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LAGRANGIAN FLOER HOMOLOGY OF THE CLIFFORD
TORUS AND REAL PROJECTIVE SPACE IN ODD

DIMENSIONS

Garrett Alston

The Floer homology of the pair (RP 2n−1, T 2n−1) in CP 2n−1 is cal-
culated and is shown to have dimension 2n, both with Z2 and ΛZ2

coefficients. In particular, this implies that RP 2n−1 and T 2n−1 must
always intersect in at least 2n points under Hamiltonian isotopy (if the
intersection is transverse).

1. Introduction

The Clifford torus and real projective space are both Lagrangian submani-
folds of complex projective space. The Clifford torus is

Tn = { [z0 : · · · : zn] ∈ CPn | |z0| = |z1| = · · · = |zn| },
and real projective space is

RPn = { [z0 : · · · : zn] ∈ CPn | zi ∈ R }.
They intersect in the 2n points [±1 : · · · : ±1]. Two interesting questions to
ask are the following: Can they be disjoined from each other by Hamiltonian
isotopy? If not, what is the minimum number of points that they must
intersect in? In this article we use Lagrangian Floer homology to investigate
these questions. The main result is

Theorem 1.1.
HF(RP 2n−1, T 2n−1 : Z2) = (Z2)2

n
.

The Floer chain group is generated by the intersection points of the sub-
manifolds and the homology is invariant under Hamiltonian isotopy. There-
fore Theorem 1.1 immediately implies

Theorem 1.2. If φ is a Hamiltonian diffeomorphism and RP 2n−1 intersects
φ(T 2n−1) transversely, then the intersection contains at least 2n points.
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I believe that this lower bound on the number of intersection points is
sharp and can be realized by φ’s that are elements of U(2n). In the CP 3 case
I have been able to find such unitary matrices using a computer program; an
example of such a matrix is given in the final section. Moreover, investigation
of the CPn cases with n = 1, 2, 3, 4 leads me to believe the following:

Conjecture 1.1. If φ(Tn) intersects RPn transversely, then the intersection
contains at least 2�

n
2
� points, and this lower bound can be realized by a φ

which is a unitary matrix.

The Floer homology of the pair (RPn, Tn) is only defined with Z2 coeffi-
cients for n odd because of disc bubbling. (For each homogeneous coordinate,
there is a Maslov index 2 disc passing through each point of Tn, see Section
3.) However, the disc problem disappears if Z2n+1 coefficients are used for
(RP 2n, T 2n). The problem then becomes that the moduli spaces need to be
oriented, which requires relative Spin structures on the Lagrangians, and
RP 2n is not relatively Spin because it is not orientable. It may be possible
to orient the moduli spaces by using a Pin structure instead of a Spin struc-
ture. If we assume that the Floer homology is defined, it is easy to compute
formally that HF(RP 2, T 2 : Z3) = 0 and HF(RP 4, T 4 : Z5) = 0, because Z3

and Z5 are fields. If Z2n+1 is not a field it is probably much more difficult
to compute.

It is actually known that Tn and RPn cannot be displaced from each
other for any n. This has been proved, using different methods, in various
other papers. See [1, 2, 5, 19].

In [17] Oh conjectures that Tn is volume minimizing in its Hamiltonian
deformation class. Due to a Lagrangian Crofton’s formula (see [17, 21]),
this problem is related to intersections of φ(Tn) with ξ ·RPn, for φ a Hamil-
tonian diffeomorphism and ξ ∈ U(n+ 1). Theorem 1.2 does not answer the
conjecture, but we do obtain

Corollary 1.1. For any Hamiltonian diffeomorphism φ, we have

vol(φ(T 2n−1))
vol(T 2n−1)

≥ nn−1

πn−1(n− 1)!
.

We briefly describe the organization of this article. Section 2 contains an
overview of Lagrangian Floer homology. We indicate the hypotheses that
need to be checked for the Floer homology to be well-defined. The verifica-
tion of some of the hypotheses is relegated to Section 5. Readers familiar
with Floer homology may want to skip to Section 3, where we determine
all the Floer trajectories and write a formula for the boundary operator.
Section 4 contains the computation of the homology. In Section 6 we carry
out the same calculation for coefficients in the Novikov ring ΛZ2 . Finally in
Section 7 we briefly discuss Corollary 1.3.
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2. Lagrangian Floer homology

We briefly describe how Floer homology is constructed. See [6–9, 15, 19]
for the details. We will use only Z2 coefficients until Section 6, so until then
Z2 will be dropped from the notation.

Let (M,ω) be a compact symplectic manifold, L0 and L1 two closed
Lagrangian submanifolds that intersect transversely, and J a time-dependent
almost complex structure compatible with ω. The Floer chain group
CF(L0, L1) is the Z2 vector space generated (formally) by L0 ∩ L1. A Floer
trajectory — or (J-)holomorphic strip — is a map

u : R × [0, 1] →M

that satisfies

(2.1)

⎧
⎨

⎩

∂̄Ju = ∂
∂su+ Jt(u) ∂∂tu = 0,

u(·, 0) ∈ L0, u(·, 1) ∈ L1,
u(−∞, ·) ∈ L0 ∩ L1, u(+∞, ·) ∈ L0 ∩ L1.

(R× [0, 1] is to be viewed as a subset of C with coordinates s+it.) Solutions
of ∂̄Ju = 0 with top and bottom Lagrangian boundary conditions satisfy
the final asymptotic condition in (2.1) if and only if the energy of u

E(u) =
1
2

∫

[0,1]×R

|∂̄Ju|2

is finite. The space of all holomorphic strips that run from p ∈ L0 ∩ L1 to
q ∈ L0 ∩ L1 will be denoted M̃J(L0, L1 : p, q). Let

M̃J(L0, L1) =
⋃

p,q∈L0∩L1

M̃J(L0, L1 : p, q).

If the linearization Du∂̄J of ∂̄J is surjective for every u ∈ M̃J(L0, L1) then
each M̃J(L0, L1 : p, q) is a smooth manifold (different components may
have different dimensions). Let J reg denote the set of all such J . J reg is
a set of the second category, and from now on we assume J ∈ J reg. If
u ∈ M̃J(L0, L1 : p, q) then

dim(TuM̃J(L0, L1 : p, q)) = Index(Du∂̄J).

The index of Du∂̄J is equal to the spectral flow of ∂̄J along u, and this in
turn is an invariant of the homotopy class of u and is equal to μ(u), the
Maslov index of u.

If u ∈ M̃J(L0, L1) then u(· + s0, ·) is also in M̃J(L0, L1) for any s0. In
other words, there is a natural R action on the space of holomorphic strips.
We define more spaces by modding out by the R action:

MJ(L0, L1 : p, q) = M̃J(L0, L1 : p, q)/R,

MJ(L0, L1) = M̃J(L0, L1)/R.
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An isolated trajectory is a trajectory u such that the equivalence class [u] is
a zero-dimensional component of MJ(L0, L1). When no confusion can arise
we will not distinguish between u and [u]. Let n(p, q) be the mod-2 number
of isolated trajectories in M̃J(L0, L1 : p, q). The boundary operator

∂ : CF(L0, L1) → CF(L0, L1)

is defined by

∂(p) =
∑

q

n(p, q) · q.

