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INTEGRALS OF EQUIVARIANT FORMS OVER
NON-COMPACT SYMPLECTIC MANIFOLDS

Matvei Libine

This article is a result of the AIM workshop on Moment Maps and
Surjectivity in Various Geometries (August 9–13, 2004) organized by
T. Holm, E. Lerman and S. Tolman. At that workshop I was introduced
to the work of Hausel and Proudfoot on hyperkähler quotients [HP].
One interesting feature of their article is that they consider integrals
of equivariant forms over non-compact symplectic manifolds which do
not converge, so they formally define these integrals as sums over the
zeroes of vector fields, as in the Berline–Vergne localization formula.
In this article we introduce a geometric-analytic regularization tech-
nique which makes such integrals converge and utilizes the symplectic
structure of the manifold. We also prove that the Berline–Vergne local-
ization formula holds for these integrals as well. The key step here is to
redefine the collection of integrals

∫
M

α(X), X ∈ g, as a distribution on
the Lie algebra g. We expect our regularization technique to generalize
to non-compact group actions extending the results of [L1, L2].

1. Introduction

This article is a result of the AIM workshop on Moment Maps and Sur-
jectivity in Various Geometries (August 9–13, 2004) organized by T. Holm,
E. Lerman and S. Tolman. At that workshop I was introduced to the work
of Hausel and Proudfoot on hyperkähler quotients [HP]. One interesting
feature of their article is that they consider integrals of equivariant forms
over non-compact symplectic manifolds which do not converge, so they for-
mally define these integrals as sums over the zeroes of vector fields, as in the
Berline–Vergne localization formula.

While the definition is perfectly valid, it does not feel satisfactory. The
Berline–Vergne localization formula relates a global object (integral of a
cohomology class) with a local object (certain quotients defined at zeroes of a
vector field). From this point of view, the localization formula is very similar
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to the Lefschetz fixed point formula. The Lefschetz fixed point formula fails
for non-compact manifolds in general because the fixed points may “run
away to infinity.” By analogy one expects the Berline–Vergne formula to fail
on non-compact manifolds for the same reason.

In this article we introduce a geometric-analytic regularization technique
for non-compact symplectic manifolds which makes such integrals converge
in the subanalytic setting. Then we prove under an additional assumption
that ensures the zeroes do not run away to infinity (see Definition 3.1)
that the Berline–Vergne localization formula holds for these integrals as
well. The key step here is to redefine the collection of integrals

∫
M α(X),

X ∈ g, as a distribution on the Lie algebra g. Such approach has been
used before, particularly in the important special case when the manifold
M is a coadjoint orbit of a real semisimple Lie group (see, for example,
[DHV, DV, KV, L1, L2, Pa1, Pa2] and references therein). We extend
these ideas to a much wider class of subanalytic symplectic manifolds. The
subanalytic setting allows us to use the properties of o-minimal structures
(for elementary introductions see [DM, D]) to estimate the growth of inte-
grals at infinity. The subanalytic setting is more general than real algebraic
setting and, in fact, all results of this paper hold in even more general setting
of polynomially bounded o-minimal structures. To make this article more
accessible we discuss the most relevant properties of o-minimal structures in
the Appendix.

The main results of this paper are Proposition 2.1, the regularization tech-
nique described in Subsection 3.3 and Theorems 3.1 and 3.2. Proposition 2.1
has appeared in a very special case as Proposition 8 in [DV]. Theorem 3.1
is closely related to another extension of the Berline–Vergne localization
formula to non-compact setting given in [L2]. It is also related to the exten-
sion of the Duistermaat–Heckman formula to non-compact manifolds due
to Prato and Wu [PrWu]. Theorem 3.2 essentially says that the Berline–
Vergne localization formula still holds after our regularization procedure. As
an example, we consider coadjoint orbits of real semisimple Lie groups.

It is interesting to note that a similar problem was studied by physicists
Moore, Nekrasov and Shatashvili in [MNS]. They regularize volumes of
non-compact kähler and hyperkähler quotients by introducing a parameter
ε, discarding the poles in ε and extracting the finite part as ε goes to zero.

We expect our regularization technique to generalize to non-compact
group actions. An analogue of Berline–Vergne integral localization formula
for non-compact group actions was proved in [L1, L2]. However, in [L1, L2]
integrals are taken over homology cycles sitting inside a cotangent bun-
dle T ∗M which comes with the standard Hamiltonian structure, the inte-
grand has to satisfy many conditions as well. In the subanalytic setting these
results can be extended further to more general manifolds and differential
forms.
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2. Notations and definitions

2.1. Equivariant cohomology. Let G be a compact real algebraic Lie
group; we denote by g its Lie algebra and by g∗ the dual of the Lie algebra.
The group G acts on g by the adjoint action and on g∗ by the coadjoint
action. Let M be a smooth manifold which is possibly non-compact, and
let G act on M . The action of G on M lifts to an action on Ω∗(M) — the
algebra of complex-valued differential forms on M . To each element X ∈ g

we associate a vector field VFX on M defined by

(VFX ·f)(m) =
d

dε
f
(
exp(εX)m

)∣∣
∣
ε=0

, f ∈ C∞(M), m ∈ M.

We denote by ιX the contraction by the vector field VFX , and by MX the
set of zeroes of VFX :

MX = {m ∈ M ; VFX(m) = 0}.

For introductions to equivariant forms and equivariant cohomology see
[BGV, GS, L3]. Recall that a (smooth) G-equivariant form on M is a
C∞-map α : g → Ω∗(M) which is G-equivariant, i.e.,

α(g · X) = g · (α(X)) for all g ∈ G and X ∈ g,

and possibly non-homogeneous. We denote by Ω∞
G (M) the space of G-

equivariant forms on M and by Ω∗
G(M) the subalgebra of Ω∞

G (M) consisting
of equivariant forms depending on X ∈ g polynomially. We define a twisted
deRham differential by

(2.1) (dgα)(X) = d(α(X)) + ιX(α(X)), X ∈ g,

where d denotes the ordinary deRham differential. The map dg preserves
G-equivariant forms, and (dg)2 = 0 on Ω∞

G (M). An equivariant form α such
that dgα = 0 is called equivariantly closed. The equivariant degree of a poly-
nomial equivariant form in Ω∗

G(M) is its differential form degree plus twice
its degree as a polynomial on g, then the twisted deRham differential dg
increases the equivariant degree of α by one. On the other hand, for an ele-
ment α ∈ Ω∞

G (M), the differential dg changes the parity of the differential
form degree of α. We denote by H∗

G(M) and by H∞
G (M) the cohomolo-

gies of complexes (Ω∗
G(M), dg) and (Ω∞

G (M), dg), respectively; H∗
G(M) is Z-

graded and called the (ordinary) G-equivariant cohomology of M , H∞
G (M)

is Z2-graded and called the G-equivariant cohomology of M with smooth
coefficients.

