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This is the second part of an article in two parts, which builds
the foundation of a Floer-theoretic invariant, IF. (See [Y-J. Lee,
Reidemeister torsion in Floer–Novikov theory and counting pseudo-
holomorphic tori, I, J. Symplectic Geom. 3 (2005), no. 2, 221–311.] for
Part I). Having constructed IF and outlined a proof of its invariance
based on bifurcation analysis in Part I, in this part we prove a series of
gluing theorems to confirm the bifurcation behavior predicted in Part
I. These gluing theorems are different from (and much harder than)
the more conventional versions in that they deal with broken trajecto-
ries or broken orbits connected at degenerate rest points which are not
Morse–Bott. The issues of orientation and signs are also settled in the
last section. This part is strongly dependent on Part I, and is meant
only for readers familiar with the previous part of this article.
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1. Overview

This second part forms the main technical core of the present article.
We have not attempted to make this part independent of Part I and

shall frequently make use of the definitions, results, notation, and conven-
tion from Part I without repetition. Thus, we urge the reader to familiarize
him/herself with Part I before attempting this one, paying particular atten-
tion to the convention in I.1.3.

References in the form of I.* shall refer to section, theorem, or equation
numbers from Part I.

1.1. A brief summary. The following summarizes the results contained in
this part. Recall the definitions of (RHFS*), (NEP), and admissible (J, X)-
homotopies from Sections 4.3, 4.4, and 6.2 of [1], respectively.

Theorem. Let Λ = [1, 2], and (JΛ, XΛ) be an admissible (J, X)-homotopy
connecting two regular pairs, (J1, X1), (J2, X2). Then:

(1) (Corner structures of parameterized moduli spaces):
The properties (RHFS2c) and (RHFS3c) hold for the CHFS generated
by (JΛ, XΛ);
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(2) (Orientation): The parameterized moduli spaces M
Λ,+
P and M̄

Λ,1,+
O

may be, respectively, given coherent and grading compatible orienta-
tions such that (RHFS4) holds;

(3) (Existence of nonequivariant perturbations): (NEP) holds for
all Type II handleslides in the CFHS generated by (JΛ, XΛ).

Combining with Propositions I.4.4.6 and I.6.2.2, this completes the proof
of the general invariance theorem stated in Part I, Theorem I.4.1.1.

Item (1) above follows from the gluing theorems proven in Sections
2–6 below. Section 7 contains the discussion on orientability of the moduli
spaces, the definitions of coherent and grading-compatible orientations, and
as a consequence, the proof of item (2) above. Item (3) is established in
Sections 6.2–6.3. There we introduce a class of (possibly nonlocal) pertur-
bations to the induced flow on the finite-cyclic covers in the statement of
(NEP), establish the expected regularity and compactness properties of the
moduli spaces of such perturbed flows, and show how the arguments in the
proof of Theorem I.6.2.2 may be adapted to establish the R-regularity of
parameterized moduli spaces in this context, as required by (NEP).

Gluing theory is the unifying theme of Part II. Not only is it used repeat-
edly to establish the bifurcation analysis, but it also appears in the definition
of coherent orientations in Section 7. Linearized versions of the gluing theo-
rems in Sections 2–6, which actually form part of the proofs of these gluing
theorems, play a major role in the verification of signs for item 2 of Theorem
1.1 above. It is for this reason that we postpone all discussion of orientations
until the gluing results have been fully treated.

Thus, we begin with a quick overview of the general features of gluing
theory in next subsection, then give a more specific outline of the variants
contained in this article in Section 1.3.

1.2. Basics of gluing theory. This subsection gives only a minimal outline
of gluing theory and its applications in Floer theory. Rather than a general
account, our aim is to set up the basic framework for the proofs of the gluing
theorems contained in this article and to introduce some basic notions and
terminologies frequently used, some of which are not conventional. The
reader may find more details and better-balanced treatments in the vast
literature on this subject, for example, [2,3] and Floer’s original papers.
Also, precision will sometimes be sacrificed here for the overall picture. We
shall be precise in later sections, when we return to the specific context of
this article.

1.2.1. The four steps of gluing theory. Gluing is useful for studying
the local structure of a stratified moduli space, usually coming from com-
pactification. Given a space of “gluing parameters” Ξ(S) associated with a
codimension > 0 stratum S, a typical gluing theorem constructs a map from
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Ξ(S) to a neighborhood of S in the moduli space of solutions to a PDE

F(w) = 0,

which is a local diffeomorphism.
The proof of a typical gluing theorem comprises the following four major

steps:

Step 1. Constructing the pregluing map and error estimates. For each
gluing parameter χ, one constructs an approximate solution wχ to the PDE
considered, which varies smoothly with χ. The pregluing map χ �→ wχ maps
the space of gluing parameters into a set in the ambient configuration space
that is close to the space of solutions. An explict estimate, referred to as
the “error estimate,” is required to show that F(wχ) is sufficiently small.

Step 2. Kuranishi structure. Let Dw: E → F denote the linearization of F at
w (i.e., the deformation operator). This should be a Fredholm operator, and
ideally, one wants to show that Dwχ has a right inverse bounded uniformly
in χ. Namely, there is a χ-independent constant CP > 0, and operators Pχ

depending continuously on χ, such that

DwχPχ = id, ‖Pχ‖ ≤ CP .

For this to hold, judicious choices of normed spaces for E, F are often called
for.

Step 3. Obtaining a quadratic bound on the nonlinear part of F, namely,
(3) below. In local coordinates, one may write

(1) F(w) = F(wχ) + Dwχξ + Nwχ(ξ) for w = wχ + ξ.

Setting ξ = Pχηχ, a solution to F(w) = 0 is obtained by solving

(2) ηχ = −Nwχ(Pχη) − F(wχ).

The contraction mapping theorem shows that

Lemma. Let CP be the upper bound on ‖Pχ‖ as above, and suppose that
there is a χ-independent constant k such that

‖F(wχ)‖ ≤ 1
10kC2

P

,

‖Nwχ(ξ1) − Nwχ(ξ2)‖ ≤ k(‖ξ1‖ + ‖ξ2‖)‖ξ1 − ξ2‖ ∀ξ1, ξ2.(3)

Then there exists a unique ηχ with ‖ηχ‖ ≤ 1/(5kC2
P ) solving (2). Moreover,

the solution ηχ varies smoothly with χ, and ‖ηχ‖ ≤ 2‖F(wχ)‖.

Thus, by assigning to each gluing parameter χ the corresponding wχ +
Pχηχ, one obtains a smooth map from the space of gluing parameters to the
moduli space. This is the gluing map.
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Step 4. Showing that the gluing map is a local diffeomorphism to a neigh-
borhood of S.

1.2.2. Typical pregluing constructions in Floer theory. In Floer the-
ory, F = ∂s + V, and S is a stratum in a moduli space of broken trajectories
or broken orbits. Thus, it is a product of reduced moduli spaces

S =M̂0 × M̂1 × · · · × M̂k, or

M̂1 × M̂2 × · · · × M̂k/Z/kZ.

In the case of a family of Floer theories parameterized by Λ, S is a fiber
product of reduced, parameterized moduli spaces over Λ

S =M̂Λ
0 ×Λ M̂Λ

1 ×Λ · · · ×Λ M̂Λ
k , or

M̂Λ
1 ×Λ M̂Λ

2 ×Λ · · · ×Λ M̂Λ
k /Z/kZ.

The space of gluing parameters in these cases is Ξ(S) = S × (�,∞)k for
certain large �, and the gluing maps map into a reduced moduli space or a
reduced, parameterized moduli space.

We now describe the typical pregluing construction in these situations.
Given a (unreduced) flow u(s) from the critical point x to y, we define its

truncation

u[−R−,R+](s) :=

⎧
⎪⎨

⎪⎩

u(s) when −R−/2 ≤ s ≤ R+/2
exp(y, β(2 − 2s/R+)ηy(s)) when s ≥ R+/2
exp(x, β(2s/R− + 2)ηx(s)) when s ≤ −R−/2,

where β is a smooth cutoff function with β(s) = 0 for s ≤ 0, and β(s) = 1
for s ≥ 1, and ηy, ηx are defined such that

u(s) =

{
exp(x, ηx(s)) for s 
 −1,
exp(y, ηy(s)) for s � 1.

Let u(−∞,R+], u[−R−,∞) be similarly defined, truncated only at the posi-
tive/negative end, respectively.

Let {û0, û1, . . . , ûk} be a broken trajectory from x to y, and ui be represen-
tatives in the respective unreduced moduli spaces. Given (R1, . . . , Rk) ∈ R

k
+,
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we define the glued trajectory:

u0#R1u1#R2u2 · · ·#Rk
uk(s) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0,(−∞,R1](s) if s ≤ R1

τ2R1u1,[−R1,R2](s) if s ∈ [R1, 2R1 + R2]
...

τ2
∑

i=1k−1Ri
uk−1,[−Rk−1,Rk](s)

if s ∈
[

2
k−2∑

i=1
Ri + Rk−1, 2

k−1∑

i=1
Ri + Rk

]

τ2
∑k

i=1 Ri
uk,[−Rk,∞)(s) if s ∈

[

2
k−1∑

i=1
Ri + Rk,∞

]

,

(4)

where τL denotes translation by L:

τLw(s) := w(s − L).

When {û1, . . . , ûk} is a broken orbit, we may also define the glued orbit

u1#R1u2#R2 · · ·uk#Rk
(s) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ2R1u1,[−R1,R2](s) if s ∈ [R1, 2R1 + R2]
...

τ2
∑k−1

i=1 Ri
uk−1,[−Rk−1,Rk](s)

if s ∈
[

2
k−2∑

i=1
Ri + Rk−1, 2

k−1∑

i=1
Ri + Rk

]

τ2
∑k

i=1 Ri
uk,[−Rk,R1](s)

if s ∈
[

2
k−1∑

i=1
Ri + Rk, 2

k∑

i=1
Ri + R1

]

,

for s ∈ R/

(

2
k∑

i=1

Ri

)

Z.

(5)

We shall sometimes suppress the subscript Ri from # when it is not impor-
tant.

To define the pregluing map, in the case of broken trajectories, assign to
each

χ = {û0} × · · · {ûk} × (R1, . . . , Rk) ∈ M̂0 × · · · × M̂k × R
k
+

the R-orbit ŵχ of the glued trajectory

wχ = u0#R1u1#R2u2 · · ·#Rk
uk

in the configuration space BP (x, y), taking ui to be centered representatives
of ûi. Similarly for the case of broken orbits or the parameterized case.
Owing to the exponential decay of flows to nondegenerate critical points,
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these constructions typically give good approximation to flow lines when
the connecting rest points in the broken trajectory are nondegenerate. In
this article, they are used for handleslide bifurcations and in the discussion
of coherent orientations.

Remark. Equivalently, there is an unreduced version of the above construc-
tion, where the gluing map maps products of unreduced moduli spaces to
an unreduced moduli space. Namely, take the space of gluing parameters to
be an appropriate open subset

Ξ̆(S) ⊂ M0 × · · · × Mk;

and let the pregluing be given by the same formulae above, for fixed large
(R1, . . . , Rk), and not necessarily centered ui. Notice that there is a free
R

k+1 action on Ξ̆(S), namely the product of translations on each factor
moduli space Mi, and the quotient Ξ̆(S)/R

k+1 = S.
The equivalence is easily seen by observing that, given (L0, · · · , Lk) ∈

R
k+1, there is a unique (L, R′

1, . . . , R
′
k) ∈ R × R

k
+, so that

τL0u0#R1τL1u1#R2τL2u2 · · ·#Rk
τLk

uk approximates

τL

(
u0#R′

1
u1#R′

2
u2 · · ·#R′

k
uk(s)

)
.

(They are equal if ui are replaced by their truncations.) Furthermore, under
this identification, a diagonal R-translation (L0, . . . , Lk) → (L0 + l, . . . , Lk +
l) corresponds to an R translation in the first factor (L, R′

1, . . . , R
′
k) → (L+

l, R′
1, . . . , R

′
k). Thus, we have a diffeomorphism

Ξ̆(S)/R
∼−→ Ξ(S),

(τL0u0, . . . , τLk
uk) mod R �→ ({û0, . . . , ûk}, R′

1, . . . , R
′
k),

and a commutative diagram

Ξ̆(S)
pregluing map−−−−−−−−−→ B

/R

⏐
⏐
� /R

⏐
⏐
�

Ξ(S)
pregluing map−−−−−−−−−→ B/R

We prefer the reduced perspective in this article, because when the connect-
ing rest points are degenerate, the (reduced) space of gluing paramaters Ξ
can still be described in a way similar to the above discussion, while Ξ̆ is no
longer a product of unreduced moduli spaces.

1.2.3. K-models. In general, the deformation operator might not be sur-
jective, and the gluing theory gives a local description of the moduli space
as an analytic variety in the cokernel of the deformation operator. This is
the “Kuranishi model.”
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For our purpose, it is convenient to introduce a linear variant of Kuranishi
models, which we call “K-models.” This notion of K-model will be useful
both for Step 2 of the gluing procedure and in discussing the orientation
issue.

Definition. A K-model for a Fredholm operator D: E → F , denoted
[D: K → C]B, or simply [K → C] when there is no danger of confusion, is a
triple K, C, B, where K, C are finite-dimensional subspaces K ⊂ E, C ⊂ F
respectively, and B ⊂ E is a closed subspace such that

• D|B: B → D(B) is an isomorphism and
• there are decompositions E = K ⊕ B, F = C ⊕ D(B) (possibly not

orthogonally).

An orientation of a K-model is a choice of orientations for the spaces K
and C.

Example (Standard K-models). In this article, the “cokernel” coker D

refers to either the quotient space F/ Image(D) or an arbitrary subspace of F
complementary to Image(D). A trivial example of K-model is [D: ker D →
coker D]B, for any subspace B ⊂ E complementary to ker D. Such will be
called a standard K-model for D.

We shall call K a “generalized kernel” of D, C a “generalized cokernel”,
and B a “B-space,” for lack of better terminology. The honest kernel and
cokernel of D may be described in terms of K and C via the exact sequence:

(6) 0 → ker D
ΠK−→ K

ΠC◦D−→ C → coker D → 0,

where ΠK , ΠC are projections with respect to the above decompositions of
E and F .

Here are some other simple examples of K-models frequently encountered
in this article.

Example (K-model of a stabilization). Let D̂Ψ: R
k ⊕ E → F denote a

finite-dimensional extension of the Fredholm map D: E → F ,

D̂Ψ(�r, ξ) = Ψ(�r) + Dξ,

where Ψ: R
k → F is a linear map. We call D̂Ψ a (rank-k) stabilization of

D.
Let [K → C]B be a K-model for D, and

K̂ := R
k ⊕ K ⊂ R

k ⊕ E, B̂: = ∗ ⊕ B ⊂ R
k ⊕ E,

where ∗ denotes the trivial vector space. Then [K̂ → C]B̂ is a K-model for
D̂Ψ, called the stabilization of [K → C]B.
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Example (Reductions of K-models). Let [D: K → C]B be a K-model,
and suppose that there are subspaces Q ⊂ K, K ′ ⊂ K, C ′ ⊂ C such that
ΠC ◦ D|Q is injective, and K, C decompose as:

K = K ′ ⊕ Q; C = C ′ ⊕ ΠC(D(Q)).

Then [K ′ → C ′]B′ is another K-model for D, where B′ = Q + B. Such
K-models will be called reductions (by Q) of [K → C].

Notice that if two K-models for D, [D: K1 → C1]B1 , [D: K2 → C2]B2

have the same B-space B1 = B2, then projections of K1 to K2 and C1 to
C2 (with respect to the decompositions E = K1 ⊕ B1, F = C1 ⊕ D(B1)) are
isomorphisms, and vice versa. In this case, we say that the two K-models
are equivalent. Two oriented K-models are said to be equivalent if they are
equivalent K-models in the above sense, and the projections involved are
orientation-preserving.

