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SYMPLECTIC 4-MANIFOLDS WITH ARBITRARY
FUNDAMENTAL GROUP NEAR THE
BOGOMOLOV–MIYAOKA–YAU LINE

Scott Baldridge and Paul Kirk

In this paper, we construct a family of symplectic 4-manifolds with
positive signature for any given fundamental group G that approaches
the BMY line. The family is used to show that one cannot hope to
do better than the BMY inequality in finding a lower bound for the
function f = χ + bσ on the class of all minimal symplectic 4-manifolds
with a given fundamental group.

1. Introduction

Let χ(S) and σ(S) denote the Euler characteristic and signature of a closed
4-manifold, respectively. Minimal complex surfaces S of general type satisfy
c2
1(S) > 0, χ(S) > 0 and

2χh(S) − 6 ≤ c2
1(S) ≤ 9χh(S),

where c2
1(S) = 2χ(S) + 3σ(S) and χh(S) = 1

4(χ(S) + σ(S)). The second
inequality is usually referred to as the Bogomolov–Miyaoka–Yau inequality.
Finding symplectic (or Kähler) 4-manifolds on or near the BMY line has a
long and interesting history [2, 3, 5, 8–11].

All known examples of symplectic 4-manifolds on the BMY line, except
CP

2, have large fundamental groups. In fact, if S is a complex surface
differing from CP

2, the equality c2
1(S) = 9χh(S) holds if and only if the unit

disk D4 = {(z1, z2) ∈ C
2 | |z1|2 + |z2|2 ≤ 1} covers S [6, 7, 13] and hence

|π1(S)| = ∞. One goal of 4-dimensional symplectic topology is to produce
examples that fill in the geography with respect to (c2

1, χh). In this article,
we are interested in what can be said for a given fundamental group.

Stipsicz [11] constructed simply connected symplectic 4-manifolds Cn for
which c2

1(Cn)/χh(Cn) → 9 as n → ∞. Our main theorem generalizes this
result to any fundamental group.
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Theorem 1.1. Let G have a presentation with g generators x1, . . . , xg and
r relations w1, . . . , wr. For each integer n > 1, there exists a symplectic
4-manifold M(G, n) with fundamental group G with Euler characteristic

χ(M(G, n)) = 75n2 + 256n + 130 + 12(g + r + 1),

and signature

σ(M(G, n)) = 25n2 − 68n − 78 − 8(g + r + 1).

Our interest in this question developed while investigating pairs (a, b) ∈
R

2 for which the function f = aχ + bσ has a lower bound on the class of
symplectic manifolds with a given fundamental group [1]. In that article,
we considered the following.

Fix a finitely presented group G and let M denote either the class
M(G) of closed symplectic 4-manifolds with fundamental group G or the
class Mmin(G) of minimal, closed symplectic 4-manifolds with fundamental
group G.

For b ∈ R, define fM(b) ∈ R ∪ {−∞} to be the infimum

fM(b) = inf
M∈M

{χ(M) + bσ(M)}.

(In [1], we considered the infimum fM(a, b) of aχ + bσ on M and showed
that if a ≤ 0, the infimum is −∞. Thus we restrict to fM(1, b), which we
more compactly denote by fM(b) in the present article.)

We showed in [1] that the set

DM = {b |fM(b) �= −∞}

(the domain of fM) is an interval satisfying

[−1, 1] ⊂ DM(G) ⊂ (−∞, 1] and
[
−1,

3
2

]
⊂ D

Mmin(G) ⊂
(

−∞,
3
2

]
.

The upper bounds are sharp; in fact 1 ∈ DM(G) and 3
2 ∈ D

Mmin(G).
We are interested in the value of the left endpoint eG of DM(G), which is

an intriguing invariant of a group G. (It may or may not be contained in
DM(G).) Since eG ≤ −1, a straightforward argument shows that eG is also
the left endpoint of D

Mmin(G).
In [1], we observed that the results of Stipsicz gives a better lower bound

(than −∞) when G is the trivial group, and so a consequence of the result
of this article is an extension to all G. In fact Theorem 1.1 easily implies
the following corollary.