Under certain topological conditions on M , L0, and L1, Floer proved that
∂2 = 0. Therefore, the Floer homology group

HF(L0, L1) = Ker(∂)/Im(∂)

is defined. Moreover, he showed that HF(L0, L1) does not depend upon the
choice of J ∈ J reg, and also that

HF(Φ0(L0),Φ1(L1)) = HF(L0, L1)

for any Hamiltonian diffeomorphisms Φ0 and Φ1 (such that Φ0(L0) is trans-
verse to Φ1(L1)). The reason ∂2 = 0 is that the moduli spaces MJ(L0, L1)
can be compactified by adding on broken trajectories. ∂2 counts the number
of boundary components of the one-dimensional part of the compactified
moduli space, and hence must be zero mod-2. The compactified moduli
spaces will be denoted MJ(L0, L1 : p, q) and MJ(L0, L1).

The topological restrictions imposed by Floer do not hold in our present
case (L0 = RP k, L1 = T k). However, the results of Oh in [15] imply that
the Floer homology is still defined if k is odd. We cite the relevant theorems
after some more definitions.

Let L be a compact Lagrangian submanifold. Two homomorphisms

Iμ : π2(M,L) → Z,

Iω : π2(M,L) → R

are defined as follows: For each map w : (D2, ∂D2) → (M,L), Iμ(w) is
defined to be the Maslov number of the bundle pair (w∗TM, (w|∂D2)∗TL).
Iω is defined by Iω(w) =

∫

D2 w
∗ω. L is called monotone if there exists a

constant c > 0 such that Iω = c · Iμ. The minimal Maslov number ΣL is
defined to be the positive generator of Im(Iμ) ⊂ Z.

Theorem 2.1 ([15, Theorems 4.4, 5.1]). Assume that L0 and L1 are
monotone Lagrangian submanifolds. Assume further that ΣLi ≥ 3 for i =
0, 1 and Im(π1(Li)) ⊂ π1(M) is a torsion subgroup for at least one of i = 0, 1.
Then there exists a dense subset J ′ ⊂ J reg such that if J ∈ J ′ then
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(1) ∂ is well-defined,
(2) ∂2 = 0, and
(3) HF (L0, L1) is independent of J and Hamiltonian isotopy.

Statements (1) and (2) are equivalent to compactness modulo broken
trajectories of the zero- and one-dimensional components of MJ(L0, L1),
respectively. The proofs of the theorems in [15] show that J ′ is the set of
J ∈ J reg for which the compactness holds. Actually, because only the zero-
and one-dimensional components of MJ(L0, L1) are used to define the Floer
homology, it is not necessary for J to be in J reg, but only that Du∂̄J be
surjective for those u with Maslov index 1 or 2.

We state some well-known facts about RP k and T k; the proofs can be
found in [3, 15, 16]. RP k and T k are both monotone Lagrangian sub-
manifolds. The minimal Maslov number of RP k is k + 1. The minimal
Maslov number of T k is 2 for all k. RP 1 is Hamiltonian isotopic to T 1, and
HF(RP 1,RP 1) = (Z2)2. Hence we may assume k ≥ 3, and so the minimal
Maslov number of RP k is at least 4.

Theorem 2.1, therefore, does not directly apply because T k has Maslov
index 2 discs. However, as shown in the addendum to [15], the Floer homol-
ogy can sometimes still be defined in the presence of such discs. The main
difficulty is showing that ∂2 = 0. If this is true it is then straightforward to
see that the Floer homology is still invariant under Hamiltonian isotopy, for
example by studying the proof of invariance given in [13].

Following [15], let us analyze the problem caused by Maslov index 2 discs.
To begin with, the following theorem about Gromov–Floer compactness is
needed (see for example [6]).

Theorem 2.2. Let un ∈ MJ(L0, L1 : p, q) be a sequence of holomorphic
strips with constant Maslov index I and energy E(un) bounded above. Then
there exists a subsequence converging to the cusp-curve u∞ = (u, v, w),
where u = (u′1, . . . , u′i) is an (i − 1)-broken trajectory connecting p to q,
v = (v1, . . . , vj) is a collection of holomorphic sphere bubbles, and w =
(w1, . . . , wk) is a collection of holomorphic disc bubbles with boundary lying
entirely on L0 or entirely on L1. Furthermore,

(2.2) I =
∑

μ(u′α) + 2
∑

c1(v∗βTM) +
∑

Iμ(wγ).

c1 denotes the first Chern class and μ the Maslov index.

Note that we abused notation and said un ∈ MJ(L0, L1). Technically,
un ∈ M̃J(L0, L1), and the convergence only holds up to R translation.
That is, assuming we have already replaced the original sequence with a
convergent subsequence, the convergence means that there exists sequences
sαn ∈ R, 1 ≤ α ≤ i, such that un(· + sαn, ·) converges to u′α. The convergence
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is C∞-uniform on every compact subset K ⊂ R× [0, 1] that does not contain
any points where disc and sphere bubbles attach to u′α.

Now suppose un ∈ MJ(L0, L1 : p, q) is a sequence with μ(un) = 1 for
all n. Under the assumptions of Theorem 2.1 it is true that all un have
the same energy [15, Proposition 2.7]. Theorem 2.2 thus applies and gives
a convergent subsequence. Monotonicity and regularity imply all the terms
on the right-hand side of (2.2) are positive. The assumption ΣLi ≥ 3 then
implies that u∞ consists of a single trajectory. That is, a subsequence of un
converges to an element of MJ(L0, L1 : p, q). Hence the zero-dimensional
part of MJ(L0, L1) is compact — so ∂ is well-defined. The same argument
works if it is only true that ΣLi ≥ 2.

Consider now compactness of the one-dimensional part of MJ(L0, L1).
Let un ∈ MJ(L0, L1 : p, q) be a sequence with μ(un) = 2. If ΣLi ≥ 3
then the same argument works. More precisely, the one-dimensional part of
MJ(L0, L1) is compact up to splittings into one-broken trajectories, with
each one-broken trajectory consisting of two isolated trajectories. Therefore,
the boundary components that are added to the one-dimensional part of
the compactified moduli space MJ(L0, L1) consist entirely of one-broken
trajectories — it follows that ∂2 = 0.

If we only assume ΣLi ≥ 2 then the situation is more complicated. If p 	= q
a similar argument works, but if p = q two things can happen:

(1) u = ∅, v = (v1) with c1(v1) = 1, and w = ∅,
(2) u = ∅, v = ∅, and w = (w1) with μ(w1) = 2.
In case (1), a sphere bubble v1 appears at the point p. A dimension count-

ing argument shows that for a dense subset of J reg the moduli space of
holomorphic spheres with one marked point and c1 = 1 misses the zero-
dimensional submanifold L0∩L1 under the evaluation map. Hence for these
J case (1) cannot occur.

