lie groupoids. Let X and Y be the associ-
ated differentiable stacks, i.e., X is the stack of X•-torsors and Y the stack
of Y•-torsors. Then the following are equivalent:

(i) the differentiable stacks X and Y are isomorphic;
(ii) the Lie groupoids X• and Y• are Morita equivalent;
(iii) there exists a manifold Q together with two C∞ maps f : Q → X0

and g : Q→ Y0 and (commuting) actions of X1 and Y1 (the action of
X1 comprising f and the action of Y1 comprising g), in such a way
that Q is at the same time a left X•-torsor over Y0 (via g) and a right
Y•-torsor over X0 (via f). We call such a Q an X•-Y•-bitorsor.

Proof. Let us start by proving that (i) implies (iii). Choose an isomorphism
identifying X with Y. Then let Q be the fibered product Q = Y0 ×X X0.
One checks that Q is a bitorsor.

To prove that (iii) implies (ii), choose a bitorsor Q. Let Q1 be the fibered
product Q1 = Y1 ×Y0 Q ×X0 X1. There is a canonical way to define a Lie
groupoid Q1 ⇒ Q, together with Morita equivalences Q• → Y• and Q• →
X•.

One also proves that (ii) implies (iii). This follows from the following two
facts: (1) if φ : X• → Y• is a Morita morphism, then Q = X0 ×Y0,s Y1

is naturally an X•-Y•-bitorsor; (2) if Q is a X•-Y•-bitorsor, and Q′ is an
Y•-Z•-bitorsor, then (Q×Y0 Q

′)/Y1 is an X•-Z•-bitorsor.
Finally, we need to prove that (iii) implies (i). Given an X•-torsor F over

U , let E = (Q×X0 F )/X1. Then E is a Y•-torsor over U , where the anchor
map E → Y0 is a([q, f ]) = g(q) and the Y1-action is [q, f ] · y = [q · y, f ]. Also
it is clear that a morphism of X•-torsors F1 → F2 induces a morphism of
Y•-torsor E1 → E2 in a canonical way. Thus one obtains a functor, which
can be easily seen to be an equivalence of categories. �

Remark. Note that (iii) is the definition of Morita equivalence used in a
lot of literature on operator algebras [22, 31].

Definition 2.11. If X is a differentiable stack and there exists a Lie
groupoid X• presenting X, such that X0 and X1 both have constant dimen-
sions, then we call dim X = 2 dimX0 − dimX1 the dimension of X.

We see that, from Theorem 2.2, dim X is independent of the presentation
of X, and therefore is well-defined.

Remark. Note that dim X can also be written as the base dimension minus
the fibre dimension of the representing groupoid X1 ⇒ X0, which is also the
orbit space dimension minus the isotropy group dimension. Also dim X can
be negative. In particular, if G is a Lie group of dimension n, the stack BG
is of dimension −n.
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2.6. Dictionary. Theorem 2.2 is only the beginning of a dictionary
between differentiable stacks and Lie groupoids. We will now list a few
propositions that give more precise information, in particular with respect
to morphisms and 2-isomorphisms.

All these results are standard in stack theory. Proofs are elementary, but
usually tedious, and we omit them.

2.6.1. The 2-category of Lie groupoids. Recall the notion of natural
equivalence between groupoid morphisms:

Definition 2.12. Let φ : X• → Y• and ψ : X• → Y• be two morphisms of
Lie groupoids. A natural equivalence from φ to ψ, notation θ : φ ⇒ ψ, is a
C∞ map θ : X0 → Y1 such that for every x ∈ X1 we have

θ
(
s(x)

) ∗ ψ(x) = φ(x) ∗ θ(t(x)) .
Fixing the Lie groupoids X• and Y•, the morphisms and natural equiv-

alences form a category Hom(X•, Y•), which is a (set-theoretic) groupoid.
With this notion of morphism groupoid, the Lie groupoids form a 2-category.

2.6.2. The Dictionary Lemmas. We consider two Lie groupoids X• and
Y• with associated differentiable stacks X and Y, respectively. The dic-
tionary lemmas relate groupoid morphisms X• → Y• to stack morphisms
X → Y.

The first Dictionary Lemma says that a morphism of Lie groupoids
induces a morphism of associated differentiable stacks, unique up to unique
2-isomorphism:

Lemma 2.4. (First Dictionary Lemma) Let φ : X• → Y• be a morphism
of Lie groupoids. Let X and Y be differentiable stacks associated to X• and
Y•, respectively. Then there exists a morphism of stacks f : X → Y and a
2-isomorphism

(6)

X0

��

φ0 ��

����
��η

Y0

��
X

f �� Y

such that the cube

(7)

X1

����
��
��
� 

��

φ1 �� Y1

��









 ���

�

X0

����
��
��
�

φ0 �� Y0

��











X0



���
φ0 �� Y0

����
�

X
f �� Y
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2-commutes. If (f ′, η′) is another pair satisfying these properties, then there
is a unique 2-isomorphism θ : f ⇒ f ′ such that θ ∗ η′ = η. �

The second and third Dictionary Lemmas treat the converse:

Lemma 2.5. (Second Dictionary Lemma) Let f : X → Y be a morphism
of stacks, φ0 : X0 → Y0 a morphism of manifolds and η a 2-isomorphism as
in (6). Then there exists a unique morphism of Lie groupoids φ1 : X1 → Y1

covering φ0 and making the cube (7) 2-commutative. �
Lemma 2.6. (Third Dictionary Lemma) Let f : X → Y be a morphism
of stacks. Let φ : X• → Y• and ψ : X• → Y• be two morphisms of Lie
groupoids. Let η and η′ be 2-isomorphisms, where (φ, η) and (ψ, η′) both
form 2-commutative cubes such as (6). Then there exists a unique natural
equivalence θ : φ⇒ ψ such that the diagram

Y1

��









 ���

�

X0

θ
����������������

���
��

��
��

φ0 �����������
ψ0 �� Y0

��











Y0

����
�

X
f �� Y

2-commutes. �
2.7. Differentiable spaces. Differentiable spaces are generalizations of
manifolds. They are differentiable stacks whose isotropy groups are trivial.
They occur when one tries to define the quotient of an equivalence relation
which is “of Lie type” (i.e. is given by a Lie groupoid) but the usual quo-
tient has bad properties (i.e., is not a manifold or not a principal bundle
quotient). Differentiable spaces have slightly better properties than mani-
folds. The main advantage is that Lemma 2.7 holds for them.

Definition 2.13. A sheaf over S, which, considered as a stack over S is
differentiable, is called a differentiable space.

Thus a sheaf F is a differentiable space if there exists a manifold X and
a surjective representable submersion X → F .

Example 2.9. If a Lie group acts on a manifold freely, but not properly,
we get a differentiable space.

Proposition 2.4. The differentiable stack X defined by a Lie groupoid X•
is (isomorphic to) a differentiable space if and only if X• is a Lie equivalence
relation (i.e. X1 → X0 ×X0 is injective).

In particular, if X• and Y• are Morita equivalent Lie groupoids, then X•
is an equivalence relation if and only if Y• is.

Thus we may think of differentiable spaces as Lie equivalence relations up
to Morita equivalence.
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Lemma 2.7. (Submersive descent for differentiable spaces) Let F be a sheaf
over S. Let X be a manifold and F → X a morphism. Suppose that U → X
is a surjective submersion of manifolds and that the sheaf G = U ×X F is a
differentiable space. Then F is a differentiable space. �

Note that there is no corresponding statement for manifolds. For mani-
folds we only have étale descent (Lemma 2.1).

Definition 2.14. Let X and Y be stacks over S. We call a morphism f :
X → Y weakly representable, if for every representable submersion U → Y,
where U is a manifold, the fibered product V = X ×YU is isomorphic to a
differentiable space.

Proposition 2.5. Let X and Y be differentiable stacks. The morphism f :
X → Y is weakly representable if there exists a presentation Y → Y such
that X = X ×Y Y is isomorphic to a differentiable space.

Proof. The proof is very similar to the proof of Lemma 2.2. We need to use
submersive descent for differentiable spaces. �

Example 2.10. Representable morphisms are weakly representable. In par-
ticular, the diagonal X → X × X of a differentiable stack is weakly repre-
sentable, and any C∞-map of manifolds is weakly representable.

Moreover, any morphism from a differentiable space to a differentiable
stack is weakly representable, and any morphism of differentiable stacks
which is faithful is weakly representable.

Remark. We get a weaker notion of differentiable stack if we work with
groupoids where X0 and X1 are differentiable spaces rather than manifolds.
Equivalently, we can relax the condition that the diagonal X → X × X be
representable to it being weakly representable. We could call these stacks
weakly differentiable stacks.

For example, the quotient R/Q is a differentiable space but not a manifold.
It is also a group. The associated stack B(R/Q) is weakly differentiable but
not differentiable.

Remark. It would be interesting to investigate the relationship between
differentiable spaces and Souriau’s diffeology structures [42].

3. Homology and cohomology

Here our goal is to define the cohomology of a differentiable stack with values
in a sheaf (or a complex of sheaves) of Abelian groups. Of particular interest
is the de Rham complex, which gives rise to the de Rham cohomology.

Then we pass to Lie groupoids and define the cohomology of a Lie
groupoid with values in a sheaf of Abelian groups. This cohomology is Morita
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invariant. For any complex of sheaves of Abelian groups, we also define a
double complex and its associated cohomology groups. These cohomology
groups are not necessarily Morita invariant, but they will be if all component
sheaves of the complex are acyclic on manifolds. An example of this is the
de Rham complex. Thus de Rham cohomology of a groupoid is also Morita
invariant.

3.1. Sheaves over stacks and their cohomology. Let X be a differen-
tiable stack. We endow the category X with a Grothendieck topology defined
as follows: call a family {xi → x} of morphisms in X a covering family of the
object x ∈ X, if the image family {Ui → U} in S is a covering family, i.e.,
is a family of étale maps such that

∐
Ui → U is surjective. One checks that,

indeed, the axioms of a topology are satisfied. Thus, we may now speak of
sheaves over X: i.e., contravariant functors X → (sets) satisfying the sheaf
axioms. We get the category (sheaves/X) of sheaves over X.

Remark 3.1. Let F be a sheaf over the stack X. Consider F as a category
fibered in groupoids F → X. Then, by composing with X → S, we may
turn F into a category fibered in groupoids over S. One checks that F is
then a stack over S and that F → X is a morphism of stacks. Moreover,
F → X is faithful.

Conversely, if f : Y→ X is a faithful morphism of stacks over S, we may
associate a sheaf F over X defined by F (x) = {(y, φ)|φ : x → f(y)}/ ∼,
where (y, φ) ∼ (y′, φ′) if there exists η : y → y′ such that f(η) ◦ φ = φ′. We
call F the sheaf of sections of f : Y→ X.

Thus, we get an equivalence of categories between stacks, which are faith-
ful over X and sheaves over X.

We define the global section functor

Γ(X, ·) : (sheaves/X) −→ (sets)

by Γ(X, F ) = HomX(X, F ), the set of morphisms of sheaves over X from
the trivial sheaf X (whose set of sections is always the one point set {∗}) to
the sheaf F .

Remark 3.2. If X is differentiable, X → X a presentation and X1 ⇒ X the
associated Lie groupoid, then for any sheaf F on X we have a short exact
sequence of sets

Γ(X, F ) �� F (X) ���� F (X1) .

In other words Γ(X, F ) is the equalizer of the two restriction maps F (X)→
F (X1). (Note that there are two canonical morphisms X1 → X, so that
F (X1) is ambiguous notation. But since both morphismsX1 → X are canon-
ically isomorphic, it is irrelevant which choice one makes for F (X1).)
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Restricting Γ(X, ·) to the category of sheaves of Abelian groups over X

we get the functor

Γ(X, ·) : (Abelian sheaves/X) −→ (Abelian groups).

This functor is left exact, and (Abelian sheaves/X) has sufficiently many
injectives, so we may derive this functor to get the functors

H i(X, ·) : (Abelian sheaves/X) −→ (Abelian groups).

Passing to the derived category of complexes of Abelian sheaves over X,
we get the total derived functor

RΓ(X, ·) : D+(X) −→ D+(abelian groups).