When γ ∈ Ω∗(M) is a differential form and k = 0, 1, 2, . . . , we denote by
γ[k] the homogeneous differential form component of degree k. If N ⊂ M is
an oriented submanifold we define

∫

N
γ = def

∫

N

(
γ[dim N ]

)∣
∣
N

.
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2.2. Equivariant cohomology with distributional coefficients. In
this article we will be primarily interested in G-equivariant forms and
cohomology on M with distributional coefficients. Let Ωtop

c (g) the space
of smooth compactly supported complex-valued differential forms on g of
top degree; it will play the role of the space of test functions. The adjoint
action of G on g lifts to an action on Ωtop

c (g). We equip both Ωtop
c (g) and

Ω∗(M) with C∞ topologies. By an equivariant form with distributional (or
C−∞) coefficients we mean a continuous C-linear G-equivariant map

α : Ωtop
c (g) � ϕ �→ 〈α, ϕ〉g ∈ Ω∗(M),

we denote the space of those by Ω−∞
G (M). We treat elements α ∈ Ω−∞

G (M)
as Ω∗(M)-valued G-equivariant distributions on g.

To define the twisted deRham differential on Ω−∞
G (M), we pick a real

vector space basis {E1, . . . , Edim g} of g and let {E1, . . . , Edim g} be the
associated dual basis of g∗. We regard each Ek, 1 ≤ k ≤ dim g, as a linear
function on g; in particular the product Ekϕ makes sense for ϕ ∈ Ωtop

c (g).
For each α ∈ Ω−∞

G (M), we set

(2.2) 〈dgα, ϕ〉g = d〈α, ϕ〉g +
dim g∑

k=1

ιEk〈α, Ekϕ〉g, ϕ ∈ Ωtop
c (g).

We have a natural inclusion Ω∞
G (M) ⊂ Ω−∞

G (M), and the formulas (2.1) and
(2.2) agree on Ω∞

G (M). The differential dg defined by (2.2) is independent
of a particular choice of the basis {E1, . . . , Edim g} of g, and we still have
(dg)2 = 0 on Ω−∞

G (M). The cohomology of (Ω−∞
G (M), dg) is denoted by

H−∞
G (M), it is Z2-graded and called the G-equivariant cohomology of M

with distributional (or C−∞) coefficients.
Let C∞

c (g∗) be the space of test functions, i.e., the space of smooth com-
pactly supported complex-valued functions on g∗ endowed with C∞ topology.
We also consider the space of continuous G-equivariant C-linear maps from
C∞

c (g∗) to Ω∗(M), denoted by M−∞(g∗, M)G. Similarly, we treat elements
β ∈ M−∞(g∗, M)G as Ω∗(M)-valued G-equivariant distributions on g∗ and
denote the value of β at ψ ∈ C∞

c (g∗) by 〈β, ψ〉g∗ ∈ Ω∗(M). Next we define
the differential on M−∞(g∗, M)G. For each β ∈ M−∞(g∗, M)G, we set

(2.3) 〈d̂gβ, ψ〉g∗ = d〈β, ψ〉g∗ − i

dim g∑

k=1

ιEk〈β, ∂Ek
ψ〉g∗ , ψ ∈ C∞

c (g∗),

where ∂Ek
ψ denotes the partial derivative of ψ relative to the basis

{E1, . . . , Edim g} of g∗. As before, the differential d̂g is independent of a
particular choice of the basis {E1, . . . , Edim g} of g, and (d̂g)2 = 0 on
M−∞(g∗, M)G.
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The complexes (Ω−∞
G (M), dg) and (M−∞(g∗, M)G, d̂g) are related by a

Fourier transform. We denote by

Ω−∞
temp(g, M)G ⊂ Ω−∞

G (M) and M−∞
temp(g

∗, M)G ⊂ M−∞(g∗, M)G

the subspaces of tempered G-equivariant distributions on g and g∗, respec-
tively, with values in Ω∗(M). The Fourier transform F : Ω−∞

temp(g, M)G →
M−∞

temp(g
∗, M)G is normalized so that

〈
F(α),

∫

g

ei〈ξ,X〉ϕ(X)
〉

g∗
= 〈α, ϕ〉g, ∀α ∈ Ω−∞

temp(g, M)G, ∀ϕ ∈ Ωtop
c (g).

Then the following diagram commutes:

Ω−∞
temp(g, M)G dg−−−−→ Ω−∞

temp(g, M)G

F
⏐
⏐
�

⏐
⏐
�F

M−∞
temp(g

∗, M)G
̂dg−−−−→ M−∞

temp(g
∗, M)G

i.e., the Fourier transform F becomes a chain map.
Following [Pa2], we say that a distribution β ∈ M−∞(g∗, M)G has com-

pact support in g∗-mean on M if, for every test function ψ ∈ C∞
c (g∗), the

form 〈β, ψ〉g∗ ∈ Ω∗(M) has compact support in M .

Definition 2.1. For every β ∈ M−∞(g∗, M)G with compact support in
g∗-mean on M we denote by

∫ distrib
M β the distribution on g∗ defined by

C∞
c (g∗) � ψ �→

〈∫ distrib

M
β, ψ

〉

g∗
= def

∫

M
〈β, ψ〉g∗ ∈ C.

Lemma 2.1 (Lemma 2.11 in [Pa2]). If β ∈ M−∞(g∗, M)G has compact
support in g∗-mean on M , then so does d̂gβ, moreover

∫ distrib

M
d̂gβ = 0.

2.3. Hamiltonian systems. In this article we will be interested in the
case when M is symplectic and the action of G is Hamiltonian. That is,
the manifold M comes equipped with a symplectic form ω, the action of G
preserves ω, and there is a moment map μ : M → g∗ which is G-equivariant:

μ(g · m) = g · μ(m) for all g ∈ G and m ∈ M,

and such that

(2.4) dμ = −ιX(ω) for all X ∈ g.

A symplectic manifold (M, ω) always has a preferred orientation — the one
given by ω

1
2 dim M .
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We can also regard μ as a linear map from g to Ω0(M) — the space of
functions on M . Define ω̃ ∈ Ω∞

G (M) by

ω̃ : g → Ω0(M) ⊕ Ω2(M) ⊂ Ω∗(M), ω̃(X) = μ(X) + ω, X ∈ g.

Then ω̃ is equivariantly closed, which follows immediately from (2.4).
Throughout this article we always assume that the moment map μ : M →

g∗ is proper, i.e.,

∀K ⊂ g
∗, K compact =⇒ μ−1(K) ⊂ M is compact.

2.4. Paradan’s pushforward map. P : H∗
G(M) → C−∞(g∗). Let

(M, ω, μ) be a Hamiltonian system. As always, we assume that the moment
map μ is proper. Pick an element α ∈ Ω∞

G (M). Then, for each ϕ ∈ Ωtop
c (g),

the integral

(2.5)
∫

g

α(X) ∧ eiω̃(X) ∧ ϕ(X) = eiω ∧
∫

g

α(X) ∧ eiμ(X) ∧ ϕ(X), X ∈ g,

produces a differential form on M . Thus α ∧ eiω̃ may be regarded as a
G-equivariant distribution on g with values in Ω∗(M), i.e., an element of
Ω−∞(g, M)G. We call this distribution (α ∧ eiω̃)distrib.

