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POSITIVITY OF EQUIVARIANT SCHUBERT CLASSES
THROUGH MOMENT MAP DEGENERATION

Catalin Zara

For a flag manifold M = G/B with the canonical torus action,
the T -equivariant cohomology is generated by equivariant Schubert
classes, with one class τu for every element u of the Weyl group W ,
and these classes are determined by their restrictions to the fixed point
set MT � W . The main result of this article is a positive formula for
computing τu(v) in types A, B, and C. We identify G/B with a generic
coadjoint orbit and use a result of Goldin and Tolman to compute τu(v)
in terms of the induced moment map. Our positive formula, given as
a sum indexed by certain saturated chains, follows from a systematic
degeneration of the moment map. In type A our formula is equivalent to
a classical positive formula that uses summation over certain subwords,
but in type C, the two formulas are different.

Nomenclature

G connected, complex, semisimple Lie group
B Borel subgroup of G
M = G/B flag manifold
T C, T maximal complex torus in B and its com-

pact real form
H∗

T (M) = H∗
T (M ; Q) rational T -equivariant cohomology of M

t, t∗ Lie algebra of T and its dual
B = {α1, . . . , αn} simple, positive roots corresponding to B
0 ≺ β the vector β ∈ t∗ has non-negative coordi-

nates in B
ω1, . . . , ωn fundamental weights corresponding to

α1, . . . , αn
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h(β) = min{i | (ωi, β) �= 0}, for β ∈ t∗

η ∈ t∗ generic element in the positive Weyl
chamber

μ1, . . . , μn coordinates of η in the basis {ω1, . . . , ωn}
Oη = G · η coadjoint orbit through η

φη : M � Oη → t∗ moment map for Hamiltonian T -space
M � Oη

W Weyl group of G

Sn group of permutations of {1, . . . , n}
sβ : t∗ → t∗ reflection generated by the root β

si = sαi reflection generated by the simple root αi

uβ action of Weyl group element u on
β ∈ t∗

h(p, q) = min{i | pωi �= qωi} for p, q ∈ W

∗sβ, sβ∗ Weyl group multiplication by sβ to the
right/left

I = [i1, . . . , im] word with letters from {0, 1, . . . , n}
J = [ε1i1, . . . , εmim] subword of I = [i1, . . . , im], with εi ∈ {0, 1}
sI = si1 · · · sim Weyl group element corresponding to

I = [i1, . . . , im]
	(w) length of Weyl group element W

u ≺ v u precedes v in the strong Bruhat order on
W

I(v) = [I1, . . . , In−1] special reduced word for v (in type A)
Γ = (V, E) graph with vertices V and oriented edges E

e = (u, v) oriented edge with vertices u and v

α : E → t∗, αe = α(u, v) axial function and its value on the edge
e = (u, v)

S = Q[α1, . . . , αn] polynomial ring
τu : W → S (combinatorial) Schubert class
H∗

α(Γ) cohomology ring of (Γ, α)
Λ−

v product of positive roots sent by v−1 into
negative roots

SC(J, I) contribution of the subword J of I
S(u, I) ⊇ R(u, I) subwords of I that generate words/reduced

words for u
A(u, v) ⊇ Σ(u, v) ⊇ C0(u, v) ascending, saturated, and special chains in

Γ from u to v
Eη(γ) contribution of saturated chain γ
Eμ(γ) Eη(γ) in terms of μ1, . . . , μn

E(γ) contribution of chain γ after degeneration
FI : A(u, v) → S(u, I) the “delete letters” function
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1. Introduction

Let G be a connected, complex, semisimple Lie group, B ⊂ G a Borel
subgroup, corresponding to a set of simple roots {α1, . . . , αn}. Let T C ⊂ B
be a maximal torus, and T ⊂ T C a compact real form of T C. The torus T
acts on the flag manifold M = G/B by left multiplication on G, and the
fixed point set MT corresponds bijectively with the Weyl group W .

The equivariant cohomology ring H∗
T (M) = H∗

T (M, Q) is a free module
over H∗

T (pt, Q) � Q[α1, . . . , αn], and that is also true for integral, and not
just rational coefficients. A basis of this module is given by equivariant Schu-
bert classes, {τu}u∈W , with a class τu for each fixed point u ∈ W = MT .
The equivariant Schubert class τu ∈ H∗

T (M) is the class induced by the
T -equivariant cycle Xu = B−uB/B, where B− is the opposite Borel sub-
group. The pull-back map H∗

T (M) → H∗
T (MT ) is injective, so an equivari-

ant class is determined by its values on MT . In particular, the equivariant
Schubert classes can be thought of as functions from W to Q[α1, . . . , αn]
satisfying certain compatibility conditions (see [KK], [GHZ]).

The integral positivity property1 states that τu(v) ∈ Z�0[α1, . . . , αn] for
all u, v ∈ W ; in other words, τu(v) is a polynomial in the simple roots
α1, . . . , αn, with non-negative integer coefficients. A standard principle is
that positive integers count, and effective formulas for quantities that are
positive integers or polynomials with such coefficients should be positive and
integral : sums of positive integers or polynomials with such coefficients. Such
a formula for τu(v) appeared in [AJS, Appendix D] (see also [B]), giving
τu(v) as a sum, indexed by certain reduced subwords, of products of positive
roots, hence polynomials in α1, . . . , αn with non-negative integer coefficients.
We will refer to this result as the subword formula.

The main result of this article, formulated in Theorem 6.1, is a new pos-
itive formula for computing τu(v) in types A, B, and C. To obtain this
formula we identify G/B with a generic coadjoint orbit and use a recent
result of Goldin and Tolman [GT] to compute τu(v) in terms of the induced
moment map. Our formula, given as a sum of contributions of certain sat-
urated chains from u to v, follows from a systematic degeneration of the
moment map, corresponding to degenerating the coadjoint orbit. The result-
ing formula, which we will refer to as the chain formula, is integral in types
A and C, but only rational in type B (and for G2). In type A our formula
is equivalent to the subword formula, but in type C the two formulas, while
giving the same answer, are different.