For a complex M• ∈ D+(X) of abelian sheaves on X, the homology groups
of the complex RΓ(X,M•) are denoted by

H
i(X,M•) = hi

(
RΓ(X,M•)

)

and called the hypercohomology groups of X with values in M•.
Of course, if M• → N• is a quasi-isomorphism of complexes of abelian

sheaves over X, we get induced isomorphisms H
i(X,M•) → H

i(X, N•) on
hypercohomology.

Definition 3.1. Let U be a manifold. A sheaf in the usual sense (defined
only on open subsets of U) is called a small sheaf on U . This is to distinguish
such sheaves from sheaves over the stack over S obtained from U .

Let X be a stack over S and F a sheaf over X. Let x be an object of
X lying over the manifold U ∈ S. The small sheaf on U , which maps the
open subset V ⊂ U to F (x | V ) is called the small sheaf induced by F via
x : U → X on U . Notation: Fx,U , or simply FU , if there is no risk of confusion.
Given a morphism θ : y → x in X lying over f : V → U in S, there is an
induced morphism of small sheaves over V called θ∗ : f−1Fx,U −→ Fy,V .
This induced morphism is contravariantly functorial in θ.

Lemma 3.1. If X is representable, represented by the manifold X, then for
any big sheaf F over X, we have H i(X, F ) = H i(X,FX), for all i.

Proof. This follows from the fact that for a manifold X = X the functor
F 
→ FX , which maps a big sheaf to its associated small sheaf is exact. This
property fails for stacks. �

3.2. Differential forms. Let X be a differentiable stack. Define the sheaf
Ωi

X of differential forms of degree i on X as follows: for an object x ∈ X

lying over U ∈ S, we let Ωi
X(x) = Ωi(U) be the R-vector space of (R-

valued) differentiable i-forms on U . For a morphism y → x in X lying over
the C∞-map V → U , we define the restriction map Ωi

X(x) → Ωi
X(y) to

be the pullback map Ωi(U) → Ωi(V ). The sheaf axioms are easily verified.
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Note that the Ωi
X are sheaves of R-vector spaces, i.e., they take values in

(R-vector spaces) ⊂ (sets).
The sheaf Ω0

X is also called the structure sheaf of X, notation OX . It is
isomorphic to the sheaf of sections of the projection X × R→ X.

Note that none of the Ωi
X , for i > 0, are isomorphic to sheaves of sections

of any morphism of differentiable stacks Y→ X.
The exterior derivative d : Ωi(U) → Ωi+1(U), where U is any manifold,

commutes with the pullback of forms via any C∞-map V → U . Thus d
induces a homomorphism of sheaves d : Ωi

X → Ωi+1
X , for all i ≥ 0. Clearly,

d2 = 0, and so we have defined a complex Ω•
X of sheaves of R-vector spaces

over X. We call Ω•
X the de Rham complex of X. Its hypercohomology is

called the de Rham cohomology of X:

H i
DR(X) = H

i(X,Ω•
X).

If there is any danger of confusion (for example, if X is a manifold), we refer
to Ω•

X as the big de Rham complex of X.
Let RX denote the sheaf over X defined by

RX(x) = {f : U → R|f is locally constant},
for any object x of X lying over U ∈ S. The sheaf RX is in a natural way
a subsheaf of the structure sheaf Ω0

X . If we let R̃ denote the manifold with
the same underlying set as R, but the discrete differentiable structure, then
we may identify RX with the sheaf of sections of the projection X× R̃→ X.

The usual Poincaré Lemma proves that the big de Rham complex Ω•
X is

a resolution of RX . Thus, we conclude that

H i
DR(X) = H i(X,RX),

for all i.

3.3. Groupoid cohomology. Let X be a differentiable stack over S, and
X → X an atlas for X. Define for all p ≥ 0

Xp = X ×X . . .×X X
︸ ︷︷ ︸

p+ 1 times

.

(hence X0 = X). Since X → X is a representable submersion, all Xp are
manifolds. Of course, X1 ⇒ X0 is the Lie groupoid associated to the atlas
X → X. Furthermore, we assume that X1 ⇒ X0 is a Hausdorff and second
countable Lie groupoid [28, 38].

We have p+ 1 projection maps Xp → Xp−1, giving rise to a diagram

(8) . . .
����
���� X2

������ X1 ���� X0.

In fact more is true: X• is a simplicial manifold.
EveryXp has p+1 canonical projectionsXp → X. They are all canonically

isomorphic to each other. Choose any one of them and call it πp : Xp → X.
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As usual, we identify πp with an object of X lying over Xp. Let F be a sheaf
over X. We denote the set F (πp) by F (Xp). Let Fp denote the small sheaf
on Xp induced by F . Then we have F (Xp) = Γ(Xp, Fp).

Diagram (8) induces a diagram

(9) F (X0) ���� F (X1) ������ F (X2) ����
���� . . .

which can, in fact, be refined to a cosimplicial set.
Now assume that F is a sheaf of Abelian groups. Let ∂ : F (Xp) →

F (Xp+1) be the alternating sum of the maps of Diagram (9). We obtain
a complex of Abelian groups

F (X0)
∂ �� F (X1)

∂ �� F (X2)
∂ �� . . .

The homology groups of this complex are denoted by

Ȟ i(X•, F ) = hi
(
F (X•)

)

and called the Čech cohomology groups of F with respect to the covering
X → X.

Note that when F is the sheaf Ω0, Ȟ i(X•,Ω0) is also called groupoid
cohomology with trivial coefficients [28, 49].

Lemma 3.1 gives us the following lemma and proposition.

Lemma 3.2. There is an E1 spectral sequence

Hq(Xp, Fp) =⇒ Hp+q(X, F ).

Proposition 3.1. Assume that for every p the induced small sheaf Fp is
acyclic, i.e., satisfies H i(Xp, Fp) = 0, for all i > 0. Then we have

Ȟ i(X•, F ) = H i(X, F ).

Corollary 3.1. We have, for all i, j ≥ 0,

Ȟj(X•,Ωi
X) = Hj(X,Ωi).

In particular, we see that the sheaf cohomology Hj(X,Ω0) is isomorphic
to the groupoid cohomology.

In the sequel, when X• is a Lie groupoid, a sheaf over X• is defined to be a
sheaf over the associated stack X. Moreover, we define groupoid cohomology
H i(X•, F ) to be equal to H i(X, F ). This is in line with sheaf cohomology
of simplicial manifolds.

Now let M• be a complex of abelian sheaves over X, bounded below.
Denote the differential on M• by d. Let X → X be an atlas. For every i we
get a Čech complex M i(X•), with differential ∂. Because d and ∂ commute,
we obtain, in fact, a double complex

({M i(Xp)}i,p, d, ∂
)
.
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Our convention will always be that ∂ is the vertical differential, d the hori-
zontal differential. The homology groups of the associated total complex are
denoted by

Ȟ
i(X•,M•) = hi

(
totM•(X•)

)

and called the Čech hypercohomology groups of M• with respect to the
covering X → X.

Proposition 3.2. Assume that for every i and every p the small sheaf M i
p

induced by M i on Xp is acyclic. Then we have

Ȟ
i(X•,M•) = H

i(X,M•),

for all i ≥ 0.

Corollary 3.2. We have, for every atlas X → X,

H i
DR(X) = Ȟ

i(X•,Ω•
X) = hi

(
tot Ω•(X•)

)
.

In the sequel, we also use H i
DR(X•) to denote the above cohomol-

ogy group. We also write Ωk(X•) := ⊕i+j=kΩi(Xj), Zk(X•) and Bk(X•)
to denote the spaces of k-cochains, k-cocycles and k-coboundaries of
tot Ω•(X•), respectively.

In particular, if X is representable, represented by a manifold X, then
H i
DR(X) coincides with the ith homology group of the usual de Rham com-

plex of X. Thus our definition of the de Rham cohomology gives the usual
de Rham cohomology in the case of manifolds.

Remark. The wedge product of differential forms turns Ω•
X into a sheaf

of differential graded R-algebras. From general principles it follows that
RΓ(X,Ω•) is also a differential graded R-algebra. Thus the hypercohomology
H

∗(X,Ω•) is a graded R-algebra.
This multiplicative structure can be described explicitly at the level of

the double complex Ω•(X•) associated to an atlas X → X of X.
Let a ∈ Ωk(Xp) and b ∈ Ωl(Xq). Define a ∪ b ∈ Ωk+l(Xp+q) by

(10) a ∪ b = (−1)kqp∗1a ∧ p∗2b,
where p1, p2 are the natural projections from Xp+q to Xp and Xq given by
(x1, . . . , xp, xp+1, . . . , xp+q) → (x1, . . . , xp) and (x1, . . . , xp, xp+1, . . . , xp+q)
→ (xp+1, . . . , xp+q), respectively. One checks that for any a, b, c ∈ Ω•(X•)
the following identities hold:

(a ∪ b) ∪ c = a ∪ (b ∪ c),(11)

δ(a ∪ b) = δa ∪ b+ (−1)|a|a ∪ δb,(12)

where δ is the total differential of the double complex Ω•(X•), and |a| denotes
the total degree of a in the double complex Ω•(X•). Thus (Ω•(X•),∪, δ)
is a graded differential algebra. One can prove that the induced graded



DIFFERENTIABLE STACKS AND GERBES 311

algebra structure on its cohomology groups coincides with the one on
H

∗(X,Ω•).

4. S1-bundles and S1-gerbes

In this section, we study connections on bundles and gerbes. We often restrict
to the case of S1 as structure group.

4.1. S1-bundles. In this subsection, we study differential geometry, includ-
ing characteristic classes, of S1-bundles over a differentiable stack in terms
of Lie groupoids.

Let X be a differentiable stack and X1 ⇒ X0 a Lie groupoid presenting
X. By an X•-space, we mean a manifold P0 → X0 with a left X•-action.

Definition 4.1. An S1-bundle over X is a 2-commutative diagram

P × S1 σ ��

proj.

��
������

P

π

��
P

π �� X

such that the pullback via U → X, for any submersion from a manifold
U , defines an S1-bundle over U . (Note that this implies that P → X is a
representable surjective submersion, and hence that P | U is an S1-bundle
for every U → X, submersive or not.)

Definition 4.2. Let X1 ⇒ X0 be a Lie groupoid. A (right) S1-bundle over
X1 ⇒ X0 is a (right) S1-bundle P0 over X0, together with a (left) action of
X• on P0, which respects the S1-action, i.e., we have

(13) (γ · x) · t = γ · (x · t),
for all t ∈ S1 and all compatible pairs (γ, x) ∈ Γ×t,X0 P0.

Proposition 4.1. There is a canonical equivalence of categories

(S1-bundles over X) −→ (S1-bundles over X1 ⇒ X0).

Proof. Let P → X be an S1-bundle. Denote the pullback of X0 via P → X

by P0. Thus P0 → X0 is an S1-bundle by assumption. And P0 → P is a
representable submersion. Let P1 ⇒ P0 be the associated groupoid. We get
an induced morphism of groupoids P• → X•, which is cartesian, i.e., the
diagram

P1
��

��

X1

��
P0

�� X0
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is a pullback diagram of manifolds, where the vertical maps are source maps
(or, equivalently, target maps). Therefore, P1 → X1 is an S1-bundle and the
vertical maps in the diagram above are S1-bundle maps. As a consequence,
X1 acts on P0 and equation (13) is satisfied. The functor in the proposition
is P 
→ P0.

Conversely, given an S1-bundle P0 over X1 ⇒ X0, let P1 = X1 ×t,X0 P0.
Action and projection form a diagram P1 ⇒ P0, and it is easy to check
that P1 ⇒ P0 is naturally a groupoid (called the transformation groupoid
of the X1-action). It is clear that P1 is an S1-bundle over X1. Moreover,
there is a natural morphism of groupoids π from P1 ⇒ P0 to X1 ⇒ X0,
which respects the S1-bundle structures P1 → X1 and P0 → X0. Let P

be the corresponding stack of P•-torsors. The groupoid morphism P• → X•
induces a morphism of stacks P → X, which is representable, as its pullback
toX0 equals P0 → X0. It is also simple to see that for any morphism U → X,
P | U is an S1-bundle. Therefore P is an S1-bundle over X. The backwards
functor is given by P0 
→ P. �

As a consequence, S1-bundles over a given Lie groupoid X1 ⇒ X0 are
classified by H1(X•, S1). The exponential sequence Z → Ω0 → S1 induces
a boundary map H1(X•, S1) → H2(X•,Z); the image of the class of an
S1-bundle under this boundary map is called its Chern class.