K-models are particularly useful in family settings. We adopt the con-
vention of denoting a Banach space bundle over Λ by V Λ, with the fiber
over λ ∈ Λ denoted as Vλ. Let Λ be a connected manifold, and EΛ, FΛ be
Banach space bundles over Λ. Let DΛ: = {Dλ|Dλ: Eλ → Fλ, λ ∈ Λ} be
a family of uniformly bounded Fredholm operators, continuous in operator
norm. A (family) K-model for DΛ, written as [DΛ: KΛ → CΛ]BΛ , is a triple
of Banach space subbundles KΛ ⊂ EΛ, CΛ ⊂ FΛ, BΛ ⊂ EΛ, so that the
fibers over each λ ∈ Λ, [Kλ → Cλ]Bλ

form a K-model for Dλ, and Dλ|Bλ

has a uniformly bounded left inverse.
If Λ is finite-dimensional and compact, such K-models always exist by the

Fredholmness of the family DΛ. In contrast,
⋃

λ ker Dλ,
⋃

λ coker Dλ may
not form bundles as the dimensions of the kernels and cokernels may jump
with λ.

Two K-models [D1: K1 → C1]B1 , [D2: K2 → C2]B2 are said to be corre-
lated via the family K-model [DΛ : KΛ → CΛ]BΛ if they may be identified
with two fibers [Dλ1 : Kλ1 → Cλ1 ]Bλ1

, [Dλ2 : Kλ2 → Cλ2 ]Bλ2
over λ1, λ2 ∈ Λ.

They are said to be equivalent via the family K-model if they are equivalent
to two fibers. Finally, the notions of correlation and equivalence for oriented
K-models are obtained by inserting the adjective “oriented” before every
mention of K-model or family K-model in the above paragraph.

Example. If two Fredholm operators D,D′ are close in operator norm, one
may always include them in a family

D
Λ = {Dλ | ‖D − Dλ‖ < ε} for an ε 
 1.

Any K-model [D: K → C]B may be extended into a family K-model for DΛ,
with trivial BΛ = B × Λ. In this case, we shall refer to the equivalence of
K-models for D, D′ without specifying the family K-model — a family K-
model of the above description will be implied. Moreover, if D is surjective,
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and ε is sufficiently small, [
⋃

λ ker Dλ → ∗] form a K-model for DΛ. Thus,
in this case, we shall refer to correlated orientations of ker D and ker D′

without further specifications.

1.2.4. Gluing operators and gluing K-models. A major motivation
to introduce K-models is that, in gluing theory, generalized kernels and
cokernels are typically easier to construct and work with than the honest
kernels and cokernels. This subsubsection explains why.

We summarize the typical properties of the Fredholm operators
appearring in Floer theories as follows. A Floer-type operator is a Fred-
holm operator of the form:

D = ∂s + A(s) : E → F, where

• E = W (Rs × Y, p∗
2V ), F = L(Rs × Y, p∗

2V ) for suitable Sobolev norms
W, L.

• V is an Euclidean or hermitian bundle over the manifold Y, Rs denotes
the real line parameterized by s, p2: Rs×Y → Y denotes the projection.

• A(s): Γ(Y ; V ) → Γ(Y ; V ) is a first-order linear differential operator,
which is surjective and L2-self-adjoint when |s| � 1.

A stabilized Floer-type operator is a stabilization of a Floer-type operator
by multiplication with compactly supported functions.

Examples. In Morse theory, Y is a point. In the symplectic Floer theory
considered in this article, Y = S1, and p∗

2V = R
2n (obtained from trivializing

some u∗K). Y is a 3-manifold in Seiberg–Witten or instanton Floer theories.

An ordered k-tuple of Floer-type operators

D1 = ∂s + A1(s), . . . ,Dk = ∂s + Ak(s): E → F

are said to be glueable if
• A1(s) is constant for large s, Ak(s) constant for very negative s, and

for i = 2, . . . , k − 1, Ai(s) is constant in s for |s| � 1;
• Ai(∞) = Ai+1(−∞) for i = 1, . . . , k − 1.

Given a glueable k + 1-tuple of Floer-type operators D0, . . . ,Dk, and k + 1-
tuple of functions (f0, . . . , fk) ∈ Ek or F k, we may define the glued operator
D0#R1 · · ·#Rk

Dk and glued function f0#R1 · · ·#Rk
fk via the same formula

(4), replacing ui,[−Ri,Ri+1] thereby Di and fi,[−Ri,Ri+1], respectively, where
fi,[−Ri,Ri+1] is the truncation

fi,[−Ri,Ri+1] = β[−Ri,Ri+1](s)fi,

where β[−Ri,Ri+1](s) = β(2s/Ri + 2)β(2 − 2s/Ri+1),

with R0, Rk+1 understood as −∞,∞, respectively, and β(−∞,R](s) := β(2−
2s/R), β[−R,∞)(s) := β(2s/R + 2).
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Let Ki, i = 0, . . . , k be subspaces in E or F . We denote by
K0#R1 · · ·#Rk

Kk the subspace of E or F defined by

K0#R1 · · ·#Rk
Kk := {f0#R1 · · ·#Rk

fk | fi ∈ Ki, i = 0, . . . , k}.

In parallel, let D1 = ∂s + A1(s), . . . ,Dk = ∂s + Ak(s) be a k-tuple of glue-
able Floer-type operators, with A1(−∞) = Ak(∞). We call such oper-
ators cyclically glueable. In this case, we may define the cyclically glued
operator and functions D1#R1 · · ·#Rk−1Dk#Rk

, f1#R1 · · ·#Rk−1fk#Rk
∈

Γ(S1
2

∑
i Ri

× Y ; p∗
2V ) via formula (5), with similar modifications. The sub-

space K1#R1 · · ·#Rk−1Kk#Rk
⊂ Γ(S1

2
∑

i Ri
× Y ; p∗

2V ) may also be similarly
defined. Furthermore, gluing and cyclic-gluing extend in an obvious way to
stabilized Floer-type operators.

We denote by ιj#Kj the subspace

ιj#Kj = ∗ #R1 · · · ∗ #Rj−1Kj#Rj ∗ · · ·#Rk−1∗ ⊂ K1#R1 · · ·#Rk−1Kk

or ∗ #R1 · · · ∗ #Rj−1Kj#Rj ∗ · · · ∗ #Rk
⊂ K1#R1 · · ·#Rk−1Kk#Rk

depending on the context. Notice that when R1, . . . , Rk are sufficiently large
and the subspaces Kj are finite-dimensional, then ιj# are injective for all j.

Given f ∈ Γ(R × Y ; p∗
2V ) or Γ(S1 × Y ; p∗

2V ) and c ∈ R or S1, let

resc(f) := f |{c}×Y .

For a subspace K ⊂ Γ(R × Y ; p∗
2V ) or Γ(S1 × Y ; p∗

2V ), let resc K denote
the subspace {f |{c}×Y | f ∈ K} ⊂ Γ(Y ; V ).

Lemma (Glued K-models). Let D1, . . . ,Dk be a k-tuple of glueable Floer-
type operators, and [Di: Ki → Ci]Bi be K-models such that res0 |Ki : Ki →
res0 Ki is an isomorphism, and let res0 Bi ⊂ res0 E be a complementary
subspace to res0 Ki. Set

B# :=
{

f
∣
∣
∣ res0 (τ−2

∑i−1
j=1 Rj

f) ∈ res0 Bi, i = 1, . . . , k
}

.

(1a) Suppose for � � 1 and �R := (R1, . . . , Rk−1) ∈ [�,∞)k−1,

(7) D#�R := D1#R1 · · ·#Rk−1Dk is Fredholm of index
k∑

i=1

indDi, .

and K#�R := K1#R1 · · ·#Rk−1Kk, C#�R := C1#R1 · · ·#Rk−1Ck. Then
[D#�R : K#�R → C#�R]B# forms a K-model. In fact, these form a fam-
ily K-model for the family of operators {D#�R}�R. In particular, when
Di are surjective ∀i, the glued operator has a right inverse bounded
uniformly in R1, . . . , Rk−1.
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(1b) The same holds for �R := (R1, . . . , Rk) ∈ [�,∞)k,

D#�R = D1#R1 · · ·#Rk−1Dk#Rk
,

K#�R = K1#R1 · · ·#Rk−1Kk#Rk
,

C#�R = C1#R1 · · ·#Rk−1Ck#Rk

if, in addition, D1, . . . ,Dk is cyclically glueable with

ind D#�R =
k∑

i=1

ind Di.

(2) Furthermore, the projection Π
ιj#Cj

(with respect to the decomposi-

tion F =
⊕k

i=1 ιi#Ci ⊕ D#�R(B#)) approximates ΠCj ◦ β[−Rj−1,Rj ] ◦
τ−2

∑j−1
i=1 Ri

, where the projection ΠCj is with respect to the decomposi-
tion F = Cj ⊕ Dj(Bj).

There are many other ways of choosing the B-space B# for the statement
of this lemma to hold [cf., e.g., [4], Proposition 9]; the one described above
is that which we shall stick to for the gluing constructions in this article.
Notice that with this choice of B#, the projection Π

ιj#Kj
(with respect to

the decomposition E =
⊕

i ι
i
#Ki ⊕ B#) is given by

Π
ιj#Kj

= (res0 |Kj )
−1 ◦ Πres0 Kj ◦ res0 ◦τ−2

∑j−1
i=1 Ri

,

where the projection Πres0 Kj is with respect to the decomposition res0 E =
res0 Kj ⊕ res0 Bj .

This gluing procedure also generalizes to family situations to construct
family K-models for glued family of operators from family K-models of the
family of operators to be glued.

Example (K-models of deformation operators at glued trajec-
tories/orbits). Let {û0, . . . , ûk} be a broken trajectory and ui be centered
representatives of ûi. Then

Eu0#R1 ···#Rk
uk

= Eu(−∞,−R1]#R1 · · ·#Rk
Ev[Rk,∞) .

When R0, . . . , Rk are large enough, [ker Eui , coker Eui ] is a K-model for
Eui,[−Ri,Ri+1] . Furthermore, viewing ker Eui as the solution space of the
first-order linear differential equation Euiξ = 0, we see that res0 |ker Eui

is
an isomorphism. Take Bi = {f | res0(f) ∈ ker E⊥

ui
}. By the above lemma,

[ker Eu0#R1 · · ·#Rk
ker Euk

→ coker Eu0#R1 · · ·#Rk
coker Euk

]B#

is a K-model for Eu0#R1 ···#Rk
uk

. Similarly, in the case of broken orbits,
we obtain a K-model for the deformation operator at the glued orbit by
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cyclically gluing the standard K-models of the deformation operators at the
component trajectories.

1.2.5. Proof by contradiction and excision for right-invertibility.
Though Lemma 1.2.4 above is standard, we shall include a proof here,
since it showcases the typical arguments for establishing the (uniform) right-
invertibility of Dwχ required by Step 2 of gluing. In simple situations, one
may construct by excision a right inverse to Dwχ from right inverses of the
deformation operators Dui associated to the gluing parameter χ [see, e.g.,
2,3,5]. In more intricate situations, such as those frequently encountered
in this article, it is often convenient to use an indirect, nonconstructive
method, which we refer to as “proof by contradiction.” This method starts
by choosing a codimension ind Dwχ subspace Bχ ⊂ E. By the Fredholm-
ness of Dwχ , if Dwχ |Bχ is injective, then Dwχ has a bounded right inverse
Pχ: F → Bχ. Suppose otherwise that there is a sequence of unit length
ξχ ∈ Bχ, such that Dwχξχ → 0. One then shows that this is impossible by
estimating ‖ξχ‖ in terms of ‖Dwχξχ‖, showing that the former must go to 0
as the latter does so. This estimate is usually obtained by breaking ξχ into
summands ξi supported in different regions and bounding the summands
using the surjectivity of Dui .

Proof of Lemma 1.2.4. (1). The proofs of (1a) and (1b) are almost
identical, so we shall focus on (1a). We follow the proof by contradiction
framework. First, fix �R and omit it from the subscripts to simplify notation.
Let Ψj : Cj → F be the inclusion, and let DΨ# :

⊕
j Cj ⊕B# → F be defined

by

DΨ#(v1, . . . , vk, ξ) = D#ξ + Ψ1(v1)#R1 · · ·#Rk−1Ψk(vk).

Choose R1, . . . , Rk−1 to be large enough so that dim K# =
∑

i dim Ki and
dim C# =

∑
i dim Ci. We have the decomposition E = K# ⊕ B# by con-

struction. To show that [D#: K# → C#]B# indeed forms a K-model, it suf-
fices to show that DΨ# is surjective, in view of the definition of K#, C#, B#
and the index constraint (7). Since DΨ# is Fredholm of index 0, it is equiv-
alent to show that it is injective.

Suppose the contrary that there exists (v1, . . . , vk, ξ) ∈
⊕

j Cj ⊕ B# with
unit norm such that

(8) DΨ#(v1, . . . , vk, ξ) = 0.

The fact that [Dj : Kj → Cj ]Bj is a K-model implies that the operator

DΨj : Cj ⊕ Bj → F, (v, η) �→ Djη + Ψj(v)
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has a bounded inverse, and hence

‖(vj , (β[−Rj−1,Rj ] ◦ τ−2
∑j−1

i=1 Ri
)ξ‖

≤ C‖Dj(β[−Rj−1,Rj ] ◦ τ−2
∑j−1

i=1 Ri
)ξ + Ψj(v)‖

≤ C‖β[−Rj−1,Rj ] ◦ τ−2
∑j−1

i=1 Ri
)DΨ#(v1, . . . , vk, ξ)‖

+ C‖β′
[−Rj−1,Rj ]τ−2

∑j−1
i=1 Ri

)ξ‖ + C‖(1 − β[−Rj−1,Rj ])Ψj(vj)‖

 1,

(9)

using the assumption (8) for the first term, the fact that β′
[−Rj−1,Rj ]

<

C(
∑

i R
−1
i ) 
 1 for the second term, and the facts that ‖Ψj(vj)‖ is bounded

and Ri are large for the last term. Meanwhile, observe that the supports of
βj := τ2

∑j−1
i=1 Ri

β[−Rj−1,Rj ] are disjoint for different j, and write

1 −
k∑

j=1

βj =
k−1∑

l=1

ϕl,

where ϕl is a nonnegative function supported on
(

2
l−1∑

i=1

Ri − Rl

2
, 2

l−1∑

i=1

Ri +
Rl

2

)

.

Choose R1, . . . , Rk to be large enough so that over the support of ϕl, Dl =
Dl+1 = ∂s +Al(∞). Since by assumption ∂s +Al(∞) has a bounded inverse,
we have

‖ϕlξ‖
≤ C ′‖(∂s + Al(∞))(ϕlξ)‖
≤ C ′‖ϕlDΨ#(v1, . . . , vk, ξ)‖ + C ′‖ϕ′

lξ‖

+

∥
∥
∥
∥
∥
∥
ϕl

l+1∑

j=l

τ2
∑j−1

i=1 Ri
(β[−Rj−1,Rj ]Ψj(vj))

∥
∥
∥
∥
∥
∥


 1.

(10)

Summing (9) and (10) for all j and l, we obtain the desired contradiction
that

‖(v1, . . . , vk, ξ)‖ ≤
∑

j

‖(vj , βjξ)‖ +
∑

l

‖ϕlξ‖ 
 1.