The main methods in this paper involve the combinatorics of Weyl groups.
The type A formula has been circulated earlier, and motivated a separate
project by Sabatini and Tolman [ST]. Their geometric results allowed them

1An analogue is valid for the equivariant class corresponding to any T -invariant sub-
variety of G/B, as follows from [KM, Theorem D].
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to obtain independently, as applications, the same formulas for types B and
C, but from a different perspective.

The paper is organized as follows. In Section 2 we give a combinatorial
description of τu and in Section 3 we recall the subword formula. In Section 4
we compute τu(v) by applying the Goldin-Tolman result to coadjoint orbits
and in Section 5 we use moment map/orbit degeneration to get a simpler
formula, in which only some chains have non-zero contributions. In Section 6
we prove that the new formula is positive, integral in types A and C and
rational in type B, and in Section 7 we give an explicit version in type
A. We prove the equivalence (for type A) of the chain formula with the
subword formula in Section 9, after constructing, in Section 8, a general
map connecting chains and subwords.

2. Combinatorial Schubert classes

The injective morphism H∗
T (M) → H∗

T (MT ) identifies H∗
T (M) with a sub-

ring of H∗
T (MT ) = Maps(W, S), where S = Q[α1, . . . , αn]. Not all maps

represent classes in H∗
T (M), and the ones that can be described using a dis-

crete structure involving a regular graph Γ = (V, E), and a labeling of the
oriented edge of Γ by elements of t∗, the dual of the Lie algebra of T .

The vertices V of Γ correspond to the Weyl group W . Two vertices u and
v are joined by an edge if and only if they differ by a reflection sβ, for some
positive root β. Note that usβ = suβu, so if u and v differ by a reflection
on the left, they also differ by a reflection on the right. The notation uβ
means the action of the Weyl group element u on the root β, and usβ is the
multiplication in the Weyl group. If v = usβ = suβu, with β 
 0 a positive
root, then the oriented edge e = (u, v) of Γ is labeled by α(u, v) = uβ and is
called ascending if α(u, v) 
 0. We will also use α(e), αe, or αu,v for α(u, v).
The pair (Γ, α) is called the GKM graph of (M, T ).

An assignment f : W → S = Q[α1, . . . , αn] is a cohomology class if

f(v) − f(u) ∈ α(e)S ,

for every edge e = [u, v] of Γ. The class f is called homogeneous of degree k
if, for every u ∈ W , the polynomial f(u) is homogeneous of degree k. The
cohomology ring H∗

α(Γ) is the graded subring of Maps(W, S) consisting of
all classes. Then

H2k
T (M) � Hk

α(Γ),

and since Hodd
T (M) = 0, that means that H2∗

T (M) � H∗
α(Γ). We will in

general identify a class f ∈ H∗
T (M) with its image in H∗

α(Γ). In particular,
we will denote by τu both the equivariant Schubert class in H∗

T (M) and its
image in H∗

α(Γ). Sometimes we will refer to τu ∈ H∗
α(Γ) as the combinatorial

Schubert class.
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To give the combinatorial description of the (combinatorial) Schubert
class τu ∈ H∗

α(Γ), we start by recalling some results concerning the combi-
natorics of the Weyl group W . Most results are valid for general Coxeter
groups, and details can be found, for example, in [BB].

Let R be a root system of rank n, let W be its Weyl group, and let
B = {α1, . . . , αn} be a choice of simple roots. Then B is a basis of t∗, the
dual of the Lie algebra of T . For a non-zero vector β ∈ t∗ we say that β 
 0
if β is in the non-negative cone over {α1, . . . , αn}, in other words, if the
coordinates of β in the basis B are non-negative.

For i = 1, . . . , n, let si = sαi ∈ W be the reflection generated αi. A
word of length m is an array I = [i1, i2, . . . , im] with entries (letters) from
{0, 1, . . . , n}. To each non-empty word I we associate the Weyl group element
sI = si1si2 . . . sim . (If the word I is empty, then sI is the identity.) A subword
of a word I is a word J = [ε1i1, ε2i2, . . . , εmim], with εk ∈ {0, 1} for all
k = 1, . . . , m. A word I is reduced if sJ �= sI for all subwords J of I other
than I itself. If v ∈ W , then v = si1si2 . . . sim is called a decomposition for
v, and I = [i1, i2, . . . , im] is a word for v. The decomposition is reduced if
the word is reduced. All reduced words for v ∈ W have the same number of
letters, and this common number, denoted by 	(v), is the length of v.

We define a partial order on W as follows. If v = usβ, with β 
 0, we
define u ≺ v if uβ 
 0. The (strong) Bruhat order on W is the transitive
closure of ≺. In other words, u � v if and only if there exists an ascending
chain

u = u0
∗sβ1−−−→ u1

∗sβ2−−−→ u2 −→ · · · ∗sβm−−−→ um = v,

where p
∗sβ−−→ q means q = psβ. An equivalent definition can be given in

terms of words and subwords: u � v if and only if every reduced word I for
v has a subword that is a word for u. Let Fu = {v |u � v} be the flow-up
from u under the strong Bruhat order.

For v ∈ W , we define

Λ−
v =

∏
{β | β 
 0 and v−1β ≺ 0 }.

If I = [i1, . . . , im] is a reduced word for v, then the positive roots that are
sent by v−1 into negative roots are

αi1 , si1αi2 , si1si2αi3 , . . . , si1 · · · sim−1αim ,

hence

Λ−
v =

m∏

j=1

si1si2 · · · sij−1αij .

Example 2.1. We illustrate the results above for G = SLn(C), the special
linear group of complex matrices with determinant equal to one, with the
Borel subgroup B being the subgroup of upper triangular matrices. Then
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M = G/B is the manifold of complete flags in Cn. The fixed points of
the T -action correspond bijectively to permutation matrices, hence MT is
identified with W = Sn, the set of permutations of {1, . . . , n}. We use the
one-line notation u = u(1)u(2) . . . u(n) for permutations. The simple roots
are αi = xi−xi+1 and the positive roots are αij = xi−xj = αi+· · ·+αj−1,
for 1 � i < j � n. The Weyl group W = Sn acts on roots by permuting the
indices of the x variables. The reflection sαij corresponds to the transposition
(i, j) that swaps i and j; if j = i+1, we denote sαij by si and call it a simple
transposition. By convention, s0 is the identity of Sn.