Let P0 → X0 be a principal S1-bundle over X1 ⇒ X0. Let θ ∈ Ω1(P0)
be a connection 1-form on P0. One checks that δθ ∈ Ω2

DR(P•) descends to
Ω2
DR(X•). In other words, there exist unique ω ∈ Ω1(X1) and Ω ∈ Ω2(X0)

such that π∗(ω + Ω) = δθ.

Proposition 4.2. The class [ω + Ω] ∈ H2
DR(X•) is independent of the

choice of the connection θ on P0 → X0. Under the canonical homomorphism
H2(X•,Z)→ H2(X•,R) ∼= H2

DR(X•), the Chern class of P maps to [ω+Ω].

Proof. The proof of independence of choice of connection is a direct calcu-
lation; see [26]. Thus, we concentrate on the second statement.

Let X be the differentiable stack represented by X• and P the S1-bundle
on X defined by P•.

Consider on X the diagram of Abelian sheaves

(14)

0 ��
Z

��

�� Ω0

��

exp �� S1

d log

��

�� 0

��

�� . . .

0 ��
R

�� Ω0 d �� Ω1 d �� Ω2 �� . . .

The upper row is a resolution [Ω0 → S1] of Z, and the lower row is the de
Rham resolution Ω• of R, and the whole diagram is a morphism of resolu-
tions.
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It follows that we have a commutative diagram

(15)

H i(X,Z) ∼ ��

��

H
i(X, [Ω0 → S1])

��
H i(X,R) ∼ �� H i

DR(X)

This diagram gives us a way to calculate the image of the Chern class of P

in the de Rham cohomology.
In fact, consider now the Čech resolution (simplicial manifold) X•. For

any complex of sheaves F •, we get an associated double complex of Abelian
groups F •(X•) and canonical maps

hi
(
totF •(X•)

) −→ H
i(X, F •).

(If all F q are acyclic on every Xp, then these are isomorphisms.)
If we assume that P0 admits a section σ over X0, then ρ = t∗(σ)−s∗(σ) ∈

S1(X1) is a 2-cocycle in tot [Ω0 → S1](X•) and the associated cohomology
class [ρ] ∈ H

2(X, [Ω→ S1]) is the image of the Chern class of P under the
upper row of (15).

The morphism of complexes of sheaves (14) induces a morphism of double
complexes of Abelian groups

[Ω0 → S1](X•) −→ Ω•(X•).

The image of ρ under this morphism is

d log
(
t∗(σ)− s∗(σ)

) ∈ Ω1(X1).

Now, σ also induces a flat connection on the S1-bundle P0 → X0 (ignoring
the groupoid action), hence a connection 1-form θ ∈ Ω1(P0). We have δ(θ) =
s∗(θ)− t∗(θ), and thus, all we need to prove is that

s∗(θ)− t∗(θ) = π∗
(
d log(t∗σ − s∗σ)

)
.

This can be easily checked.
Let us now prove the general case, i.e., the case where P0 is not necessarily

trivial over X0.
Choose an open covering (Ui) of X0 such that each Ui is contractible. Let

Y0 =
∐
Ui and Y1 =

∐
Ui ×s X1 ×t Uj . Then Y1 ⇒ Y0 is a Lie groupoid

Morita equivalent to X1 ⇒ X0. In fact, the projection f : Y• → X• is a
Morita morphism. Let Q• be the S1-bundle over Y• induced from P•. Since
Q0 can be trivialized over Y0, we choose [ω′ + Ω′] coming from a trivialization
of Q0, as above (in which case Ω′ = 0).

Choose (ω,Ω) for P• as in the statement of the proposition. By Morita
invariance of de Rham cohomology of Lie groupoids, to prove that [ω+ Ω] is
the Chern class of P, it suffices to do this for f∗[ω+ Ω]. Thus we reduce to
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proving that f∗[ω + Ω] = [ω′ + Ω′] ∈ H2
DR(Y•), which is just the invariance

under choice of connection. �

Note that the class [ω+ Ω] in the above proposition is an integer class in
H2

DR(X•), and ω+Ω an integer 2-cocycle in Z2
DR(X•). In general a k-cocycle

in ZkDR(X•) is said to be an integer k-cocycle if it defines an integer class
in Hk

DR(X•), i.e., a class in the image of the homomorphism Hk(X•,Z) →
Hk(X•,R) ∼= Hk

DR(X•).

Definition 4.3. A connection 1-form θ on P0 is called a pseudo-connection
on P•. The de Rham cocycle ω+ Ω ∈ Z2

DR(X•) such that π∗(ω+ Ω) = δθ is
called the pseudo-curvature of θ.

A pseudo-connection θ is a connection if ∂θ = 0.
A flat connection is a pseudo-connection θ whose pseudo-curvature

vanishes.

Remark. Unlike in the manifold case, connections do not always exist. Thus
connections are not necessarily as useful to compute characteristic classes
as in the manifold case. For instance, the universal S1-bundle ∗ → BS1,
which corresponds to S1 → ∗ considered as an S1-bundle over the groupoid
S1 ⇒ ∗ (where the groupoid S1 ⇒ ∗ acts on S1 by left translation), does
not admit any connections. (Any connection on the universal bundle would
necessarily be flat, and the existence of a flat connection on the universal
bundle would imply that all connections on all bundles over all manifolds
were flat.)

A flat S1-bundle is an S1-bundle with a flat connection. It is simple to see
that a flat S1-bundle over X• is equivalent to a R/Z-bundle over X•. There-
fore, the equivalence classes of flat S1-bundles are classified by H1(X•,R/Z).
The functor

{flat S1-bundles over X•} −→ H1(X•,R/Z)

is called the holonomy map. When X• is a manifold, this reduces to the
usual holonomy map for flat bundles.

We are now ready to prove the following proposition, which generalizes
the prequantization theorem of Kostant [24] and Weil [48].

Proposition 4.3. Assume that Ȟ1(X•,Ω0) = 0. Let ω + Ω ∈ Z2
DR(X•) be

an integer 2-cocycle. Then there exists an S1-bundle P• over X1 ⇒ X0 and
a pseudo-connection θ whose pseudo-curvature is ω + Ω.

Moreover, the set of isomorphism classes of all such pairs (P•, θ) is a
simply transitive H1(X•,R/Z)-set. Here (P•, θ) and (P ′•, θ′) are isomorphic
if P1 and P ′

1 are isomorphic as S1-bundles over X1 ⇒ X0 and under such
an isomorphism θ is identified with θ′.
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Proof. Consider the exact sequence

→ H1(X•, S1)
φ→ H2(X•,Z)→ H2(X•,Ω0)→

induced by the exponential sequence Z→ Ω0 → S1. The map H2(X•,Z)→
H2(X•,Ω0) factors through H2(X•,R) ∼= H2

DR(X•), i.e., we have the follow-
ing commutative diagram

H2(X•,Z) ��

���������������
H2
DR(X•)

p���������������

H2(X•,Ω0) ∼= Ȟ2(X•,Ω0)

where p is the natural projection. It is clear that p([ω + Ω]) = 0. Thus
there is an S1-bundle P• over X1 ⇒ X0, whose Chern class equals [ω + Ω].
Let θ′ ∈ Ω1(P0) be a pseudo-connection, and δθ′ = π∗(ω′ + Ω′). According
to Proposition 4.2, ω+Ω and ω′ + Ω′ are cohomologous. Hence, ω+ Ω −
(ω′ + Ω′) = δ(f + α) for some f ∈ Ω0(X1) and α ∈ Ω1(X0). It thus follows
that ∂f = 0, which implies that f = ∂g for g ∈ Ω0(X0) since Ȟ1(X•,Ω0) =
0. Thus δf = δ∂g = δdg. Let θ = θ′ + π∗(α + dg) ∈ Ω1(P0). It is clear that
θ is the desired pseudo-connection.

If (P, θ) and (P ′, θ′) are two such S1-bundles, then (P ⊗ P ′,pr∗1θ+ pr∗2θ′)
is a flat bundle, whose isomorphism class is classified by H1(X•,R/Z). Here
P ⊗ P ′ denotes the S1-bundle (P ×X0 P

′)/S1, and pr1 : P ⊗ P ′ → P and
pr2 : P ⊗ P ′ → P ′ are projections. This completes the proof. �
Remark. The condition Ȟ1(X•,Ω0) = 0 always holds for a proper Lie
groupoid X1 ⇒ X0 according to Crainic [10]. In particular, when X1 ⇒ X0

is a manifold M ⇒ M (which is clearly a proper Lie groupoid), an integer
2-cocycle in Z2

DR(X•) corresponds to an integer closed 2-form on M . Thus,
Proposition 4.3 reduces to the usual prequantization theorem of Kostant
and Weil [24, 48].

4.2. S1-gerbes and S1-central extensions. Let us first recall the def-
inition of gerbes. Let X be the differentiable stack associated to the Lie
groupoid X1 ⇒ X0. Thus, X is the stack of X•-torsors.

Definition 4.4. An S-stack R, endowed with a morphism R→ X is called
a gerbe over X, if both R→ X and R→ R×X R are epimorphisms.

Remark. Under the correspondence between S-stacks equipped with mor-
phisms to X and X-stacks, the gerbes over X, according to our definition,
correspond to gerbes over the site X in the usual sense, i.e., in the sense of
Giraud ([19], Chapter III.2).

BS1×X → X is an example of a gerbe over X. We will study gerbes that
locally look like this example.
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The groupoid of automorphisms of BS1 is equal to the transformation
groupoid of S1 on AutS1 ∼= Z2. This action is by “inner automorphisms”
and hence trivial, as S1 is abelian. The group of automorphism classes of
BS1 is therefore equal to Z2. The sheaf of automorphism classes of BS1×X

over X, which takes U/X to the 2-isomorphism classes of diagrams

BS1 × U ∼ ��

�������������� 



��
BS1 × U

��
U

is therefore equal to Z2×X → X. So if the gerbe R→ X is locally isomorphic
to BS1×X, then the sheaf of automorphism classes of R over X, which maps
U/X to the 2-isomorphism classes of diagrams

R|U ∼ ��

����
��

��
��

� ������
R|U

��
U

is a 2-sheeted covering Band(R)→ X, called the band of R.

Definition 4.5. An S1-gerbe over X is a gerbe R → X, which is locally
isomorphic to BS1×X and is endowed with a trivialization of its band (the
2-sheeted covering Band(R)→ X).

The following is a well-known theorem of Giraud [19].

Theorem 4.1 (Giraud). Isomorphism classes of S1-gerbes over X are in
one-to-one correspondence with H2

(
X, S1

)
.

Now we recall S1-central extensions of Lie groupoids [49].

Definition 4.6. Let X1 ⇒ X0 be a Lie groupoid. An S1-central extension
of X1 ⇒ X0 consists of

1. a Lie groupoid R1 ⇒ X0, together with a morphism of Lie groupoids
(π, id) : [R1 ⇒ X0]→ [X1 ⇒ X0],

2. a left S1-action on R1, making π : R1 → X1 a (left) principal S1-
bundle.

These two structures are compatible in the sense that (s ·x)(t ·y) = st · (xy),
for all s, t ∈ S1 and (x, y) ∈ R1 ×X0 R1.

The proposition below gives an equivalent definition.

Proposition 4.4. Let X1 ⇒ X0 be a Lie groupoid. A Lie groupoid R1 ⇒ X0

is an S1-central extension of X1 ⇒ X0 if and only if it is endowed with φ
and π forming an exact sequences of groupoid morphisms

1→ X0 × S1 φ→ R1
π→ X1 → 1
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over the identities on the unit spaces, and the image of φ lies in the center
of R1.

Proof. The proof is straightforward and is left to the reader. �
The following result describes the precise connection between S1-gerbes

and S1-central extensions.

Proposition 4.5. Let X1 ⇒ X0 be a Lie groupoid and X its correspond-
ing differentiable stack of X•-torsors. There is a one-to-one correspondence
between isomorphism classes of S1-central extensions of X1 ⇒ X0 and iso-
morphism classes of S1-gerbes R over X endowed with a trivialization of the
restriction of R to X0.

Proof. Given an S1-central extension R1 ⇒ X0 of X1 ⇒ X0, let R be
the stack of R•-torsors and X the stack of X•-torsors. Then the groupoid
morphism π induces a morphism of stacks R→ X, via which we think of R
as a stack over X.