To see the assertion about family K-models, replace (v1, . . . , vk, ξ) above by a
sequence of unit vectors {(vν

1 , . . . , vν
k , ξν)}ν with ‖DΨ# �Rν

(vν
1 , . . . , vν

k , ξν)‖ →
0. This is impossible by the same estimates, since the above estimates do
not depend on the specific values of R1, . . . , Rk−1.
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(2) We now switch to the excision method. Let χj be a smooth cutoff
function with value 1 on the support of βj and vanishes outside the support
of ϕj−1 + ϕj (with ϕ0 := 0 =: ϕk). Let χ̃l be a smooth cutoff function with
value 1 on the support of ϕl and vanishes outside the support of

∑l
j=l−1 βj .

We choose these cutoff functions such that |χ′
j |, |χ̃′

l| are both bounded by
mini R

−1
i /4 for all j, l. Let GΨj = (gΨj , GΨj ): F → Cj ⊕ Bj and G̃l: F → E

be the inverses of DΨj and ∂s+Al(∞), respectively. Let Gτ
Ψj

= (gτ
Ψj

, Gτ
Ψj

) :=
(
gΨjτ−2

∑j−1
i=1 Ri

, τ2
∑j−1

i=1 Ri
GΨjτ−2

∑j−1
i=1 Ri

)
and set GΨ# : F →

⊕
j Cj ⊕ B#

to be
GΨ# =

(
gτ
Ψ1

β1, . . . , g
τ
Ψk

βk,
∑

j

χjG
τ
Ψj

βj +
∑

l

χ̃lG̃lϕl

)
.

A straightforward computation shows that DΨ#GΨ# = 1 + Ξ, where Ξ is
small in operator norm, and so the inverse of DΨ# is GΨ#(1+Ξ)−1. Now, the
projection from F to ιj#Cj is given by ΠCjGΨ#(1+Ξ)−1 while the projection
from F to Cj is given by ΠCjGΨj . Claim (2) of Lemma 1.2.4 follows from
comparing these two. �

1.2.6. Generalizing the gluing map. Suppose the deformation operator
Dwχ has a K-model [K → C] with nontrivial C, the construction of gluing
map in Step 3 of Section 1.2.1 may be generalized as follows.

Write in local coordinates near wχ as in Section 1.2.1, and project (1) to
the subspaces D(B), C ⊂ F , respectively, while decomposing

ξ = Pχηχ + ξK for ξK ∈ K, Pχηχ ∈ B,

where Pχ: D(B) → B being the left inverse of Dwχ |B. We have

ηχ + ΠD(B)(F(wχ) + DwχξK) + ΠD(B)Nwχ(ξK + Pχηχ) = 0,

ΠC(F(wχ) + DwχξK) + Nwχ(ξK + Pχηχ)) = 0.

If ξK is sufficiently small, the contraction mapping theorem (Lemma 1.2.1)
applies to the first equation above to obtain a solution of ηχ depending
on ξK . Substitute this into the second equation, we obtain a finite rank
equation in ξK , which is itself in a finite-dimensional space. (The function
on the LHS of this equation is the “Kuranishi map.”) Thus, the solution
space of ξ is now an analytic variety in C. If [K → C] is a fiber of a family
K-model [KΞ → CΞ] for {Dwχ}χ∈Ξ, this describes the local structure of
moduli space near the image of the pregluing map as an analytic variety in
the finite-dimensional vector bundle CΞ. CΞ is the so-called “obstruction
bundle,” and this is essentially the “obstruction bundle technique” pioneered
by Taubes.

In general, it is difficult to understand the structure of this analytic vari-
ety. An example from this article is the case of gluing a broken trajectory or



400 Y.-J. LEE

orbit involving m Type II handleslides, where m > 1 (cf. Section 6). Accord-
ing to Lemma 1.2.4, in this case the glued K-model has an m-dimensional
generalized cokernel. Our inability to describe the local structure of M̂

Λ,1,+
P

near the stratum TP,hs-m or that of M̂
Λ,1,+
O near the stratum TO,hs-m is pre-

cisely due to the lack of understanding on the relevant analytic variety in
this bundle of generalized cokernels.

1.2.7. Typical arguments for Step 4 in Floer theory. Typically, it
follows directly from the discussion on Kuranishi structure in Step 2 that the
gluing map is a local diffeomorphism. For example, let χ = {û0, . . . , ûk} ×
(R1, . . . , Rk−1), and χ̌ = {u0}× · · ·×{uk} for corresponding representatives
ui of ûi given in the Remark of Section 1.2.2. When ûi are all nondegenerate,
Lemma 1.2.4 asserts that ker Dwχ is isomorphic to

ker Du0# · · ·# ker Duk
� Tχ̌Ξ̌(S) � TχΞ(S) × Rw′

χ,

where the first isomorphism in the above expression is the differential of
the pregluing map, and the second isomorphism is due to the remark of
Section 1.2.2 and the fact that DL(τLwχ) = w′

χ. On the other hand, the
pregluing wχ is close to the corresponding image of the gluing map, w. Thus,
ker Dwχ � ker Dw = TwMP . These together imply that the differential of
the gluing map is an isomorphism from TχΞ to TwM̂P .

To show that the gluing map is actually surjective to a neighborhood of
S in M̂+

P , one starts with the following simple consequence of the implicit
function theorem.

Lemma. In the above situation, let Tχ ⊂ TwχBP = E be the image of the
differential of the pregluing map at χ. Suppose the following hold for all
χ ∈ Ξ:

• Tχ, and w′
χ vary smoothly with χ;

• ∃ subspaces Bχ ⊂ E forming fibers of a bundle BΞ → Ξ, such that
E decomposes as E = Bχ ⊕ Tχ ⊕ Rw′

χ, and the projections to the
summands are bounded uniformly in χ.

Let exp(wχ, bχ) ∈ BP denote the element of coordinates bχ in the local
chart centered at wχ. Then there is a diffeomorphism from a small tubu-
lar neighborhood of {((χ, 0), 0)} ⊂ BΞ × R to a small tubular neighborhood,
Uε = {exp(τLwχ, ξ)| ‖ξ‖E < ε} ⊂ BP defined by

((χ, bχ), τ) �→ τL(exp(wχ, bχ)).

In other words, BΞ gives a good coordinate system of a slice of the
R-action in Uε. In our context, Bχ is the B-space defined in Step 2, and
the projection ΠBχ = PχDwχ . Proofs of analogous statements in the harder
gauge-theoretic context, where the R-action is replaced by the action of an
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infinite dimensional gauge group, may be found in [2, Section 7.3], and [3,
pp. 97–99].

Together with the contraction mapping theorem stated in Section 1.2.1,
this lemma implies that the gluing map surjects to a tubular neighborhood
(in E-norm) in the moduli space. However, the moduli space of broken tra-
jectories is endowed with the coarser chain topology instead. Thus, a major
task in Step 4 is to show that any flow line in a chain-topology neighborhood
of S in fact lies in Uε. This requires a decay estimate of the flow lines near
the connecting rest points.

In the case where the connecting rest points are nondegenerate, the rel-
evant exponential decay estimate is akin to the decay estimate for flows
ending at y, which has been used to derive (global) compactness of MP

from Gromov (local) compactness. Proposition 4.4 of [3] is recommended
for a well-written account of this estimate (in the gauge-theoretic context).

1.3. Gluing flow lines ending in degenerate critical points. To verify
the prediction of (RHFS2c, 3c) on the corner structure of M̂

Λ,1,+
P or M̂

Λ,1,+
O

near TP,db, JP , or TO,db, one needs to glue flow lines ending at a degenerate
critical point.

Now let (JΛ, XΛ) be an admissible (J, X)-homotopy, and let (0, y) ∈
PΛ,deg(JΛ, XΛ). In Sections 2–4, we set S = TP,db or TO,db, which consists
of broken trajectories or orbits with all the connecting rest points being
y. In Section 5, S is the subset in JP consisting of connecting flow lines
starting or ending in y. The space of gluing parameters in both cases will
be Ξ(S) = S × S, where S is an open interval in Λ with left or right end 0.

The gluing theory in these cases differ from the “standard” case outlined
in Section 1.2 in many aspects. Much of the additional complication arises
from the fact that, instead of the usual configuration space modeled locally
on Sobolev spaces or exponentially weighted Sobolev spaces, the moduli
spaces of flows to y now embed in configuration spaces modeled on the
polynomially weighted Wu-norm, and the deformation operator is between
the Wu and Lu spaces introduced in Section I.5. The main difference between
working with these polynomially-weighted spaces and the more commonly
seen exponentially weighted ones is that the range space Lu now has larger
weights in the longitudinal direction than the domain space Wu. This often
implies that all the estimates in the gluing theory need to be particularly
precise in the longitudinal direction, especially near y, where the weight is
large. Below is a quick outline of the strategies adopted in Sections 2–5.

1.3.1. Constructing pregluing. Let χ = ({û1, . . . , ûk}, λ) ∈ Ξ(S). Due to
the aforementioned problem with large weights in the longitudinal direction,
one needs a more delicate pregluing construction instead of the typical one
explained in Section 1.2.1.
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Let uλ,i be a centered representative of ûi or a suitable cutoff version
of it (to be specified later). Noticing that a variation in parameterization
(by s) of an element in BP or BO gives rise to a variation of the element
in the longitudinal direction, a natural solution to the above problem is to
find (λ-dependent) diffeomorphisms γui : Ii → R, such that

• Setting the pregluing wχ(s, t) = uλ,i(γui(s), t) over Ii × S1, the error
F(wχ) projects trivially to the longitudinal direction (i.e., the direction
of w′

χ) where wχ(s, ·) is close to y, and γ′
ui

= 1 elsewhere.
• si < sj if si ∈ Ii, sj ∈ Ij , and i < j, and the closures of Ii × S1 cover

the domain of wχ, Θ.
The above condition gives an ODE which determines γui . Furthermore,

from the ODE one may derive various behaviors of γui , which will be impor-
tant for the estimates throughout the proof. For instance, the length of Ii is
of order |λ|−1/2 if ui is not the first or last component of a broken trajectory.

1.3.2. λ-dependent W-norms and partitioning of Θ. In these settings,
the gluing map to be constructed takes values in parameterized moduli
spaces endowed with the ordinary Lp

1-topology. However, instead of the
ordinary Lp

1-norms, we shall work with certain weighted norms Wχ, Lχ,
because the right inverses of the deformation operator at wχ is not bounded
uniformly in the ordinary Sobolev norms. These weighted norms are defined
similarly to the Wu-and Lu-norms in Section I.5.2, and are in some sense
a combination of the Wui- or Lui-norms of the components ui; thus, when
ui are all nondegenerate, the right inverse of the deformation operator at
wχ is expected to have a uniform bound in terms of the norms of the right
inverses of the deformation operators at ui. They are all commensurate with
the usual Sobolev norms, though dependent on the gluing parameter χ.

When performing estimates, we typically partition Θ into several regions
depending on whether γ′

ui
is close to 1 and estimate over each region sep-

arately. Over the region Θui , the values of γ′
ui

is close to 1, and hence w′
χ

approximates ∂γu(γ), the Wχ-norm approximates the Wui-norm, and the
deformation operator at wχ may be approximated by that at ui. The length
of these regions are typically of order |λ|−1/2 or infinite, and the estimates
over these regions are similar to those in Section I.5.

In the case considered in Sections 2–4, the other regions are Θyj . They
have lengths of order |λ|−1/2, and estimates over these regions often use
the facts that on Θyj , wχ(s, ·) is close to y (of distance ≤ C|λ|1/2 for some
positive constant C) and that γui(s) grows polynomially as positive multiples
of (|λ|(l − s))−1.

In the case considered in Section 5, the other regions are Θy±. These are
of infinite length, but γ′

u and hence also w′
χ decay exponentially in the form

C± exp(∓µ±|λ|1/2s), C±, µ± being positive constants of O(1). In addition
to this, we also often use the fact that over this region, wχ(s, ·) is close to
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the new critical points yλ± (of distance ≤ C|λ|1/2 for some positive constant
C) and the estimates about yλ± in Section I.5.3.

1.3.3. K-models. (A) Choosing the triple K, C, B. The deformation oper-
ators for parameterized moduli spaces are stabilizations of those for MP ,
MO, Du = Eu or D̃u, respectively. Thus, it suffices to construct K-models
for the latter. Similar to the case in Section 1.2.4, we shall always take
the B-space to be W ′

χ, the subspace of Wχ consisting of those ξ such that
resγ−1

ui
(0) ξ is L2

t -orthogonal to res0 ker Eui ∀i. The generalized kernel will
be the sum of the subspaces γ∗

ui
ker Eui = {γ∗

ui
f | f ∈ ker Eui}. The gen-

eralized cokernel is trivial in the case of Section 5, but it is nontrivial in
the case of Sections 2–4. In fact, by additivity of indices, its dimension is
precisely the number of connecting rest points of the broken trajectory/orbit
{û1, . . . , ûk}.

In this case, we choose the generalized cokernel to be spanned by {fj},
where fj is a positive multiple of the product of the characteristic function
of Θyj with a unit vector in the longitudinal direction. If one requires fj

to be of unit Lχ-norm, the L∞-norm of fj would be of order |λ|1+1/(2p).
Heuristically, this choice is natural in the following sense.

(1) In this case, DLL is modeled on the operator

d

ds
: Lp

1
(
[γ−1

u1
(0), γ−1

uk
(0)]
)

→ Lp
(
[γ−1

u1
(0), γ−1

uk
(0)]
)

while B = W ′
χ models on the subspace of functions vanishing at the

points γ−1
ui

(0). Thus, D(B) models on the space of functions integrat-
ing to 0 on all the intervals [γ−1

ui
(0), γ−1

ui+1
(0)]. A natural choice for

the complementary space C is the subspace spanned by characteristic
functions over these intervals.

(2) Let λ, λ′ be, respectively, in a small death/birth neighborhood of 0,
χ = ({û1, . . . , ûk}, λ), and ũi ∈ MP,λ′ be the flow line close to ui,
ỹ ∈ MP,λ′ be the short flow line from yλ′+ to yλ′− close to the con-
stant flow line ȳ(s) = y ∀s. Let ỹinv(s) := ỹ(−s). There is a glued
trajectory or orbit w# = ũ1#ỹinv#ũ2#ỹinv# · · · that approximates
wχ. Note that kerEỹinv � coker Eỹ, coker Eỹinv � ker Eỹ; the former
being trivial, while the latter approximates the 1-dimensional space of
constant functions in the longitudinal direction (cf. Section 5.3.1 ).
Thus, the glued K-model for Ew# constructed in Example 1.2.4 also
form a K-model for Ewχ , in which the general cokernel is spanned by
{∗# · · · ∗ # ker Eỹ# ∗ · · · }, which approximates {fj}.

(B) Proving the isomorphism. To verify that the above choices do give
rise to a desired K-model, we need to show that the following operators are
isomorphisms with uniformly bounded inverses:
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• in the case of Section 5, Dwχ |W ′
χ
: W ′

χ → Lχ,
• in the case of Sections 2–4, the stabilization D̃wχ : R

m ⊕ W ′
χ → Lχ,

D̃wχ(ι1, . . . , ιm, ξ) := Dwχξ +
∑

j ιjfj .

The general outline of the proofs follows the “proof by contradiction” frame-
work sketched in Section 1.2.5, estimating over different regions in Θ sepa-
rately according to the partition outlined in Section 1.3.2 and incoporating
several extra ingredients including:

• variants of Floer’s lemma (cf., e.g., Lemma 3.3.1), which gives a L∞-
bound on |λ|−1/2ξ over Θyj . This is useful for ensuring that, in spite
of the potential problem with large weights, the extra term β′ξT intro-
duced by the cutoff function (as in (9)) when estimating the transversal
component ξT is still sufficiently small. (A different method is needed
for the longitudinal component, where the problem with large weights
is worse.) This estimate is also useful for bounding the Wχ-norm of
ξT over Θyj .