Case (2) cannot be avoided. In the addendum to [15] it is noted that each
holomorphic disc w : (D2, ∂D2) → (M,Li) can be viewed as a boundary
component of some one-dimensional component of MJ(L0, L1), as long as
the linearization Dw∂̄J is surjective and the evaluation map on the moduli
space of discs with one marked point is transverse to L0 ∩L1. In particular,
∂2 = 0 no longer follows from the compactness of the one-dimensional part
of MJ(L0, L1), because the boundary components contain elements besides
broken trajectories. However, we do have

〈∂2(p), p〉 = ΦJ
0 (p) + ΦJ

1 (p),

where ΦJ
i (p) is the number mod-2 of holomorphic discs with one marked

point, Maslov index 2, and boundary on Li that pass through p. Therefore,
if ΦJ

0 (p) + ΦJ
1 (p) = 0 then ∂2 = 0.

The mod-2 one-point open Gromov–Witten invariant ΦL = ΦJ
L(p) of

a monotone Lagrangian submanifold L does not depend on the choice of
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generic p or J . That is, for generic J , Dw∂̄ is surjective for all Maslov index
2 discs w, and the evaluation map from the moduli space of such discs
with one marked point is transverse to a generic point p of L. Moreover, by
monotonicity and Gromov’s compactness theorem it follows that this moduli
space is a smooth compact manifold. Thus for such J and p, the intersection
number ΦJ

L(p) is a well-defined element of Z2. By a cobordism argument,
ΦJ
L(p) does not depend on the choice of generic J or p, so the invariant

ΦL is well-defined. If ψ is a Hamiltonian diffeomorphism, then a cobordism
argument also shows that ΦL = Φψ(L). In particular, if ΦL0 + ΦL1 = 0 then
Φψ0(L0) + Φψ1(L1) = 0.

In summary, if L0, L1 are monotone Lagrangian submanifolds such that
ΣL0 ≥ 3 and ΣL1 ≥ 2, then HF(L0, L1) is well-defined and J can be used to
calculate it if the following items hold:

(1) No J-holomorphic spheres with c1 = 1 pass through L0 ∩ L1.
(2) The evaluation map on the moduli space of J-holomorphic discs with

one marked point, Maslov index 2, and boundary lying on L1 is trans-
verse to L0 ∩ L1.

(3) If w : (D2, ∂D2) → (M,L1) is such a disc then Dw∂̄J is surjective.
(4) Du∂̄J is surjective for all J-holomorphic strips of Maslov index 1 or

2.
(5) ΦJ

L0
(p)+ΦJ

L1
(p) = 0 for all p ∈ L0 ∩ L1.

Moreover, if ψ0, ψ1 are Hamiltonian diffeomorphisms such that ψ0(L0) inter-
sects ψ1(L1) transversely, then HF(ψ0(L0), ψ1(L1)) is well-defined and is
equal to HF(L0, L1).

Proposition 2.1. HF (RP 2n−1, T 2n−1) is well-defined and the standard
complex structure J0 on CP 2n−1 can be used to calculate it. Moreover, the
Floer homology is invariant under Hamiltonian isotopy.

Proof. We need to check conditions (1)–(5) with L0 = RP 2n−1 and L1 =
T 2n−1. Condition (1) follows from Lemma 4.6 in [16]. Conditions (2)–(4)
will be proved in Section 5. For (5), if k ≥ 2, then ΦRPk(p) = 0 because the
minimal Maslov number of RP k is k+ 1. Theorem 3.1 shows that ΦTk(p) =
k + 1. Thus ΦRPk(p) + ΦTk(p) = k + 1. This is 0 if and only if k is odd. (In
the k = 1 case, we actually have RP 1 = T 1, so ΦRP 1(p) + ΦT 1(p) = 4 = 0.)
Therefore, (5) holds if k is odd. �

Henceforth we will use only J = J0.

3. Classification of discs and Floer trajectories

The minimal Maslov number of T k is 2. A consequence, as explained in
Section 2, is that some of the boundaries of the one-dimensional components
of the compactified moduli space MJ(RP k, T k) will consist of Maslov index
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2 holomorphic discs with boundary lying on T k. For the Floer homology to
be defined the number of such discs must be even. The next theorem, due
to Cho, classifies all holomorphic discs with boundary lying on T k.

Theorem 3.1 ([3, Theorem 10.1]). Let w : (D2, ∂D2) → (CP k, T k) be a
holomorphic map. Then w can be written as w(z) = [w0(z) : . . . : wk(z)],
where each wi is a finite Blaschke product. That is,

wi(z) = e
√−1θi

μi∏

j=1

z − αi,j
1 − ᾱi,jz

,

with θi ∈ R, μi ∈ Z≥0, αi,j ∈ Int(D2), and ∩ki=0 ∪μi
j=1 αi,j = ∅. Furthermore,

the Maslov index of w is

μ(w) = 2
k∑

i=0

μi.

Let M1(T k, βi) denote the moduli space of holomorphic discs

w : (D2, ∂D2) → (CP k, T k)

with Maslov index 2, one marked point, and such that the ith homogeneous
coordinate is the non-constant coordinate. An immediate consequence of
Theorem 3.1 is that the evaluation map

ev : M1(T k, βi) → T k

is a diffeomorphism. Therefore, for each p ∈ T k,

#ev−1(p) = k + 1,

that is ΦTk(p) = k + 1. This number is even if and only if k is odd.
Theorem 3.1 allows us to determine all Floer trajectories as well. Let u be

a trajectory, so u satisfies (2.1) with L0 = RP k, L1 = T k. Using the Schwarz
reflection principle, u can be reflected about RP k to obtain a map

ũ : R × [−1, 1] → CP k

with the properties
• ũ|R × [0, 1] = u,
• the energy of ũ is twice that of u, and
• both the top and bottom boundaries of ũ lie on T k.