For a permutation v ∈ Sn, the set of positive roots that are sent by v−1

into negative roots corresponds bijectively to the set of inversions-as-values,

Inv(v) = {(v(j), v(i)) | i < j , v(i) > v(j)}.

If I = [i1, . . . , im] is a reduced word for v, then

Λ−
v =

∏

(a,b)∈ Inv(v)

(xa − xb) =
m∏

k=1

si1 · · · sik−1αik .

If v = u(i, j) with i < j, then u ≺ v in the strong Bruhat order if and only
if u(i) < u(j). In other words, u ≺ v = u(i, j) if (u(i), u(j)) �∈ Inv(u), or,
equivalently, if (v(i), v(j)) ∈ Inv(v).

The description of the combinatorial Schubert class τu is the following.

Proposition 2.1. For every u ∈ W , the class τu ∈ H∗
α(Γ) is the unique

class satisfying the following properties:

(1) τu is homogeneous, of degree 	(u), the length of u;
(2) τu is supported on F(u), the flow-up from u;
(3) τu is normalized by τu(u) = Λ−

u .

3. Subword formula

In this section we recall the subword integral positive formula. Let u, v ∈ W ,
with u � v, and let I = [i1, i2, . . . , im] be a reduced word for v. For a subword
J = [ε1i1, ε2i2, . . . , εmim] of I, define the subword contribution SC(J, I) as
the following product of positive roots:

SC(J, I) =
m∏

j=1

[
si1si2 · · · sij−1αij

]εj =
m∏

j=1
εj=1

si1si2 · · · sij−1αij

= Λ−
v ·

m∏

j=1
εj=0

1
si1si2 · · · sij−1αij

,
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hence SC(J, I) is obtained from Λ−
v by canceling the positive roots generated

by the deleted letters (εj = 0). Let R(u, I) be the set of subwords of I that,
after deleting the zeroes, become reduced words for u.

Theorem 3.1 ([AJS, B]). Let u, v ∈ W and let I = [i1, . . . , im] be a reduced
word for v. The value at v of the Schubert class τu is given by

(3.1) τu(v) =
∑

J∈R(u,I)

SC(J, I) =
∑

J∈R(u,I)

m∏

j=1
εj=1

si1si2 · · · sij−1αij .

Example 3.1. Let u = 2143 and v = 3421 in S4. A reduced word for v is
I = [2, 1, 3, 2, 3]. There are two subwords of I that are reduced words for u
after deleting all the zeroes: J1 = [0, 1, 3, 0, 0] and J2 = [0, 1, 0, 0, 3]. Their
contributions are

SC(J1, I) = [α2]0 · [s2α1]1 · [s2s1α3]1 · [s2s1s3α2]0 · [s2s1s3s2α3]0

= [s2 · (x1 − x2)] · [s2s1 · (x3 − x4)] = (x1 − x3)(x2 − x4)

= (α1 + α2)(α2 + α3)

SC(J2, I) = [α2]0 · [s2α1]1 · [s2s1α3]0 · [s2s1s3α2]0 · [s2s1s3s2α3]1

= [s2 · (x1 − x2)] · [s2s1s3s2 · (x3 − x4)] = (x1 − x3)(x1 − x2)

= (α1 + α2)α1.

Therefore

τ2143(3421) = SC(J1, I) + SC(J2, I) = (α1 + α2)(α1 + α2 + α3).

4. The Goldin-Tolman formula

Goldin and Tolman [GT] recently proved a formula for computing the val-
ues of what they call canonical classes, valid for more general spaces.2

Their classes satisfy conditions 1 and 3 in Proposition 2.1, but condition 2 is
replaced by τu(v) = 0 if 	(v) � 	(u) and v �= u. Since the length function is
strictly increasing with respect to the Bruhat order (u ≺ v → 	(u) < 	(v)),
it turns out that, in the case of flag manifolds, the canonical generators
are the equivariant Schubert classes and the Goldin–Tolman formula can be
used to compute the values τu(v) for u, v ∈ W .

The Goldin–Tolman formula involves two more ingredients. The first
ingredient is the subgraph Γ0 of Γ, having the same vertices as Γ, but only
the edges e = (u, v) of Γ for which 	(v) = 	(u) ± 1. If u and v are elements
in W , let Σ(u, v) be the set of ascending chains in Γ0 from u to v. These
are the maximal length ascending chains in Γ from u to v, and we call such
chains saturated, because they are the saturated chains from u to v in the

2The flag manifold case of this formula also appeared, in implicit form, in [K].
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poset (W, ≺). Every edge of such a chain will be considered oriented, with
the orientation that makes it an ascending edge.

The second ingredient is a moment map. The Lie algebra g of G can be
canonically identified with its dual g∗ using the Killing form, and that allows
us to regard t∗ as a subspace of g∗. Let η ∈ t∗ ⊂ g∗ be in the interior of
the positive Weyl chamber, and let Oη = G · η ⊂ g∗ be the coadjoint orbit
through η. The stabilizer of η is B, and hence Oη � G/B = M as T -spaces.

The coadjoint orbit Oη is a Hamiltonian G-space, with moment map
given by the inclusion Oη ↪→ g∗. Therefore it is also a Hamiltonian
T -space, with moment map given by inclusion followed by projection onto
t∗. With the symplectic structure induced by the identification G/B � Oη,
the flag manifold M = G/B is a Hamiltonian T -space, with moment map
φη : G/B → t∗. If Pw is the fixed point corresponding to the element w ∈ W
of the Weyl group, then φη(Pw) = w · η. Identifying the fixed point Pw with
the Weyl group element w, we get a map φη : W → t∗, given by φη(w) = wη.

Applying the Goldin-Tolman formula we get the following result.