Corollary 1.2. For any finitely presented group G,

DM(G) ⊂ [−3, 1] and D
Mmin(G) ⊂

[
−3,

3
2

]
.
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The BMY inequality c2
1 ≤ 9χh is equivalent to f

Mmin(G)(−3) ≥ 0 provided
G is not a surface group. Hence, the BMY conjecture and Corollary 1.2
together imply that eG = −3. Thus, a weaker form of the BMY conjecture
could be stated as follows.

Conjecture 1.3 (Weak BMY Conjecture). For each finitely presented group
G, eG = −3.

2. The construction

We use the following notation. If X and Y are symplectic 4-manifolds
containing closed genus g symplectic surfaces FX ⊂ X and FY ⊂ Y such
that F 2

X + F 2
Y = 0, then the symplectic sum [4] of X and Y along FX and

FY will be denoted by
X#FX ,FY

Y.

Recall that topologically X#FX ,FY
Y is obtained by removing tubular

neighborhoods of FX and FY and identifying the resulting boundaries, which
are S1 bundles over a genus g surface, by a fiber-preserving, orientation
reversing diffeomorphism.

The symplectic sum admits a symplectic structure so that any symplectic
surface in X − FX or Y − FY remains symplectic in X#FX ,FY

Y. Moreover,
if EX ⊂ X (resp. EY ⊂ Y ) is a symplectic surface intersecting FX once
transversally (resp. intersecting FY transversally), then the symplectic sum
can be constructed so that (the connected sum) EX#EY is a symplectic
surface in X#FX ,FY

Y .

2.1. The first piece: symplectic manifolds with given fundamental
group. The following theorem was proven in [1].

Theorem 2.1. Let G have a presentation with g generators x1, . . . , xg and
r relations w1, . . . , wr. Then there exists a symplectic 4-manifold M(G)
with π1(M(G)) ∼= G, Euler characteristic χ(M(G)) = 12(g + r + 1), and
signature σ(M(G)) = −8(g + r + 1).

We will use the following fact. The manifold M(G) constructed in
Theorem 2.1 is obtained by taking symplectic sums of a certain base man-
ifold with g + r + 1 copies of the basic elliptic surface E(1). Since E(1)
admits a singular fibration with symplectic generic fibers and six cusp fibers
(which are simply connected), so does E(1)−F , where F denotes the generic
fiber in E(1) along which the symplectic sum giving M is constructed. Thus
each M(G) contains a symplectic torus T0 such that the induced homomor-
phism π1(T0) → π1(M(G)) is trivial.

2.2. The second piece: symplectic manifolds near the BMY line.
In [11], Stipsicz proved the following theorem.
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Proposition 2.2 (Stipsicz). For each non-negative integer n, there exists
a symplectic 4–manifold X(n) which admits a genus-(15n + 1) Lefschetz
fibration with a section Tn+2 of genus (n+2) and self-intersection −(n+1).
Furthermore, X(n) can be equipped with a symplectic structure such that
Tn+2 is a symplectic submanifold. The projection map X(n) → Tn+2 induces
an isomorphism on fundamental groups. The Euler characteristic of X(n) is
χ(X(n)) = 75n2 +180n+12 and the signature is σ(X(n)) = 25n2 −60n−8.

Denote by F15n+1 ⊂ X(n) a fixed generic fiber of X(n). This is a
symplectic surface with trivial normal bundle.

2.3. The third piece: a simply connected manifold. Gompf constructs
a symplectic 4-manifold S1,1 in [4, Lemma 5.5] which contains a disjoint pair
T, F of symplectically embedded surfaces T of genus one and F of genus two,
with trivial normal bundles such that S1,1 − (T ∪ F ) is simply connected.
Thus, the symplectic sum A of two copies S1,1 along the genus two surfaces

A = S1,1#F,F S1,1

contains a pair of disjointly embedded symplectic tori T1 ∪ T2 ⊂ A with
trivial normal bundles so that the complement A − (T1 ∪ T2) is simply con-
nected. Since S1,1 has Euler characteristic 23 and signature −15, χ(A) = 50
and σ(A) = −30.