The groupoid morphism S1 ×X0
φ→ R1 induces the morphism of stacks

BS1 ×X0 → R. Consider the diagram

R1
��

��
(1)

X0

��
X1

��

��
(2)

BS1 ×X0
��

��
(3)

X0

��
X0

�� R �� X

The square (1) is cartesian, because R1|X1 is an S1-torsor. The combination
of squares (1) and (2) is cartesian by definition of R. Hence, by descent, (2) is
cartesian. The combination of squares (2) and (3) is cartesian by definition
of X, and so, again by descent, square (3) is cartesian. This proves that
R restricted to X0 is isomorphic to BS1 × X0, and in particular, R → X

satisfies the first condition in the definition of S1-gerbe.
The band of R→ X is an Out(S1)-torsor, trivialized by X0, so the band

is given by a map X1 → Out(S1). It is given as follows: x 
→ [Adx̃], ∀x ∈ X1,
where x̃ ∈ R1 is any point satisfying π(x̃) = x and Adx̃y = x̃yx̃−1. Here
y ∈ kerπx ∼= S1. Then because kerπ is central in R1, the mapX1 → Out(S1)
is trivial, showing that the band of R is trivial.

Conversely, given such a gerbe R, by taking the section X0 → R | X0,
one obtains a commutative diagram of stacks:

(16) X0

����
��

��
��

�� R

��
X.
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So, X0 → R is a presentation. Let R1 = X0 ×R X0. Thus we have a Lie
groupoid morphism (π, id) : [R1 ⇒ X0] → [X1 ⇒ X0]. Moreover the kernel
of π is isomorphic to X0 × S1 as a bundle of groups, by assumption. Since
Band R is trivial, it follows that the conjugation action of R1 on kerπ
must be trivial. Therefore, kerπ lies in the center of R1. This concludes the
proof. �

4.3. Morita equivalence of S1-central extensions. We now introduce
the definition of Morita equivalence of S1-central extensions.

Definition 4.7. We say that two S1-central extensions R1 → X1 ⇒ X0

and R′
1 → X ′

1 ⇒ X ′
0 are Morita equivalent if there exists an S1-equivariant

R•-R′•-bitorsor Z, by which we mean that Z is an R•-R′•-bitorsor endowed
with an S1-action such that

(λr) · z · r′ = r · (λz) · r′ = r · z · (λr′)
whenever (λ, r, r′, z) ∈ S1 ×R×R′ × Z and the products make sense.

The following result is immediate.

Lemma 4.1. Let R1 → X1 ⇒ X0 and R′
1 → X ′

1 ⇒ X ′
0 be Morita equiv-

alent S1-central extensions, and Z an S1-equivariant R•-R′•-bitorsor. Then
the S1-action on Z must be free and Z/S1 is a X•-X ′•-bitorsor. As a conse-
quence, X• and X ′• are Morita equivalent.

Proposition 4.6. Let R1 → X1 ⇒ X0 and R′
1 → X ′

1 ⇒ X ′
0 be S1-central

extensions of Lie groupoids. Let R, R′, X, and X ′ be their associated stacks.
Then the following are equivalent:

(i) R• and R′• are Morita equivalent S1-central extensions.
(ii) there exists an S1-central extension R′′

1 → X ′′
1 ⇒ X ′′

0 and S1-
equivariant Morita morphisms R′′• → R′• and R′′• → R•.

(iii) X ∼= X ′, over which R ∼= R′ as S1-gerbes.

Proof. To prove that (i) implies (ii), choose an S1-equivariant R•-R′•-bitorsor
Z. Take R′′

1 = R1 ×X0 Z ×X′
0
R′

1 and X ′′
1 = X1 ×X0 X ×X′

0
X ′

1, where
X = Z/S1. Then it is simple to see that R′′

1 → X ′′
1 ⇒ X is the desired

S1-central extension.
For (ii) to imply (iii), assuming that R′′

1 → X ′′
1 ⇒ X ′′

0 is such an S1-central
extension, using Theorem 2.2, one has the commutative diagram

R′ ��

��
������

R

��
X ′ �� X

,

where the horizontal maps are isomorphism of stacks. (iii) thus follows.
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Finally, we prove that (iii) implies (i). By identifying X with X ′ and R
with R′, we may think R1 → X1 ⇒ X0 and R′

1 → X ′
1 ⇒ X ′

0 as the S1-
central extensions corresponding to the presentations X0 → R and X ′

0 → R
respectively. Take Z = X0 ×R X ′

0. Then Z is an S1-equivariant R•-R′•-
bitorsor. �

We end this subsection by the following exact sequences:

Proposition 4.7. There is a natural exact sequence

H1(X•, S1) τ1−→ H1(X0, S
1) τ2−→

{S1-central extensions of X1 ⇒ X0} τ3−→ H2(X•, S1) τ4−→ H2(X0, S
1).

Proof. Let X be the stack of X•-torsors. Note that τ1, . . . , τ4 can be geomet-
rically described as follows:

(1) τ1 is the map sending an S1-bundle L → X to its restriction to X0,
i.e., to L→ X0 by forgetting the groupoid X1 ⇒ X0-action.

(2) τ2 sends an S1-bundle L→ X0 to the S1-central extension (s∗L×X1

t∗L−1)/S1 → X1 ⇒ X0. In stack language, τ2 maps the S1-bundle L
to the stack of descent data (gluing data) for L over the groupoid X•.

(3) τ3 sends an S1-central extension to the class in H2(X•, S1) of its
corresponding gerbe.

(4) τ4 is the pull back map under the map X0 → X.
Let φ : L → X0 be an S1-bundle over X1 ⇒ X0. Define a map X1 ×

S1 → (s∗L ×X1 t
∗L̄)/S1 by (r, λ) → [((rl)λ−1, l)], where l ∈ L is any point

satisfying φ(l) = t(r). One checks that this is an isomorphism of S1-central
extensions. Conversely, if φ : L → X0 is an S1-bundle over X0 such that
(s∗L×X1 t

∗L̄)/S1 is a trivial central extension, then (s∗L×X1 t
∗L̄)/S1 → X1

admits a section σ which is a groupoid homomorphism. Then the equation
σ(r) = [(r · l, l)], where l ∈ L such that φ(l) = t(r), defines a groupoid action
of X1 ⇒ X0 on L. This shows that the sequence is exact at H1(X0, S

1).
Let R be the S1-central extension (s∗L ×X1 t

∗L̄)/S1, where L → X0

is an S1-bundle. One checks that the pullback groupoid R[L] ⇒ L is a
trivial extension of X1[L] ⇒ L, which means that R defines the zero class in
H2(X•, S1). Conversely, if R is an S1-central extension defining the zero class
in H2(X•, S1), then R is Morita equivariant to the trivial central extension
X1×S1 ⇒ X0 via an S1-equivariant bimodule Y : then L = Y/X1

ρ→ X0 is an
S1-bundle. One easily checks that R is isomorphic to (s∗L×X1 t

∗L̄)/S1. This
shows that the sequence is exact at {S1-central extensions of X1 ⇒ X0}.

Finally, the exactness atH2(X•, S1) follows from Theorem 4.1 and Propo-
sition 4.5. �
4.4. Dixmier–Douady classes. Let R be an S1-central extension ofX1 ⇒
X0. Write the underlying Lie groupoid of R as R1 ⇒ R0. Call the struc-
ture morphism π : R• → X•. Since R1 ⇒ R0 defines an S1-gerbe over X,
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it defines a class in H2(X•, S1) according to Theorem 4.1. The exponen-
tial sequence gives rise to a homomorphism H2(X•, S1) → H3(X•,Z). The
image of [R] ∈ H2(X•, S1) in H3(X•,Z) is called the Dixmier–Douady class
of R and denoted by DD(R). The Dixmier–Douady class behaves well with
respect to pullbacks and the tensor operation.

Let f : Y• → X• be a Lie groupoid homomorphism. Then the pullback
S1-bundle f∗R1 → Y1 is an S1-central extension over Y1 ⇒ Y0, called the
pullback central extension.

Assume that R′ and R′′ are two S1-central extensions of X1 ⇒ X0. Let
R1 = (R′×X1R

′′)/S1, where S1 acts on R′×X1R
′′ by t ·(r1, r2) = (t ·r1, t−1 ·

r2), ∀t ∈ S1, (r1, r2) ∈ R′ ×X1 R
′′. It is clear that R1 with the natural

projection to X1 is still an S1-principal bundle, where the S1-action is given
by t · [(r1, r2)] = [(t · r1, r2)]. The groupoid structures on R′ and R′′ induce
a groupoid structure on R1 in a natural way, which in fact makes R1 into a
groupoid S1-central extension, called the tensor product of R′ and R′′ and
is denoted, by R′ ⊗R′′.

The following proposition can be easily verified.

Proposition 4.8. (1) DD(f∗R) = f∗DD(R); and
(2) DD(R′ ⊗R′′) = DD(R′) +DD(R′′).

Definition 4.8. Let θ ∈ Ω1(R1) be a connection 1-form for the S1-principal
bundle R1 → X1, and B ∈ Ω2(R0) be any 2-form. Any such pair (θ,B) is
called a pseudo-connection for the central extension R.

It is simple to check that δ(θ +B) ∈ Z3
DR(R•) descends to Z3

DR(X•), i.e.
there exist unique η ∈ Ω1(X2), ω ∈ Ω2(X1) and Ω ∈ Ω3(X0) such that

δ(θ +B) = π∗(η + ω + Ω).

Then η + ω + Ω is called the pseudo-curvature of the pseudo-connection
θ +B.

We will now show that pseudo-connections can be used to calculate
Dixmier–Douady classes.

Theorem 4.2. The class [η + ω + Ω] ∈ H3
DR(X•) is independent of the

choice of the pseudo-connection θ+B. Under the canonical homomorphism
H3(X•,Z)→ H3

DR(X•), the Dixmier–Douady class of R maps to [η+ω+ Ω].

Proof. One checks directly that the class [η+ω+ Ω] ∈ H3
DR(X•) is indepen-

dent of the choice of the pseudo-connection θ +B.
We prove the second part of the theorem. Let X be the stack given by

X1 ⇒ X0 and R→ X the S1-gerbe over X defined by R1 ⇒ R0.
We will construct a hypercovering in the site X. Note that R• is a simpli-

cial object in X. The hypercovering we shall use is the 1-coskeleton of R•:

Y• = coskXR•
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This is a hypercovering because R1 → R0 ×X R0 = X1 and R0 → X are
surjective submersions. (For the theory of hypercoverings, see [1, 2, 12]. In
the generality, we need them, the necessary results are proved in [1].)

Intuitively, Y• is the set of all (1-skeleta of) simplices in R•, whose image
in X• commutes. Explicitly, Yp is the fibered product

Yp ��

��

∏

0≤i<j≤p
R1

��

Xp ��
∏

0≤i<j≤p
X1

Here the horizontal arrow at the bottom is the map which sends Xp to the
edges of a commutative p-simplex, i.e., the product of

(
p+1
2

)
maps fij : Xp →

X1, 0 ≤ i < j ≤ p
(x1, x2, . . . , xp)→ xi+1 · · ·xj .

Since Y• is a hypercovering of X, we have a canonical homomorphism

(17) f : Ȟ2(Y•, S1) −→ H2(X, S1).

Since Ω• consists of soft sheaves, we also have an isomorphism

(18) Ȟ2(Y•,Ω•) ∼−→ H2(X,Ω•).

We will see that the class of R in H2(X, S1) is in the image of the homo-
morphism (17).

In fact,

Y2 = {(α, β, γ) ∈ R1 ×R1 ×R1|π(α)π(γ) = π(β)},

so we have a C∞-map

c : Y2 −→ S1,

(α, β, γ) 
−→ (αγ)β−1.

Recall that a composition in R1 makes sense if and only if the composition
of its image in X1 makes sense and that we have kerπ = S1. One checks
that the coboundary of c vanishes, and so c defines a Čech cohomology class
[c] ∈ Ȟ2(Y•, S1). It is simple to see that f([c]) is the cohomology class of R.
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Now consider the diagram

Ȟ2(Y•, S1)
f ��

��

H2(X, S1)

∂

��������������

��
Ȟ3(

Y•, [Ω0 → S1]
) ��

d log

��

H3(
X, [Ω0 → S1]

)

d log

��

H3(X, Z)

��

∼��

Ȟ3(X•, Ω•)
∼
ρ∗

�� Ȟ3(Y•, Ω•)
∼ �� H3

DR(X) H3(X, R)
∼��

which commutes. The two vertical arrows in the first row are induced by the
trivial map

S1 −→ [Ω0 → S1][1],
i.e., the map

0 ��

��

S1

��
Ω0 �� S1

Considering this diagram, we see that we need to prove that

d log([c]) = ρ∗([η + ω + Ω]) ∈ Ȟ3(Y•,Ω•),

where we have denoted the canonical projection by ρ : Y• → X• and its
induced map on Čech cohomology by ρ∗. We have also committed the abuse
of denoting [c] and its induced class in Ȟ3

(
Y•, [Ω0 → S1]

)
by the same letter.