Theorem 4.1. If η ∈ t∗ is in the positive Weyl chamber, then

(4.1) τu(v) =
∑

γ∈Σ(u,v)

Eη(γ),

where, for every saturated chain,

(4.2) γ : u = u0 −→ u1 −→ · · · −→ um = v

in Σ(u, v), the contribution Eη(γ) is given by

(4.3) Eη(γ) = Λ−
v

m∏

k=1

( 1
α(uk−1, uk)

· φη(uk) − φη(uk−1)
φη(v) − φη(uk−1)

)
.

There are two important features in formula (4.1). The first is that each
term Eη(γ) depends on η, but the sum doesn’t. The second is that each
term is a rational expression, given by (4.3), but the sum is a polynomial.
Therefore cancelation must occur when summing, and a first indication of
how that happens is the following.

Lemma 4.1. If p, q ∈ W and q = psβ with β 
 0, then

φη(q) − φη(p)
α(p, q)

< 0 .

Proof.

φη(q) − φη(p)
α(p, q)

=
psβη − pη

pβ
= −〈η, β〉 = −2(η, β)

(β, β)
< 0,

since β is a positive root and η is in the positive Weyl chamber. �
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Hence, if γ is the chain (4.2) and uk = uk−1sβk
with βk 
 0, then

Eη(γ) = Λ−
v

m∏

k=1

〈η, βk〉
uk−1η − vη

.

Lemma 4.2. Let p ≺ q, let η be in the closure of the positive Weyl chamber
and let β = pη − qη. Then β � 0. If β 
 0, then p−1β 
 0 and q−1β ≺ 0.

Proof. If p ≺ q, then there exists an ascending chain

p = p0
∗sβ1−−−→ p1

∗sβ2−−−→ p2 → · · · ∗sβm−−−→ pm = q

with βk 
 0 and pk−1βk 
 0. Then

pη − qη = (pη − p1η) + · · · + (pk−1η − pkη) + · · · + (pm−1η − qη)(4.4)

= 〈η, β1〉p0β1 + · · · + 〈η, βk〉pk−1βk + · · · + 〈η, βm〉pm−1βm,

and each of the terms in the last sum is in the non-negative cone generated
by the simple roots, hence β � 0. Moreover, β = 0 if and only if all the
factors 〈η, βk〉 are zero.

We have p−1β = η − p−1q η = id η − p−1q η, where id is the identity in
the Weyl group. Since id ≺ p−1q, if β 
 0 then p−1β 
 0, and similarly,
q−1η = −(id η − q−1p η) ≺ 0. �

Therefore Eη(γ) is a ratio of two polynomials in the simple roots
α1, . . . , αn, homogeneous and with non-negative coefficients. Moreover, if
uk−1η − vη is a multiple of a root, then it cancels (over R>0) one of the
factors of Λ−

v .
Let {ω1, . . . , ωn} be the fundamental weights corresponding to the simple

roots {α1, . . . , αn}, defined by the conditions

〈ωi, αj〉 = δij , or equivalently , (ωi, αj) =
1
2
(αi, αi)δij .

Then {ω1, . . . , ωn} is a basis of t∗, and η = μ1ω1 + · · · + μnωn ∈ t∗ is in the
positive Weyl chamber if and only if μj > 0 for all j = 1, . . . , n.

Then the contribution Eμ(γ) = Eμ1ω1+···+μnωn(γ) of the chain γ is

(4.5) Eμ(γ) = Λ−
v

m∏

k=1

∑n
i=1〈ωi, βk〉μi

∑n
i=1

(∑m
j=k〈ωi, βj〉uj−1βj

)
μi

.

Example 4.1. Let M = SL3(C)/B be the manifold of complete flags in C3,
let u = s1 = 213 and v = s1s2s1 = 321. Then 	(321) = 3, and

Λ−
v = α1α2(α1 + α2).

There are two saturated chains from u to v,

γ1 : s1
∗sα1+α2−−−−−→ s2s1

∗sα2−−−→ s1s2s1,

γ2 : s1
∗sα2−−−→ s1s2

∗sα1−−−→ s1s2s1,
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and their contributions are

Eμ(γ1) = α1α2(α1+α2)·
μ1+μ2

α2μ1+(α1+α2)μ2
· μ2

α1μ2
=

α2(α1+α2)(μ1+μ2)
α2μ1+(α1+α2)μ2

,

Eμ(γ2) = α1α2(α1+α2)·
μ2

α2μ1+(α1+α2)μ2
· μ1

α2μ1
=

α1(α1+α2)μ2

α2μ1+(α1+α2)μ2
.

Then
τu(v) = Eμ(γ1) + Eμ(γ2) = α1 + α2.

5. Limits and chain contributions

Note that, in Example 4.1, both Eμ(γ1) and Eμ(γ2) are rational expressions
in α’s and μ’s, but their sum is a polynomial expression in the α variables
only. In this section we show that we can eliminate the μ variables in (4.5)
by sending them to 0, one component at a time.3

The contribution (4.3) of the chain (4.2) can be written as

Eμ(γ) = Λ−
v

m∏

k=1

Qμ(uk−1, uk, v)
α(uk−1, uk)

,

where, for p ≺ q � r in W , we define

Qμ(p, q, r) =
p η − qη

p η − rη
=

∑n
i=1(p ωi − qωi)μi∑n
i=1(p ωi − rωi)μi

.

Lemma 5.1. For p, q ∈ W , let

h(p, q) = min{i | p ωi �= qωi},

with the convention that h(p, p) = ∞.
(1) If p−1q = si1si2 · · · sik is a reduced decomposition, then

h(p, q) = min{i1, . . . , ik}.

(2) If p ≺ q ≺ r and p ωi = rωi, then p ωi = qωi = rωi.
(3) If p ≺ q ≺ r, then

h(p, r) � h(p, q) and h(q, r) � h(p, q).

(4) If q = psβ with β 
 0 and pβ 
 0, then h(p, q) = h(β), where, for non-
zero β = β1α1 + · · · + βnαn in t∗, we define h(β) = min{i | βi �= 0}.

Proof. Let j = h(p, q) and ωi a fundamental weight. Then (4.4) becomes

(5.1) ωi − p−1qωi = δi1, i αi1 + δi2, i si1αi2 + · · · + δik, i si1si2 · · · sik−1αik .