Lemma 2.2 (Lemma 2.12 in [Pa2]). For every equivariant form α(X) ∈
Ω∗

G(M) with polynomial dependence on X ∈ g, the Ω∗(M)-valued distribu-
tion

(α ∧ eiω̃)distrib : Ωtop
c (g) � ϕ(X) �→

∫

g

α(X) ∧ eiω̃(X) ∧ ϕ(X) ∈ Ω∗(M)

is G-equivariant and tempered, hence belongs to Ω−∞
temp(g, M)G. Its Fourier

transform F(α ∧ eiω̃)distrib has compact support in g∗-mean on M . The dis-
tribution

∫ distrib
M F(α ∧ eiω̃)distrib is G-invariant. If α is equivariantly exact,

i.e., α = dgα
′ for some α′ ∈ Ω∗

G(M), then
∫ distrib
M F(α ∧ eiω̃) = 0.

Paradan’s key observation is that, for every polynomial P (X) on g, we
can associate a differential operator P (−i∂ξ) (with constant coefficients) on
C∞(g∗) so that

P (X) · F
(
ψ(ξ)

)
= F

(
P (−i∂ξ)ψ(ξ)

)
, X ∈ g, ξ ∈ g

∗,

for all test functions ψ(ξ) ∈ C∞
c (g∗). This association extends naturally to

Ω∗(M)-valued polynomials on g and hence to Ω∗
G(M); for an α(X) ∈ Ω∗

G(M)
we denote by α(−i∂ξ) the corresponding differential operator with values in
Ω∗(M). Then, for a test function ψ ∈ C∞

c (g∗) with ψ̂(X) = F(ψ), we have

〈F(α ∧ eiω̃)distrib, ψ〉g∗
∣
∣
m

=
∫

g

α(X) ∧ eiω̃(X) ∧ ψ̂(X)
∣
∣
∣
∣
m

(2.6)

= eiω̃[
α(−i∂ξ)ψ

]
(μ(m)), ∀m ∈ M.
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Hence the differential form 〈F(α ∧ eiω̃)distrib, ψ〉g∗ is supported inside
μ−1(supp ψ) which is compact because μ is proper. This implies that
F(α ∧ eiω̃)distrib has compact support in g∗-mean on M .

Using this lemma, Paradan defines a pushforward map from Ω∗
G(M)

into C−∞(g∗) — distributions on g∗ by α �→
∫ distrib
M F(α ∧ eiω̃)distrib which

descends to a map
P : H∗

G(M) → C−∞(g∗)

(equation (14) in [Pa2]).

Example 2.1. Let the equivariant form α = 1. Then

P(1) =
∫ distrib

M
F(eiω̃)distrib

is (up to a constant coefficient) just the Duistermaat–Heckman measure on
g∗. (The Duistermaat–Heckman measure on g∗ is the pushforward of the
Liouville measure on M to g∗ via the moment map.)

In his paper [Pa2] Paradan studies the distribution
∫ distrib
M F(α∧eiω̃)distrib

on g∗ and gives a localization formula for it at (the connected components
of) the critical points of ‖μ‖2

g∗ .

2.5. Integrals of equivariant forms. In this article we will be primar-
ily interested in the distribution (α ∧ eiω̃)distrib defined by (2.5). While〈
(α ∧ eiω̃)distrib, ϕ

〉
g

∈ Ω∗(M) need not have compact support, we will show
that in the subanalytic setting (or, even more generally, in the setting of
polynomially bounded o-minimal structures) this form is automatically inte-
grable. Hence we obtain a distribution which we denote by

∫ distrib
M α ∧ eiω̃

on g. Comparing (2.5) and (2.6) we see that the distributions
∫ distrib
M α ∧ eiω̃

on g and P(α) on g∗ are related to each other by the Fourier transform. In
particular, Paradan’s results immediately apply to

∫ distrib
M α ∧ eiω̃ as well.

We fix a positive-definite inner product (·, ·)g∗ on g∗, which is invariant
under the coadjoint action of G, and denote by ‖ · ‖g∗ the corresponding
norm. Let

M≤R = {m ∈ M ; ‖μ(m)‖g∗ ≤ R}, R > 0.

Since the moment map μ is proper, the sets M≤R are compact. Note also
that the inner product (·, ·)g∗ being G-invariant implies that the sets M≤R

are preserved by the G-action on M .

Definition 2.2. We call an element α ∈ Ω∞
G (M) integrable in distributional

sense if the limit

lim
R→+∞

∫

M≤R

∣
∣
∣

∫

g

α ∧ eiω̃ ∧ ϕ
∣
∣
∣
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exists for every test form ϕ ∈ Ωtop
c (g) and the mapping

(2.7) Ωtop
c (g) → C, ϕ �→ lim

R→+∞

∫

M≤R

(∫

g

α ∧ eiω̃ ∧ ϕ
)

is continuous.
For an integrable α, we denote the distribution (2.7) by

∫ distrib
M α ∧ eiω̃.

Example 2.2. Suppose that the equivariant form α = 1 is integrable in dis-
tributional sense. Then the distribution

∫ distrib
M eiω̃ is (up to a constant coef-

ficient) the Fourier transform of the Duistermaat–Heckman measure on g∗.

We first show that in the subanalytic setting every subanalytic α ∈
Ω∗

G(M) is integrable in distributional sense, then we study properties of
the distribution

∫ distrib
M α ∧ eiω̃.

Definition 2.3. By a subanalytic Hamiltonian system we mean a Hamil-
tonian system (M, ω, μ) such that the manifold M , the group G, the sym-
plectic form ω, the moment map μ and the action of the group G on M
are subanalytic in the sense of Definition 4.3 and discussion at the end of
Subsection 4.1.

Proposition 2.1. Let (M, ω, μ) be a subanalytic Hamiltonian system with
proper moment map μ, and let α : g → Ω∗(M) be a subanalytic form depend-
ing on X ∈ g polynomially, then α is integrable in distributional sense. More-
over, the distribution

∫ distrib
M α ∧ eiω̃ is tempered, in particular its Fourier

transform makes sense.

This proposition follows from Lemma 4.1 and a simple observation that
the integral ∫

g

α(X) ∧ ei〈ξ,X〉 ∧ ϕ(X), ξ ∈ g
∗,

decays rapidly as ξ → ∞, for every test form ϕ ∈ Ωtop
c (g).

3. The fixed point localization formula

3.1. The first fixed point localization formula. Let (M, ω, μ) be a sub-
analytic Hamiltonian system in the sense of Definition 2.3 and α ∈ Ω∗

G(M)
a subanalytic equivariant form in the sense of Definition 4.3 and discussion
at the end of Subsection 4.1. The moment map μ is always assumed to be
proper.