R × [0, 1] is conformally equivalent to D2 \ {−1, 1}, so the domain of ũ can
be thought of as D2 \ {−1, 1}. By the removable singularities theorem, ũ
extends to a holomorphic map ũ : (D2, ∂D2) → (CP k, T k). The Maslov
index of ũ (thinking of ũ as a disc) is twice that of u. Because ũ(R) ⊂ RP k,
Theorem 3.1 implies that ũ is of the form

(3.1) z �→
[

±1
j0∏

i=0

φ0,i(z) : · · · : ±1
jk∏

i=0

φk,i(z)

]
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with ji ∈ Z≥0,
∑
ji = μ(u), and φl,i ∈ Aut(D2 \ {−1, 1}). (This is straight

forward to verify in case μ(u) = 1, 2, which are the only cases we need.)
Therefore, identifying R × [0, 1] with D2 \ {−1, 1}, we have shown that

every holomorphic strip is the top half of a holomorphic disc of the form
(3.1). Note that under this identification of domains the R translation on
R× [0, 1] corresponds to the action of Aut(D2 \{−1, 1}) = R on the top half
of D2 \ {−1, 1}. In particular we have proved:

Proposition 3.1. Let p = [ε0 : · · · : εk] ∈ RP k ∩T k. There are exactly k+1
isolated holomorphic strips that start at p. They are the top halves of the
discs

w0 : z �→ [−ε0z : ε1 : · · · : εk],

...

wk : z �→ [ε0 : · · · : εk−1 : −εkz].
Proposition 3.2. Every holomorphic strip of Maslov index two is the upper
half of a disc of the form

z �→ [±1 : · · · : ±φ0(z) : · · · : ±φ1(z) : · · · : ±1],

with φ0, φ1 ∈ Aut(D2 \ {−1, 1}). (φ0(z) and φ1(z) can both occur in the
same homogeneous coordinate, in which case the coordinate is meant to be
φ0(z)φ1(z).)

Using Proposition 3.2, we can now write down a formula for the boundary
operator ∂ : CF(RP k, T k) → CF(RP k, T k). The formula is

(3.2) ∂([ε0 : · · · : εk]) =
k∑

i=0

[ε0 : · · · : −εi : · · · : εk].

For example, if k = 3, the basis of CF(RP 3, T 3) is ordered as

[1 : 1 : 1 : 1], [−1 : 1 : 1 : 1], [1 : −1 : 1 : 1], [1 : 1 : −1 : 1], [1 : 1 : 1 : −1],

[−1 : −1 : 1 : 1], [−1 : 1 : −1 : 1], [−1 : 1 : 1 : −1],

and the elements of CF(RP 3, T 3) are thought of as column vectors, then

(3.3) ∂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1
1 0 0 0 0 1 1 1
1 0 0 0 0 1 1 1
1 0 0 0 0 1 1 1
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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4. Calculation of HF(RP 2n−1, T 2n−1)

We are now ready to prove Theorem 1.1. As mentioned before, RP 1 and T 1

are Hamiltonian isotopic to each other in CP 1, and it is known (see [16])
that HF (RP 1,RP 1) = (Z2)2. The next case is dimension 3.

Lemma 4.1.
HF(RP 3, T 3) = (Z2)4.

Proof. Z2 is a field, so

dim(HF) = dim(Ker(∂)) − dim(Im(∂)) = dim(CF ) − 2 dim(Im(∂)).

From (3.3), we see that dim(Im(∂)) = 2. Therefore, dim(HF) = 23−4 = 4. �

We prove the general case using induction. Assume that

HF(RP 2n−1, T 2n−1) = (Z2)2
n
,

and n ≥ 2. We then need to prove the result for N = n + 1. Let
CF(k) = CF(RP 2k−1, T 2k−1), ∂k = ∂ : CF(k) → CF(k), and HF(k) =
HF(RP 2k−1, T 2k−1). Every point of RP 2k−1 ∩ T 2k−1 can be written uni-
quely as

[1 : ±1 : ±1 : · · · : ±1].

Let (±1,±1, · · · ,±1) denote such a point. Then a basis for CF(k) is the set
of all points {(±1, · · · ,±1)}; elements of CF(k) are formal sums of these
points.

If x ∈ CF(n) then (1, 1, x), (−1, 1, x), etc. will be used to denote elements
in CF(N). For example, if

x = (−1, 1, 1) ∈ CF(2)

then
(1, 1, x) = (1, 1,−1, 1, 1);

if
x = (1, 1, 1) + (−1,−1, 1)

then
(−1, 1, x) = (−1, 1, 1, 1, 1) + (−1, 1,−1,−1, 1).

Let η = ηk, ∂̃ = ∂̃k : CF(k) → CF(k) be the maps

η(ε1, . . . , εk) = (−ε1, . . . ,−εk),

∂̃(ε1, . . . , εk) =
k∑

i=1

(ε1, . . . ,−εi, . . . , εk).
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From (3.2) it follows that ∂k = ∂̃k+ηk. Let π : CF(N) → CF(n) be the map
that removes the first two coordinates, that is

π : (ε1, ε2, ε3, . . . , εN ) �→ (ε3, . . . , εN ).

π is clearly surjective.

Lemma 4.2. ∂n ◦ π = π ◦ ∂N .
Proof. For x ∈ CF(n), we calculate

π ◦ ∂N (ε1, ε2, x) = π
(
(−ε1, ε2, x) + (ε1,−ε2, x) + (ε1, ε2, ∂̃nx)

+ (−ε1,−ε2, ηnx)
)

= x+ x+ ∂̃nx+ ηnx = ∂̃nx+ ηnx = ∂nx = ∂n ◦ π(ε1, ε2, x).

�
It follows that Ker(∂N ) ⊂ π−1(Ker(∂n)).

Lemma 4.3. Let x ∈ π−1(Ker(∂n)). Then x can be written uniquely as

(4.1)
x =

[
(1, 1, u) + (−1,−1, u) + (−1, 1, v) + (1,−1, v)

+(1, 1, w) + (−1, 1, w)
]

+ (1, 1, t)

with u, v, w ∈ CF(n), t ∈ Ker(∂n). Moreover, ∂N (x) = 0 if and only if

(4.2)

⎧
⎨

⎩

∂nv = w + t+ ηw,
∂nu = w + ηt+ ηw,
∂nw = 0.

Proof. In (4.1), the term in brackets ranges over Ker(π) as u, v, w range over
CF(n), and the final term maps (under π) onto all of Ker(∂n) as t ranges
over Ker(∂n). It follows that x ∈ π−1(Ker(∂n)) can be written in the form
(4.1). The uniqueness of the expression is straightforward to check.

If ∂N (x) = 0, then calculating ∂N of the right-hand side of (4.1), and
setting equal to zero the sum of the remaining entries of all terms that start
with the same two entries, yields the equations

(4.3)

⎧
⎪⎪⎨

⎪⎪⎩

∂̃w + w + ∂̃v + ηv + t = 0,
ηw + w + ηv + ∂̃v + t = 0,
w + ∂̃w + ηu+ ∂̃u+ ∂̃t = 0,
w + ηw + ∂̃u+ ηu+ ηt = 0.

For example, after applying ∂N , the sum of the terms that start with (−1, 1)
is (after cancelation)

(−1, 1, ∂̃w) + (−1, 1, w) + (−1, 1, ∂̃v) + (−1, 1, ηv) + (−1, 1, t).

Since this sum must be 0, it follows that

∂̃w + w + ∂̃v + ηv + t = 0.
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The remaining equations come from examining the terms that start with
(1,−1), (1, 1), and (−1,−1), respectively.