By definition, if i < j, then ωi = p−1qωi, and since all the non-zero terms
in (5.1) are positive roots, it follows that si cannot appear in the reduced
decomposition of p−1q. If i = j, then ωj �= p−1qωj , hence sj must appear

3The geometric interpretation of this operation is one of the main ideas in [ST].
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in the decomposition of p−1q. Therefore, j = h(p, q) is the minimal letter
that appears in a reduced word for p−1q and p−1q is in the subgroup of W
generated by sj , sj+1, . . . , sn.

For every i = 1, . . . , n we have p ωi − rωi = (p ωi − qωi)+ (qωi − rωi), and
since p ≺ q ≺ r, both p ωi − qωi and qωi − rωi are in the non-negative cone
generated by the simple roots. Therefore, if p ωi−rωi = 0, then p ωi−qωi = 0
and qωi − rωi = 0. Then {i | p ωi = rωi} ⊂ {i | p ωi = qωi}, which implies
h(p, r) � h(p, q). Similarly we get h(p, r) � h(q, r).

If q = psβ, then

{i | p ωi �= psβωi} = {i | ωi �= sβωi} = {i | (ωi, β) �= 0} = {i | βi �= 0},

hence h(p, q) = h(β). �

Consequently, if the coefficient of some μi in the denominator is zero, then
the coefficient of μi in the numerator is also zero. This implies that

Q0
μ(p, q, r) def== lim

μ1→0

(
lim

μ2→0

(
· · ·

(
lim

μn→0
Qμ(p, q, r)

)
· · ·

))

is well defined. Moreover,

Q0
μ(p, q, r) =

⎧
⎨

⎩

p ωi − qωi

p ωi − rωi
, if h(p, r) = h(p, q) = i,

0, if h(p, r) < h(p, q).

In particular, let p = uk−1, q = uk = uk−1βk, and r = v. Then

Q0
μ(uk−1, uk, v)
α(uk−1, uk)

=

⎧
⎨

⎩

〈ωi, βk〉
uk−1ωi − vωi

, if h(uk−1, v) = h(uk−1, uk) = i,

0, if h(uk−1, v) < h(uk−1, uk).

Therefore,

E(γ) def== lim
μ1→0

(
lim

μ2→0

(
· · ·

(
lim

μn→0
Eμ(γ)

)
· · ·

))

is well-defined, and is zero whenever h(uk−1, v) < h(uk−1, uk) for some k. If
h(uk−1, uk) = h(uk−1, v) = ik for all k = 1, . . . , m, then

(5.2) E(γ) = Λ−
v

m∏

k=1

〈ωik , βk〉
uk−1ωik − vωik

�= 0.

We now take a closer look at the set of chains

C0(u, v) = {γ ∈ Σ(u, v) | h(uk−1, uk) = h(uk−1, v) for all k = 1, . . . , m}

with non-zero contribution after taking the limits. These chains have a sim-
ple description.
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Lemma 5.2. Let γ ∈ Σ(u, v) be the saturated chain

γ : u = u0
∗sβ1−−−→ u1

∗sβ2−−−→ · · · ∗sβm−−−→ um = v.

Then γ ∈ C0(u, v) if and only if h(β1) � h(β2) � · · · � h(βm).

Proof. If γ ∈ C0(u, v), then, using Lemma 5.1, we get

h(βk+1) = h(uk, uk+1) = h(uk, v) � h(uk−1, v) = h(uk−1, uk) = h(βk)

for all k = 1, . . . , m − 1, proving one implication.
Conversely, let γ ∈ Σ(u, v) such that h(β1) � h(β2) � · · · � h(βm). Let

k ∈ {1, . . . , m} be fixed. If i < h(βk), then i < h(βj) = h(uj−1, uj) for all
j � k, hence uj−1 ωi = uj ωi for all j � k. Therefore uk−1 ωi = um ωi = vωi,
hence h(uk−1, v) � h(βk) = h(uk−1, uk). But h(uk−1, v) � h(uk−1, uk) by
Lemma 5.1, and the double inequality implies that h(uk−1, v) = h(uk−1, uk)
for all k, and therefore γ ∈ C0(u, v). �

Example 5.1. Returning to Example 4.1, we see that

E(γ1) = lim
μ1→0

(
lim

μ2→0

α2(α1+α2)(μ1+μ2)
α2μ1+(α1+α2)μ2

)
= α1 + α2 �= 0,

E(γ2) = lim
μ1→0

(
lim

μ2→0

α1(α1+α2)μ2

α2μ1+(α1+α2)μ2

)
= 0,

as expected, since, for γ1 we have h(α1+α2) = 1 � 2 = h(α2) and for γ2 we
have h(α2) = 2 � 1 = h(α1).

6. Chain formula

Up to this point, there have been no restrictions regarding the order in which
the simple roots α1, . . . , αn are listed. The next results, however, requires
that the simple roots be listed in a specific order, as shown in the following
Dynkin diagrams:

(6.1)

Type A: α1 −−−−α2 −−−− · · · −−−−αn−1 −−−−αn,

Type B: α1 −−−−α2 −−−− · · · −−−−αn−1 ===> αn,

Type C: α1 −−−−α2 −−−− · · · −−−−αn−1 ===< αn.

We are now ready to formulate the main result of this paper. Recall that
C0(u, v) is the set of saturated chains

(6.2) γ : u = u0
∗sβ1−−−→ u1

∗sβ2−−−→ u2 → · · · → um−1
∗sβm−−−→ um = v

that satisfy the condition

(6.3) h(β1) � h(β2) � · · · � h(βm),
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and for each such a chain γ, by (5.2),

E(γ) = Λ−
v

m∏

k=1

〈ωik , βk〉
uk−1ωik − vωik

,

where ik = h(βk) for k = 1, . . . , m.

Theorem 6.1. If u, v ∈ W then the restriction of τu at v is given by

(6.4) τu(v) =
∑

γ∈ C0(u,v)

E(γ) =
∑

γ∈ C0(u,v)

Λ−
v

m∏

k=1

〈ωik , βk〉
uk−1ωik − vωik

.