• estimates for ιj and ξL over Θyj . In contrast to estimates over Θui , the
estimates over Θyj differ substantially from the stereotype exemplified
by the proof of Lemma 1.2.4, especially for the longitudinal direction,
since ∂s + Ay is not surjective, or even Fredholm. Since DLL in this
region is modeled on ∂s, a basic tool of these estimates is a simple
lemma (Lemma 3.3.3) bounding the Lp-norm of a real-valued function
f over an interval I in terms of the ‖f ′‖Lp(I), the value of f at an end
point of I, and the length of I. The latter are in turn bounded via
‖D̃wχ(ι1, . . . , ιm, ξ)‖Wχ , the vanishing of ξL at the points γ−1

ui
(0), and

the length estimate of Θyj .

(C) Understanding the Kuranishi map. As explained above, in the case
of Sections 2–4, the Kuranishi model is more interesting, as the Kuranishi
map is nontrivial. To understand the Kuranishi map, one needs a better
description of the projection ΠC . In general, this is not easy to compute
when the decomposition C⊕D(B) is not orthogonal. Fortunately, due to the
special property of our D and our choice of C, there is a relatively simple way
of computing ΠC : very roughly speaking, modulo certain typically ignorable
terms and multiplication by positive scalars, ΠFj

is given by integrating
the longitudinal component over the interval [γ−1

uj−1
(0)γ−1

uj
(0)]. (see Lemma

4.1.1 for the precise statement). Notice that this conforms with the heuristic
picture sketched in item (1) of part (a) above.

1.3.4. Surjectivity of gluing map. As explained in Section 1.2.7, the
main task of this step is a decay estimate for the flow line near y, which
has to be particularly precise when y is degenerate, due to the polynomially
weighted norms adopted. This will be done via various refinements of the
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decay estimate in Section I.5. Given w = exp(wχ, ξ) ∈ MP in a chain-
topology neighborhood of the pregluing wχ, we estimate the transversal
and longitudinal components of ξ separately. First, reparameterize wχ to
get w̃, such that the difference between w and w̃ is transversal near y.
This difference satisfies a differential equation which is used to obtain its
pointwise estimate. On the other hand, comparing this parameterization
with γui , which was used in the definition of wχ, one may estimate the
difference between the two parameterizations via an ODE, which in turn
gives a pointwise bound on the difference between wχ and w̃ (note that
this is longitudinal). The desired bound on ‖ξ‖Wχ is obtained using the
transversal and longitudal pointwise estimates above.

2. Gluing at deaths I: pregluing and estimates

The following three sections give a detailed proof of Proposition 2.1 below,
following the outline in Section 1.

This section contains the pregluing construction, the definitions of the
Banach spaces as the domain and range of the relevant deformation operator,
the error estimates, and estimates for the nonlinear term. Namely, Steps 1
and 3 of the gluing construction sketched in Section 1.

2.1. Statement of the gluing theorem. The following Proposition
describes the appearance of new trajectories and closed orbits near a
death–birth bifurcation, by gluing broken trajectories and broken orbits at
a death–birth. These trajectories all appear for λ in a death-neighborhood;
for this reason, we call this a “gluing theorem at deaths,” in contrast to the
gluing theorems in Section 5, where the images of the gluing maps project
via ΠΛ to birth-neighborhoods.

Proposition. Let (JΛ, XΛ) be an admissible (J, X)-homotopy connecting
two regular pairs, and x, z be two path components of PΛ\PΛ,deg. Then:

(a) a chain-topology neighborhood of TP,db(x, z; �) in
M̂

Λ,1,+
P (x, z; wt−〈Y〉,eP ≤ �) is l.m.b. along TP,db(x, z; �);

(b) a chain-topology neighborhood of TO,db(�) in M̂
Λ,1,+
O (wt−〈Y〉,eP ≤ �)

is l.m.b. along TO,db(�).
Furthermore, ΠΛ maps these neighborhoods to death-neighborhoods.

We shall focus on the proof of part (a), since the proof of part (b) is
very similar: in fact, only the discussion in Section 4 on gluing maps needs
slight modification. The necessary modification for part (b) will be briefly
indicated in Section 4.3.

Recall that the admissibility of (JΛ, XΛ) implies that elements in PΛ,deg

satisfy (RHFS1i), and lie in standard d-b neighborhoods, namely, satisfy
the conditions described in Definition I.5.3.1. Thus, by possibly restricting
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to a sub-homotopy and/or reversing the orientation of Λ, we may assume
without loss of generality that PΛ,deg contains exactly one point, y, which is
a death. Namely, the constant

C ′
y > 0

in Definition I.5.3.1 (2b). We may also assume without loss of generality
that

ΠΛy = 0.

We now begin the construction of a gluing map from Ξ(S) to
M̂

Λ,1
P (x, z; wt−〈Y〉,eP ≤ �), where in this case

S = TP,db(x, z; �); Ξ(S) = S × (0, λ0) for a small λ0 > 0.

As TP,db(x, z; �) consists of finitely many isolated points, we may focus
on a broken trajectory {û0, . . . , ûk+1} in TP,db(x, z; �). As usual, ui will
denote the centered representative of ûi.

2.2. The pregluing. Let χ := ({û0, . . . , ûk+1}, λ) ∈ TP,db(x, z; �)×(0, λ0).
Choose the representatives ui, i = 0, . . . , k+1 such that ui(0) lies away from
the neighborhood of y mentioned in Definition I.5.3.1 (2a) and (2d). Let

δλV := VXλ
− VX0 .

By Definition I.5.3.1 (2a), this is given by θ̌Xλ
− θ̌X0 when λ < λ0 is suffi-

ciently small. That is, when λ0 is so small such that Jλ is constant in λ for
λ ∈ (−λ0, λ0). We choose λ0 so that this is the case and shall simply write
Jλ = J for such λ.

2.2.1. Lemma. Let l0 = −∞, l1 = 0, and lk+2 = ∞. Then there exist
li ∈ R, i = 2, . . . , k + 1, and homeomorphisms

γui : (li, li+1) → R ∀i ∈ {0, . . . , k + 1},

so that the configuration wχ ∈ BP (x0, z0) defined by

(11) wχ(s) :=

{
ui(γui(s)) for s ∈ (li, li+1), i = 0, . . . , k + 1;
y for s = lj , j = 1, . . . , k + 1

satisfies

〈w′
χ(s), ∂̄JXλ

wχ(s)〉2,t = 0; on
k+1⋃

i=0

[γ−1
ui

(0), γ−1
ui+1

(0)]

γ′
ui

= 1 otherwise.

(12)



REIDEMEISTER TORSION IN FLOER–NOVIKOV THEORY, II 407

Furthermore,

C0λ
−1/2 ≤ −γ−1

u0
(0) ≤ C ′

0λ
−1/2

Ciλ
−1/2 ≤ li+1 − li ≤ C ′

iλ
−1/2 for i = 1, 2, . . . , k.

Ck+1λ
−1/2 ≤ γ−1

uk+1
(0) − lk+1 ≤ C ′

k+1λ
−1/2.

Notation. To avoid confusion, we write uγ = ∂γu and reserve u′ = us for
∂su.

γui will also be used to denote γui × id : (li, li+1) × S1 → R × S1.

Proof. We will focus on the case of i = 0, since the cases with other i’s are
similar. From the definition, γu0(s) satisfies

d

ds
γu0(s) = hu0(γu0(s)),

where hu0 : R → R is defined as:
(13)

hu0(γ) :=

{
−〈(u0)γ(γ), (∂̄JλXλ

u0)(γ)〉2,t‖(u0)γ(γ)‖−2
2,t + 1 when γ ≥ 0;

1 when γ < 0.

Our choice of the representatives ui ensures that hui is continuous. ¿From
the decay estimates in Proposition I.5.1.3 and the fact that y is in standard
d-b neighborhood, for large γ we have

(∂̄JXλ
)u0(γ) = δλV(u0(γ)) = Ty,u0(γ)

(
λC ′

yey

)
+ O(λγ−1) + O(λ2).

On the other hand, (u0)γ(γ) approaches the direction −ey for large γ;
therefore, there are λ-independent positive constants A, A′, such that

(14) A′λγ2 ≥ hu0(γ) ≥ Aλγ2 for γ � 1.

We see that the inverse function of γu0(s), given by integration

(15)
∫ ∞

γu0

dγ

hu0(γ)
=
∫ 0

s(γu0 )
ds′

is well defined where γu0 is large. On the other hand, hu0 is always positive
and goes to 1 when γu0 becomes negative; we see that γu0(s) defines a
homeomorphism from R− to R. �
2.2.2. Definition. The pregluing associated with the gluing data χ above
is (λ, wχ) ∈ BΛ

P (x, z), where

wχ := eR−,R+(0, wχ; λ, 0),

eR−,R+ are defined in I.(62), and

R− = γ−1
u0

(−Cλ−1/2); R+ = γ−1
uk+1

(C ′λ−1/2)

for fixed positive constants C, C ′.
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Remark. In general, more complicated pregluing constructions are needed
if Definition I.5.3.1 (2b) is not assumed.

The following estimates for R± in terms of λ will be very useful.

2.2.3. Lemma. C ′
±λ−1/2 ≤ R± ≤ C±λ−1/2 for some λ-independent posi-

tive constants C±, C ′
±.

Proof. We shall only demonstrate the inequalities about R−, since those for
R+ are similar.

Choose a large enough γ0 such that when s ≥ γ0, the decay estimate in
Proposition I.5.1.3 for u0(s) and u′

0(s) holds, and

‖δλV(u0(s)) − Ty,u0(s)(λey)‖2,t ≤ Cγ0λ‖u0(s)‖2,t.

This implies that when γ ≥ γ0λ
−1/2, A′λγ2 ≥ hu0(γ) ≥ Aλγ2 � 1 for

some λ-independent constants A, A′. Thus

(16) C2λ
−1/2 ≤ −γ−1

u0
(γ0λ

−1/2) ≤
∫ ∞

γ0λ−1/2

dγ

Aλγ2 = C1λ
−1/2.

On the other hand, dγu0 (s)
ds = hu0(γu0(s)) ≥ 1 always, so

γ−1
u0

(γ0λ
−1/2) − γ−1

u0
(−Cλ−1/2) ≤ C2λ

−1/2.

Combining the above two inequalities, we get the claimed inequality for R−.
�

2.3. The weighted norms. Define the weight function σχ: R → R
+ by

(17) σχ(s) :=

⎧
⎪⎨

⎪⎩

‖w′
χ(s)‖−1

2,t when γ−1
u0

(0) ≤ s ≤ γ−1
uk+1

(0);
‖w′

χ(γ−1
u0

(0))‖−1
2,t when s ≤ γ−1

u0
(0);

‖w′
χ(γ−1

uk+1
(0))‖−1

2,t when s ≥ γ−1
uk+1

(0).

Let ξ ∈ Γ(w∗
χK), define its “longitudinal” component as

ξL(s) := β(s − γ−1
u0

(0))β(γ−1
uk+1

(0) − s)σχ(s)2〈w′
χ(s), ξ(s)〉2,tw

′
χ(s),

where β: R → [0, 1] is the smooth cutoff function supported on R
+ such that

β(s) = 1 ∀s ≥ 1 (cf. I.3.2.3).
The norms for the domain and range of Ewχ are defined as follows.

2.3.1. Definition. For ξ ∈ Γ(w∗
χK),

‖ξ‖Lχ := ‖σ1/2
χ ξ‖p + ‖σχξL‖p;

‖ξ‖Wχ := ‖σ1/2
χ ξ‖p,1 + ‖σχξ′

L‖p.

As usual, we also use Wχ, Lχ to denote the Banach spaces which are
C∞-completion with respect to these norms.

We shall extend the norm Wχ to a norm on T(λ,wχ)B
Λ
P (x, z) = R ⊕ Wχ in

a way such that Ê(λ,wχ) is uniformly bounded (cf. Lemma 2.5.1).



REIDEMEISTER TORSION IN FLOER–NOVIKOV THEORY, II 409

2.3.2. Definition. Define the following norm on Ŵχ := R ⊕ Wχ (denoted
by the same notation):

‖(α, ξ)‖Ŵχ
:= ‖ξ‖Wχ + λ−1/(2p)−1|α|.

2.4. The error estimate. The main goal of this subsection is to obtain
the following estimate.

2.4.1. Proposition. In the notation of Sections 2.2 and 2.3,

‖∂̄JλXλ
wχ‖Lχ ≤ Cλ1/2−1/(2p).

Proof. By direct computation, ∂̄JλXλ
wχ is supported on (−R− − 1, R+ +

1) × S1, on which it is given by

(18) Twχ,wχ

(
Π̃⊥

w′
χ
δλV(wχ)

)
+ rλ(x, z), where

• Twχ,wχ is as in Notation I.5.2.6;
• rλ(x, z) is a “remainder term” supported on

(−R− − 1, R+ + 1)\(−R−, R+) × S1

which consists of terms involving β(−R− − s)x̄
0,wχ

λ , β(s − R+)z̄
0,wχ

λ
and their derivatives (cf. I.(62) for notation);

• letting Π⊥
w′

χ(s) denote the L2
t -orthogonal projection to the orthogonal

complement of Rw′
χ(s),

Π̃⊥
w′

χ(s) =

{
Π⊥

w′
χ(s) for s ∈ [γ−1

u0
(0), γ−1

uk+1
(0)];

Id otherwise.

To estimate the terms in (18), note:

2.4.2. Lemma. When −R− ≤ s ≤ R+, there is a constant C independent
of λ and s, such that

‖σχ(s)Π̃⊥
w′

χ
δλV(wχ(s))‖∞,t ≤ Cλ1/2 ∀ sufficiently small λ.

Combining this lemma with Lemma 2.2.3, one may bound the contribu-
tion to ‖∂̄JλXλ

wχ‖Lχ from the first term in (18) by C1λ
1/2−1/(2p).

The contribution from the second term can be bounded by Cλ, using the
C2 bound on J and X, and the following estimates:

1∑

k=0

sup
s∈[−R−−1,−R−]

∥
∥
∥∂k

s x̄
0,wχ

λ (s)
∥
∥
∥

2,1,t

≤ C2ζ
x
λ + C3

1∑

k=0

sup
s∈[−R−−1,−R−]

‖∂k
s µ(s)‖2,1,t
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≤ C ′
2λ + C ′

3e
−C4λ1/2

≤ Cxλ,

where µ(s), ζx
λ are defined by exp(wχ(s), µ(s)) = x0, exp(x0, xλ) = ζx

λ ,
and the second inequality follows from the exponential decay of wχ to x0,
and the estimate for R− in Lemma 2.2.3. Similarly,

1∑

k=0

sup
s∈[R+,R++1]

∥
∥
∥∂k

s z̄
0,wχ

λ (s)
∥
∥
∥

2,1,t
≤ Czλ.

These together imply the proposition. �

Proof of Lemma 2.4.2. By Sobolev embedding, it suffices to estimate the
L2

1,t norm. Again we will estimate only the s ≤ 0 part, since the other parts
are entirely similar. Let γ0 be as in Lemma 2.2.3. Consider the following
two cases separately. Case 1: −R− ≤ s ≤ γ−1

u0
(γ0); Case 2: γ−1

u0
(γ0) ≤ s ≤ 0.

Case 1: In this region, ‖Π̃⊥
w′

χ
(δλV(wχ(s))‖2,1,t ≤ Cλ. On the other hand, on

this region, σχ ≤ C; in sum, we have ‖σχΠ̃⊥
w′

χ
(δλV(wχ(s))‖2,1,t ≤ C3λ.