First, we may assume that B = 0 (thus Ω = 0) for simplicity since the
class [η + ω + Ω] is independent of the pseudo-connection. Thus, we have

∂θ = π∗η, dθ = −π∗ω.
We have the following commutative diagram:

Y2
p ��

���
��

��
��

R2

����
��

��
�

X2

where p : Y2 → R2 is the natural projection. We have

ρ∗η = p∗π∗η = p∗∂θ = α∗θ − (αγ)∗θ + γ∗θ,

where, by abuse of notation, we denote by α, γ and αγ the maps Y2 → Y1

sending (α, β, γ) to α, γ and αγ ∈ Y1, respectively.
Since ρ = π on Y1, we have ρ∗ω = π∗ω = −dθ ∈ Ω2(Y1), which is

cohomologous to −∂Y•θ in Ȟ3(Y•,Ω•). The latter is equal to −(α∗θ−β∗θ+
γ∗θ) ∈ Ω1(Y2). Thus it follows that

ρ∗([η + ω]) = β∗[θ − (αγ)∗θ].
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Now it suffices to prove that

d log([c]) = β∗θ − (αγ)∗θ ∈ Ω1(Y2).

Let ψ : R2 × S1 → Y2 be the diffeomorphism given by (α, γ, t) →
(α, t(αγ), γ). Then ψ∗(d log([c])) is the Maurer–Cartan form dt on S1, while
β∗θ − (αγ)∗θ is easily seen to be equal to dt as well.

This completes the proof. �

4.5. Prequantization.

Definition 4.9. Given an S1-central extension R1 → X1 ⇒ X0,
(i) a connection 1-form θ ∈ Ω1(R1) for the S1-principal bundle R1 → X1,

such that ∂θ = 0 is a connection;
(ii) Given θ, a 2-form B ∈ Ω2(X0), such that dθ = ∂B is a curving;
(iii) and given (θ,B), the 3-form Ω = dB ∈ H0(X•,Ω3) ⊂ Ω3(X0) is called

the 3-curvature of (θ,B);
(iv) If Ω = 0, then R1 → X1 ⇒ X0 together with (θ,B) is called a flat S1-

central extension of X1 ⇒ X0. Note that the flat central extensions
form an Abelian group.

In other words, a flat S1-central extension of X1 ⇒ X0 is an S1-central
extension with a pseudo-connection whose pseudo-curvature vanishes. The
following proposition is immediate.

Proposition 4.9. Let R1 → X1 ⇒ X0 be an S1-central extension. Then
(i) H2(X•,Ω1) contains the obstruction to the existence of a connection;
(ii) if we assume the existence of a connection, H1(X•,Ω2) contains the

obstruction to the existence of a curving.

According to Theorem 4.2, we have the following:

Proposition 4.10. If an S1-central extension R1 → X1 ⇒ X0 admits
a connection and a curving with 3-curvature Ω, then [Ω] ∈ H3

DR(X•) is
the image of its Dixmier–Douady class under the canonical homomorphism
H3(X•,Z)→ H3

DR(X•).

Remark. Given a manifold M , and a surjective submersion X0 → M ,
X1(= X0 ×M X0) ⇒ X0 is a Lie groupoid Morita equivalent to M . An
S1-central extension R1 → X1 ⇒ X0 defines a bundle gerbe over M in the
terminology of Murray [32, 33]. Since Ω1 and Ω2 are soft sheaves over M ,
we have H2(X•,Ω1) ∼= H2(M,Ω1) = 0 and H1(X•,Ω2) ∼= H1(M,Ω2) = 0.
As a consequence, connections and curvings always exist for bundle gerbes.
This result was due to Murray [32]. Moreover, in this case, the 3-curvature
Ω ∈ Ω3(X0) descends to a closed 3-form on M since ∂Ω = 0.

In particular, for an open cover {Ui} of M , one can take X0 =
∐
Ui.

Then X1
∼= ∐

Uij . An S1-central extension R1 → X1 ⇒ X0 corresponds
in this case to a family of line bundles Lij → Uij satisfying all the axioms
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of bundle gerbes as in [21]. This is the case of Chatterjee–Hitchin bundle
gerbes [8, 21]

Proposition 4.11. Assume that H2(X0,R) = 0. There is a natural exact
sequence

H1(X•,R/Z) −→ H1(X0,R/Z) −→
{flat S1-central extensions of X1 ⇒X0}−→H2(X•,R/Z)−→H2(X0,R/Z).

The proof is similar to that of Proposition 4.7 via replacing S1 by R/Z,
and using the following:

Lemma 4.2. Let X1 ⇒ X0 be a Lie groupoid. Assume that H2(X0,R) = 0.
Then there is a canonical one-to-one correspondence between flat S1-central
extensions of X1 ⇒ X0 and R/Z-central extensions of X1 ⇒ X0.

Proof. Let (R1 → X1 ⇒ X0, θ, B) be a flat S1-central extension. Then, in
particular, dB = 0. Since H2(X0,R) = 0, we can write B = dA, where
A ∈ Ω1(X0). Set θ′ = θ + ∂A ∈ Ω1(R1). Then θ′ is again a connection
1-form for the principal S1-bundle R1 → X1, which satisfies dθ′ = 0 and
∂θ′ = 0. The condition dθ′ = 0 implies that R1 → X1 is flat, and can
therefore equivalently be considered as an R/Z-bundle. Moreover, ∂θ′ = 0
implies that under this new differentiable structure, R1 → X1 is still a
smooth groupoid homomorphism, and therefore an R/Z-central extension.

Conversely, given an R/Z-central extension R1 → X1 ⇒ X0, then R1 →
X1 is a flat S1-bundle. Let θ ∈ Ω1(R1) be a flat connection one-form, i.e.,
dθ = 0. Locally, if we write R1

∼= X1×R/Z, then we may choose θ = dt where
t is the coordinate on R/Z. Moreover, locally the groupoid multiplication on
R1 is written as

(x, t) · (y, s) = (x · y, t+ s+ ω(x, y)), ∀(x, y) ∈ X2, t, s ∈ R/Z.

It is easy to see that ω(x, y) must be locally constant. Therefore, it follows
that ∂θ = 0. Hence R1 → X1 ⇒ X0 is a flat S1-central extension. �

Following Hitchin [21], we call the map

{flat S1-central extensions of X1 ⇒ X0} −→ H2(X•,R/Z)

the holonomy map.
Next, we give the following prequantization result, which can be consid-

ered as an analog, in the degree 3-context, of the well-known theorem of
Weil and Kostant [24, 48].

Theorem 4.3. Assume that Ȟ2(X•,Ω0) = 0. Given any 3-cocycle η + ω +
Ω ∈ Z3

DR(X•) as above, satisfying
1. η + ω + Ω is an integer 3-cocycle, and
2. Ω is exact,
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there exists a groupoid S1-central extension R1 ⇒ X0 of the groupoid
X1 ⇒ X0 and a pseudo-connection θ+B such that its pseudo-curvature
is η+ω+ Ω. The pairs (θ,B) up to isomorphism form a simply transitive
set under the group of flat S1-central extensions.

Proof. Consider the exact sequence

→ H2(X•, S1)
φ→ H3(X•,Z)→ H3(X•,Ω0)→

induced by the exponential sequence Z → Ω0 → S1. Since we have the
following commutative diagram:

H3(X•,Z) ��

���������������
H3
DR(X•)

p���������������

H3(X•,Ω0) ∼= Ȟ3(X•,Ω0)

where p is the natural projection, it is clear that [η + ω + Ω] is in the
image of φ. Thus there is an S1-gerbe R ∈ H2(X•, S1) whose Dixmier–
Douady class equals [η + ω + Ω]. Note that the image of R under the map
H2(X•, S1) → H2(X0, S

1) is zero since Ω is exact. This follows from the
commutative diagram

H2(X•, S1) ��

��

H3(X•,Z)

��
H2(X0, S

1) ∼ �� H3(X0,Z)

From Proposition 4.7 it follows that R can be represented by an S1-
central extension R1 ⇒ R0 over X1 ⇒ X0, whose Dixmier–Douady class
is [η+ω+ Ω].

Let θ′+B′ be any pseudo-connection on the S1-central extension R1 ⇒ R0

and η′ +ω′ +Ω′ its pseudo-curvature. Proposition 4.2 implies that η+ω+ Ω
and η′ + ω′ + Ω′ are cohomologous. Therefore,

(η + ω + Ω)− (η′ + ω′ + Ω′) = δ(f + α+B′′),

where f ∈ Ω0(X2), α ∈ Ω1(X1), and B ∈ Ω2(X0). It thus follows that
∂f = 0, which implies that f = ∂g for g ∈ Ω0(X1), since Ȟ2(X•,Ω0) = 0.
Thus, δf = δ∂g = δdg. Let θ = θ′+π∗(α+dg) ∈ Ω1(R1) and B = B′+B′′. It
is clear that θ+B is the desired pseudo-connection on R1 ⇒ R0. Finally, note
that if (R′, θ′, B′) and (R′′, θ′′, B′′) are two such pairs, then (R′⊗(R′′)−1, θ′−
θ′′, B′ − B′′) is a flat gerbe. So such pairs, up to isomorphism, are indeed
parametrized by the group of flat S1-central extensions. �
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Remark. Note again, that the condition Ȟ2(X•,Ω0) = 0 always holds for a
proper Lie groupoid X1 ⇒ X0, according to Crainic [10]. So prequantization
always works for a proper Lie groupoids.

5. S1-central extensions with prescribed pseudo-curvature

5.1. Geometry of S1-central extensions. First, we need a technical
lemma concerning S1-principal bundles over a Lie groupoid (not necessary
a groupoid central extension).

Let X1 ⇒ X0 be a Lie groupoid with a 3-cocycle η+ω ∈ Z3
DR(X•), where

η ∈ Ω1(X2) and ω ∈ Ω2(X1), andR1
π−→ X1 an S1-principal bundle. Assume

that θ ∈ Ω1(R1) is a principal bundle connection 1-form with curvature −ω,
i.e.,

dθ = −π∗ω.
Consider the T 2-action on R1 ×R1 ×R1:

(19) (s, t) · (x̃, ỹ, z̃) = (s · x̃, t · ỹ, (st) · z̃), ∀s, t ∈ S1, x̃, ỹ, z̃ ∈ R1.

Then p : (R1 × R1 × R1)/T 2 −→ X1 ×X1 ×X1 is an S1-principal bundle.
Consider the following diagram of principal bundles:

(20) T 3

��

T 1

��

T 2 �� π−1(Λ) τ ��

π

��

π−1(Λ)/T 2

p

��
Λ Λ

where Λ = {(x, y, z)|z = xy, ∀(x, y) ∈ X2} ⊂ X1×X1×X1 is the graph of
the groupoid multiplication of X1 ⇒ X0. Let Θ̃ be the 1-form on π−1(Λ) ⊂
R1 ×R1 ×R1 defined by

(21) Θ̃ = Θ− π∗pr∗12η,

where Θ = (θ, θ,−θ) and pr12 : Λ → X2 is the projection to the first two
components. Then

(22) dΘ̃ = 0.

By ξ we denote the Euler vector field on R1 generating the S1-action.