If the simple roots are ordered as in (6.1), then, in types A and C

E(γ) ∈ Z�0[α1, . . . , αn],

and in type B

E(γ) ∈ 1
2m

Z�0[α1, . . . , αn].

Therefore (6.4) is a positive integral formula for computing τu(v) in types A
and C, and a positive, but only rational, formula in type B.

Proof. The right-hand side of the Goldin–Tolman formula (4.1) is indepen-
dent of the particular choice of η in the positive chamber (and hence of μ
with strictly positive components). Each term in the right-hand side is well-
defined after sending the components of μ to zero, one at a time in reverse
lexicographic order. If γ �∈ C0(u, v), then the limit is zero, and if γ ∈ C0(u, v),
then the limit is E(γ), and this proves (6.4).

With the ordering (6.1), if β is a positive root and h(β) = i, then 〈ωi, β〉
is a positive integer, so the product in the numerator of (5.2) is a positive
integer. It remains to show that:

(1) Each factor in the denominator of (5.2) cancels (over Z>0 in types A
and C, and over 1

2Z>0 in type B) one of the factors in Λ−
v , and

(2) The factors in the denominator of (5.2) are pairwise independent.
These statements are consequences of the following technical lemmas:

Lemma 6.1. If u ∈ W and j = h(id, u), then,
In type A: u has a reduced decomposition of the form

(6.5) u = sksk−1 · · · sjw

with j � k � n and h(id, w) > j.
In type B or C: u has either a reduced decomposition (6.5) or a reduced

decomposition of the form

(6.6) u = stst+1 · · · sn−1snsn−1 · · · sj+1sjw,

with j � t < n and h(id, w) > j, but not both.
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Proof. Start with a reduced word for u. By Lemma 5.1, j is the smallest
letter in that word. One can use the Coxeter relations to eliminate all but
one (in type A), or at most two (in types B and C) occurrences of j. �
Lemma 6.2. If u has a decomposition of the form (6.5), then

ωj−uωj =

{
αj + · · · + αk, in types A, C if k �n and B if k < n,

αj + · · · + αn−1 + 2αn, in type B for k = n.

If u has a decomposition of the form (6.6) with t > j, then

ωj − uωj =
{

αj + · · · + αt−1 + 2(αt + · · · + αn), in type B,
αj + · · · + αt−1 + 2(αt + · · · + αn−1) + αn, in type C.

If u has a decomposition of the form (6.6) with t = j, then

ωj − uωj =
{

2(αj + · · · + αn), in type B,
2(αj + · · · + αn−1) + αn, in type C.

Proof. Since h(id, w) > j we have wωj = ωj . Hence only the part to the left
of w matters in computing uωj . The formulas follow from straightforward
computations. �

The consequences of Lemma 6.2 are that, if h(id, u) = h(id, u′) = j, then:
(1) h(ωj − uωj) = j.
(2) ωj − uωj is a root, except in type B when it can also be twice a root.
(3) ωj − uωj and ωj − u′ωj are either equal or independent.
Therefore each factor

uk−1ωik − vωik = uk−1(ωik − u−1
k−1vωik)

in the denominator of (5.2) is, in types A and C, a root, and in type B,
either a root or twice a root. Using Lemma 4.2 we conclude that each such
factor cancels (over Z>0 in types A and C, and over 1

2Z>0 in type B) one of
the factors in Λ−

v .
To finish the proof of Theorem 6.1, we need to show that the factors

in the denominator of (5.2) are pairwise independent. Suppose that is not
true, and that for some chain γ ∈ C0(u, v) and some k < t, the vectors
uk−1ωik − vωik and ut−1ωit − vωit are dependent. Then ωik − v−1uk−1ωik

and ωit − v−1ut−1ωit are also dependent. Using Lemma 6.2 we get that

ik = h(ωik − v−1uk−1ωik) = h(ωit − v−1ut−1ωit) = it,

hence ik = it. Let j = ik = it be the common value. Since ωj − v−1uk−1ωj

and ωj − v−1ut−1ωj are dependent, Lemma 6.2 implies that they must be
equal, and therefore uk−1ωj − ut−1ωj = 0. Then the proof of Lemma 4.2
implies that 〈ωj , βk〉 = 0, and that is a contradiction, since j = ik = h(βk).
Therefore the factors in the denominator of (5.2) are independent, and that
completes the proof of the theorem. �



POSITIVITY THROUGH MOMENT MAP DEGENERATION 395

Remark 6.1. If u = s2 and v = s1s2s1 in B2, then the chain

γ : s2
∗sα1+2α2−−−−−−→ s1s2

∗sα1+α2−−−−−→ s1s2s1

is in C0(u, v), but

E(γ) = α1(α1 + α2)(α1 + 2α2)
1

2(α1 + α2)
1

α1 + 2α2
=

1
2

α1,

hence in type B the formula (6.4) is not necessarily integral, and the denom-
inators can be higher powers of 2.

A key consequence of Lemma 6.2 is that if h(id, u) = j, then ωj − uωj

is a root (in types A and C) or a multiple of a root (it type B, and for
G2). However, in type D or for F4, ωj − uωj can be a sum of positive
roots that is not a multiple of a root, and therefore chain contributions
(5.2) are positive but not necessarily polynomial. Sabatini and Tolman [ST]
developed a general procedure of grouping several contributions in order to
get a positive integral formula in types B and D.

7. Chain formula in type A

We apply Theorem 6.1 in the type A case, for M = SLn(C)/B.
If h(β) = k, then β = αkj for some j � k and 〈ωk, β〉 = 1. Hence all the

factors in the numerator of (5.2) are equal to 1. The denominators can be
computed using the following lemma.

Lemma 7.1. Let u ∈ Sn. If h(id, u) = j, then

ωj − uωj = xj − xu(j).

Proof. Let u = sksk−1 · · · sjw be the decomposition (6.5). Then

ωj − uωj = αj + · · ·αk = xj − xk+1,

and since h(id, w) > j, we have k + 1 = u(j). �

If γ is the saturated chain (6.2) as in Theorem 6.1, then

uk−1ωik − vωik = uk−1(ωik − u−1
k−1vωik) = xuk−1(ik) − xv(ik),

and therefore

E(γ) =

⎡

⎣
∏

(a,b)∈ Inv(v)

(xa − xb)

⎤

⎦
m∏

k=1

1
xuk−1(ik) − xv(ik)

.