Let T ⊂ G denote the maximal torus with Lie algebra t, and denote by
MT the set of points in M fixed by T . Following [HP] we say that the
action of G on M is T -compact if the set MT is compact. Note that since
all maximal tori T ⊂ G are conjugate, if the set MT is compact for one
particular torus then MT is compact for all tori, so the choice of a torus
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is irrelevant here. In this subsection we study the localization properties of∫ distrib
M α ∧ eiω̃ at the fixed point set MT .
For each maximal torus T ⊂ G, we denote by NMT the normal bundle

at MT . Then we denote by χT (NMT ) ∈ Ω∗
T (MT ) the T -equivariant Euler

form of NMT , it is a map t → Ω∗(MT ). The T -equivariant Euler form is a
concrete differential form realization of the Euler class in H∗

T (MT ) and is
determined up to an exact form. (See, for instance, [BGV] for details.)

We denote by grs the set of regular semisimple elements in g. These are
elements X ∈ g such that the adjoint action of ad(X) on g is diagonalizable
(over C) and has maximal possible rank. The set grs is an open and dense
subset of g.

Next we introduce the set of strongly regular elements g′. It consists of
regular semisimple elements X ∈ grs which satisfy the following additional
properties. If t(X) ⊂ g is the unique Cartan subalgebra in g containing X,
then:

(1) The set of zeroes MX is exactly the set of points in M fixed by the
torus T (X) = exp(t(X)) ⊂ G:

MX = MT (X).

(2) The component of the equivariant Euler form

χT (X)(NMX )[0](X) �= 0

(i.e., χT (X)(NMX )(X) is invertible) at all point m ∈ MX .

Clearly, g′ is an open Ad(G)-invariant subset of g. Since MT is compact,
it has finitely many connected components. So, for any Cartan subalgebra
t ⊂ g, the intersection g′ ∩ t is just t without a finite number of hyperplanes.
Hence, by Ad(G)-invariance, the complement of g′ in g has measure zero
and g′ is dense in g. When X ∈ g′ ∩ t, we have t(X) = t, T (X) = T and
MX = MT (X) = MT .

We need to ensure that, for each X ∈ g′, the vector fields VFX do not
have “zeroes at infinity.” It is not enough to say there is some Riemannian
metric (·, ·)M on M such that the function (VFX , VFX)M is bounded away
from zero on the complement of a compact subset of M containing MX , as
(·, ·)M can always be scaled. Thus we need to require (VFX , VFX)M to be
bounded away from zero relatively to the coefficients of the metric (·, ·)M

itself. Fix a vector space basis {E1, . . . , Edim g} of g and an open set U ⊂ M
containing G · MT and having compact closure.

Definition 3.1. We say that the action of G on M has no zeroes at infinity
if it is T -compact and there exists a subanalytic Riemannian metric (·, ·)M

on M with the following property: For each compact subset D ⊂ g′, there
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is a constant cD > 0 such that

(3.1)
(VFX , VFX)M (m) ≥ cD

(VFX , VFX)M (m) ≥ cD ·
∣
∣(VFEa , VFEb)M (m)

∣
∣,

for all X ∈ D, m ∈ M \ U and 1 ≤ a, b ≤ dim g.

The notion of the action of G on M having no zeroes at infinity does not
depend on the choice of vector space basis of g, nor does it depend on the
choice of open set U ⊂ M containing G · MT and having compact closure.

The metric (·, ·)M in the definition is not required to be G-invariant. Note
that if we start with a subanalytic metric on M , its average by the G-action
need not be subanalytic. For a metric (·, ·)M on M , we denote by g∗(·, ·)M

the metric obtained by translation by the action of g ∈ G. Without loss of
generality we can assume that U ⊂ M is G-invariant. Then one can choose
the constants cD so that (3.1) will be satisfied with g∗(·, ·)M in place of
(·, ·)M , for all g ∈ G.

Theorem 3.1. Let (M, ω, μ) be a subanalytic Hamiltonian system, the man-
ifold M need not be compact. Suppose that the action of G has no zeroes at
infinity, and that the moment map μ : M → g∗ is proper. Let α ∈ Ω∗

G(M)
be a subanalytic equivariant form which is equivariantly closed. Then the
restriction of the distribution

∫ distrib
M α ∧ eiω̃ to g′ is an Ad(G)-invariant

function on g′

(3.2) Fα,ω̃(X) = (−2πi)n

∫

MX

(
(α(X) ∧ eiω̃)|MX

χT (X)(NMX )(X)

)

[dim MX ]
, X ∈ g

′,

where n = 1
2 dim M . That is, if ϕ ∈ Ωtop

c (g′) is a smooth compactly supported
differential form on g′ of top degree,

∫ distrib

M
α ∧ eiω̃ : ϕ �→

∫

g

Fα,ω̃ϕ.

Distribution
∫ distrib
M α ∧ eiω̃ were considered by the author in [L1, L2].

However, the papers [L1, L2] deal with actions of non-compact groups pre-
serving a homology cycle in T ∗M , so the group and the manifold are much
more general, but the Hamiltonian structure is the one of the cotangent
bundle. In the special case when M is a coadjoint orbit, Theorem 3.1 was
proved by Duflo, Heckman and Vergne [DHV], [DV] and later by Paradan
[Pa1].

Remark 3.1. Returning to Example 2.2 where the equivariant form α =
1, this result formally coincides with the Duistermaat–Heckman formula
[DH]. If, in addition, the manifold M is compact, this result is exactly the
Duistermaat–Heckman formula.
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This localization formula (3.2) is also closely related to the extension of
the Duistermaat–Heckman formula to non-compact manifolds due to Prato
and Wu [PrWu]. They consider the integral

∫ distrib
M eiω̃ (i.e. α = 1), but

they do not work in the subanalytic setting. To work around the problem of
convergence of this integral they assume that there exists an X0 ∈ g′ such
that the component of the moment map

μX0 : M → R, μX0 =def 〈μ, X0〉
is proper and not surjective. This implies that μX0 is polarized, i.e., bounded
either from below or from above. This assumption is similar to our signifi-
cantly weaker assumption that the moment map μ : M → g∗ is proper. Like
us, they require the group action to be T -compact (although they do not use
this term). Finally, they complexify the Lie algebra t(X0) and prove that,
for Z ∈ t(X0) ⊗R C with Re(Z) ∈ t(X0) ∩ g′ and Im(Z) lying in the interior
of a certain cone C ⊂ t(X0), the improper integral

∫
M ei(μ(Z)+ω) converges to

F1,ω̃(Z) =
∫

MT (X0)

(
ei(μ(Z)+ω)|MT (X0)

χT (X0)(NMT (X0))(Z)

)

[dim MT (X0)]

in the most common sense of convergence (and in particular in the sense of
distributions). Note that 0 ∈ ∂C and the interior of C being non-empty is
essentially equivalent to μX0 being polarized.

3.2. Proof of Theorem 3.1. If we knew in addition that the moment map
μ : M → g∗ composed with the projection g∗ � t∗ was proper and that
all integrals converged, then the classical argument of Berline and Vergne
[BGV] would apply verbatim. However, we only assume that the moment
map μ itself is proper, so we cannot deal with integral (3.2) “one Cartan
algebra at a time” and we proceed as in [BV2].