Using the fact that ∂ = ∂̃ + η and t ∈ Ker(∂), it is straightforward to
check that (4.2) is equivalent to (4.3). Indeed, labeling the equations in (4.2)
as (4.2.1), (4.2.2), and (4.2.3) and the equations in (4.3) as (4.3.1), (4.3.2),
(4.3.3), and (4.3.4), we have

⎧
⎪⎪⎨

⎪⎪⎩

(4.2.1), (4.2.3) ⇒ (4.3.1)
(4.2.1) ⇒ (4.3.2)

(4.2.2), (4.2.3) ⇒ (4.3.3)
(4.2.2), (4.2.3) ⇒ (4.3.4)

and ⎧
⎨

⎩

(4.3.2) ⇒ (4.2.1)
(4.3.4) ⇒ (4.2.2)

(4.3.3), (4.3.4) ⇒ (4.2.3).
�

Let us denote x of the form (4.1) as x(u, v, w, t). Consider the map

α : CF(n) ⊕ CF(n) ⊕ Ker(∂n) ⊕ Ker(∂n) → Im(∂n) ⊕ Ker(∂n),

(u, v, w, t) �→ (∂ηu+ ∂v, ∂ηu+ w + t+ ηw).
Taking u = w = 0 shows that α is onto.

Lemma 4.4.

Ker(α) = { (u, v, w, t) | u, v, w, t satisfy (4.2)}.
Proof. Since w is in the domain of α, we have ∂w = 0. Furthermore,
α(u, v, w, t) = 0 if and only if

∂ηu+ ∂v = 0,
∂ηu+ w + t+ ηw = 0.

Since ∂η = η∂ and η2 = Id, the second equation is equivalent to ∂u =
w+ηt+ηw. The first equation then becomes ∂v = η∂u = w+ t+ηw. These
are precisely the equations given in (4.2). �

It follows that there is a bijection between Ker(α) and Ker(∂N ). The
bijection is the obvious one: (u, v, w, t) �→ x(u, v, w, t).

We now complete the proof. Because α is onto, we have

dim(Ker(α)) = 2 dim(CF(n)) + 2 dim(Ker(∂n))

− dim(Im(∂n)) − dim(Ker(∂n))

= 2 dim(CF(n)) + dim(HF(n))

=
1
2

dim(CF(N)) + dim(HF(n)).
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Because Ker(α) and Ker(∂N ) have the same cardinality, we have

dim(Ker(∂N )) =
1
2

dim(CF(N)) + dim(HF(n)).

It follows that

dim(HF(N)) = 2 dim(Ker(∂N )) − dim(CF(N)) = 2 dim(HF(n))

= 2 · 2n = 2N .

This completes the proof of Theorem 1.1.

5. Verification of regularity

In this section we prove items (2)–(4) from the end of Section 2. We start
with 3:

Lemma 5.1. Let w : (D2, ∂D2) → (CPn, Tn) be a holomorphic disc with
Maslov index 2. Then Dw∂̄ is surjective.

Proof. This is proved in [3, Theorem 10.2] and [4, Theorem 6.1]. The idea is
that ∂̄ splits as a direct sum of one-dimensional operators with non-negative
Maslov index. Such one-dimensional operators are surjective; see, e.g.,
[14, Theorem C.1.10]. �

Recall that M1(D2, βi) denotes the moduli space of the discs in Lemma
5.1 with one marked point and such that the ith homogeneous coordinate
is non-constant. Lemma 5.1 implies that M1(D2, βi) is a smooth manifold,
and the discussion following Theorem 3.1 then shows that

ev : M1(D2, βi) → Tn

is a diffeomorphism. This proves item (2).
Finally we prove item (4). The idea is similar to Lemma 5.1: The lin-

earized operator splits as a direct sum of one-dimensional operators with
non-negative Maslov index, and these are always surjective. This latter fact
seems to be well-known, but for the convenience of the reader we give a
proof.

Lemma 5.2. Let

L = ∂̄ +A : W 1,p
λ (R × [0, 1],C) → Lp(R × [0, 1],Λ0,1 ⊗ C)

be a (real) Cauchy–Riemann operator. That is, A is a section of Λ0,1 ⊗
EndR(C) of class Lp; further assume that A(s, t) = 0 for |s| large. Here
λ : R×{0, 1} → Λ(Cn) is a pair of Lagrangian paths and the λ subscript on
W 1,p
λ indicates Lagrangian boundary conditions given by λ. Suppose λ has

non-negative Maslov index, λ(±∞, 1) = i · R, and for |s| large λ(s, 0) = R.
Then L is surjective.
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Proof. Let μ ≥ 0 be the Maslov index. By changing A if necessary, we
may assume that λ(s, 0) = R for all s (in order to ensure that A still has
compact support, the condition λ(s, 0) = R for |s| large is needed). Suppose
η ∈ Lp(R× [0, 1],C) is such that η⊗ dz̄ is in the L2 orthogonal complement
of the image of L. Then a straightforward integration by parts argument

shows that
∂

∂z
η+A1η = 0 (for some A1 with the same properties as A) and

η satisfies the same boundary conditions λ. Conjugating everything then
gives a solution η1 = η̄ of ∂̄η1 +A2η1 = 0 with boundary conditions λ̄.

Using the Schwarz reflection principle, all the data can be reflected across
R × { 0 } to obtain η2 : R × [−1, 1] → C that satisfies

• η2|R × [0, 1] = η1,
• η2(s, 1) ∈ λ̄(s, 1), η2(s,−1) ∈ λ̄(s, 1), and
• ∂̄η2 +A3η2 = 0.

R × [−1, 1] is conformally equivalent to D2 \ {−1, 1} so the domain of
η2 can be viewed as D2 \ {−1, 1}. The Lagrangian boundary condition λ̄
on the strip extends continuously to a Lagrangian boundary condition on
all of ∂D2. It has Maslov index −2μ. η2 extends smoothly to all of D2 by
the removable singularities theorem, and satisfies an equation of the form
∂̄η2+A4η = 0. A4 is of class Lp on D2; this uses the fact that A has compact
support.

Viewing the disc as the top half of CP 1, the trivial bundle D2 ×C → D2

can be conjugated across the Lagrangian boundary condition to obtain a
complex vector bundle E on CP 1 such that c1(E) = −2μ. Moreover, the
section η2 can be doubled to obtain a section η3 of E such that ∂̄η3 +
A5η3 = 0.

The lemma will follow if we can show that η3 = 0. This can be shown by
arguing as in [11]. Namely, for v ∈ TzCP

1 let

B(z)v =
{

0, η3(z) = 0,
A5(z)(v)(η3(z))/η3(z), η3(z) 	= 0.

Then B ∈ Ω0,1(CP 1) is of class Lp. Note that B is well-defined because
the quotient of two non-zero vectors in a one-dimensional vector space
is a well-defined complex number. B can be thought of as an element of
Ω0,1(EndC(E)) (multiplication by the complex number B(z)v is an element
of EndC(Ez)). Then η3 satisfies

∂̄η3 +Bη3 = 0.