We summarize the results of this section and formulate our version of a
type A positive formula for τu(v). Let C0(u, v) be the set of saturated chains

γ : u = u0
∗(i1,j1)−−−−→ u1

∗(i2,j2)−−−−→ u2 → · · · → um−1
∗(im,jm)−−−−−→ um = v
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that satisfy the condition

i1 � i2 � · · · � im,

where ∗(i, j) means that we are multiplying to the right by the transposition
that swaps i and j. For such a chain γ, let

Inv(v, γ) = Inv(v) \ {(uk−1(ik), v(ik)) | k = 1, . . . , m}

and

E(γ) =
∏

(a,b)∈ Inv(v,γ)

(xa − xb).

Theorem 7.1. The restriction of τu at v is given by

(7.1) τu(v) =
∑

γ∈C0(u,v)

E(γ) =
∑

γ∈C0(u,v)

∏

(a,b)∈ Inv(v,γ)

(xa − xb).

Example 7.1. Consider the permutations u = 2143 and v = 3421 in S4.
There are two chains in C0(2143, 3421):

γ1 : 2143
∗(1,4)−−−→ 3142

∗(2,3)−−−→ 3412
∗(3,4)−−−→ 3421,

γ2 : 2143
∗(1,4)−−−→ 3142

∗(2,4)−−−→ 3241
∗(2,3)−−−→ 3421.

For the first chain u0 = 2143, u1 = 3142, u2 = 3412, and u3 = v = 3421.

The edge 2143
∗(1,4)−−−→ 3142 deletes the factor xu0(1) − xv(1) = x2 − x3. The

edge 3142
∗(2,3)−−−→ 3412 deletes the factor xu1(2) − xv(2) = x1 − x4. The edge

3412
∗(3,4)−−−→ 3421 deletes the factor xu2(3) − xv(3) = x1 − x2. Therefore,

E(γ1) =
(x2 − x3)(x1 − x3)(x2 − x4)(x1 − x4)(x1 − x2)

(x2 − x3)(x1 − x4)(x1 − x2)
= (x1 − x3)(x2 − x4) = (α1 + α2)(α2 + α3).

Similarly,

E(γ2) =
(x2 − x3)(x1 − x3)(x2 − x4)(x1 − x4)(x1 − x2)

(x2 − x3)(x1 − x4)(x2 − x4)
= (x1 − x3)(x1 − x2) = (α1 + α2)α1.

Hence

τ2143(3421) = E(γ1) + E(γ2) = (α1 + α2)(α1 + α2 + α3).



POSITIVITY THROUGH MOMENT MAP DEGENERATION 397

8. Chains and subwords

In this section we give a general construction connecting ascending chains
and subwords, valid for all Weyl groups and orderings of simple roots.

Let u ≺ v and let I = [i1, . . . , ik] be a reduced word for v. Let A(u, v) be
the set of all ascending chains

(8.1) γ : u = u0
∗sβ1−−−→ u1

∗sβ2−−−→ u2 → · · · → um−1
∗sβm−−−→ um = v ,

from u to v, not necessarily of maximal length, and let C(u, v) be the subset
of A(u, v) consisting of the chains that satisfy h(β1) � · · · � h(βm). Then

C(u, v) ∩ Σ(u, v) = C0(u, v) ⊂ C(u, v) ⊂ A(u, v).

Let S(u, I) be the set of subwords of I that generate words for u by
deleting the zeroes; then R(u, I) is a subset of S(u, v). We define a function
FI : A(u, v) → S(u, I) as follows. Let γ be the ascending chain (8.1). We use
the edges of γ, in reverse order, to delete letters from I and get a subword
of I that is a word for u. Since um−1 = vsβm ≺ v, the Strong Exchange
Property implies that there exists a j (unique, since I is reduced) such that

um−1 = si1 · · · sij−1sij+1 · · · sik ,

hence Im−1 = [i1, . . . , ij−1, 0, ij+1, . . . , ik] ∈ S(um−1, I) is a subword of I that
is a word for um−1. Similarly, um−2 = um−1sβm−1 and 	(um−2) < 	(um−1),
so there exists a subword of Im−1, obtained by deleting exactly one letter
from Im−1, that is a word for um−2. However, since 	(um−1) is not necessarily
equal to 	(v)−1, the word Im−1 may be non-reduced, and in this case the
uniqueness of the deleted letter is not guaranteed. We choose the subword
for which the deleted letter is the rightmost choice, and get a subword Im−2
of Im−1 (hence of I), that is a word, not necessarily reduced, for um−2.
Continuing this process, with the same rule for making a choice, if needed,
we get a sequence Im−1, . . . , I0 of subwords of I such that Ik ∈ S(uk, I) and
Ik is obtained from Ik+1 by deleting one letter. We define FI(γ) = I0, the
last subword in the sequence.

Example 8.1. Let u = s1 and v = s1s2s1s2 in the Weyl group of the root
system C2. Let I = [1, 2, 1, 2] be a reduced word for v and let

γ : s1
∗sα1+α2−−−−−→ s2s1

∗sα1+2α2−−−−−−→ s1s2s1
∗sα2−−−→ s1s2s1s2

be an ascending chain of maximal length from u to v. Since sα1+α2 = s1s2s1
and sα1+2α2 = s2s1s2, the subword FI(γ) is computed as follows:

[1, 2, 1, 2]·[2] = [1, 2, 1, 0] = I2,

[1, 2, 1, 0]·[2, 1, 2] = [0, 2, 1, 0] = I1,

[0, 2, 1, 0]·[1, 2, 1] = [0, 0, 1, 0] = I0,

hence FI(γ) = [0, 0, 1, 0].
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Note that if γ ∈ Σ(u, v), then 	(uk−1) = 	(uk) − 1 for all k, hence the
words Im−1, . . . , I1, I0 are reduced. Therefore at each stage there is only
one possibility for the deleted letter and no choice is necessary.