Fix a subanalytic metric (·, ·)M on M satisfying conditions of Definition
3.1, and let (·, ·)G

M be its average by G-action. Then we define a 1-form θX

depending on X ∈ g by setting

θX =
(VFX , · )G

M

(VFX , VFX)G
M

.

For a fixed X ∈ g, this form is defined on M \ MX . We regard θX as a map
{(X, m) ∈ g × M ; m /∈ MX} → Λ∗(TM). Note that

{(X, m) ∈ g × M ; m /∈ MX} ⊃ g
′ × (M \ G · MT ),

where T ⊂ G is a maximal torus, and the set G · MT is compact. The form
θX is G-equivariant and has the following property

ιXθX = 1, ∀X ∈ g.

Hence, on {(X, m) ∈ g × M ; m /∈ MX}, we have (dgθX)[0] = 1, the form
dgθX is invertible and the quotient θX

dgθX
makes sense.
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Recall that the test form ϕ is compactly supported in g′. For each R > 0
large enough so that G · MT is contained in the interior of M≤R, by the
classical localization argument we have

∫

M≤R

(∫

g

α ∧ eiω̃ ∧ ϕ

)

=
∫

g

(∫

M≤R

α ∧ eiω̃

)

∧ ϕ

=
∫

g

∫

MX

(
(α ∧ eiω̃)|MX

χT (X)(NMX )(X)

)

∧ ϕ +
∫

g

(∫

∂M≤R

θX

dgθX
∧ α ∧ eiω̃

)

∧ ϕ

=
∫

g

Fα,ω̃ϕ +
∫

∂M≤R

(∫

g

θX

dgθX
∧ α ∧ eiω̃ ∧ ϕ

)

[2n−1]
.

As R → +∞, the left-hand side tends to
〈∫ distrib

M α ∧ eiω̃, ϕ
〉
, so it remains

to show

(3.3)
∫

∂M≤R

(∫

g

θX

dgθX
∧ α ∧ eiω̃ ∧ ϕ

)

[2n−1]
→ 0 as R → +∞.

Let h : g × M → R be the function h(X, m) = (VFX , VFX)G
M (m). The

form α(X) ∈ Ω∗
G(M) depends on X ∈ g polynomially. Hence the form

θX
dgθX

∧ α(X) ∧ eiω depends on the parameter X ∈ g as a polynomial in X

and 1/h(X, m), thus it can be expressed as

θX

dgθX
∧ α(X) ∧ eiω =

k∑

j=1

βj
Pj(X)

h(X, m)nj

for some polynomials Pj(X) on g, nj ≥ 0 and βj ∈ Ω∗(M) obtained by
averaging subanalytic forms by K-actions. By Lemma 4.2, there is an N ∈ N

such that each
∫

∂M≤R

|βj | is O(RN ) as R → +∞, 1 ≤ j ≤ k.

With D = suppϕ in Definition 3.1, condition (3.1) implies that the partial
derivatives of all orders of 1/h(X, m)nj with respect to X ∈ g are uni-
formly bounded. More precisely, for each multiindex L = (l1, . . . , ldim g),
there exists a constant CL > 0 such that

∂|L|

∂EL

(
1

h(X, m)nj

)

≤ CL, ∀X ∈ suppϕ, ∀m ∈ M \ U.

Hence the Fourier transforms
∫

g

Pj(X)
h(X, m)nj

ϕ(X)eiξ(X), ξ ∈ g
∗, 1 ≤ j ≤ k,
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are o(R−N ) as ‖ξ‖g∗ = R → +∞. This proves (3.3).
It is clear that the function Fα,ω̃ is Ad(G)-invariant. �

3.3. Definition of
∫ distrib
M α and the main localization theorem. Note

that, for each s ∈ R, s �= 0, the pair (sω, sμ) gives another symplectic
structure on M such that the action of G remains Hamiltonian. As before,
consider a subanalytic equivariant form α ∈ Ω∗

G(M), which is equivariantly
closed. Then Theorem 3.1 applied to (M, sω, sμ) implies that, for each ϕ ∈
Ωtop

c (g′), the limit

lim
s→0+

〈∫ distrib

M
α ∧ eisω̃, ϕ

〉

exists and the assignment

ϕ �→ lim
s→0+

〈∫ distrib

M
α ∧ eisω̃, ϕ

〉

is a distribution on g′. Recall that the space of distributions is equipped
with the weak*-topology, and a sequence of distributions {Λj} converges to
a distribution Λ in this topology if and only if limj→∞ Λj(ϕ) = Λ(ϕ) for all
test functions ϕ. Therefore, we can define

∫ distrib
M α as a limit of distributions

on g′ (in the weak*-topology):
∫ distrib

M
α = lim

s→0+

∫ distrib

M
α ∧ eisω̃.

Remark 3.2. We do not allow s < 0 in the limit because the orientation of
M is determined by its symplectic structure and replacing ω with sω, s < 0,
will change the orientation whenever n = 1

2 dim M is odd.

The following localization formula follows immediately from Theorem 3.1:

Theorem 3.2. Let (M, ω, μ) be a subanalytic Hamiltonian system, the man-
ifold M need not be compact. Suppose that the action of G has no zeroes at
infinity and the moment map μ : M → g∗ is proper. Let α ∈ Ω∗

G(M) be a
subanalytic equivariant form which is equivariantly closed. Then the distri-
bution

∫ distrib
M α on g′ is given by integrating against a function Fα:

∫ distrib

M
α : ϕ �→

∫

g

Fαϕ, ϕ ∈ Ωtop
c (g′)

where Fα is an Ad(G)-invariant function on g′ given by the formula

Fα(X) = (−2πi)n

∫

MX

(
α(X)|MX

χT (X)(NMX )(X)

)

[dim MX ]
, X ∈ g

′,

where n = 1
2 dim M .

Note that this result formally coincides with the classical Berline–Vergne
localization formula [BV1, BGV].
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Corollary 3.1. If α ∈ Ω∗
G(M) is equivariantly exact, i.e., α = dgβ for some

β ∈ Ω∗
G(M), then

∫ distrib

M
α = 0

as a distribution on g′. Hence the map α �→
∫ distrib
M α

∣
∣
g′

descends to coho-
mology H∗

G(M).

Proof. By the localization formula (Theorem 3.2) it is sufficient to prove
that the function Fα = 0 on g′. Note that for each X ∈ g′, the vector field
VFX is zero on MX , so

(−2πi)−nFα(X) =
∫

MX

(
α(X)|MX

χT (X)(NMX )(X)

)

[dim MX ]

=
∫

MX

dg

(
β(X)|MX

χT (X)(NMX )(X)

)

=
∫

MX

d

(
β(X)|MX

χT (X)(NMX )(X)

)

[dim MX−1]

=
∫

∂MX

(
β(X)|MX

χT (X)(NMX )(X)

)

[dim MX−1]
= 0.