Case 2: In this region, the fact that y is in a standard d-b neighborhood plus
the decay estimates in Proposition I.5.1.3 imply that for small enough λ,

‖Π⊥
(u0)γ

(
δλV(u0(γu0)

)
‖2,t ≤ λC0(‖Π⊥

(u0)γ
Ty,u0(γu0 )ey‖2,t + ‖µ(γu0)‖2,t)

≤ λ((1 − (1 + C2
1‖b(γu0)‖2

2,t)
−1)1/2 + C ′′γ−1

u0

≤ λ(C1‖b(γu0)‖2,t + C ′′γ−1
u0

)

≤ C4λγ−1
u0

,

where µ, b are defined by exp(y, µ(γ)) = u0(γ), b(γ) = Πeyµ(γ), as in Sec-
tion I.5. Meanwhile,

∥
∥
∥∂t[Π⊥

(u0)γ
δλV(u0(γu0))]

∥
∥
∥

2,t

≤ ‖∂t[δλV(u0(γu0))]‖2,t +
∥
∥
∥∂t(Πuγu0

)(δλV(u0(γu0)))
∥
∥
∥

2,t

≤ λC5

(
‖∂t(u0(γu0))‖2,t + ‖σu∂t(u0)γ(γu0)‖2,t

)

≤ C6λγ−1
u0

.

On the other hand, we have from direct computation:

σ−1
χ (s) = ‖w′

χ(s)‖2,t

= Π(u0)γ(γu0 (s))

(
δλV(u0(γu0(s)))

)
+ ‖(u0)γ(γu0(s))‖2,t

(19)

when γ−1
u0

(0) ≤ s ≤ 0. In particular,

(20) C ′(λ + γu0(s)
−2) ≥ ‖w′

χ(s)‖2,t ≥ C7(λ + γu0(s)
−2)
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when 0 ≥ s ≥ γ−1
u0

(γ0).
In sum, in Case 2

σχ(s)
∥
∥
∥Π⊥

w′
χ
δλV(wχ(s))

∥
∥
∥

2,1,t
≤ C8λγu0(s)

−1

λ + γu0(s)−2 ≤ C9λ
1/2.

The last step above is obtained by a simple estimate of the critical value
of the rational function. Combining the two cases, we have proved the
lemma. �

2.5. Bounding linear and nonlinear terms. In the previous subsection,
we obtained the estimate for the 0-th-order term of the expansion (1). We
estimate the linear and nonlinear terms in this subsection. In our context,
this means bounding Ê(λ,wχ) and n̂(λ,wχ). These are done, respectively, in
Lemmas 2.5.1 and 2.5.2 below.

2.5.1. Lemma. With respect to the norms Ŵχ, Lχ of Section 2.3, the defor-
mation operator Ê(λ,wχ) is bounded uniformly in λ.

Proof. The uniform boundedness of Ewχ follows from simple adaptation of
I.5.2.3. We therefore just have to estimate the Lχ norm of

Ê(λ,wχ)(1, 0) = Y(λ,wχ),

where Y(λ,wχ) is as in I.(63). By the properties of Y(λ,wχ) listed following
I.(63), Y(λ,wχ) is supported on (−R− − 1, R+ + 1) × S1, over which it has
a λ-independent C∞

ε bound. Also, from (19), we have σχ ≤ Cλ−1. These,
together with Lemma 2.2.3, imply

‖Ê(λ,wχ)(1, 0)‖Lχ ≤ C ′λ−1−1/(2p) = C ′‖(1, 0)‖Ŵχ
.

for a λ-independent positive constant C ′. �

Given (α, ξ) ∈ T(λ,wχ)B
Λ
P (x, z), let n̂(λ,wχ)(α, ξ) be

T−1
wχ,e(λ,wχ;α,ξ)∂̄JΛ,XΛ(λ + α, e(λ, wχ; α, ξ)) − ∂̄JλXλ

wχ − Ê(λ,wχ)(α, ξ).

2.5.2. Lemma. There is a λ-independent constant Cn such that for any
ξ̂ = (α, ξ), η̂ = (α′, η) ∈ Ŵχ,

‖n̂(λ,wχ)(ξ̂) − n̂(λ,wχ)(η̂)‖Lχ ≤ Cn(‖ξ̂‖Ŵχ
+ ‖η̂‖Ŵχ

)‖ξ̂ − η̂‖Ŵχ
.

Proof. These follow from direct computations, via the C∞
ε -bounds of J, X.

First, observe the pointwise estimate

|n̂(λ,wχ)(ξ̂) − n̂(λ,wχ)(η̂)|
≤ C1(|ξ| + |η|)(|ξ − η| + |∇(ξ − η)|) + C2(|∇ξ| + |∇η|)|ξ − η|

+ (|α| + |α′|)(|α − α′|)|Zλλ| +
(
(|α| + |α′|)|ξ − η| + |α − α′|(|ξ| + |η|)

)
|Zλw|,
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where Zλλ, Zλw are both supported on (−R− − 1, R+ + 1) × S1, over which
they are ∂2

λθ̌Xλ
(wχ), ∂λ∇θ̌Xλ

(wχ)/2, respectively, up to ignorable terms.
Estimating similarly to the proof of Lemma 2.5.1, we have

‖σχZλλ‖p,1 + ‖σχZλw‖p,1 ≤ C ′λ−1−1/(2p).

Thus

‖n̂(λ,wχ)(ξ̂) − n̂(λ,wχ)(η̂)‖Lχ ≤
∥
∥
∥σχ

(
n̂(λ,wχ)(ξ̂) − n̂(λ,wχ)(η̂)

)∥
∥
∥

p,1

≤ C1(‖σ1/2
χ ξ‖∞ + ‖σ1/2

χ η‖∞)‖ξ − η‖Wχ

+ C2(‖ξ‖Wχ + ‖η‖Wχ)‖σ1/2
χ (ξ − η)‖∞

+ C ′λ−1−1/(2p)(|α| + |α′|)(|α − α′|)

+ C ′λ−1−1/(2p)
(
(|α| + |α′|)‖ξ − η‖∞ + |α − α′|(‖ξ‖∞ + ‖η‖∞)

)

≤ Cn(‖ξ̂‖Ŵχ
+ ‖η̂‖Ŵχ

)‖ξ̂ − η̂‖Ŵχ
,

using a Sobolev inequality to bound the L∞-norm by Lp
1-norm. �

3. Gluing at Deaths II: the Kuranishi structure

The purpose of this section is to introduce a K-model for the operator Ewχ .
By stabilization, this also yields a K-model for Ê(λ,wχ). The main result is
summarized in Proposition 3.1.3.

3.1. The generalized kernel and generalized cokernel. Given y ∈ P,
we denote by ȳ the constant flow ȳ(s) = y ∀s.

We first partition the domain Θ = R×S1 into several regions, over which
wχ approximates either one of ui or ȳ.

For a subdomain Θ′ ⊂ Θ and some norm L, we denote by ‖ξ‖L(Θ′) :=

‖ξ
∣
∣
∣
Θ′

‖L.

3.1.1. Definition (Partioning Θ). Fix a small positive number ε > λ.
For i = 0, . . . , k + 1, let

ri := (2Cuiε)
1/2(λC ′

y)
−1/2,

where Cui is the constant in the bound ‖u′
i(s)‖2 ≥ Cui/s2 (cf. I.5.1.3). For

j = 1, . . . , k + 1, define

Θyj :=[sj−, sj+] × S1, where

sj− := γ−1
uj−1

(rj−1), sj+ = γ−1
uj

(−rj).

Let Θui denote the (i + 1)th component of Θ\
⋃

j Θyj , and let Θ′
yj =

(γ−1
uj−1

(rj−1 − 1), γ−1
uj

(−rj + 1)) × S1 ⊃ Θyj .
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Notice that the “length” of the region Θyj , sj+ − sj−, is bounded as

(21) C1(ελ)−1/2 ≤ sj+ − sj− ≤ C2(ελ)−1/2.

These inequalities follow from the arguments leading to (16), using, respec-
tively, inequalities of the type of the left and the right inequalities in (14).
The length of Θ′

yj satisfies similar bounds, with the constants C1, C2 above
replaced by different constants C ′

1, C
′
2.

3.1.2. Definition (Bases for generalized kernel/cokernel). For i =
1, . . . , k + 1, let

eui := γ∗
ui

u′
i ∈ Wχ.

For j = 1, . . . , k + 1, define the following elements in Lχ:

fj := Cj |λ|1+1/(2p)ϑΘyjw
′
χ‖wχ‖−1

2,t ,

where ϑΘyj is a characteristic function supported on Θyj and Cj are con-
stants chosen such that ‖fj‖Lχ = 1.

Let
Kχ := Span{eui}i∈{0,...,k+1} ⊂ Wχ;

K̂χ := Span{(1, 0), (0, eui)}i∈{0,...,k+1} ⊂ Ŵχ;

Cχ := Span{fj}, and

W ′
χ :=

{
ξ
∣
∣ 〈(γ−1

ui
)∗ξ(0), η(0)〉2,t = 0 ∀η ∈ ker Eui ∀i ∈ {0, 1, . . . , k + 1}

}

⊂ Wχ.

(Note that linearly independent elements in kerEui restrict linearly inde-
pendently to the circle s = 0, since they satisfy a homogeneous first-order
differential equation.)

A quick computation shows that the Wχ-norm on Kχ and the Lχ-norm
on Cχ are commensurate with the standard norm on Euclidean spaces with
respect to the bases given above.

These are, respectively, fibers of Banach spaces bundles over the space of
gluing parameters Ξ(S), KΞ, K̂Ξ, CΞ, W

′Ξ, and Ŵ
′Ξ.

Obviously, Wχ = Kχ ⊕ W ′
χ and Ŵχ = K̂χ ⊕ W ′

χ. Let W̃χ := R
k+1 ⊕ W ′

χ,
with the standard metric on R

k+1. (As usual, we denote the norm on it by
the same notation.) Let

Ẽχ: W̃χ → Lχ, Ẽχ(ι1, . . . , ιk+1, ξ) := Ewχξ +
k+1∑

j=1

ιjfj .

A quick computation using (21) shows that this is a bounded operator. The
rest of this section is devoted to proving the following.
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3.1.3. Proposition. For sufficiently small λ0, the triples KΞ, CΞ, W
′Ξ,

and K̂Ξ, CΞ, W
′Ξ are, respectively, K-models for the families of operators

{Ewχ}χ∈Ξ(S) and {Ê(λ,wχ)}χ∈Ξ(S).
In particular, there is an inverse G̃χ: Lχ → W̃χ of Ẽχ, which is bounded

uniformly in λ.

We shall concentrate on proving the existence of a uniformly bounded G̃χ,
since the rest of the assertions follow in a straightforward manner. The proof
follows the “proof by contradiction” framework outlined in Section 1.2.3;
since Ẽχ is Fredholm with ind Ẽχ = 0, it suffices to show that there exists
a λ-independent constant C, such that ‖ξ̃‖Lχ ≤ C‖Ẽχξ̃‖W̃χ

∀ξ̃ ∈ W̃χ.
Suppose the contrary that there exists a sequence

{ξ̃λ = (ι1,λ, . . . , ιk+1,λ, ξλ) ∈ W̃χ}, with ‖ξ̃λ‖Ŵχ
= 1 and

(22) ‖Ê(λ,wχ)(ξ̃λ)‖Lχ =: εE(λ) → 0 where λ → 0.

We shall estimate ξ̃λ in terms of εE(λ) over the various domains introduced
in Definition 3.1.1 to obtain a contradiction.

3.2. Estimates over Θui. Given a diffeomorphism γ: I → R, let

Tγ
w,w: = (γ−1)∗Tw,w: Γ(Θ, w∗K) → Γ(γ(Θ), (γ−1)∗w∗K).

By construction, for ξ ∈ Γ(w∗
χK), T

γui
wχ,wχ

ξ ∈ Γ(u∗
i K).

Since the discussion in this subsection holds for all i, we shall often drop
the index i. For instance, u = ui for some i.

In this subsection, the “transversal” or “longitudinal components” shall
refer to the respective components of elements in Γ(u∗K).

3.2.1. Comparing Wχ, Lχ-norms and Wu, Lu-norms. According to
computation in the proof of Lemma 2.2.1 and the definition of Θu, in this
region |hu(γu) − 1| ≤ ε. Thus, σu and σχ are close in this region, and by
direct computation we have the following lemma.

Lemma. Suppose ξ ∈ Γ(w∗
χK) is supported on Θu, and let ε, λ be as in

Definition 3.1.1. Then

(1 − 2ε)‖ξ‖Wχ ≤ ‖Tγu
wχ,wχ

ξ‖Wu ≤ (1 + 2ε)‖ξ‖Wχ ;

(1 − 2ε)‖ξ‖Lχ ≤ ‖Tγu
wχ,wχ

ξ‖Lu ≤ (1 + 2ε)‖ξ‖Lχ ,

and for some constant C,
∥
∥
∥Ê(λ,wχ)(α, ξ)

∥
∥
∥

Lχ

≥ (1 + 2ε)−1
∥
∥
∥Eu(Tγu

wχ,wχ
ξ) + αTγu

wχ,wχ
Y(λ,wχ)

∥
∥
∥

Lu

− (Cλ + ε) ‖ξ‖Wχ
.
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Remark. The fact that y is in a standard d-b neighborhood (more precisely,
the condition Definition I.5.3.1(2c)) is used here. In general, the last term
on the right-hand side of the above inequality would be larger.

3.2.2. From ξλ ∈ W ′
χ to ξ̄ui,λ ∈ W ′

ui
. For i = 1, . . . , k, and ξλ ∈ W ′

χ, let

(23) ξ̄ui,λ :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(γ−1
ui

)∗ξλ − βi((γuig
−1)∗ξλ)T

−θi+((γ−1
ui

)∗ξλ)L − ci+u′
i) − θi−((γ−1

ui
)∗ξλ)L − ci−u′

i)
on (−ri, ri) × S1

0 outside.

where

• βi is a smooth cutoff function in s supported away from (−ri+1, ri−1),
being 1 outside (−ri, ri).

• θi± are characteristic functions of (−∞ − si) and (si,∞), respectively.
• ci± are constants defined by

(24) ((γ−1
ui

)∗ξλ)L(±ri) = ci±u′(±ri).

For i = 0 or k + 1 and similarly defined constants c0, ck+1, let

ξ̄u0,λ :=

⎧
⎪⎨

⎪⎩

T
γu0
wχ,wχ

ξλ − β(s − r0 + 1)(Tγu0
wχ,wχ

ξλ)T

− θ(s − r0)((T
γu0
wχ,wχ

ξλ)L − c0u
′
0)

on (−∞, r0) × S1

0 outside;

ξ̄uk+1,λ :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T
γuk+1
wχ,wχ

ξλ − β(rk+1 − 1 − s)(T
γuk+1
wχ,wχ

ξλ)T

−θ(rk+1 − s)((T
γuk+1
wχ,wχ

ξλ)L − ck+1u
′
k+1)

on (rk+1,∞) × S1

0 outside,

where β is the smooth cutoff function as in Part I and Section 1.2.2, θ is the
characteristic function of R

+.

Remark. The point of the above definition is to introduce cutoff on ξλ,
while keeping the extra terms (arising from the cutoff) in Eu(ξ̄λ) ignorable.
The usual smooth cutoff works for the transversal direction, but not for the
longitudinal component, over which the weight function is greater. Instead,
we replace the longitudinal component over the cutoff region by a suitable
multiple of u′ determined by the matching condition (24) and make use of
the fact that Eu(u′) = 0.
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3.2.3. Estimating Euξ̄u,λ. The estimate for all i is similar. Taking i = 0,
for example, a straightforward computation yields:

Eu0(ξ̄u0,λ) =(1 − β(s − r0 + 1))Eu0(T
γu0
wχ,wχ

ξλT )

+ (1 − θ(s − r0))Eu0(T
γu0
wχ,wχ

ξλL(r0))

− β′(s − r0 + 1)Tγu0
wχ,wχ

ξλT

− δ(s − r0)
(
T

γu0
wχ,wχ

ξλL − c0u
′
0)
)
.