Lemma 5.1. (i) (ξ, ξ, ξ) Θ̃ = 1;
(ii) Θ̃ ∈ Ω1(π−1(Λ)) is basic with respect to the T 2-action as in equation

(19), so it descends to a 1-form Θ̂ on π−1(Λ)/T 2;
(iii) Θ̂ defines a flat connection on the S1-principal bundle π−1(Λ)/T 2

p−→ Λ.
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Proof. (i) is obvious. For (ii) and (iii), note that Θ̃ ∈ Ω1(π−1(Λ)) is invariant
under the natural T 3-action induced from the one on R1 × R1 × R1. It is
also quite clear that ξ1 Θ̃ = ξ2 Θ̃ = 0, where

(23) ξ1 = (ξ, 0, ξ), and ξ2 = (0, ξ, ξ)

are the generating vector fields of the T 2-action as in equation (19). Hence,
Θ̃ is basic with respect to this action, and descends to a 1-form Θ̂ on
π−1(Λ)/T 2, which is easily seen to be a flat connection for the S1-bundle
π−1(Λ)/T 2 p−→ Λ. �

Now assume that R1 ⇒ R0 is a Lie groupoid S1-central extension over
X1 ⇒ X0. Then R1 → X1 is a principal S1-bundle. Assume, moreover, that
θ ∈ Ω1(R1) is a pseudo-connection of the extension, whose corresponding
pseudo-curvature equals η + ω ∈ Z3

DR(X•). That is,

(24) ∂θ = π∗η, dθ = −π∗ω.
The proposition below describes the relation between θ and the groupoid

structure on R1 ⇒ R0. First, let us fix some notations as follows.

ε̃ : R0 −→ R1, u→ ũ,(25)

ε̃2 : R0 −→ R2, u→ (ũ, ũ),(26)

ε2 : X0 −→ X2, u→ (u, u),(27)

κ : X1 −→ X2, x −→ (x, x−1).(28)

Let η0 be the 1-form on X0 given by

(29) η0 = ε∗2η.

Proposition 5.1. Let R1 ⇒ R0 be a Lie groupoid S1-central extension
over X1 ⇒ X0. Let θ ∈ Ω1(R1) be a pseudo-connection whose corresponding
pseudo-curvature equals η + ω ∈ Z3

DR(X•). Then
(i) ε̃∗θ = η0

(ii) ι̃∗θ + θ = s̃∗η0 + π∗κ∗η.
In particular, if θ is a connection, then

ε̃∗θ = 0, ι̃∗θ = −θ.
Proof. (i) It is clear that ε̃∗2∂θ = ε̃∗θ. On the other hand, we have ε̃∗2π∗η =
(π ◦ ε̃2)∗η = ε∗2η = η0. Thus, we have ε̃∗θ = η0.

(ii) Given any x̃ ∈ R1, ∀δx̃ ∈ Tx̃R1, consider the tangent vector (δx̃, ι̃∗δx̃)
of R2 at the point (x̃, x̃−1). It is clear that m̃∗(δx̃, ι̃∗δx̃) = ε̃∗s̃∗δx̃. So

(∂θ)(δx̃, ι̃∗δx̃) = δx̃ θ + ι̃∗δx̃ θ − ε̃∗s̃∗δx̃ θ = δx̃ (θ + ι̃∗θ − s̃∗η0).

On the other hand, (π∗η)(δx̃, ι̃∗δx̃) = δx̃ π∗κ∗η. (ii) thus follows. �
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Remark 5.1. In the case of an S1-gerbe over a manifold, the conditions
that ε̃∗θ = 0, ι̃∗θ = −θ were included in the definition of a connection
[5, 21, 32]. From the above lemma, we see that they are easy consequences
of the condition ∂θ = 0.

Proposition 5.2. Let R1 ⇒ R0 be a Lie groupoid S1-central extension over
X1 ⇒ X0. Let θ ∈ Ω1(R1) be a pseudo-connection whose pseudo-curvature
equals η + ω ∈ Z3

DR(X•). Then the flat S1-bundle p : π−1(Λ)/T 2 −→ Λ as
in diagram (20) is holonomy-free.

Proof. By Λ̃ ⊂ R1 × R1 × R1, we denote the graph of the groupoid
multiplication of R1 ⇒ R0. It is clear that p(Λ̃/T 2) = Λ. Given any
(x̃1, ỹ1, z̃1), (x̃2, ỹ2, z̃2) ∈ Λ̃, if p[(x̃1, ỹ1, z̃1)] = p[(x̃2, ỹ2, z̃2)], then π(x̃1, ỹ1,
z̃1) = π(x̃2, ỹ2, z̃2). This implies that x̃1 = s · x̃2 and ỹ1 = t · ỹ2. Hence
z̃1 = x̃1ỹ1 = (s · x̃2)(t · ỹ2) = (st) · (x̃2ỹ2) = (st) · z̃2, and therefore
[(x̃1, ỹ1, z̃1)] = [(x̃2, ỹ2, z̃2)]. Hence, Λ̃/T 2 is indeed a section of the S1-bundle
p : π−1(Λ)/T 2 −→ Λ. From the equation ∂θ = π∗η, it follows that Θ̃ vanishes
on Λ̃. So Λ̃/T 2 is indeed a horizontal section. �

5.2. Sufficient condition. In this subsection, we investigate the inverse
question to Proposition 5.2. Namely, given a Lie groupoid X1 ⇒ X0 and a 3-
cocycle η+ω ∈ Z3

DR(X•), if π : R1 → X1 is an S1-bundle and θ ∈ Ω1(R1) is
a connection 1-form of the bundle so that dθ = −π∗ω and the corresponding
S1-flat bundle p : π−1(Λ)/T 2 −→ Λ is holonomy free, does R1 always admit
a structure of groupoid S1-central extension over X1 ⇒ X0 so that θ is a
pseudo-connection with η + ω being its pseudo-curvature? Throughout this
subsection, we will keep this assumption and all the notations. Our method is
a modification of the one used in [49], where a special case was investigated.

Let Λ1 be a horizontal section of the flat bundle p : π−1(Λ)/T 2 −→ Λ. Set
Λ̃ = τ−1(Λ1) ⊂ π−1(Λ), which is clearly a T 2-invariant submanifold. It is
also clear that dimΛ̃ = dimΛ + 2 = dimX2 + 2, and Θ̃ vanishes when being
restricted to Λ̃.

Lemma 5.2. (i) π(Λ̃) = Λ; and
(ii) Λ̃ is a graph over R2

Proof. (i) is obvious.
(ii) Let p̃r12 : R1 ×R1 ×R1 → R1 ×R1 be the projection to its first two

components. Clearly p̃r12(Λ̃) ⊆ R2. Let (x̃, ỹ) ∈ R2 be any point, and write
(x, y) def= π(x̃, ỹ). Then (x, y, xy) ∈ Λ. Assume that (x̃1, ỹ1, z̃1) ∈ Λ̃ such that
π(x̃1, ỹ1, z̃1) = (x, y, xy). Then x̃ = s · x̃1 and ỹ = t · ỹ1 for some s, t ∈ S1.
Since Λ̃ is T 2-invariant, it thus follows that (x̃, ỹ, st· z̃1) = (s, t)·(x̃1, ỹ1, z̃1) ∈
Λ̃. This shows that p̃r12(Λ̃) = R2.
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To show that Λ̃ is indeed a graph over R2, assume that (x̃, ỹ, z̃), (x̃, ỹ, z̃1)
are two points in Λ̃. Then it is clear that π(x̃, ỹ, z̃) = π(x̃, ỹ, z̃1), i.e.,
p ◦τ(x̃, ỹ, z̃) = p ◦τ(x̃, ỹ, z̃1). Since τ(x̃, ỹ, z̃) and τ(x̃, ỹ, z̃1) ∈ Λ1 and Λ1

is a section for p, it follows that τ(x̃, ỹ, z̃) = τ(x̃, ỹ, z̃1). Hence (x̃, ỹ, z̃) =
(s, t) · (x̃, ỹ, z̃1) for some (s, t) ∈ T 2, which implies that s = t = 1 and
z̃ = z̃1. �

Now Λ̃ defines a smooth map m̃′ : R2 −→ R1, (x̃, ỹ)→ x̃∗ ỹ. By construc-
tion, the operation ∗ satisfies the condition

(30) (s · x̃) ∗ (t · ỹ) = st · (x̃ ∗ ỹ),
for all s, t ∈ S1 and (x̃, ỹ) ∈ R2.

Obviously, m̃′ commutes with the projection π. Therefore for any triple
(x̃, ỹ, z̃) ∈ R3, both elements (x̃ ∗ ỹ) ∗ z̃ and x̃ ∗ (ỹ ∗ z̃) ∈ R1 have the same
image under the projection π, so they must differ by a unique element in S1.
Hence, we obtain a function g : R3 → S1. Note that equation (30) implies
that g descends to a function on X3. Hence, symbolically, we may write

g(x, y, z) =
(x̃ ∗ ỹ) ∗ z̃
x̃ ∗ (ỹ ∗ z̃) , ∀(x, y, z) ∈ X3,

where (x̃, ỹ, z̃) ∈ R3 is any point such that π(x̃, ỹ, z̃) = (x, y, z). We call
g(x, y, z) the modular function of θ.

Note that g(x, y, z) is independent of the choice of the horizontal section
Λ1 of the flat bundle p : π−1(Λ)/T 2 −→ Λ, and therefore depends solely on
θ.

Proposition 5.3. If the modular function g(x, y, z) is equal to 1, Λ̃ defines
a Lie groupoid structure on R1, which is an S1-central extension of X1 ⇒
X0 with θ being a pseudo-connection and η + ω the corresponding pseudo-
curvature.

Proof. By assumption, we know that x̃ ∗ ỹ is indeed associative.
Now we need to show the existence of units. For this purpose, we show

that there exists a unique section for the principal S1-bundle R1
π→ X1

over the unit space ε(X0), namely ε′ : ε(X0) −→ R1, ε(u)
ε′→ ũ such that

(ũ, ũ, ũ) ∈ Λ̃ for any u ∈ X0. Let (ũ1, ũ2, ũ3) ∈ Λ̃ be any point such that
π(ũ1, ũ2, ũ3) = (u, u, u). Then ũ2 = s · ũ1 and ũ3 = t · ũ1 for some s, t ∈ S1.
Let ũ = (st−1) · ũ1. Then

(ũ, ũ, ũ) = (st−1, t−1) · (ũ1, ũ2, ũ3) ∈ Λ̃.

Assume that (ṽ, ṽ, ṽ) is another point in Λ̃ such that π(ṽ, ṽ, ṽ) = (u, u, u).
From the equation (p ◦τ)(ũ, ũ, ũ) = (p ◦τ)(ṽ, ṽ, ṽ), we deduce that τ(ũ, ũ, ũ) =
τ(ṽ, ṽ, ṽ). Therefore (ũ, ũ, ũ) = (s, t)·(ṽ, ṽ, ṽ) for some s, t ∈ S1, which means
that ũ = s · ṽ, ũ = t · ṽ, ũ = st · ṽ. This implies that s = t = 1 and hence
ũ = ṽ.
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Next, we prove that ũ ∗ x̃ = x̃ and x̃ ∗ ṽ = x̃ if s̃(x̃) = u and t̃(x̃) = v.
By construction, we have ũ ∗ ũ = ũ. From the associativity assumption, we
have

ũ ∗ (ũ ∗ ỹ) = (ũ ∗ ũ) ∗ ỹ = ũ ∗ ỹ, if s̃(ỹ) = u.

We must prove that x̃ is of the form ũ ∗ ỹ. Let x = π(x̃). Since (u, x, x) ∈ Λ,
there exists (a, b, c) ∈ Λ̃ such that π(a, b, c) = (u, x, x). Thus ũ = s · a and
x̃ = t · c for some s, t ∈ S1. So

(ũ, ts−1 · b, x̃) = (s · a, ts−1 · b, t · c) = (s, ts−1) · (a, b, c) ∈ Λ̃.

Thus, x̃ = ũ ∗ (ts−1 · b). In conclusion, we have ũ ∗ x̃ = x̃. Similarly, one
proves that x̃ ∗ ṽ = x̃.

Finally, we need to show the existence of inverse. For any x̃ ∈ R1, let
x = π(x̃) and s̃(x̃) = v. Since (x, x−1, v) ∈ Λ, there exists (x̃1, ỹ1, z̃1) ∈ Λ̃
such that π(x̃1, ỹ1, z̃1) = (x, x−1, v). One may assume that x̃1 = x̃ by using
the T 2-action. Since πz̃1 = πṽ, we have ṽ = t · z̃1. Thus (x̃, t · ỹ1, ṽ) =
(1, t) · (x̃, ỹ1, z̃1) ∈ Λ̃. This shows that the right inverse of x̃ exists. Similarly,
one shows that the left inverse exists as well. It is then standard that the
left and right inverses must coincide. This concludes the proof. �

In general, the modular function is not necessarily equal to 1. Neverthe-
less, we have the following characterization.