Now, because B is complex linear, there exists a holomorphic structure on
E (of the same C0 class as the original almost complex structure on E)
such that ∂̄+B is the Dolbeault operator. Thus η3 is a holomorphic section
with respect to this holomorphic structure. Since c1(E) = −2μ, if μ ≥ 1 it
follows that η3 = 0. If μ = 0, then E is the trivial bundle, and it follows



FLOER HOMOLOGY OF (RP 2n−1, T 2n−1) 97

that η3 is constant. However, by standard results, η converges to 0 at ±∞,
so η3 ≡ 0. �

The asymptotic hypotheses on A and λ can be relaxed somewhat. How-
ever, the lemma is more than what we need so we will not pursue the exact
conditions.

Lemma 5.3. Let u be a holomorphic strip with μ(u) = 1 or 2. Then Du∂̄
is surjective.

Proof. Consider first the case μ(u) = 1. Using Proposition 3.2, we can choose
coordinates so that u is the upper half of the disc

(D2, ∂D2) → (CPn, Tn), z �→ (z, 1, . . . , 1).

The linearization Du∂̄ splits as a direct sum

Du∂̄ = ∂̄1 ⊕ ∂̄0 ⊕ · · · ⊕ ∂̄0,

where
∂̄i : W l,p

λi
(R × [0, 1],C) →W l−1,p(R × [0, 1],C).

The λi subscript denotes a Lagrangian boundary condition with Maslov
index i. By the previous lemma, each ∂̄i is surjective, and thus Du∂̄ is sur-
jective.

The case where μ(u) = 2 is similar. The difference is that the linearized
operator splits as

∂̄1 ⊕ ∂̄1 ⊕ ∂̄0 ⊕ · · · ⊕ ∂̄0

or
∂̄2 ⊕ ∂̄0 ⊕ · · · ⊕ ∂̄0.

∂̄2 denotes the operator with boundary conditions of Maslov index 2. Again
the previous lemma then implies that Du∂̄ is surjective. �

6. Novikov ring coefficients

In this section we compute the Floer homology with coefficients in the uni-
versal Novikov ring. The universal Novikov ring is

ΛZ2 =
{ ∑

(λ,n)∈R×Z

b(λ,n)T
λen | b(λ,n) ∈ Z2 and ∀C ∈ R,

#{ b(λ,n) 	= 0 | λ < C} <∞
}
.

See [10, Section 20] for more details. The result is

Theorem 6.1.

HF(RP 2n−1, T 2n−1 : ΛZ2) = (ΛZ2)
2n
.
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We first explain what is meant by homology with coefficients in ΛZ2 . We
start with the following definition, taken from [20].

Definition 6.1. A graded filtered Floer–Novikov complex c consists of the
following data:

(1) A principal Γ-bundle P → S, where S is a finite set and Γ is a finitely
generated abelian group.

(2) An action functional A : P → R and a period homomorphism ω :
Γ → R satisfying A(g · p) = A(p) − ω(g).

(3) A grading gr : P → Z and a degree homomorphism d : Γ → Z

satisfying gr(g · p) = gr(p) + d(g).
(4) A map n′ : P × P → R (R is a commutative ring) satisfying the

following conditions:
(a) n′(p, p′) = 0 unless A(p) > A(p′) and gr(p′) = gr(p) − 1,
(b) n′(g · p, g · p′) = n′(p, p′),
(c) for each p ∈ P , the formal sum

∂′p =
∑

q∈P
n′(p, q)q

belongs to the Floer chain complex

C∗(c) =

⎧
⎨

⎩

∑

q∈P
aqq | aq ∈ R,# {q | aq 	= 0, A(q) > C} <∞∀C ∈ R

⎫
⎬

⎭
,

(d) and with the Novikov ring of Γ defined by

ΛΓ,ω =

⎧
⎨

⎩

∑

g∈Γ

bgg | bg ∈ R, # {g | bq 	= 0, ω(g) < C} <∞∀C ∈ R

⎫
⎬

⎭
,

we require that C∗ inherits the structure of a ΛΓ,ω-module, the
operator ∂′ : P → C∗ extends to a ΛΓ,ω-module homomorphism
∂′ : C∗ → C∗, and it satisfies ∂′2 = 0.

(The notation n′ and ∂′ is used because we will need to refer to n and ∂
as defined in Section 2.)

We will construct a chain complex CF(RP k, T k : ΛΓ,ω) (for k = 2n − 1)
that plays the role of C∗(c) in the definition. Then HF(RP k, T k : ΛΓ,ω)
is defined to be the homology of C∗(c) = CF(RP k, T k : ΛΓ,ω). There is a
homomorphism ΛΓ,ω → ΛZ2 given by

∑

g∈Γ

bgg �→
∑

g∈Γ

bgT
ω(g)ed(g)/2.

Using this homomorphism we can define a ΛZ2 chain complex

∂′ ⊗ 1 : C∗(c) ⊗ΛΓ,ω
ΛZ2 → C∗(c) ⊗ΛΓ,ω

ΛZ2 .
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By definition, HF(RP k, T k : ΛZ2) is the homology of this complex. To com-
pute it we will first calculate HF(RP k, T k : ΛΓ,ω) and then use the fact
that ΛΓ,ω is a field to conclude that HF(RP k, T k : ΛZ2) = HF(RP k, T k :
ΛΓ,ω) ⊗ΛΓ,ω

ΛZ2 .
We turn to constructing CF(RP k, T k : ΛΓ,ω). Let q0 = [1 : · · · : 1] ∈

RP k ∩ T k. We can also think of q0 as the constant path q0 : [0, 1] → CP k,
q0(t) = q0 for all t. Likewise, any point of RP k ∩ T k can be thought of as
a constant path. In the following, it should be clear from context when we
are taking this point of view. Let

Ω = { γ : [0, 1] → CP k | γ(0) ∈ RP k, γ(1) ∈ T k},
and let Ω(q0) be the path component of Ω containing the constant path
q0. Any [u] ∈ π1(Ω(p)) is a map u : S1 × [0, 1] → CP k (well-defined up to
homotopy). Let

Iω : π1(Ω(q0)) → R

be the homomorphism given by Iω([u]) =
∫
u∗ω. Notice that u defines a

bundle pair

(u∗TCP k, (u|S1 × {0})∗TRP k � (u|S1 × {1})∗TT k)
over the cylinder S1 × [0, 1]. Define another homomorphism

Iμ : π1(Ω(q0)) → Z

by letting Iμ([u]) be the Maslov index of this bundle pair.
Since N = Ker(Iμ)∩Ker(Iω) is a normal subgroup of π1(Ω(q0)), it defines

a normal cover Ω̃ of Ω(q0). Explicitly, points of Ω̃ are equivalence classes of
pairs (γ, u), where γ ∈ Ω(q0) and u is a path from q0 to γ. [γ, u] = [γ′, u′] if
and only if γ = γ′, Iμ(u) = Iμ(u′), and Iω(u) = Iω(u′). The automorphism
group of the cover is π1(Ω(q0))/N . Let Γ be this group.