The manifold A has a useful property, whose proof is a simple application
of the Seifert–Van Kampen theorem.

Proposition 2.3. Suppose B and C are symplectic 4-manifolds containing
symplectic tori iB : TB ⊂ B and iC : TC ⊂ C with trivial normal bundles.

Let D = B#TB ,T1A#T2,TC
C be the symplectic sum of B, A, and C. Then

π1(D) =
(

π1(B)
N((iB)∗(π1(TB))

)
�

(
π1(C)

N((iC)∗(π1(TC))

)

where � denotes free product and N(H) denotes the normal closure of a
subgroup H.

2.4. The fourth piece: an elbow. Let T be a torus and {a, b} a pair of
smoothly embedded loops forming a symplectic basis of π1T . Let ϕ : T → T
be the Dehn twist around a. The mapping torus Yφ fibers over S1 with
fiber T . Let t1 : S1 → Yφ denote a section. Taking a product of Yφ with S1

yields a symplectic 4-manifold Yφ×S1 (this is just Thurston’s manifold from
[12]) which fibers over a torus with symplectic torus fibers. Moreover, the
symplectic structure can be chosen so that the section t1 × id : S1 × S1 →
Yφ × S1 is symplectic. Denote by s1 : S1 → {p} × S1 ⊂ Yφ × S1 the loop
representing the second factor.

Note that Yφ × S1 contains a torus T ′ = b × s1, where b is the curve
described above in the fiber of Yφ. The torus T ′ is homologically non-trivial
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by the Kunneth theorem, since b is non-trivial in H1(Yφ). Moreover, T ′

is Lagrangian with respect to the symplectic structure on Yφ × S1. Thus,
the symplectic structure on Yφ × S1 can be perturbed slightly to make T ′

symplectic by adding a small closed 2-form that restricts to a volume form
on T ′. Note moreover that T ′ is disjoint from the section t1 ×s1 : S1 ×S1 →
Yφ × S1 since we can assume that t1 intersects the fiber containing b in a
point which does not lie on b. The tubular neighborhood of T ′ in Yφ × S1

is trivial since b can isotoped off itself in a fiber of Yφ → S1. Similarly the
tubular neighborhood of the section t1 × s1 is trivial since t1 can be pushed
off itself in Yφ.

Define Elb(n) to be the symplectic sum Elb(n) = (Yφ × S1)#T,T 2(T 2 ×
Σn−1). The symplectic sum can be carried out so that the sections of Yφ ×
S1 → S1 × S1 and T 2 × Σn−1 → Σn−1 yield a symplectic section of the
resulting fibration Elb(n) → Σn. Thus, Elb(n) contains a disjoint pair of
symplectic surfaces with trivial normal bundles, a torus T ′ = b × s1, and a
genus n surface, the image of the section, which we denote by Dn.

Letting t2, s2, . . . , tn, sn denote the generators of π1(Σn−1), one computes

π1(Elb(n)) = 〈a, b, t1, s1, . . . , tn, sn| a central, [b, t1] = a,
[b, ti] = 1 for i > 1, [b, si] = 1 for all i,∏n

i=1[ti, si] = 1〉.
The inclusion of T ′ into Elb(n) takes the generators of π1T

′ to b and
s1, and the inclusion of Dn takes the standard surface group generators
to t1, s1, . . . , tn, sn. The Euler characteristic and signature of Elb(n) both
vanish.