The last term above has vanishing Lu-norm because of the condition (24);
by Lemma 3.3.1, the Lu-norm of the penultimate term can be bounded by
Cε0(λ), which goes to 0 as λ → 0. Thus, by the previous lemma, we have
for small λ that

‖Euξ̄u,λ‖Lu(γu(Θu))

≤ ‖Eu(Tγu
wχ,wχ

ξλ)‖Lu(γu(Θu)) + Cε0(λ)

≤ (1 + 2ε)‖Ewχξλ‖Lχ(Θu) + (C ′λ + ε)‖ξλ‖Wχ(Θu) + Cε0(λ).

(25)

In the last expression, the first term goes to zero because of (22) and the fact
that over Θu, Ẽχξ̃λ = Ewχξλ. The second term is small since ‖ξλ‖Wχ ≤ 1.

3.2.4. Estimating ξ̄ui,λ. Since ξ̄u,λ ∈ W ′
u, where

W ′
u :=

{
ξ| ξ ∈ Wu, 〈u′(0), ξ(0)〉2,t = 0

}
,

by the right-invertibility of Eu, ‖ξ̄u,λ‖Wu ≤ C‖Euξ̄u,λ‖Lu ≤ ε. In particular,

(26) ‖Tγu
wχ,wχ

ξλ‖Wu(γu(Θu)) ≤ εu when λ ≤ λ0 is sufficiently small,

where εu is of the form

εu = Cε0(λ) + C2(λ + ε) + 2εE(λ),

which can be made arbitrarily small by choosing the small constants ε, λ
appropriately.

3.3. Estimates over Θyj. The estimates over Θyj for different j are simi-
lar, so we shall drop the subscript j in the discussion below.

First, note that from the computation of (20) there exist constants
CM , Cm independent of λ such that

(27) Cmλ−1 ≤ σχ(s) ≤ CMλ−1 on Θy.

We may therefore replace (modulo multiplication by a constant) the weights
in the Wχ and Lχ norms by λ−1.
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3.3.1. Estimating the transversal component. In the transversal direc-
tion, the estimates are again similar to the standard case: By looking at the
limit of (αλ, ξλ), one has:

Lemma (Floer). Let (αλ, ξλ) be as in (22). Then for all sufficiently
small λ,

‖ξλ‖L∞(Θ′
y) ≤ ε0(λ)λ1/2

where ε0(λ) is a small positive number, limλ→0 ε0(λ) = 0.

Proof. Let (sλ, tλ) be a maximum of |ξλ| in Θ′
y. Consider a slight enlarge-

ment of Θ′
y, Θ′′

y ⊃ Θ′
y, and let C > 0 be such that

[−C−1(ελ)−1/2, C−1(ελ)−1/2] × S1 ⊂ Θ′′
y.

Define

ςλ(s, t) := λ−1/2β̃(C(ελ)1/2s) Twχȳξλ(s + sλ, t) on Θ′′
y,

where β̃ is a smooth cutoff function supported on (−1, 1) which equals 1
on (−1/2, 1/2). By (22), ‖ςλ‖p,1 is uniformly bounded and thus by Sobolev
embedding ςλ converges in C0 (taking a subsequence if necessary) to a ς0,
which satisfies Eȳς0 = 0. (Note that the term involving ι dropped out
because of the assumption |ι| ≤ λ1+1/(2p).) Such a ς0 must be identically
zero cf. pp. 542–543 of [6]; so

‖ςλ‖L∞([−1,1]×S1) → 0 as λ → 0,

and thus ‖ξλ‖L∞(Θ′
y) < ε0(λ)λ1/2. �

Remark. In fact, one may be more precise about the longitudinal compo-
nent: by part (a) of Lemma 3.3.3, ‖ξλL‖L∞(Θ′

y) ≤ Cλ1/2+1/(2p)ε1/(2p)−1/2.

Lemma 3.3.1 tells us that ‖Ewχ(βyξλ)T ‖Lχ → 0, where βy is a smooth
cutoff function supported on Θ′′

y with value 1 on Θ′
y, since contribution from

the extra term due to the cutoff function goes to zero. Thus since Ewχ

is right-invertible (being close to a conjugation of Eȳ) on the transversal
subspace,

(28) ‖(ξλ)T ‖Wχ(Θ′
y) ≤ CεE(λ) + C ′ε0(λ) → 0 as λ → 0.

3.3.2. A useful normalizing function. The estimates for the longitudi-
nal components hinge on the observation that, after certain normalization,
Ewχ behaves like the simple operator d/ds over the longitudinal components.

Definition. Let �(s) be the positive real function such that

〈w′
χ, Ewχ(�ew)〉2,t = 0 and �(γ−1

u0
(0)) = 1, where(29)

ew(s) := ‖w′
χ‖−1

2,t (s)w
′
χ(s).
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Lemma. The function � is always positive, and there are positive constants
C1, C2 independent of λ such that

(30) 0 < C1 ≤ �(s)‖w′
χ‖2,t(s)−1 ≤ C2 ∀s ∈ [γ−1

u0
(0), γ−1

uk+1
(0)].

Furthermore, over [sj−,sj+] ∀j,

(31) 0 < C1λ ≤ � ≤ C2λ; |�′| ≤ C|λ|1/2|�|.

Proof. � satisfies a first-order linear differential equation, so its existence and
uniqueness is obvious. It also follows that � has no zeros, because otherwise
it would be identically zero. The condition that �(γ−1

u0
(0)) = 1 therefore

implies that � is always positive.

Equation (30) follows from the next claim by observing that
�‖w′

χ‖−1
2,t (γ

−1
u0

(0)) is λ-independent.

Claim. Let s0+ := γ−1
u0

(0); sk+2 − := γ−1
uk+1

(0). Then
∣
∣
∣ ln(�‖w′

χ‖2,t(r1)) − ln(�‖w′
χ‖2,t(r2))

∣
∣
∣ ≤ C

for a constant C independent of r1, r2, and λ when r1, r2 are both in

(a) [si+, si+1 −] for some i ∈ {0, 1, . . . , k + 1} or
(b) [sj−, sj+] for some j ∈ {1, 2, . . . , k + 1}.

Proof of the Claim. In case (a), set u = ui and drop the index i. In this
case, |γu| ≤ Ciλ

−1/2, γ′
u is close to 1, and ‖w′

χ‖2,t can be approximated
by ‖uγ(γu)‖2,t. We will therefore estimate �‖uγ‖−1

2,t instead. In this region,
rewrite (29) as

d

ds
(ln(�‖uγ‖−1

2,t )) = (γ′
u − 1)

d

dγ
(ln ‖uγ‖−1

2,t )

and integrate over s. Using the estimates in Section 2, it is easy to see that
in this region, the L∞-norm of the right-hand side of the above equation can
be bounded by Cλ|γ| ≤ C ′λ1/2. On the other hand, the distance between
r1 and r2 can be bounded by a multiple of λ−1/2, so the claim is verified in
this case.

In case (b), set u = uj−1 or uj depending on whether s is smaller or larger
than lj , and again drop the index j − 1 or j. In this case, |γu| ≥ Ciλ

−1/2,
and λ‖w′

χ‖−1
2,t can be bounded above and below independently of λ (cf. (27))

in this region, so it suffices to estimate the variation in �. We write (29) in
the form:

d

ds
(ln �) = −‖uγ‖−1

2,t (uγγ)L
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in this case and again integrate over s. The claim then follows from the
bound

(32)
∣
∣
∣
∣
d

ds
(ln �)

∣
∣
∣
∣ ≤ C3|γu|−1 ≤ C ′

3λ
1/2

and bound of the distance between r1 and r2 can be bounded by C4λ
−1/2. �

Continuing the proof of the lemma, the first inequality in (31) is the
consequence of (30) and (27). The second inequality of (31) follows directly
from (32) and the first inequality. �
3.3.3. Estimating the longitudinal direction. It is convenient to intro-
duce the following.

Definition. For j = 1, . . . , k + 1, let the R-valued function fj(s) be the
unique solution of

Ewχ(fj�ew) = f ′
j�ew = fj ,

�fj(sj−) = 0.(33)

Also, let φλ(s), ψλ,i(γ) be the R-valued functions defined, respectively, by

�φλ(s) = 〈ξλ(s), ew(s)〉2,t,

ψλ,i(γ) = 〈Tγui
wχ,wχ

ξλ(γ), eui(γ)〉2,t, where eui = ‖u′
i‖−1

2,t u
′
i.

The estimates for the longitudinal components will be based on the fol-
lowing elementary lemma.

Lemma. If q ∈ Lp
1([0, l]), then

(a) ‖q‖∞ ≤ C1l
1−1/p‖q′‖p + C2l

−1/p‖q‖p.
If furthermore q(0) = 0, then in addition:

(b) ‖q‖∞ ≤ Cl1−1/p‖q′‖p;
(c) ‖q‖p ≤ C ′l‖q′‖p.

The positive constants C, C ′, C1, C2 are independent of q and l.

Let φ̄λ,j := φλ + ιλ,jfj . Then by (31), (27), (21), and part (c) of the above
lemma,

‖(ξλ)L + ιλ,j�fjew‖Wχ(Θyj)

≤ C1

(
λ1/2‖φ̄λ,j‖Lp(Θyj) + ‖φ̄′

λ,j‖Lp(Θy,j)

)

≤ C2

(
ε−1/2‖φ̄′

λ,j‖Lp(Θy,j) + λ−1/2−1/(2p)ε−1/(2p)|ψλ,j−1|(rj−1)
)

≤ C3

(
ε−1/2‖(Ẽχξ̃λL)L‖Lχ(Θyj) + λ−1/2−1/(2p)ε−1/(2p)|ψλ,j−1|(rj−1)

)

≤ C4

(
ε−1/2εE + ε−1/2−1/(2p)λ1/2−1/(2p)ε0)

+ λ−1/2−1/(2p)ε−1/(2p)|ψλ,j−1|(rj−1)
)
.

(34)
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In the last line above, ε0 comes from Lemma 3.3.1 and an estimate for
(EwχξλT )L via a computation similar to I.(47). To estimate the last term
above, note that from Lemma 3.2.1, we have

‖Eui(ψλ,ieui)‖Lui ([0,ri]×S1)

≤ (1 + 2ε)‖Ẽχ(ξ̃λ)‖Lχ + (Cλ + ε)‖ξλL‖Wχ + C ′‖T
γui
wχ,wχ

ξλT ‖Wui ([0,ri]×S1)

≤ Cε′
ui

→ 0 as λ → 0.

In the above, we used (26) to estimate ‖T
γui
wχ,wχ

ξT ‖Wui ([0,ri]×S1). On the other
hand,

‖Eui(ψλ,ieui)‖Lui ([0,ri]×S1) ≥ C‖(σui(ψλ,i)γ‖Lp([0,ri]).

Using Lemma 3.3.3 (b) and the fact that ψλ,i(0) = 0 (because ξλ ∈ W ′
χ),

the previous two inequalities imply:

|ψλ,i(ri)| ≤ Cλr
1−1/p
i ε′

ui

≤ C ′λ1/2+1/(2p)ε1/2−1/(2p)ε′
ui

.
(35)

Combining this with (34), we have

‖(ξλ)L + ιλ,j�fjew‖Wχ(Θyj)

≤ C5

(
ε−1/2εE + ε−1/2−1/(2p)λ1/2−1/(2p)ε0 + ε1/2−1/pε′

uj−1

)
.

(36)

3.4. Estimating ιj and fj. This subsection fills in the last ingredients
for the proof of Proposition 3.1.3: estimates for ιj and fj (Lemmas 3.4.1
and 3.4.2 respectively). Combining these estimates with the estimates
obtained in previous subsections, we finish the proof of Proposition 3.1.3
in Section 3.4.3.

3.4.1. Lemma. Let λ, ε be small positive numbers as before. Then

|ιλ,j | ≤ ει,j(λ, ε),

where ει,j > 0 can be made arbitrarily small as λ → 0 by choosing ε appro-
priately.

Proof. This lemma follows from a lower bound on �fj(sj+), and a upper
bound on ιλ,j�fj(sj+), given, respectively, in (37), (38) below.

Note from the defining equation for fj and (31) that |f ′
j | ≥ Cλ1/(2p) for

some λ-independent constant C. Therefore by (21), (31), and the initial
condition of fj (33),

�fj(sj+) = �(sj+)
(
fj(sj+) − fj(sj−)

)

≥ C1λ
1+1/(2p)(sj+ − sj−)

≥ Cjε
−1/2λ1/2+1/(2p).



REIDEMEISTER TORSION IN FLOER–NOVIKOV THEORY, II 421

A similar calculation establishes an analogous upper bound, and we have

(37) C ′
jε

−1/2λ1/2+1/(2p) ≥ �fj(sj+) ≥ Cjε
−1/2λ1/2+1/(2p).

On the other hand,

|ιλ,j |�fj(sj+) ≤ |ψλ,j−1(rj−1)| + | − ψλ,j(rj)| +
∣
∣
∣�φ̄λ(sj+) − �φ̄λ(sj−)

∣
∣
∣.

The first two terms on the RHS are already estimated in (35); the third
term can be bounded by

∣
∣
∣�(sj+)

(
φ̄λ(sj+) − φ̄λ(sj−)

)∣
∣
∣+
∣
∣
∣

(
�(sj+) − �(sj−)

)
φ̄λ(sj−)

∣
∣
∣,

in which the first term may be bounded via (31), Lemma 3.3.3 (b) by

Cλ(ελ)−1/2+1/(2p)‖φ̄′
λ‖Lp([sj−,sj+])

≤ C ′λ1/2+1/(2p)(ε−1/2+1/(2p)εE + ε−1/2λ1/2−1/(2p)ε0),

according to the computation in (34), lines 3–5.
The second term, via (35), the initial condition (33), and (31), may be

bounded by
C ′′λ1/2+1/(2p)ε1/2−1/(2p)ε′

uj−1
.

Summing up, we have

|ιλ,j |�fj(sj+) ≤ C0ε
−1/2λ1/2+1/(2p)·

(ε1/(2p)εE + (λ + ε)ε1−1/(2p) + ε0(λ1/2−1/(2p) + ε1−1/(2p))).
(38)

Comparing with (37), we have an estimate for ιλ,j as asserted in the lemma,
with

ε(ε, λ) = C1(ε1/(2p)εE + (λ + ε)ε1−1/(2p) + ε0(λ1/2−1/(2p) + ε1−1/(2p))),

which can be made arbitrarily small by choosing λ, ε appropriately. �
3.4.2. Lemma. For j = 1, . . . , k + 1,

λ−1/2‖�fjew‖Lp(Θyj) + λ−1‖(�fj)′ew‖Lp(Θyj) ≤ C ′′
j ε−1/2−1/(2p).

Proof. Note that since f ′
j = �−1〈ew, fj〉2,t > 0, fj is increasing, and thus the

estimates leading to (37) imply that

‖�fj‖L∞(Θyj) ≤ C1ε
−1/2λ1/2+1/(2p).

On the other hand, this and (31) yield

‖(�fj)′‖L∞(Θyj) ≤ ‖�f ′
j‖L∞(Θyj) + ‖�′fyj‖L∞(Θyj)

≤ C2(λ1+1/(2p) + λ1/2‖�fj‖L∞(Θyj))

≤ C3ε
−1/2λ1+1/(2p).

These two L∞-bounds together with the length estimate for Θyj imply the
lemma. �
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3.4.3. Concluding the proof of Proposition 3.1.3. Now we have all
the ingredients to finish the proof of the proposition.