Lemma 8.1. Let γ ∈ A(u, v) be an ascending chain. Then

FI(γ) ∈ R(u, I) ⇐⇒ γ ∈ Σ(u, v).

Moreover, if FI : C(u, v) → S(u, I) is bijective, then FI : C0(u, v) → R(u, I)
is also bijective.

Proof. Let γ ∈ A(u, v). Then FI(γ) ∈ R(u, I) if and only if FI(γ) has 	(u)
non-zero letters. This happens if and only if we delete 	(v)−	(u) letters from
I, and since every deleted letter corresponds to an edge of γ, if and only if γ
has 	(v) − 	(u) edges. In other words, if and only if γ is an ascending chain
of maximal length. If γ ∈ C0(u, v) then γ ∈ Σ(u, v), hence FI(γ) ∈ R(u, I).
Therefore FI : C0(u, v) → R(u, I) is well-defined.

Suppose that FI : C(u, v) → S(u, I) is bijective. Then the restriction of FI

to C0(u, v) is injective. Moreover, if J ∈ R(u, I), then there exists γ ∈ C(u, v)
such that FI(γ) = J . But then γ ∈ C(u, v) ∩ Σ(u, v) = C0(u, v), hence
FI : C0(u, v) → R(u, I) is also surjective. �

9. Equivalence of positive formulas

We show that in the case G = SLn(C), the chain formula (7.1) is an alterna-
tive formulation of the subword formula (3.1), by proving that, for a partic-
ular choice of a reduced word I for v, the function FI restricts to a bijection
FI : C0(u, v) → R(u, I) and SC(FI(γ), I) = E(γ) for all γ ∈ C0(u, v). Let
I(v) be the reduced word for v constructed inductively using (6.5). Then

I(v) = [I1, I2, . . . , In−1],

such that, for all j = 1, . . . , n − 1,
• Ij = [kj , kj−1, . . . , j+1, j ] or Ij = [ ], and
• h(sI1 · · · sIj , v) = h(id, sIj · · · sI1v) = h(id, sIj+1 · · · sIn−1) > j.

Example 9.1. If v = s2s1s3s2s3, then I1 = [2, 1] , I2 = [3, 2], and I3 = [3].

We can now prove the equivalence of the two positive formulas in type A.

Theorem 9.1. Let u, v ∈ Sn and let I = I(v). Then FI : C0(u, v) → R(u, I)
is a bijection and

SC(FI(γ), I) = E(γ)

for all chains γ ∈ C0(u, v).

Proof. In [Z] we proved that FI : C(u, v) → S(u, I) is a bijection. Then, by
Lemma 8.1, the map FI : C0(u, v) → R(u, I) is also a bijection.
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To prove that SC(FI(γ), I) = E(γ), we show that the factor of Λ−
v can-

celled by an edge of γ is the same as the factor cancelled by the corresponding
deleted letter from I. In [Z] we also proved that if

γ : u = u0
∗sβ1−−−→ u1

∗sβ2−−−→ u2 → · · · → um−1
∗sβm−−−→ um = v

is a chain in C0(u, v), then,

(1) the edge uk−1
∗sβk−−−→ uk deletes a letter from Ih(βk), and

(2) the letters deleted in Ij are deleted from left to right.
Let uk−1 → uk = uk−1sβk

be an edge of γ and let j = h(βk).
Suppose that h(βk) = · · · = h(βk+q−1) = j < h(βk+q), hence βk is the qth

occurrence of j from right to left. Let

Jk = [I1, . . . , Ij−1, I
′
j , I

′
j+1, . . . , I

′
n−1] ∈ R(uk, I(v))

be the subword obtained after using sβm , . . . , sβk+1 to delete letters from
I(v), and let

Jk−1 = [I1, . . . , Ij−1, I
′′
j , I ′

j+1, . . . , I
′
n−1] ∈ R(uk−1, I(v))

be the subword obtained after using sβk
to delete one more letter from Jk.

Then I ′
j is of the form

I ′
j = [kj , . . . , ĵ1, . . . , ĵq−1, . . . , j] ⊂ Ij ,

and
I ′′
j = [kj , . . . , ĵ1, . . . , ĵq−1, . . . , ĵq, . . . , j] ⊂ I ′

j ⊂ Ij ,

with j1 > j2 > · · · > jq, since the letters in Ij are deleted from left to right.
The factor of Λ−

v cancelled by the edge uk−1 → uk is

uk−1ωj − vωj = (uk−1ωj − ukωj) + · · · + (uk+q−2ωj − uk+q−1ωj)

= 〈ωj , βk〉uk−1βk + · · · + 〈ωj , βk+q−1〉uk+q−2βk+q−1

= sI1 · · · sIj−1skj
· · · sj1+1(ŝj1 · · · ŝj2 · · · ŝjqαjq + · · · + αj1).

But if j1 > j2, then

ŝj1 · · · ŝj2αj2 + αj 1 = sj1 · · · ŝj2αj2 ,

and then, by induction on q,

ŝj1 · · · ŝj2 · · · ŝjqαjq + · · · + αj1 = sj1 · · · sjq−1 · · · ŝjqαjq .

Therefore,
uk−1ωj − vωj = sI1 · · · sIj−1skj

· · · sjq+1αjq

and that is precisely the factor of Λ−
v cancelled by the missing letter jq,

letter that has been deleted by the edge uk−1 → uk. �
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In type C the two formulas are different, as shown by the following
example. Let u = s1 and v = s1s2s1s2 in C2. Then I1 = [1, 2, 1, 2] and
I2 = [2, 1, 2, 1] are the only reduced words for v, and each of them has two
subwords that are reduced words for u. Hence whether I = I1 or I = I2,
there are two subwords in R(u, I). There is only one saturated chain from
u to v satisfying (6.3),

γ : s1
∗sα1+α2−−−−−→ s2s1

∗sα1+2α2−−−−−−→ s1s2s1
∗sα2−−−→ s1s2s1s2,

hence there is only one chain in C0(u, v). The subword formula has two terms
in the sum, but the chain formula has only one term, so the two formulas
are different. (In general, however, the number of chains in C0(u, v) is not
necessarily smaller than the number of subwords in R(u, I).)
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