Lemma 6.1. Γ is isomorphic to Z.

Proof. By construction, Γ is isomorphic to π1(Ω(q0))/Ker(Iμ) ∩ Ker(Iω).
The latter group is isomorphic to Im(Iμ ⊕ Iω) ⊂ Z ⊕ R. RP k and T k are
both monotone and π1(RP k) is torsion, so Proposition 2.7 in [15] implies
that there exists a constant c > 0 such that Iω = cIμ. Thus Im(Iμ ⊕ Iω) is
isomorphic to Z. �

RP k and T k are both orientable (because k is odd), so the image of Iμ
is contained in 2Z. Moreover, if u0 denotes the unique holomorphic strip
of Maslov index 1 from q0 to [−1 : 1 : · · · : 1], and u′0 denotes the unique
holomorphic strip of Maslov index 1 from [−1 : 1 : · · · : 1] to q0, then
Iμ(u0#u′0) = 2. Thus the image of Iμ⊕ Iω is generated by (2, 2c), where c is
the energy of u0 (which is the same as the energy of any strip with Maslov
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index 1). We denote the preimage of this element in Γ as e, and we use
multiplicative notation to describe Γ. That is,

Γ = { ej | j ∈ Z}, ej · el = ej+l.

We take the degree and period homomorphisms to be

ω(ej) = 2jc,

d(ej) = −2j.

Let
P = { [γ, u] ∈ Ω̃ | γ is a constant path}

and
S = RP k ∩ T k.

There is an obvious projection P → S that makes P a principal Γ-bundle.
We let A be the action functional

A : P → R, [γ, u] �→ −
∫

u∗ω.

Next we define the grading gr : P → Z. If [q, u] ∈ P , then u is a map
u : [0, 1] × [0, 1] → CPn, with u(·, 1) ∈ Tn, u(·, 0) ∈ RPn, u(0, t) = q0, and
u(1, t) = q. Extend the domain of u to R × [0, 1], by keeping the value of u
fixed on each component in the complement of (0, 1)× [0, 1]. Then we define

gr([q, u]) = −μ(u).

For example, if u is homotopic to an isolated Floer trajectory connecting q0
to q, then gr([q, u]) = −1.

Finally, we take R = Z2 and define n′ : P × P → Z2 by letting

n′([q1, u], [q2, u′])

be the number mod-2 of holomorphic strips w of Maslov index 1 that start
at q1, end at q2 and such that [q2, u#w] = [q1, u′].

The Novikov ring ΛΓ,ω from Definition 6.2 can now be described as

ΛΓ,ω =
{∑

k∈Z

ake
k | ak ∈ Z2, ∃k0 such that ak = 0 ∀k ≤ k0

}
.

Note that ΛΓ,ω is actually a field.
We now calculate the homology. In order to describe the matrix for ∂′ we

need to first choose an ordered basis for CF(RP k, T k : ΛΓ,ω). We do this as
follows: for each q ∈ RP k ∩ T k, let uq be any holomorphic strip from q0 to
q. Such a holomorphic strip exists by the results of Section 3, but of course
it does not necessarily have to be isolated. Recall that c is the energy of an
isolated strip (that is, a strip of Maslov index 1). If the number of 1’s in the
homogeneous coordinates of q is even then the energy of uq is 2jc for some
j. Let vq = e−j · [q, uq] ∈ P . Then by construction we have A(vq) = 0 and
gr(vq) = d(e−j) + gr([q, uq]) = 2j − 2j = 0. If the number of 1’s is odd then
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the energy is (2j + 1)c. Let vq = e−j · [q, uq] ∈ P in this case, and then we
have A(vq) = −c and gr(vq) = −1. Thus

gr(vq) =
{

0, q has an odd number of 1’s,
−1, q has an even number of 1’s,

and { vq | q ∈ RP k∩T k } is a basis for CF(RP k, T k : ΛΓ,ω) over ΛΓ,ω. Order
this basis in any way with vq0 first and denote it as (vq0 , vq1 , . . . , vq2k−1

). Let
u′qi be such that vqi = [qi, u′qi ]. ∂

′ can now be described by a matrix with
respect to this basis.

To calculate the dimension of the image of ∂′ we compare the matrix to the
matrix for ∂. The ordered basis of CF(RP k, T k : ΛΓ,ω) that we constructed
induces an ordered basis of CF(RP k, T k) in an obvious way (they both have
bases in bijective correspondence to RP k ∩ T k). We think of ∂ as being a
matrix with respect to this basis.

Lemma 6.2. The columns of ∂ corresponding to the vq’s with q having an
even number of 1’s in the homogeneous coordinates agree with the correspond-
ing columns in ∂′. The remaining columns of ∂′ are e times the corresponding
columns in ∂.

Proof. Consider the first statement. Let qi be a point of RP k ∩ T k with
an even number of homogeneous coordinates equal to 1, so gr(vqi) = 0.
If qj is a point with an isolated Floer trajectory from qi to qj , then the
number of homogeneous coordinates of qj equal to 1 must be odd. Therefore
gr(vqj ) = −1. Let uij denote the unique isolated Floer trajectory from qi to
qj . Then

gr([qi, u′qi#uij ]) = 0 − 1 = gr([qj , u′qj ])

and
A([qi, u′qi#uij ]) = 0 − c = A([qj , u′qj ]).

Therefore [qj , u′qi#uij ] = [qj , u′qj ]. Moreover, by the grading of vqi and
vqj , any holomorphic strip u from qi to qj that satisfies [qi, u′qi#u] = [qj , u′qj ]
must have Maslov index 1, and hence by the uniqueness of uij it follows that
u = uij . Thus

n′(vqi , vqj ) = n(qi, qj) = 1.

If qj is a point with no isolated Floer trajectories from qi to qj then, by
definition, n′(vqi , vqj ) = 0 = n(qi, qj). Therefore we have

⎡

⎢
⎣

n′(vqi , vq0)
...

n′(vqi , vq2n)

⎤

⎥
⎦ =

⎡

⎢
⎣

n(qi, q0)
...

n(qi, q2n)

⎤

⎥
⎦ .
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That is, the column of ∂′ corresponding to vqi is the same as the column
of ∂ corresponding to qi.

Now consider the second statement. Let qi be a point of with an odd
number of homogeneous coordinates equal to 1, so gr(vqi) = −1. If qj
is a point with an isolated Floer trajectory from qi to qj , then the num-
ber of homogeneous coordinates of qj equal to 1 must be even. Therefore
gr(vqj ) = 0, and hence gr(e · vqj ) = −2. Let uij denote the unique isolated
Floer trajectory from qi to qj . Reasoning the same way as above, we have
[qj , u′qi#uij ] = e · [qj , u′qj ] and thus n′(vqi , vqj ) = e. Points qj with no con-
necting isolated Floer trajectory have n′(vqi , vqj ) = 0. Thus the column for
∂′ is e times the column for ∂. �

Corollary 6.1.