By Lemmas 3.4.1 and 3.4.2 the ι-terms in (36) are ignorable as λ → 0.
They are bounded by expressions of the form

C1(εEε−1/2 + (λ + ε)ε1/2−1/p + ε0(λ1/2−1/(2p)ε−1/2−1/(2p) + ε1/2−1/p)),

which can be made arbitrarily small by requiring, e.g.,

λ = λ(ε) is small enough such that

λ < ε5, εE(λ) + ε0(λ) < ε3, and
ε → 0.

(39)

Applying the comparison Lemma 3.2.1 to (26) for all i, and adding them
to (28) and (36) for all j, we see that

‖ξλ‖Wχ ≤ C4(ε−1/2εE + λ + ε + ε0(1 + ε−1/2−1/(2p)λ1/2−1/(2p))) 
 1

by the same choice (39). Combining this with Lemma 3.4.1, we arrive at a
contradiction to (22). �

4. Gluing at Deaths III: the gluing map

Sections 4.1 and 4.2 finish the proof of Proposition 2.1 (a): by further analyz-
ing the Kuranishi map associated to the K-model of last section, we obtain
a smooth gluing map, which is a local diffeomorphism. We show that this
gluing map surjects to a neighborhood of the stratum S in Section 4.2.

In Section 4.3, we discuss the minor modification needed to obtain part
(b) of Proposition 2.1, which glues broken orbits at λ = 0 to create new
closed orbits for small λ > 0.

4.1. Understanding the Kuranishi map. In the previous section, we
constructed the K-model for the family of deformation operators, [KΞ →
CΞ]. According to the discussion in Section 1.2.6, this yields a local descrip-
tion of the moduli space as the zero locus of an analytic map. In this sub-
section, we analyze this analytic map in more detail; this analysis enables
us to show that the moduli space is in fact (Zariski) smooth.

Recall that Proposition 3.1.3 shows that we have decompositions:

(40) Wχ =
⊕

i

Reui ⊕ W ′
χ, Lχ =

⊕

j

Rfj ⊕ Ewχ(W ′
χ),

and the (nonorthogonal) projection of Lχ to the fj direction is given by

Pfj
= ΠjG̃χ,

where Πj is the projection to the jth R-component of W̃χ. By Proposition
3.1.3, Pfj

has uniformly bounded operator norm. However, we need a finer
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estimate for Pfj
to understand the Kuranishi map. The next lemma is a

useful tool for this purpose.

4.1.1. Lemma (Projection via integration). Let η ∈ Lχ, and as usual
denotes

η
L
(s) := ‖w′

χ(s)‖−1
2,t 〈w′

χ(s), η(s)〉2,t for s ∈ [γ−1
u0

(0), γ−1
uk+1

(0)].

Then the projection Pfj
η is bounded above and below by expressions of the

form

(41) C1±λ1/2−1/(2p)
∫ γ−1

uj
(0)

γ−1
uj−1 (0)

�−1η
L

ds − C2±λ1/2−1/(2p)‖η‖Lχ

for λ-independent constants C1±, C2±.

In our later applications of this lemma, the second term in the above
expression is typically dominated by the first term, and hence ignorable.

Proof. In accordance with decomposition (40), write

(42) η = Ewχξ +
k+1∑

j=1

ιjfj

for (ι1, . . . , ιk+1, ξ) ∈ W̃χ. Thus
∫ sj+

sj−

�−1ds ιj

= C−1
j λ−1−1/(2p)

(∫ γ−1
uj

(0)

γ−1
uj−1 (0)

�−1η
L
ds −

∫ γ−1
uj

(0)

γ−1
uj−1 (0)

�−1(Ewχξ)
L

ds

)

= C−1
j λ−1−1/(2p)

(∫ γ−1
uj

(0)

γ−1
uj−1 (0)

�−1η
L
ds −

∫ γ−1
uj

(0)

γ−1
uj−1 (0)

�−1(EwχξT )
L

ds

)

.

(43)

The second identity above is due to the fact that ξL(γ−1
uj−1

(0)) = 0 =
ξL(γ−1

uj
(0)): writing ξL(s) = �φw′

χ‖w′
χ‖−1

2,t (s), we see from the definition
of � that �−1(EwχξL)

L
= φ′. Now integrate by parts, using the fact that

since �(s) �= 0 ∀s, φ(γ−1
uj−1

(0)) = 0 = φ(γ−1
uj

(0)).
By (31) and (21), we have

(44) Chλ−3/2 ≤
∫ sj+

sj−

�−1 ds ≤ C ′
hλ−3/2;

on the other hand, a computation similar to that leading to I.(47) yields
∣
∣
∣�−1(EwχξT )

L

∣
∣
∣(s) ≤ C1

(
σχ‖uγ‖−1

2,t (γ
′
u + 1)‖(uγγ)T ‖2,t + λ

)
‖ξT ‖2,t(s)

≤ C2‖ξT ‖2,t(s),
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where u = uj−1 or uj depending on whether s < lj or > lj . So by the
estimates for ‖w′

χ‖2,t and γ−1
ui

(0) − γ−1
ui−1

(0), and the uniform boundedness
of G̃χ,

∣
∣
∣
∣
∣

∫ γ−1
uj

(0)

γ−1
uj−1 (0)

�−1(EwχξT )
L

ds

∣
∣
∣
∣
∣

≤ C3‖σ−1/2
χ ‖Lq((γ−1

uj−1 (0),γ−1
uj

(0))×S1)‖ξT ‖Wχ ≤ C4‖η‖Lχ ,

(45)

where q−1 := 1−p−1. Putting (43), (44), (45) together, we arrive at (41). �
Next, applying the recipe of Section 1.2.5 to the K-models given by Propo-

sition 3.1.3, we look for solutions (α, ϕ0, . . . , ϕk+1, ξ) ∈ W ′
χ ⊕ R ⊕ R

k+2 of

P c

(

∂̄JXλ
wχ + Ê(λ,wχ)(α, ξ)

+
k+1∑

i=0

ϕiEwχeui + n̂(λ,wχ)

(

α, ξ +
k+1∑

i=0

ϕieui

))

= 0;(46)

Pfj

(

∂̄JXλ
wχ + Ê(λ,wχ)

(

α,

k+1∑

i=0

ϕieui

)

+n̂(λ,wχ)

(

α, ξ +
k+1∑

i=0

ϕieui

))

= 0,(47)

where P c := 1 −
∑

j Pfj .

4.1.2. Lemma (Solving the infinite-dimensional equation). Given

ϕ̂ := (α, ϕ0, . . . , ϕk+1) ∈ R⊕R
k+2, with |ϕ̂|2 := |λ−3/2α|2 +

∑

i

|ϕi|2 
 1,

(46) has a unique solution ξ(ϕ̂), with

(48) ‖ξ(ϕ̂)‖Wχ ≤ C1λ
1/2−1/(2p) + C2λ

1/2−1/(2p)|ϕ̂| + C3λ
1−1/(2p)|ϕ̂|2.

Furthermore, the solution ξ(ϕ̂′) corresponding to another ϕ̂′ = (α′, ϕ′
0, . . . ,

ϕ′
k+1) satisfies

(49) ‖ξ(ϕ̂) − ξ(ϕ̂′)‖Wχ ≤ C4λ
1/2−1/(2p)|ϕ̂ − ϕ̂′|.

The significance of the factor |λ|2/3 associated to α in the definition of |ϕ̂|
will become clear in (70).

Proof. To apply the usual contraction mapping argument (Lemma 1.2.1) to
(46), we need to estimate the “error” F and the nonlinear term N , and to
show that the linearization has a uniformly bounded right inverse.
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In this context, the error F consists of

P c∂̄JXλ
wχ + P c

k+1∑

i=0

ϕiEwχeui + αP cY(λ,wχ) + P cn̂(λ,wχ)

(

α,

k+1∑

i=0

ϕieui

)

,

which we estimate term by term below. We shall drop all P c from the
terms, since by Proposition 3.1.3, it has uniformly bounded operator norm,
and thus only affect the estimate by a λ-independent factor.

For the first term, note that ‖∂̄JXλ
wχ‖Lχ is readily estimated by Propo-

sition 2.4.1.
For the second term, we claim:

(50) ‖Ewχγ∗
ui

(ui)γ‖Lχ ≤ Cλ1/2−1/(2p).

We shall again suppress the subscript i below. Note that

(51) Ewχγ∗
uuγ = (γ′

u − 1)uγγ(γu) + Z(u)uγ(γu),

where Z arises from the difference between Xλ and X0, and hence we have
‖Z(u)‖∞ ≤ Cλ. Thus, by I.5.3.1 (2c) and routine estimates, the Lχ-norm
of the second term above is also bounded by C ′λ.

For the first term, note that the length of [γ−1
u (−γ0), γ−1

u (γ0)] is bounded
independently of λ; therefore, the Lχ-norm of it in this region is bounded
by Cλ. On the other hand, the length of the intervals where |γu| ≥ γ0 is
bounded by C ′λ−1/2. When s is in these intervals, by the computations in
case (2) in proof of Lemma 2.4.2, ‖σχ(γ′

u −1)uγγ(γu)‖∞ ≤ C3λ
1/2. Together

with the length estimate above, we see that the Lχ-norm in this region is
bounded by C ′′λ1/2−1/(2p). Equation (50) is verified.

For the third term, recall the following estimate obtained in the proof of
Lemma 2.5.1:

(52) ‖αY(λ,wχ)‖Lχ ≤ C‖(α, 0)‖Ŵχ
≤ Cλ1/2−1/(2p)|ϕ̂|.

For the last term in the error, we have

‖n̂(λ,wχ)

(

α,

k+1∑

i=0

ϕieui

)

‖Lχ ;

≤ C2

k+1∑

i=0

(
‖nwχ(ϕieui)‖Lχ + ‖αϕi∇eui

Y(λ,wχ)‖Lχ

)

+ C ′
2α

2‖∂λY(λ,wχ)‖Lχ + higher order terms

≤ C3

k+1∑

i=0

(
λ|ϕi|2 + |α|λ−1/(2p)|ϕi|

)
+ C ′

3|α|2λ−1−1/(2p)

≤ C4λ|ϕ̂|2.
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For the first inequality above, we used the fact that for different i, j, eui , euj

have disjoint supports. For the second inequality, we used the invariance of
the flow equation under translation, which implies

(53) nJX0
ui

(ϕi(ui)γ) = 0 ∀ϕi ∈ R.

Next, the linear term in (46) is of the form E′
χξ, where E′

χ is Ewχ per-
turbed by a term coming from n̂(λ,wχ)(α,

∑k+1
i=0 ϕieui +ξ), which has operator

norm bounded by

C

(
k+1∑

i=0

|ϕi| + λ−1/2|α|
)

≤ C|ϕ̂|.

Thus, with the assumption that |ϕ̂| 
 1, E′
χ is uniformly right-invertible as

Ewχ is. By contraction mapping theorem and the error estimates above, we
have an ξ(ϕ̂) satisfying (48).

The estimate for the nonlinear term is not very different from that in
Lemma 2.5.2, which we shall omit.

Finally, to estimate ξ − ξ′, where ξ := ξ(ϕ̂); ξ′ := ξ(ϕ̂′), notice that it
satisfies

Ewχ(ξ − ξ′) = −P c

(
k+1∑

i=0

(ϕi − ϕ′
i)Ewχeui) + (α − α′)Y(λ,wχ)

+n̂(λ,wχ)

(

α, ξ +
k+1∑

i=0

ϕieui

)

− n̂(λ,wχ)

(

α′, ξ′ +
k+1∑

i=0

ϕ′
ieui

))

.

Thus, by Proposition 3.1.3,

‖ξ − ξ′‖Wχ ≤ C ′
(

k+1∑

i=0

|ϕi − ϕ′
i|‖Ewχeui‖Lχ + |α − α′|‖Y(λ,wχ)‖Lχ

+

∥
∥
∥
∥
∥
n̂(λ,wχ)

(

α, ξ +
k+1∑

i=0

ϕieui

)

− n̂(λ,wχ)

(

α, ξ′ +
k+1∑

i=0

ϕ′
ieui

)∥
∥
∥
∥
∥

Lχ

⎞

⎠

for a λ-independent constant C ′. The first two terms inside the parenthe-
sis may be bounded by C1λ

1/2−1/(2p)|ϕ̂ − ϕ̂′| according to (50) and (52).
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The third term, by direct computation and (53) again, may be bounded by
⎛

⎜
⎜
⎝

‖ξ‖Wχ + ‖ξ′‖Wχ + (|α| + |α′|)λ−1/2

+
k+1∑

i=0

(|ϕi| + |ϕ′
i|)‖eui‖Wχ

⎞

⎟
⎟
⎠ · C2‖ξ − ξ′‖Wχ

+
k+1∑

i=0

(
‖ξ‖Wχ + ‖ξ′‖Wχ + (|α| + |α′|)λ−1/2

+ λ(|ϕi| + |ϕ′
i|)‖eui‖Wχ

)

· C3‖eui‖Wχ |ϕi − ϕ′
i|

+

⎛

⎜
⎜
⎝

λ−1/2(‖ξ‖Wχ + ‖ξ′‖Wχ) + λ−1−1/(2p)(|α| + |α′|)

+
k+1∑

i=0

(|ϕi| + |ϕ′
i|)λ−1/2‖eui‖Wχ

⎞

⎟
⎟
⎠ · C4|α − α′|

≤ C ′
2ε‖ξ − ξ′‖Wχ + C ′

3λ
1/2−1/(2p)|ϕ̂ − ϕ̂′|,

(54)

where 0 < ε 
 1, and we have used (48) and the fact that |ϕ̂| 
 1 above.
Now, the first term in the last expression above can be got rid of by a
rearrangement argument, and we arrive at (49). �

Next, substitute ξ(ϕ̂) back in (47) to solve for ϕ̂. To understand the
behavior of the solutions, we estimate each term in the Kuranishi map in
turn.

4.1.3. Lemma (Terms in the Kuranishi map). Let q−1 := 1 − p−1.
Then:

(a) |Pfj ∂̄JXλ
wχ| ≤ C ′λ1/q for any j ∈ {1, . . . , k + 1};

(b) For any i ∈ {0, . . . , k + 1}, j ∈ {1, . . . , k + 1},

|PfjEwχeui | ≤ Cλ1/q if j �= i or i + 1;

−C ′
−λ1/(2q) ≥ Pfi(Ewχeui) ≥ −C−λ1/(2q);

C ′
+λ1/(2q) ≥ Pfi+1

(Ewχeui) ≥ C+λ1/(2q).

(c) Let ϕ̂, ϕ̂′, ξ := ξ(ϕ̂), ξ′ := ξ(ϕ̂′) be as in the previous lemma. Then ∀j,
∣
∣
∣
∣
∣
Pfj

(

n̂(λ,wχ)

(

α, ξ +
k+1∑

i=0

ϕieui

)

−n̂(λ,wχ)

(

α′, ξ′ +
k+1∑

i=0

ϕ′
ieui

))∣
∣
∣
∣
∣
≤ Cnλ1/q|ϕ̂ − ϕ̂′|.

Proof. (a) Apply (41) with η = ∂̄JXλ
wχ. The integrals in the first terms

vanish because by our definition of pregluing, ∂̄JXλ
wχ has no longitudinal
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component in this region. On the other hand, ‖η‖Lχ ≤ Cλ1/(2q) by Propo-
sition 2.4.1.

(b) Let η = Ewχeui in (41). By (50), the second term of (41) (multiple of
λ1/(2q)‖η‖Lχ) contributes a multiple of λ1/q. If j �= i, i + 1, the first term of
(41) (multiples of integrals) vanishes, because η is supported away from the
interval of integration. These together imply the first line of (b).