The manifold Elb(n) − Dn is a punctured torus fibration over Σn and
hence has a presentation with the same generators and all the same relations
except that one no longer has a commuting with b, i.e., a commutes with
all generators except b.
2.5. The fifth piece: an elliptic surface. We find a symplectically
embedded surface J of genus n + 3 and self-intersection n + 1 in the elliptic
surface E(n + 5) such that E(n + 5) − J is simply connected as follows.
Consider n + 3 copies of the generic fiber and one copy of the section in
a fibration E(n + 5) → CP

1 with 6(n + 5) cusp fibers. The section and
fibers are symplectic with regards to the symplectic structure on the elliptic
fibration E(n + 5). Resolve the n + 3 transverse double points [4] to get
a symplectically embedded surface J of genus n + 3 and self-intersection
n + 1 (the fiber hits the section once and that section has self-intersection
−(n+5)). The complement E(n+5)−J is simply connected because E(n+5)
has a simply connected fiber which intersects J in one point: the normal
circle of a tubular neighborhood of J is nullhomotopic in E(n + 5) − J .
2.6. Putting the pieces together. We begin by a modification of
Stipsicz’s construction. Let Z(n) be the symplectic sum of Elb(15n + 1)
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and X(n) along D15n+1 ⊂ Elb(15n + 1) and the fiber F15n+1 of the Lef-
schetz fibration X(n) → Σn+2

Z(n) = Elb(15n + 1)#D15n+1,F15n+1X(n).

The symplectic sum can be constructed so that the fiber T ⊂ Elb(15n + 1)
and the section Tn+2 ⊂ X(n) add to yield a symplectic surface of genus
n+3, Kn+3 = T#Tn+2 ⊂ Z(n) [4]. The important property of Z(n) is that
it contains a symplectic torus T ′, since D15n+1 and T ′ are disjoint.

The fundamental group of Z(n) is easily computed, since Elb(15n + 1) −
D15n+1 is a fiber bundle with punctured torus fibers and X(n) − F15n+1
is a Lefschetz fibration over a punctured genus n + 2 surface with at least
one simply connected fiber. Using the Seifert–Van Kampen theorem and
Novikov additivity one obtains the following.

Lemma 2.4. The fundamental group of Z(n) is the free product of Z with
generator b and a genus n + 2 surface group generated by xi, yi:

π1(Z(n)) = Zb �
〈
xi, yi, i = 1, . . . , n + 2|

∏
[xi, yi] = 1

〉
.

The symplectic manifold Z(n) contains a disjoint pair of symplectic sur-
faces, T ′ ∪ Kn+3 ⊂ Z(n) satisfying [T ′]2 = 0, and [Kn+3]2 = −n − 1. The
induced homomorphism π1(T ′) → π1(Z(n)) is the map

〈a, s1 | [a, s1]〉 −→ π1Z(n) a �−→ a, s1 �−→ 1.

The induced homomorphism π1(Kn+3) → π1(Z(n)) is the map〈
a, b, x1, y1, . . . , xn+2, yn+2 | [a, b]

∏
[xi, yi] = 1

〉
−→ π1(Z(n))

a �−→ a, b �−→ 1, xi �−→ xi, yi �−→ yi.

Moreover, χ(Z(n)) = 75n2 + 240n + 12 and σ(Z(n)) = 25n2 − 60n − 8.

The symplectic sum of Z(n) with E(n + 5) along J , Z(n)#Kn+3,JE(n + 5)
is a simply connected symplectic 4-manifold containing a torus T1 with triv-
ial normal bundle and appropriate Euler characteristic and signature. We
take symplectic sum of this manifold with A to obtain an example with a
torus whose complement is simply connected.

Define W (n) to be the symplectic sum

W (n) = A#T1,T ′Z(n)#Kn+3,JE(n + 5).

Then since π1(A− (T2 ∪T2)) = 1, the following proposition follows straight-
forwardly.

Proposition 2.5. The symplectic manifold W (n) is simply connected and
contains a symplectic torus T2 ⊂ W (n) with trivial normal bundle so that
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π1(W (n)−T2) = 1. It has Euler characteristic χ(W (n)) = 75n2+256n+130
and signature σ(W (n)) = 25n2 − 68n − 78.

We can now prove Theorem 1.1.

Proof of Theorem 1.1. The symplectic sum

M(G, n) = M(G)#T0,T2W (n)

has fundamental group G by Proposition 2.3. The calculations of χ(M(G, n))
and σ(M(G, n)) are routine. �
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