HF(RP 2n−1, T 2n−1 : ΛΓ,ω) = (ΛΓ,ω)2
n
.

Proof. ΛΓ,ω is a field and includes Z2 = Z2 ·e0 ⊂ ΛΓ,ω as a subfield. Therefore
the previous lemma implies that there is an invertible diagonal matrix M
such that, under the identification

CF(RPn, Tn) ⊗Z2 ΛΓ,ω = CF(RPn, Tn : ΛΓ,ω)

given by the chosen basis, we have ∂ ⊗ 1 = M ◦ ∂′. The dimension of the
image of M ◦ ∂′ is the same as ∂′ because M is invertible. The dimension of
the image of ∂ ⊗ 1 over ΛΓ,ω is the same as the dimension of the image of ∂
over Z2. The result now follows from Theorem 1.1. �

Recall that HF(RP 2n−1, T 2n−1 : ΛZ2) is defined to be the homology of
the complex

∂′ ⊗ 1 : C∗(c) ⊗ΛΓ,ω
ΛZ2 → C∗(c) ⊗ΛΓ,ω

ΛZ2

with C∗(c) = CF(RP 2n−1, T 2n−1 : ΛΓ,ω). Therefore the previous corollary
and the fact that ΛΓ,ω is a field implies that

HF(RP 2n−1, T 2n−1 : ΛZ2) = (ΛZ2)
2n
,

and Theorem 6.1 is proved.

7. Volume minimization of T 2n−1

In this section we briefly discuss the problem of minimizing the volume of
φ(T k) for φ a Hamiltonian diffeomorphism. In [17] it is proved that T k is
locally volume minimizing, that is it has minimal volume among all small
Hamiltonian deformations. However, it is unknown if it is globally volume
minimizing.
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One approach to gain information about this problem is to use the fol-
lowing Crofton type formula.

Theorem 7.1 ([20, Proposition 2.10]). Let L be a Lagrangian subman-
ifold in CP k. Then

vol(L) = ck

∫

U(k+1)/O(k+1)
#(L ∩ g · RP k) dg,

where ck is a constant that does not depend upon L.

Generically g · RP k and RP k intersect in k + 1 points. Therefore the
theorem implies that for any Lagrangian L we have

vol(L)
vol(RP k)

≥ ming#(L ∩ g · RP k)
k + 1

.

Let φ be a Hamiltonian diffeomorphism, and let

Sφ = { g ∈ U(n+ 1) | φ(T 2n−1) is transverse to RP 2n−1}.
Then the set

T = {φ ∈ Ham | Sφ is open and dense in U(n+ 1)}
is C1 dense in Ham. For φ ∈ T , Theorem 1.2 implies that

#(φ(T 2n−1) ∩ g · RP 2n−1) ≥ 2n

for g in an open dense subset of U(n+ 1), and therefore

vol(φ(T 2n−1))
vol(RP 2n−1)

≥ 2n

2n
.

By continuity, the estimate actually holds for all φ ∈ Ham.
We want to compare this estimate to the volumes of RP 2n−1 and T 2n−1.

S1 acts on the unit sphere S4n−1 ⊂ C
2n and

CP 2n−1 = S4n−1/S1.

The symplectic form on CP 2n−1 is the one obtained by symplectic reduc-
tion from the standard symplectic form on C

2n. Moreover, the projection
S4n−1 → CP 2n−1 is an isometric submersion, that is it is an isometry on
the orthogonal complement of the kernel of TS4n−1 → TCP 2n−1. Using this
fact, it follows that the volume of RP 2n−1 is half the volume of the unit
sphere S2n−1. Thus

vol(RP 2n−1) =
πn

(n− 1)!
.
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Moreover, the Clifford torus is the quotient of the torus (S1(1/
√

2n))2n ⊂
S4n−1 by S1. Thus

vol(T 2n−1) =
1
2π

(
2π√
2n

)2n

.

Therefore
vol(T 2n−1)

vol(RP 2n−1)
=

(2π)n−1(n− 1)!
nn

.

Dividing the two ratios then gives Corollary 1.3.
For n = 1, 2 we thus obtain:

vol(φ(T 1))
vol(T 1)

≥ 1,

vol(φ(T 3))
vol(T 3)

≥ 2
π
≈ .637.

This recovers the well-known fact that S1 is volume minimizing in CP 1, but
for higher dimensions the comparison leaves the problem unanswered.

A similar argument, pointed out by the referee, can be used to obtain
an upper bound on the minimal number of intersection points: Suppose
#(φ(Tm−1) ∩ g · RPm−1) ≥ cm−1 for all φ and g such that φ(Tm−1) and
g · RPm−1 intersect transversely. Then

inf
φ

vol(φ(Tm−1))
vol(Tm−1)

≥ cm−1/m

vol(Tm−1)/vol(RPm−1)
.

The left-hand side is at most 1, and thus

cm−1 ≤ mvol(Tm−1)
vol(RPm−1)

= am

√
m

π

(
2π
e

)m/2

,

where am → 1 by Stirling’s formula. log2(2π/e) is slightly less than 1.21, so
for large m we have

cm−1 ≤ 21.21m/2.

Thus the conjecture that cm−1 = 2�(m−1)/2� is reasonable.
Also, the same sort of argument shows that the probability of a randomly

chosen g ∈ U(m) having the property that #(Tm−1 ∩ g ·RPm−1) ≥ 21.21m/2

tends to 0 as m → ∞, which is interesting since when g = I there are 2m

intersections.

8. An example

As promised in the introduction, here is an example that shows that the
bound 2n on the number of intersection points is sharp for 2n− 1 = 3.Take
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the Hamiltonian diffeomorphism φ to be the unitary matrix
⎡

⎢
⎢
⎣

0.110 − i0.303 0.184 + i0.294 −0.510 + i0.105 0.691 + i0.168
−0.582 + i0.025 −0.496 + i0.452 −0.127 − i0.308 0.072 + i − 0.308
−0.487 + i0.196 −0.226 − i0.140 −0.098 + i0.591 −0.012 + i0.543
−0.516 − i0.121 0.598 + i0.044 0.360 − i0.360 0.098 + i0.301

⎤

⎥
⎥
⎦ .

The four points of φ(T 3) ∩ RP 3 are

[1.595 : 1.512 : 1.240 : −0.117],
[0.741 : 0.419 : −0.627 : −1.359],
[1.284 : −0.032 : −1.810 : 0.461],
[0.873 : −1.596 : 0.397 : −0.152].

Strictly speaking, I do not know if φ(T 3) intersects RP 3 transversely. How-
ever, the matrix φ is quite random, and the program still calculates four
intersection points under slight perturbations, so I think it is safe to assume
that the intersection is transverse.
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