Proposition 5.4. The modular function g : X3 → S1 defines an R/Z-valued
groupoid 3-cocycle. That is, dg = 0, ∂g = 1.

Proof. Let (x(t), y(t), z(t)) be any smooth curve in X3, and (x̃(t), ỹ(t), z̃(t))
a smooth curve in R3 such that π(x̃(t), ỹ(t), z̃(t)) = (x(t), y(t), z(t)). Write
ũ(t) = x̃(t) ∗ ỹ(t), ṽ(t) = ỹ(t) ∗ z̃(t), and h̃1(t) = (x̃(t) ∗ ỹ(t)) ∗ z̃(t), h̃2(t) =
x̃(t) ∗ (ỹ(t) ∗ z̃(t)).

Since (x̃(t), ỹ(t), ũ(t)), (ũ(t), z̃(t), h̃1(t)) ∈ Λ̃, we have

˙̃x(t) θ + ˙̃y(t) θ − ˙̃u(t) θ = η( ˙̃x(t) ∗ ˙̃y(t)), and

˙̃u(t) θ + ˙̃z(t) θ − ˙̃
h1(t) θ = η( ˙̃u(t) ∗ ˙̃z(t)),

where, by abuse of notation, we use the same symbol ∗ to denote the induced
tangent map TR2 → TR1. It follows that

(31) ˙̃
h1(t) θ = ˙̃x(t) θ+ ˙̃y(t) θ+ ˙̃z(t) θ− η( ˙̃x(t) ∗ ˙̃y(t))− η( ˙̃u(t) ∗ ˙̃z(t)).

Similarly, one proves that

(32) ˙̃
h2(t) θ = ˙̃x(t) θ+ ˙̃y(t) θ+ ˙̃z(t) θ− η( ˙̃x(t) ∗ ˙̃v(t))− η( ˙̃y(t) ∗ ˙̃z(t)).

Since ∂η = 0, Eqs (31) and (32) imply that ˙̃
h1(t) θ = ˙̃

h2(t) θ.
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Let f(t) = h̃1(t)

h̃2(t)
. Therefore, h̃1(t) = f(t) · h̃2(t), which implies that

˙̃
h1(t) = f(t) · ˙̃h2(t) + ḟ(t)ξ,

where ξ is the Euler vector field on R1. Pairing with θ on both sides, one
obtains that ḟ(t) = 0.

Finally, the identity ∂g = 1 can be verified directly. �
Corollary 5.1. (i) For any y ∈ X1, we have g(s(y), y, t(y)) = 1. In

particular, ∀u ∈ X0, we have g(u, u, u) = 1;
(ii) If X1 is s-connected, then g(x, y, z) = 1.

Proof. Since ∂g = 1, we have

g(y, z, w)g(xy, z, w)−1g(x, yz, w)g(x, y, zw)−1g(x, y, z) = 1.

By letting x = s(y) and z = t(y), we obtain that g(s(y), y, t(y)) = 1.
For any (x, y, z) ∈ X3, if X1 is s-connected, then x can be connected to

s(y) by a smooth path in the t-fiber t−1(s(y)), while z can be connected
to t(y) by a smooth path in the s-fiber s−1(t(y)). In other words, (x, y, z)
and (s(y), y, t(y)) belong to the same connected component of X3. Thus,
g(x, y, z) = 1 according to Proposition 5.4. �

An immediate consequence is the following:

Proposition 5.5. Let X1 ⇒ X0 be an s-connected Lie groupoid, and η+ω ∈
Z3
DR(X•) a 3-cocycle, where η ∈ Ω1(X2) and ω ∈ Ω2(X1). Assume that ω

represents an integer cohomology class in H2
DR(X1), so that there exists

an S1-bundle π : R1 → X1 with a connection 1-form θ ∈ Ω1(R1), whose
curvature is −ω. If the associated S1-bundle p : π−1(Λ)/T 2 −→ Λ as in
diagram (20) is holonomy-free, then R1 → X1 is a Lie groupoid S1-central
extension with θ being a pseudo-connection and η + ω being the pseudo-
curvature. In particular, η + ω is of integer class in H3(X•,Z).

5.3. Properties of 3-cocycles. In this subsection, we study some geomet-
ric properties of 3-cocycles of the de Rham double complex of a Lie groupoid,
which are important for our constructions in the next section.

Let η+ω ∈ Z3
DR(X•) be a de Rham three-cocycle, where η ∈ Ω1(X2) and

ω ∈ Ω2(X1). Then

(33) ∂η = 0, ∂ω + dη = 0, dω = 0.

By Xs
1 and Xt

1 we denote the s- and t-fibrations of X1 ⇒ X0, respectively.
Define a leafwise 1-form λr on Xt

1 by

λr(δx) = η(rx−1∗δx, 0x), ∀δx ∈ TxXt
1.

Similarly, let λl be the leafwise 1-form on Xs
1 given by

λl(δx) = η(0x, lx−1∗δx), ∀δx ∈ TxXs
1 .
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Here rx−1 and lx−1 denote the right and the left translations, respectively.
Note that λr (or λl) is in general not right (left)-invariant.
By A → X0 we denote the Lie algebroid of X1 ⇒ X0. For any section

V ∈ Γ(A), we denote, respectively, by
−→
V and

←−
V the right invariant and the

left invariant vector fields on X1 corresponding to V .

Lemma 5.3. For any V ∈ Γ(A),

(i) η(
−→
V (x), 0y) = λr(

−→
V (xy))− λr(−→V (x)), ∀(x, y) ∈ X2;

(ii) η(0x,
←−
V (y)) = λl(

←−
V (xy))− λl(←−V (y)), ∀(x, y) ∈ X2;

(iii) λr(
−→
V )(u) = λl(

←−
V )(u) = 0, ∀u ∈ X0; and

(iv) η(
−→
V (x),−←−V (x−1)) = λl(

←−
V )(x−1)− λr(−→V )(x), ∀x ∈ X1.

Proof. Consider the curve r(t) = (exp t
−→
V , x, y) in X3 through the point

(s(x), x, y). By definition, we have

ṙ(0) ∂η = η(0x, 0y)− η(−→V (x), 0y) + η(
−→
V (s(x)), 0xy)− η(−→V (s(x)), 0x).

Thus, (i) follows immediately since ∂η = 0. Similarly, (ii) can be proved
by considering the curve (x, y, exp t

←−
V ) through the point (x, y, t(y)). (iii)

follows from (i) and (ii) by taking x = y = u ∈ X0. Finally, using (i)–(iii),
we have

η(
−→
V (x),−←−V (x−1)) = η(

−→
V (x), 0x−1)− η(0x,←−V (x−1))

= [λr(
−→
V )(xx−1)− λr(−→V )(x)]

− [λl(
←−
V )(xx−1)− λl(←−V )(x−1)]

= λl(
←−
V )(x−1)− λr(−→V )(x).

Thus (iv) follows. �

For any V ∈ Γ(A), by V r and V l we denote the vector fields on X2 given
by V r(x, y) = (

−→
V (x), 0y) and V l(x, y) = (0x,

←−
V (y)), ∀(x, y) ∈ X2. It is clear

that the flows of V r and V l are, respectively, given by

(34) φt(x, y) = (exp (t
−→
V )x, y), ψt(x, y) = (x, y exp (t

←−
V )).

Lemma 5.4. For any V,W ∈ Γ(A),

(i) (dη)(V r,W l)(x, y) =
−→
V (λl(

←−
W ))(xy)−←−W (λr(

−→
V ))(xy).

(ii) (dη)(V r,W r)(x, y) = (dλr)(
−→
V ,
−→
W )(xy)− (dλr)(

−→
V ,
−→
W )(x).

(iii) (dη)(V l,W l)(x, y) = (dλl)(
←−
V ,
←−
W )(xy)− (dλl)(

←−
V ,
←−
W )(y).

Proof. (i) From equation (34), one easily sees that the vector fields V r and
W l commute with each other: [V r,W l] = 0.
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According to Lemma 5.3 (ii), η(W l)(x, y) = λl(
←−
W (xy)) − λl(

←−
W (y)). It

thus follows that

V r(η(W l))(x, y) =
d

dt
|t=0[λl(

←−
W (exp (t

−→
V )xy)− λl(←−W (y))] =

−→
V (λl(

←−
W ))(xy).

Similarly, one shows that W l(η(V r))(x, y) =
←−
W (λr(

−→
V )(xy). (i) thus follows.

(ii) We have

V r(η(W r))(x, y) = V r[λr(
−→
W (xy))− λr(−→W (x))]

=
d

dt
|t=0[λr(

−→
W (exp (t

−→
V )xy))− λr(−→W (exp (t

−→
V )x))]

=
−→
V (λr(

−→
W ))(xy)−−→V (λr(

−→
W ))(x).

Hence,

(dη)(V r,W r)(x, y) = V r(η(W r))(x, y)−W r(η(V r))(x, y)

− η([V r,W r])(x, y)

= (dλr)(
−→
V ,
−→
W )(xy)− (dλr)(

−→
V ,
−→
W )(x).

(iii) can be proved similarly. �
Proposition 5.6. Assume that η + ω ∈ Z3

DR(X•) is a 3-cocycle.
(i) ε∗ω = −dη0;
(ii) For any V,W ∈ Γ(A), ω(

−→
V ,
←−
W ) =

−→
V λl(

←−
W )−←−Wλr(

−→
V ).

(iii) ω − dλr ∈ Ω2(Xt) is a right invariant (leafwise) closed 2-form, and
therefore induces a Lie algebroid 2-cocycle ωr ∈ Γ(∧2A∗).

(iv) ω − dλl ∈ Ω2(Xs) is a left invariant (leafwise) closed 2-form, and
therefore induces a Lie algebroid 2-cocycle ωl ∈ Γ(∧2A∗).

(v) ωr and ωl are related by

ωr + ωl + ρ∗dη0 = 0,

i.e., ωr and −ωl are cohomologous Lie algebroid 2-cocycles. Here ρ :
A→ TX0 is the anchor of the Lie algebroid A.

Proof. It is not difficult to see that m∗V r(x, y) =
−→
V (xy) and m∗W l(x, y) =←−

W (xy). Thus,
(∂ω)(V r,W l)(x, y) = −ω(

−→
V ,
←−
W )(xy).

On the other hand, according to Lemma 5.4(i), we have

(dη)(V r,W l)(x, y) =
−→
V (λl(

←−
W ))(xy)−←−W (λr(

−→
V ))(xy).

Since ∂ω + dη = 0, it thus follows that

ω(
−→
V ,
←−
W )(xy) =

−→
V λl(

←−
W )(xy)−←−Wλr(

−→
V )(xy).

(ii) thus follows by letting y = t(x).
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For (iii), we note that

(∂ω)(V r,W r)(x, y) = ω(
−→
V ,
−→
W )(x)− ω(

−→
V ,
−→
W )(xy).

The conclusion thus follows from Lemma 5.4. (iv) can be similarly proved.
Finally, consider the map κ : X1 → X2 as in equation (28). It is clear that

(35) κ∗
−→
V (x) = (

−→
V (x),−←−V (x−1)).

Thus,

(κ∗η)(
−→
V )(x) = η(

−→
V (x),−←−V (x−1)) (by Lemma 5.3 (iv))

= −λr(−→V )(x) + λl(
←−
V )(x−1)

= (−λr − ι∗λl)(−→V )(x).

It follows that κ∗η = −λr−ι∗λl. Here κ∗η is considered as a fiberwise 1-form
on Xt

1 by restriction.
For any V ∈ Γ(A), write V (x, x−1) = (

−→
V (x),−←−V (x−1)) ∈ T(x,x−1)X2.

Equation (35) means that κ∗
−→
V (x) = V (x, x−1). Hence for any V,W ∈ Γ(A),

(dη)(V (x, x−1),W (x, x−1)) = d(κ∗η)(
−→
V (x),

−→
W (x))

= −(dλr)(
−→
V (x),

−→
W (x))

− (dλl)(ι∗
−→
V (x), ι∗

−→
W (x))

= −(dλr)(
−→
V (x),

−→
W (x))

− (dλl)(
←−
V (x−1),

←−
W (x−1)).