�
Remark 3.3. Theorem 3.2 together with Corollary 3.1 provide an alterna-
tive approach to the definition of an integral given by Hausel and Proudfoot
in [HP]. They consider the equivariant cohomology H∗

G(M), tensor it with
the field of Ad(G)-invariant rational functions on g:

Ĥ∗
G(M) = H∗

G(M) ⊗R[g]G R(g)G,

and they want to make sense out of the integral
∫
M α, where α ∈ Ĥ∗

G(M)
and the manifold M is not compact. So under an additional assumption that
the group action is T -compact they define

∫

M
α(X) = (−2πi)n

∫

MX

(
α(X)|MX

χT (X)(NMX )(X)

)

[dim MX ]
, X ∈ g.

From our point of view, both sides exist and equal as distributions on a
dense open Ad(G)-invariant subset g′ of g.

3.4. Coadjoint orbits. In this subsection we illustrate how our integration
theory for non-compact subanalytic manifolds applies to coadjoint orbits of
real semisimple Lie groups. This special case is very important and it has
been thoroughly studied by many mathematicians. Just to mention a few
works on this subject, see [BV2, DHV, DV, Pa1, R, S] and references
therein.
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Let Gss be a real semisimple Lie group and G ⊂ Gss its maximal compact
subgroup. We denote by gss and g the Lie algebras of Gss and G, respectively.
Let λ ∈ (gss)∗ be a semisimple element, and consider its coadjoint orbit

Oλ = Gssλ ⊂ (gss)∗.

When λ ∈ (gss)∗ is semisimple, the orbit Oλ is a closed submanifold of (gss)∗.
Recall that the coadjoint orbit Oλ has the Konstant–Kirillov symplectic
form which is Gss-invariant, and the action of Gss on Oλ is Hamiltonian,
with symplectic moment map given by the inclusion map Oλ ↪→ (gss)∗. The
Gss action on Oλ restricts to a Hamiltonian action of G, with symplectic
moment map μ : Oλ → g∗ given by the inclusion Oλ ↪→ (gss)∗ composed
with the natural projection (gss)∗ � g∗. The coadjoint orbit Oλ is a smooth
real affine variety. In order to apply our integration results (Theorems 3.1
and 3.2) we need to know if the moment map μ is proper and the G-action
is T -compact.

Proposition 3.1. Let Gss be a real semisimple Lie group and G ⊂ Gss a
maximal compact subgroup. Denote by gss and g their respective Lie algebras.
Let Oλ ⊂ (gss)∗ be a semisimple coadjoint orbit of Gss. Then the restriction
of the natural projection map (gss)∗ � g∗ to Oλ is proper.

Let T ⊂ G be a maximal torus with Lie algebra t. If t is also a Cartan
algebra in gss, then (Oλ)T — the set of points in Oλ fixed by T — is compact.
In fact, either Oλ is an elliptic orbit (i.e., Oλ ∩ t∗ �= ∅) and (Oλ)T is finite
or Oλ is not elliptic and (Oλ)T is empty.

This is a well-known result and its proofs can be found, for instance, in
[DHV, L3]. In the setting of closed coadjoint orbits and α = 1, Theorem 3.1
essentially reduces to Kirillov’s character formula due to Rossmann [R], and
a proof similar to ours has originally appeared in [BV2]. Note that in this
case Theorem 3.1 describes the restriction of the distribution

∫ distrib
M α∧eiω̃ to

grs. In the case of coadjoint orbits one can compute the entire (unrestricted)
distribution

∫ distrib
M α ∧ eiω̃ on g, as was done by Paradan in [Pa1]. (Earlier

work in this direction was done by Sengupta [S], and by Duflo et al. [DHV,
DV].)

One might ask if the natural projection g∗ � t∗ is proper on Oλ. Prato
(Propositions 2.2 and 2.3 in [Pr]) shows that when (Gss, G) is an irreducible
Hermitian symmetric pair, the coadjoint orbit Oλ is elliptic and λ lies in
a certain cone of t∗ ⊂ (gss)∗, the answer to the question is affirmative.
More precisely, it is known that when (Gss, G) is an irreducible Hermitian
symmetric pair, the center Z ⊂ G is the circle group [He], and Prato shows
that there exists an element X0 ∈ Lie(Z) such that the component of the
moment map

μX0 : M → R, μX0 = 〈μ, X0〉
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is proper and bounded from below, hence polarized. But in general the
projection (gss)∗ � t∗ need not be proper on Oλ. See [L3] for a concrete
counterexample.

4. Appendix: O-minimal structures and subanalytic sets

Examples of subanalytic sets include complex affine varieties and sets in
R

n defined by finitely many real polynomial equations and inequalities. The
collection of all subanalytic sets is a particular example of a structure. In
this section we give a very brief introduction to structures — collections of
sets in R

n with nice geometric properties. Structures are studied in model
theory, a very exciting part of logic which produces extremely useful and
highly non-trivial geometric results. For more details, proofs and further
references the reader is referred to the works by van den Dries and Miller
[DM, D]. In this section we summarize [DM] and list the key properties of
o-minimal structures which imply Lemmas 4.1, 4.2 which in turn are used
to prove Proposition 2.1 and Theorem 3.1.

4.1. Definitions and basic properties.

Definition 4.1. A structure (on the real field (R, +, ·)) is a sequence S =
{Sn}n∈N such that for each n ∈ N:

(1) Sn is a boolean algebra of subsets of R
n, with R

n ∈ Sn;
(2) Sn contains the diagonal {(x1, . . . , xn) ∈ R

n; xi = xj} for 1 ≤ i <
j ≤ n;

(3) If A ∈ Sn, then A × R and R × A belong to Sn+1;
(4) If A ∈ Sn+1, then π(A) ∈ Sn, where π : R

n+1 → R
n is the projection

on the first n coordinates;
(5) S3 contains the graphs of addition and multiplication.

We say that a set A ⊂ R
m belongs to S (or S contains A) if A ∈ Sm;

and that a (not necessarily continuous) map f : A → R
n belongs to S (or

S contains f) if the graph of f lies in Sm+n.
Although part (4) of the definition is not symmetric with respect to

the coordinates x1, . . . , xn, it follows that S is invariant under “permuta-
tions, repetitions and omission of the coordinates.” That is, if B ∈ Sn and
i1, . . . , in ∈ {1, . . . , m} (repetitions allowed), then the set

{(x1, . . . , xm) ∈ R
m; (xi1 , . . . , xin) ∈ B}

belongs to Sm.
For each structure S, S1 automatically contains all singleton sets {a},

a ∈ Q, and open and closed intervals with rational endpoints, S2 con-
tains the set {(x, y) ∈ R

2; x < y}, which may be interpreted as “the order
relation < belongs to S.” For each polynomial with rational coefficients
f(X1, . . . , Xn) ∈ Q[X1, . . . , Xn], the corresponding function f : R

n → R,
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x �→ f(x), belongs to S. If A ∈ Sm, then the interior, closure and bound-
ary of A also belong to Sm. If f : A → R belongs to S, then the sets
{x ∈ A; f(x) = 0} and {x ∈ A; f(x) > 0} also belong to S.