On the other hand, we havem∗V (x, x−1) = ε∗s∗
−→
V (x) andm∗W (x, x−1) =

ε∗s∗
−→
W (x). To see this, note that (exp t

−→
V · x, (exp t

−→
V · x)−1) is the flow

generated by V (x, x−1) on X2. Thus we have

(∂ω)(V (x, x−1),W (x, x−1)) = ω(
−→
V ,
−→
W )(x) + ω(

←−
V ,
←−
W )(x−1)

− ω(s∗
−→
V (x), s∗

−→
W (x)).

(v) thus follows immediately. �
.

5.4. Lie algebroid central extensions. As in the last subsection, let η+
ω ∈ Z3

DR(X•) be a de Rham 3-cocycle of a Lie groupoid X1 ⇒ X0 and ω
represents an integer cohomology class in H2

DR(X1). Let π : R1 → X1 be
an S1-bundle and θ ∈ Ω1(R1) a connection 1-form of the bundle, so that
dθ = −π∗ω.

Recall that, for a given Lie algebroid A→M , any Lie algebroid 2-cocycle
γ ∈ Γ(∧2A∗) induces a Lie algebroid central extension Ã = A ⊕ (M × R)
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as follows. The anchor map ρ̃(V + f) = ρ(V ), ∀V ∈ Γ(A) and f ∈ C∞(M),
and the bracket is

[V + f,W + g] = [V,W ] + (ρ(V )(g)− ρ(W )(f) + γ(V,W )),

∀V,W ∈ Γ(A) and f, g ∈ C∞(M). Denote by Ãr and Ãl the Lie algebroid
central extensions of A by the 2-cocycles ωr and −ωl, respectively. Then Ãr

and Ãl are isomorphic, while the isomorphism is given by

(36) Ãr −→ Ãl, V + f → V + (f + ρ(V ) η0), ∀V ∈ Γ(A).

Let θr = θ + π∗λr and θl = θ + π∗λl be the fiberwise 1-form on Rt̃1 and
Rs̃1, respectively. Then θr is a fiberwise connection 1-form on the fiberwise
S1-principal bundle Rt̃1 → Xt

1 with curvature being −ω + dλr, while θl is a
fiberwise connection 1-form on the fiberwise S1-principal bundle Rs̃1 → Xs

1

with curvature being −ω + dλl. For any V ∈ Γ(A), denote by
−̂→
V ∈ X(Rt̃1)

the horizontal lift of
−→
V with respect to θr, and

←̂−
V ∈ X(Rs̃1) the horizontal

lift of
←−
V with respect to θl. That is,

(37)

⎧
⎪⎨

⎪⎩

−̂→
V (θ + π∗λr) = 0,

π∗
−̂→
V =

−→
V

and

(38)

⎧
⎪⎨

⎪⎩

←̂−
V (θ + π∗λl) = 0,

π∗
←̂−
V =

←−
V .

Introduce linear maps ϕ : Γ(Ãr) −→ X(R1) and ψ : Γ(Ãl) −→ X(R1),
respectively, by

(39) ϕ : V + f −→ −̂→V + (π∗s∗f)ξ

and

(40) ψ : V + f −→ ←̂−V + (π∗t∗f)ξ,

∀V ∈ Γ(A) and f ∈ C∞(X0). Set

(41) Ds = ϕΓ(Ãr), and Dt = ψΓ(Ãl) ⊂ X(R1).

Proposition 5.7. (i) Both ϕ and ψ are Lie algebra homomorphisms.
(ii) Vector fields in Ds and Dt mutually commute.
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Proof. ∀V,W ∈ Γ(A) and f, g ∈ C∞(X0), we have

[
−̂→
V + (π∗s∗f)ξ,

−̂→
W + (π∗s∗g)ξ]

= [
−̂→
V ,
−̂→
W ] + [

−̂→
V , (π∗s∗g)ξ] + [(π∗s∗f)ξ,

−̂→
W ]

Since the vector field
−̂→
V is S1-invariant, we have [

−̂→
V , ξ] = 0. On the other

hand, since s∗π∗
−̂→
V = s∗

−→
V = ρ(V ), it follows that

−̂→
V (π∗s∗g) = ρ(V )g.

Therefore,

[
−̂→
V , (π∗s∗g)ξ] = (π∗s∗g)[

−̂→
V , ξ] + (

−̂→
V (π∗s∗g))ξ = (ρ(V )g)ξ.

Similarly, one proves that [(π∗s∗f)ξ,
−̂→
W ] = −(ρ(W )f)ξ. Finally note that

[
−̂→
V ,
−̂→
W ] =

−̂−−−→
[V,W ] + π∗s∗ωr(V,W )ξ.

Hence, it follows that ϕ is indeed a Lie algebra homomorphism. Similarly,
one proves that ψ is also a Lie algebra homomorphism.

For the second part, for any V,W ∈ Γ(A) and f, g ∈ C∞(X0), we have

[ϕ(V + f), ψ(W + g)] = [
−̂→
V + (π∗s∗f)ξ,

←̂−
W + (π∗t∗g)ξ]

= [
−̂→
V ,
←̂−
W ] + [

−̂→
V , (π∗t∗g)ξ] + [(π∗s∗f)ξ,

←̂−
W ].

Now [
−̂→
V , (π∗t∗g)ξ] = [(π∗s∗f)ξ,

←̂−
W ] = 0 since t∗π∗

−̂→
V = t∗

−→
V = 0 and

s∗π∗
←̂−
W = s∗

←−
W = 0.

It remains to show that [
−̂→
V ,
←̂−
W ] = 0. For this, first of all, note that

π∗[
−̂→
V ,
←̂−
W ] = [

−→
V ,
←−
W ] = 0. By equations (37) and (38), we have

−̂→
V θ =

−π∗(λr(−→V )) and
←̂−
W θ = −π∗(λl(←−W )). It thus follows that

[
−̂→
V ,
←̂−
W ] θ =

−̂→
V θ(
←̂−
W )− ←̂−Wθ(

−̂→
V )− (dθ)(

−̂→
V ,
←̂−
W )

= π∗[−−→V λl(←−W )+
←−
Wλr(

−→
V ) + ω(

−→
V ,
←−
W )] (by Proposition 5.6 (ii))

= 0.

This concludes the proof of the proposition. �

Introduce distributions Fs and Ft on π−1(Λ) as follows. For any (x̃, ỹ, z̃) ∈
π−1(Λ),

Fs|(x̃,ỹ,z̃) = {(ϕ(V + f)(x̃), 0, ϕ(V + f))(z̃))|∀V ∈ Γ(A), f ∈ C∞(X0)},
(42)

Ft|(x̃,ỹ,z̃) = {(0, ψ(V + f)(ỹ), ψ(V + f))(z̃))|∀V ∈ Γ(A), f ∈ C∞(X0)}.
(43)
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It is clear, from Proposition 5.7, that both Fs and Ft are integrable distri-
butions. By F , we denote the distribution on π−1(Λ) defined by the equation
Θ̃ = 0. According to equation (22), F is an integrable distribution.

Proposition 5.8. We have Fs ⊆ F and Ft ⊆ F .

Proof. Let v = (ϕ(V + f)(x̃), 0, ϕ(V + f))(z̃)). Then

v (θ, θ,−θ) = (
−̂→
V θ)(x̃) + f(s ◦π(x̃))− (

−̂→
V θ)(z̃)− f(s ◦π(z̃))

= −λr(−→V )(x) + λr(
−→
V )(z).

On the other hand,

v π∗η = (
−→
V (x), 0) η = η(

−→
V (x), 0y).

Thus,
v Θ̃ = v Θ− v π∗η = 0,

according to Lemma 5.3 (i). Hence we have proved that Fs ⊆ F . Similarly,
one shows that Ft ⊆ F . �

We are now ready to prove the main theorem of this section.

Theorem 5.1. Let X1 ⇒ X0 be an s-connected Lie groupoid, and η +
ω ∈ Z3

DR(X•) a de Rham 3-cocycle, where η ∈ Ω1(X2) and ω ∈ Ω2(X1).
Assume that ω represents an integer cohomology class in H2

DR(X1), so that
there exists an S1-bundle π : R1 → X1 with a connection θ ∈ Ω1(R1),
whose curvature is −ω. Assume that ε∗R1 endowed with the flat connection
ε∗θ − π∗ε∗2η is holonomy free. (Here ε : X0 → X1 and ε2 : X0 → X2 are
the respective identity morphisms.) Then R1 ⇒ R0, where R0 = X0, admits
in a natural way the structure of a Lie groupoid, such that it becomes an
S1-central extension of X1 ⇒ X0 and η + ω the pseudo-curvature of θ. In
particular, η + ω is of integer class in H3(X•,Z).

Proof. Take a horizontal section ε′ of the bundle R1|X0 → ε(X0): ε(u) →
ũ, ∀u ∈ X0. Consider the foliation in R1 ×R1 ×R1 defined by Fs + Ft. Let

I = {(ũ, ũ, ũ)| ∀u ∈ X0}.
Then I is transversal to the foliation Fs + Ft. By the method of character-
istics [9], there is a minimal Fs + Ft-invariant submanifold Λ̃ containing I
which is immersed in R1×R1×R1. Proposition 5.8 implies that Θ̃ = 0 when
being restricted to Λ̃.

It is clear that Λ̃ is T 2-invariant since the T 2-generating vector fields
ξ1 ∈ Fα and ξ2 ∈ Fβ . Now we need to show that Λ̃ is a graph over R2. Let
pr12 : R1 × R1 × R1 → R1 × R1 be the natural projection onto the first
two coordinates: pr12(x, y, z) = (x, y). First, we show that pr12(Λ̃) = R2.
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Note that (x̃, ỹ, z̃) ∈ Λ̃ if and only if x̃ = ϕαũ, ỹ = ϕβũ, and z = ϕαϕβũ
for some u ∈ X0, where ϕα is a product of flows in Ds and ϕβ is a product
of flows in Dt.

Since t̃∗Ds = 0 and s̃∗Dt = 0, the flow ofDs preserves t̃-fibres and similarly
the flow of Dt preserves s̃-fibres; thus

t̃(x̃) = t̃(ϕαũ) = u,

and
s̃(ỹ) = s̃(ϕβũ) = u.

That is, t̃(x̃) = s̃(ỹ), namely, (x̃, ỹ) ∈ R2. Therefore,

pr12(Λ̃) ⊆ R2.

Conversely, for any (x̃, ỹ) ∈ R2, assume that t̃(x̃) = s̃(ỹ) = u ∈ X0. Since
X1 ⇒ X0 is t-connected and (t ◦π)(x̃) = u, there exists a product ϕα0 of
flows generated by vector fields of the form

−→
V for V ∈ Γ(A), such that

ϕα0(u) = π(x̃). For each V ∈ Γ(A), we denote the flow of the vector field
−̂→
V ∈ X(R1) by Φα

t . Since π∗
−̂→
V =

−→
V , then

π ◦Φα
t = ϕα0

t ◦π.

As each fibre of the S1-bundle R1 → X1 is compact, Φα
t is defined provided

that ϕα0
t is defined. Let Φα denote the product of flows corresponding to

ϕα0 . Then we have
π ◦ Φα = φα0 ◦ π.

Hence,
π(Φα(ũ)) = φα0(u) = π(x̃).

Therefore, x̃ = λ · Φα(ũ) for some λ ∈ S1. Note that the flow ψt(x̃) = t · x̃
on R1 is generated by the standard Euler vector field ξ, which is also in Ds.
Hence we conclude that there exists a product of flows Φ̂α generated by the
vector fields in Ds such that x̃ = Φ̂α(ũ). Similarly, we can find a product
of flows Φ̂β generated by the vector fields in Dt such that ỹ = Φ̂β(ũ). So
(x̃, ỹ, Φ̂αΦ̂β(ũ)) ∈ Λ̃, i.e., (x̃, ỹ) = pr12(x̃, ỹ, Φ̂αϕ̂β(ũ)) ∈ pr12(Λ̃). Thus we
have proved that pr12(Λ̃) = R2.

Finally, note that if x̃ = ϕαũ = ϕα1 ũ and ỹ = ϕβũ, then z̃ = ϕαϕβũ and
z1 = ϕα1ϕ

βu. Thus z̃ = ϕβϕαũ = ϕβ(x̃) = z̃1. Similarly, one shows that z̃ is
also independent of the choice of the flows ϕβ . This shows that Λ̃ is indeed
a graph over R2. Now the conclusion follows from Proposition 5.5. �

Remark. It would be interesting to investigate how the integrability con-
dition of Crainic-Fernandes [11] is related to the theorem above.
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