Let A ⊂ R
m. For each k, p ∈ N, let Regp

k(A) denote the set of all x ∈ A
having an open neighborhood U of x such that A ∩ U is an (embedded) Cp

submanifold of R
m of dimension k. If A belongs to S, then so does each

Regp
k(A).

If A ⊂ R
m, B ⊂ R

n and the functions f : A → R
n, g : B → R

q

belong to S, then the composition g ◦f : f−1(B) → R
q belongs to S. If

f : A → R
n belongs to S and is injective, then its compositional inverse

f−1 : f(A) → R
m belongs to S. If f : A → R

n belongs to S and A is open,
then the set of points in A where f is continuous and the set of points in A
where f is differentiable belong to S. If f is differentiable on A, then each
partial derivative of f also belongs to S.

Suppose that A is a C1 submanifold of R
n. We identify both the tangent

bundle TR
n and the cotangent bundle T ∗

R
n with R

2n in the obvious way.
In particular, the point (a, b) ∈ R

2n = T ∗
R

n corresponds to the linear form
x �→ b · x on R

n = TaR
n. These identifications make the tangent bundle

TA and the conormal bundle T ∗
AR

n subsets of R
2n. Similarly, the exterior

bundle Λ∗(TR
n) on TR

n can be identified with R
n+2n

. This identification
makes the exterior bundle Λ∗(TA) a subset of R

n+2n
. If A belongs to S, then

its tangent bundle TA, conormal bundle T ∗
AR

n and exterior bundle Λ∗(TA)
belong to S. In particular, it makes sense to talk about differential forms on
A which belong to S — these are sections α : A → Λ∗(TA) ⊂ R

n+2n
whose

graphs lie in S2n+2n .

4.2. Examples of structures and subanalytic sets. Given two struc-
tures S and S′ we put S � S′ if Sn ⊂ S′

n for all n ∈ N; this defines a
partial order on the set of all structures on (R, +, ·).

The most trivial (and the least interesting) example of a structure Smax

is obtained by letting Smax
n be the collection of all subsets of R

n. This is
the largest structure on (R, +, ·). We will not consider this structure in this
paper.

We denote the smallest structure on (R, +, ·) by Smin. Because of the basic
properties of structures stated above, Smin

n must contain all finite unions of
sets of the form

{x ∈ R
n; f(x) = 0, g1(x) > 0, . . . , gk(x) > 0}

with f, g1, . . . , gk ∈ Q[X1, . . . , Xn]. The collection of these finite unions (for
n ∈ N) clearly satisfies conditions (1), (2), (3) and (5) of Definition 4.1, and
by Tarski’s theorem, also condition (4). Hence Smin consists exactly of these
finite unions. A singleton set {r} with r ∈ R belongs to Smin if and only if
r is algebraic.
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Another example of a structure on (R, +, ·) is the collection of semialge-
braic sets denoted by Salg. By definition S

alg
n consists of all finite unions of

sets of the form

{x ∈ R
n; f(x) = 0, g1(x) > 0, . . . , gk(x) > 0}

with f, g1, . . . , gk ∈ R[X1, . . . , Xn]. Like in the previous example, it is clear
that Salg satisfies conditions (1), (2), (3) and (5) of Definition 4.1, and by
Tarski–Seidenberg theorem, also condition (4).

One way to form new structures on (R, +, ·) is to pick a collection of func-
tions fj : R

nj → R for j ranging over some index set J and to consider the
smallest structure containing the graphs of all functions fj . Such structure
is called the structure on (R, +, ·) generated by the fj’s.

Definition 4.2. We call a function f : R
n → R a restricted analytic func-

tion, if it vanishes identically away from [−1, 1]n and the restriction of f to
[−1, 1]n is analytic.

Definition 4.3. We denote by San the structure on (R, +, ·) generated by
all restricted analytic functions and the functions xr : R → R given by

(4.1) a �→
{

ar if a > 0;
0 if a ≤ 0,

r ∈ R.

We call a set A ⊂ R
n (respectively a function f : A → R

n) subanalytic if
the set A (respectively the graph of f) belongs to San.

Remark 4.1. The term “subanalytic” is more commonly used to denote sets
which belong to the smaller structure generated by the restricted analytic
functions only. However, for the purposes of this article San works just as
well and is slightly more general.

Let San, exp be the structure on (R, +, ·) generated by all restricted ana-
lytic functions and exp : R → R given by exp(x) = ex. Then San, exp contains
the logarithm function log : (0,∞) → R, as well as each function xr defined
by (4.1), since ar = exp(r log a) for a > 0.

We have the following inclusions of structures:

S
min � S

alg � S
an � S

an, exp � S
max,

each of these inclusions is strict. van den Dries and Miller conjecture [DM]
that there are no structures on (R, +, ·) lying strictly between San and
San, exp.

4.3. O-minimal structures and their properties

Definition 4.4. A structure S on (R, +, ·) is called o-minimal if S1 consists
exactly of the finite unions of intervals of all kinds (including infinite intervals
and singletons).



INTEGRALS OVER NON-COMPACT SYMPLECTIC MANIFOLDS 317

Example 4.1. Structures Salg, San and San, exp are o-minimal, while Smin

and Smax are not.

O-minimal structures possess particularly nice properties. We list some
of them below in order to demonstrate why it is always preferable to deal
with sets and functions belonging to some o-minimal structure. From now
on we assume that the structure S is o-minimal.

Component theorem. Every A belonging to S has finitely many con-
nected components, each belonging to S. Every connected component of A
is also path connected.

Dimension is well-behaved. Let A ∈ Sn be non-empty. We denote by
dim A the maximum integer d such that A contains a d-dimensional C1

submanifold of R
n (so 0 ≤ dim A ≤ n). We also put dim ∅ = −∞. Then:

• dim(A \ A) < dim A, where A denotes the closure of A;
• If f : A → R

m belongs to S, then dim f(A) ≤ dim A.

Monotonicity theorem. Let f : (a, b) → R belong to S, −∞ ≤ a < b ≤
∞, and p ∈ N. Then there are a0, a1, . . . , ak+1 with a = a0 < a1 < · · · <
ak < ak+1 = b such that the restriction of f to each interval (ai, ai+1) is Cp

and either constant or strictly monotone, for i = 0, . . . , k.

Differentiability. Let f : (a, b) → R belong to S, −∞ ≤ a < b ≤ ∞, then
f is differentiable at all but finitely many points of (a, b).

Triangulation. Let A, A1, . . . , Al ∈ Sn with A1, . . . , Al ⊂ A. Then there
exist a finite simplicial complex K in R

n and a map ϕ : A → R
n belonging

to S such that ϕ maps A and each Ai homeomorphically onto a union of
open simplices of K.

Uniform bounds on growth. Let A ⊂ R
n and g : A × R → R belong to

S. Then there exist functions ψ : R → R and ρ : A → R belonging to S

such that |g(x, t)| < ψ(t) for all x ∈ A and t > ρ(x).
The property of o-minimal structures that will play a crucial role in this

article concerns the two possibilities for asymptotic behavior of functions
f : R → R belonging to the structure.

Definition 4.5. A structure on (R, +, ·) is polynomially bounded if for every
function f : R → R belonging to the structure, there exists some N ∈ N

(depending on f) such that f(t) = O(tN ) as t → +∞. A structure on
(R, +, ·) is exponential if it contains exp.

Theorem 4.1 (Growth dichotomy). Either S is polynomially bounded, or
it is exponential.

If S is polynomially bounded, then for every f : R → R belonging to S,
either f is ultimately identically equal to 0, or there exist c, r ∈ R, c �= 0,
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such that x �→ xr : (0,∞) → R belongs to S and f(t) = ctr + o(tr) as
t → +∞.

Corollary 4.1. The structures Salg and San are polynomially bounded.

Remark 4.2. For concreteness, we state our results in the subanalytic set-
ting. That is, we assume that the symplectic manifold M , the group G
and its action on M , the symplectic form ω and the moment map μ are
subanalytic, i.e., belong to San. This setting includes the vast majority of
examples of interest. However, all results of this article hold in the setting
of any o-minimal structure which is polynomially bounded.

Let M be a closed C1 submanifold of R
d and fix any norm ‖ . ‖Rd on R

d.
The manifold M has a Riemannian metric induced by the standard metric
on R

d. In light of the above results it is natural to expect.

Lemma 4.1. If M belongs to a polynomially bounded o-minimal structure
S (such as Salg or San), then there exists an N ∈ N such that the function
f(R) : R → R,

(4.2) f(R) = Vol
(
{x ∈ M ; ‖x‖Rd ≤ R}

)

is O(RN ), as R → +∞.
More generally, let α be a differential form on M of top degree. If both M

and α belong to a polynomially bounded o-minimal structure S, then there
exists an N ∈ N such that the function f(R) : R → R,

(4.3) f(R) =
∫

{x∈M ; ‖x‖
Rd≤R}

|α|,

is O(RN ), as R → +∞.

Lemma 4.2. Let μ : M → R be a proper function on a manifold M . If M
and μ belong to a polynomially bounded o-minimal structure S, then there
exists an N ∈ N such that the function f(R) : R → R,

(4.4) f(R) = Vol
(
{x ∈ M ; μ(x) = R}

)

is O(RN ), as R → +∞.
More generally, let α be a differential form on M . If M , μ and α belong to

a polynomially bounded o-minimal structure S, then there exists an N ∈ N

such that the function f(R) : R → R,

(4.5) f(R) =
∫

{x∈M ; μ(x)=R}
|α|

is O(RN ), as R → +∞.
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Remark 4.3. Note that the functions (4.2), (4.3), (4.4) and (4.5) themselves
need not belong to S. Consider, for example, M = R,

α(x) =

{
dx if |x| ≤ 1,
dx
|x| if |x| ≥ 1.

Both M and α belong to Smin and hence to any polynomially bounded
o-minimal structure S. However,

f(R) =
∫

[−R,R]
α =

⎧
⎪⎨

⎪⎩

0 if R ≤ 0,

2R if 0 < R ≤ 1,

2 + 2 log R if R > 1,

which cannot belong to S, since any structure containing such a function
f(R) also contains the functions log and exp.

These two lemmas follow immediately from the Cell Decomposition The-
orem (Theorem 4.2) described in the next subsection. First we reduce the
general case to the case when M is a single cell, then apply induction on the
dimension of the cell.
4.4. Cells and cell decomposition. In this subsection we continue to
assume that S is an o-minimal structure on (R, +, ·). However, we make no
assumptions on whether S is polynomially bounded or exponential. Fix a
positive integer p. We define the Cp cells in R

n as certain Cp submanifolds
of R

n belonging to Sn.

Definition 4.6. Let (i1, . . . , in) be a sequence of zeroes and ones of length
n. An (i1, . . . , in)-cell of class Cp is a subset of R

n contained in S obtained
by induction on n as follows:

(1) The Cp cells in R
1 are just the singleton sets {r} and the open intervals

(a, b), −∞ ≤ a < b ≤ +∞. The singletons {r} are regarded as (0)-
cells and the open intervals (a, b) as (1)-cells.

(2) Suppose (i1, . . . , in)-cells of class Cp are already defined. Let D ∈ Sn

be a Cp (i1, . . . , in)-cell, and let f : D → R of class Cp belong to S.
Then

graph(f) = {(x, r) ∈ D × R; r = f(x)}
is an (i1, . . . , in, 0)-cell of class Cp in R

n+1. Let g : D → R of class
Cp be another function contained in S such that f(x) < g(x) for all
x ∈ D; then the sets

D × R

{(x, r) ∈ D × R; r < f(x)}
{(x, r) ∈ D × R; r > f(x)}
{(x, r) ∈ D × R; f(x) < r < g(x)}

are (i1, . . . , in, 1)-cells of class Cp in R
n+1.
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For example, a (0, 0)-cell in R
2 is a one point set, a (0, 1)-cell in R

2 is a
vertical interval, a (1, 0)-cell of class Cp in R

2 is the graph of a Cp function
defined on an interval and contained in S. A (1, . . . , 1)-cell in R

n is always
open. Each cell is connected and the dimension of an (i1, . . . , in)-cell is i1 +
· · · + in.

Similarly, we define a Cp cell decomposition of R
n — a special kind of

partition of R
n into finitely many Cp cells.

Definition 4.7. (1) A Cp cell decomposition of R is a collection of inter-
vals and points of the form

{(−∞, a1), (a1, a2), . . . , (ak, +∞), {a1}, . . . , {ak}},

with a1 < · · · < ak real numbers. (For k = 0 this is just {(−∞, +∞)}.)
(2) A Cp cell decomposition of R

n+1 is a finite partition D of R
n+1 into

Cp cells such that the set of projections {π(D); D ∈ D} is a decom-
position of R

n, where π : R
n+1 → R

n is the projection on the first n
coordinates.

Given a finite number of subsets A1, . . . , Ak ⊂ R
n, we say that a partition

D of R
n is compatible with {A1, . . . , Ak} if for each i, 1 ≤ i ≤ k, and each

D ∈ D either D ⊂ Ai or D ∩ Ai = ∅.

Theorem 4.2 (Cell decomposition). (1) Given A1, . . . , Ak ∈ Sn, there
is a Cp cell decomposition of R

n compatible with {A1, . . . , Ak}.
(2) For every function f : A → R belonging to S, A ⊂ R

n , there is a Cp

decomposition D of R
n compatible with {A} such that the restriction

f |D : D → R is of class Cp for each D ∈ D with D ⊂ A.

Whitney stratification. Given A1, . . . , Al ∈ Sn, there is a finite Cp Whit-
ney stratification of R

n compatible with {A1, . . . , Al}, with each stratum a
Cp cell in R

n.

References

[BGV] N. Berline, E. Getzler and M. Vergne, Heat kernels and dirac operators, Springer-
Verlag, Berlin, 1992.

[BV1] N. Berline and M. Vergne, Classes caractéristiques équivariantes. Formules
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