For the other cases (u = uj or uj−1), we shall show that

±C ′ ≤
∫ γ−1

uj
(0)

γ−1
uj−1 (0)

�−1Ewχeu
L

≤ ±C (− when u = uj , + when u = uj−1).

This would imply that the first term of (41) is bounded below and above by
positive multiples of ±λ1/(2q), dominating the second term. The other two
cases of (b) would then follow.

To see this, recall the computation of Ewχeu from (51), and note that the
longitudinal component of the second term vanishes because of I.5.3.1 (2c).
Thus,

∫ γ−1
uj

(0)

γ−1
uj−1 (0)

�−1Ewχeu
L

=
∫ γ−1

uj
(0)

γ−1
uj−1 (0)

�−1(γ′
u − 1)uγγ(γu)

L
.

To estimate the integral on the RHS, note that on the interval of integration,
γuj , γuj−1 are negative/positive, respectively. Also,
⎧
⎪⎨

⎪⎩

|�−1(γ′
u − 1)uγγ

L
| ≤ C1λ when |γu| ≤ γ0;

C ′
2λ|γu| ≤ |�−1(γ′

u − 1)uγγ
L
| ≤ C2λ|γu| when γ0 ≤ |γu| ≤ ε1/2λ−1/2;

C ′
3|γu|−1 ≤ |�−1(γ′

u − 1)uγγ
L
| ≤ C3|γu|−1 when |γu| ≥ ε1/2λ−1/2;

Furthermore, when |γu| ≥ γ0, the sign of �−1(γ′
u − 1)uγγ

L
is the sign of

γu. Thus, the contribution to the first integral from the two regions where
|γu| ≥ γ0 is bounded above and below by expressions of the form

sign(γu) C ′′
2

(∫ ε1/2λ−1/2

γ0

λγ(γ′)−1 dγ +
∫ ∞

ε1/2λ−1/2
γ−1(γ′)−1 dγ

)
.

By our estimate for γ′ in Section 2, this is in turn bounded above and below
by sign(γu) C, where C > 0 is a λ-independent constant, and the sign is
− when u = uj ; + when u = uj−1. Meanwhile, the contribution from the
region where |γu| ≤ γ0 is bounded by C ′λ; therefore ignorable. In sum, we
have the claimed estimate, and hence the assertion (b).

(c) Let η = n̂(λ,wχ)(α, ξ+
∑k+1

i=0 ϕieui)−n̂(λ,wχ)(α′, ξ′+
∑k+1

i=0 ϕ′
ieui) in (41).

The second term in it, by (54) and (49), is bounded by Cλ1/(2q)λ1/(2q)|ϕ̂−ϕ̂′|.
On the other hand, by Hölder inequality and the same direct computation
that appeared in the end of the proof of last lemma, the first term of (41)
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can be bounded in absolute value by writing Ij =
(
γ−1

uj−1
(0), γ−1

uj
(0)
)

Cλ1/(2q)

(
∑

i

|ϕi − ϕ′
i|
(
λ(|ϕi| + |ϕ′

i|)
∫

Ij

�−1‖(ui)γ‖2
2,tds

+ (|α| + |α′|)
∫

Ij

�−1(ui)γ
L
ds
)

+ (‖ξ‖Wχ + ‖ξ′‖Wχ)
(
‖ξ − ξ′‖Wχλ−1/2+1/p

+
∑

i

|ϕi − ϕ′
i|‖�−1/2(ui)γ‖Lq(Ij×S1) + |α − α′| ‖�−1/2‖Lq(Ij)

)

+ |α − α′|
(
(|α| + |α′|)

∫

Ij

�−1 ds +
∑

i

(|ϕi| + |ϕ′
i|)
∫

Ij

�−1(ui)γ
L
ds
)

+ ‖ξ − ξ′‖Wχ

(∑

i

(|ϕi| + |ϕ′
i|)‖�−1/2(ui)γ‖Lq(Ij×S1)

+ (|α| + |α′|)‖�−1/2‖Lq(Ij)

)
)

≤ C ′λ1/(2q)
(
λ1/(2q)|ϕ̂ − ϕ̂′| + (ε1 + C ′′λ1/(2p))‖ξ − ξ′‖Wχ

)

≤ C3λ
1/q|ϕ̂ − ϕ̂′|.

In the above we again used (49), the estimate for � in Lemma 3.3.2, and the
estimates for γui and σχ in section 2. Summing up, this gives us assertion (c).

�

4.1.4. Constructing the gluing map. It follows immediately from the
previous lemma that the linearization of the Kuranishi map is surjective,
and hence the moduli space is (Zariski) smooth. More precisely, choose

Qχ := Span{eu1 , . . . , euk+1} ⊂ Kχ QΞ :=
⋃

χ

Qχ.

The reductions of the K-models [Kχ → Cχ]W ′
χ
, [K̂χ → Cχ]W ′

χ
by Qχ give

respectively the standard K-models for Ewχ and Ê(λ,wχ):

[ker Ewχ → ∗]Qχ⊕W ′
χ
, [ker Ê(λ,wχ) → ∗]Qχ⊕W ′

χ
.

Indeed, from Lemma 4.1.3 (b), we see that the (k + 1) × (k + 1)-matrix
E = (Eji),

Eji := λ−1/(2q)Pfj
(Ewχeui), i, j ∈ {1, . . . , k + 1}
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is, up to ignorable terms, of the form
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 0 · · · · · · 0
+ − 0 · · · 0

0 +
. . . · · · 0

... 0
. . . . . .

...
0 · · · · · · + −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(+/− denote positive/negative numbers of O(1)).

Thus, it has a uniformly bounded inverse, denoted (Gij). Restricted to Qχ

(i.e., setting α = ϕ0 = 0), (47) can be rewritten in the form

(55) �ϕ = Ψ(�ϕ), where �ϕ := (ϕ1, . . . , ϕk+1),

and Ψ: R
k+1 → R

k+1 is the map given by

(Ψ(�ϕ))i = −
k+1∑

j=1

Gijλ
−1/(2q)Pfj

(

∂̄JXλ
wχ + nwχ

(

ξ(�ϕ) +
k+1∑

l=1

ϕleul

))

.

Note from the uniform boundedness of (Gij) and Lemmas 4.1.2, 4.1.3 (a)
that

|Ψ(�0)| ≤
∑

j

Cλ−1/(2q)
(
|Pfj

∂̄JXλ
wχ| + ‖nwχ(ξ(�0))‖Lχ

)

≤ C2λ
−1/(2q)(λ1/q + ‖ξ(�0)‖2

Wχ
)

≤ C ′
2λ

1/(2q) 
 1.

(56)

On the other hand, Lemmas 4.1.2 and 4.1.3 (c) and the uniform boundedness
of (Gij) again imply:

|Ψ(�ϕ) − Ψ(�ϕ′)| ≤ K|�ϕ − �ϕ′| for a positive constant K ≤ Cλ1/(2q) 
 1.

Thus by the contraction mapping theorem, we have a unique solution of (55)
among all small enough �ϕ.

To summarize, for sufficiently small λ0 > 0, there is a universal positive
constant Cw, such that for all χ ∈ Ξ(S), there is a unique

(�ϕχ, ξχ) ∈ Qχ ⊕ W ′
χ with ‖ξχ‖2

Wχ
+ |�ϕχ|2 ≤ Cw,

which solves (46), (47). In fact, the solution satisfies

‖ξχ +
∑

i

ϕχ,ieui‖2
Wχ

≤ ‖ξχ‖2
Wχ

+ C ′|�ϕχ|2 ≤ Cλ1/q,

because of (56) and (48).
We define the gluing map to be the map from Ξ(S) to M̂Λ

P sending

χ �→ exp
(
wχ, ξχ +

k+1∑

i=1

ϕχ,ieui

)
.
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4.2. Surjectivity of the gluing map. With the gluing map constructed
above, the standard arguments outlined in Section 1.2.7 shows that it is
a local diffeomorphism onto M̂Λ

P (x, z) ∩ Uε, the intersection of the moduli
space with a tubular neighborhood Uε of the image of the pregluing map in
B-topology.

As our goal is instead to show that the gluing map is a local diffeomor-
phism onto (the interior of) a neighborhood of S ⊂ M̂

Λ,+
P (x, z) in the coarser

chain topology, we need to show that the latter neighborhood in fact lies in
Uε. This is done via the following variant of decay estimates for flows near y.

4.2.1. w in terms of w̃ and ξ̃. Let (λ, ŵ) ∈ M̂
(−λ0,λ0),1
P (x, z; wt−〈Y〉,eP ≤

�) be in a chain-topology neighborhood of S ⊂ M̂
Λ,+
P (x, z). Namely, |λ| 
 1,

and there is a broken trajectory χ̂ := {u0, u1, . . . , uk+1} ∈ S, which is close
to ŵ in chain topology. Let χ := (χ̂, λ) ∈ Ξ(S). We may find a representative
w of ŵ, such that

w(s) = exp(w̃(s), ξ̃(s)),
where w, w̃ are chosen such that

• w̃(s) = y at s = l̃1, . . . , l̃k+1; l̃1 < l̃2 < · · · < l̃k+1 subdivide R into k+2
open intervals Ii, i = 0, 1, . . . , k + 1;

• w̃(s) = ui(γ̃ui(s)) over Ii, where γ̃ui : Ii → R are homeomorphisms
determined by:

(57)

{
Πey ζ̃(s) = Πeyζ(s) for s ∈

⋃
i[γ̃

−1
ui−1

(γ0), γ̃−1
ui

(−γ0)],
γ̃′

ui
(s) = 1 for s ∈ R\

⋃
i[γ̃

−1
ui−1

(γ0), γ̃−1
ui

(−γ0)],

with ζ, ζ̃ given by w̃(s) = exp(y, ζ̃(s)), w(s) = exp(y, ζ(s)), and γ0 the
large positive constant in Section 2.4.

•
(58) γ−1

u0
(0) = γ̃−1

u0
(0); 〈(u0)γ(0), γ̃∗

u0
ξ̃(0)〉2,t = 0.

Because of elliptic regularity and the fact that (λ, w) is close to S in chain
topology, we may assume without loss of generality that

‖ξ̃(s)‖∞,1,t + ‖ξ̃′(s)‖∞,1,t < ε ∀s for |λ|1/2 < ε 
 1;

γ̃−1
uj

(0) − γ̃−1
uj−1

(0) > ε−1 ∀j ∈ {1, . . . , k + 1}.

4.2.2. Estimating ξ̃. Because of the large weights near y, we need the
following more refined pointwise estimate for ξ̃ near y.

Lemma. Let (λ, w) ∈ MΛ
P be close to S in chain topology, and let y be a

death as before. Then λ > 0. Furthermore, in the notation of Section 4.2.1,
there is a small positive constant ε0 = ε0(γ−1

0 , ε) independent of w, such that

(59) ‖ξ̃(s)‖2,2,t + ‖ξ̃′(s)‖2,1,t ≤ ε0(‖Πey ζ̃(s)‖4
2,1,t + |λ|)

for all s ∈
⋃

j [γ̃−1
uj−1

(γ0), γ̃−1
uj

(−γ0)].
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Proof. Let s ∈
⋃

j [γ̃
−1
uj−1

(γ0), γ̃−1
uj

(−γ0)] throughout this proof. In fact, it
suffices to consider only one j.

To estimate ξ, it is equivalent to estimate ζ − ζ̃, which we denote by c.
The assumption (57) implies that c ∈ ker A⊥

y .
Write b := Πker Ay ζ̃, and let Z: ker Ay → ker A⊥

y be such that ζ̃ =
(1 + Z)b. Similar to I.(38), I.(39), the flow equation can be rewritten as:

(60) −dζ̃

ds
= (1 + ∇bZ)(λC ′

yey + Πker Ay n̂(0,y)(λ, ζ̃ + c));

−dc

ds
= Ayc − ∇bZ(λC ′

yey)

+ (1 − Πker Ay − ∇bZΠker Ay)(n̂(0,y)(λ, ζ̃ + c) − ny(ζ̃)).
(61)

Taking the L2
t -inner product of (61) with c and rearranging like the proof

of Sublemma I.5.1.7, we get (adopting the notation of I.5.1)

d‖c+‖2,t

ds
≥ µ+‖c+‖2,t − ε+‖c‖2,t − C+|λ|‖ζ̃‖2,1,t,

d‖c−‖2,t

ds
≤ −µ−‖c−‖2,t + ε−‖c‖2,t + C−|λ|‖ζ̃‖2,1,t.

Subtracting a suitable multiple of the first inequality from the second, one
obtains:

(‖c−‖2,t − ε′
−‖c+‖2,t)′ ≤ −µ′

−‖c−‖2,t + C ′
−γ−1

0 |λ|.
Taking convolution product with the integral kernel of d/ds + µ′

− on both
sides, one gets

‖c−‖2,t − ε′
−‖c+‖2,t ≤ C−εe−µ′(s−γ̃−1

uj−1 (γ0)) + C ′′
−γ−1

0 |λ|,
and similarly,

‖c+‖2,t − ε′
+‖c−‖2,t ≤ C+εe−µ′(γ̃−1

uj
(−γ0)−s) + C ′′

+γ−1
0 |λ|.

Adding the above two inequalities, we get

‖c‖2,t ≤ Cε
(
e−µ′(s−γ̃−1

uj−1 (γ0)) + e−µ′(γ̃−1
uj

(−γ0)−s)
)

+ C ′′γ−1
0 |λ|.

This may be improved to give a similar estimate for ‖c‖2,1,t using (61) by the
same elliptic bootstrapping and Sobolev embedding argument as in I.5.1.7.

On the other hand, write b(s) = b(s)ey as usual, and notice that by taking
Πker Ay of (60), b(s) satisfies:

(62) −b′(s) = λC ′
yey + Πker Ay n̂(0,y)(λ, ζ̃ + c).

Integrating this equation, it is easy to see that λ < 0 would contradict the
fact that, due to the proximity of w and w̃,

b(γ̃−1
uj−1

(γ0)) > 0, b(γ̃−1
uj

(−γ0)) < 0, γ̃−1
uj−1

(γ0) < γ̃−1
uj

(−γ0).

Thus, λ must be positive.
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On the other hand, as λ > 0, (62) implies that b(s) decreases monotoni-
cally with s. We now claim that

e−µ′(s−γ̃−1
uj−1 (γ0)) + e−µ′(γ̃−1

uj
(−γ0)−s) ≤ Ce(b(s)4 + |λ|).

Combined with the above estimates for c, this would then imply the second
assertion of the lemma.

To prove the claim, note that by symmetry and the decay/growth behav-
ior of the two terms on the LHS, it suffices to show that

b4(s) ≥ C1e
−µ′(γ̃−1

uj
(−γ0)−s) when −1 
 b(s) ≤ −|λ|1/2;

b4(s) ≥ C2e
−µ′(s−γ̃−1

uj−1 (γ0)) when 1 � b(s) ≥ |λ|1/2

for s-independent constants C1, C2. We shall only demonstrate the second
inequality since the first is similar. When b(s) ≥ |λ|1/2, (62) together with
the above estimate for ‖c‖2,1,t imply that

(b4)′ ≥ −µ′b4 − Cbε
4e−4µ′(s−γ̃−1

uj−1 (γ0))
.

Taking convolution product with the integral kernel of d/ds + µ′, we get in
this region

b4(s) ≥ C6e
−µ′(s−γ̃−1

uj−1 (γ0)) − C7ε
4e−4µ′(s−γ̃−1

uj−1 (γ0))
,

and hence the claim. �

4.2.3. From w̃ to wχ. Next, notice that w̃ differs from the pregluing wχ

by a reparameterization. We shall estimate the difference between w̃ and
wχ by estimating the difference between γ̃−1

ui
and γ−1

ui
.

Similar to γui (see Section 2.2.1), γ̃ui satisfies:
〈
uγ(γ̃ui),−(γ̃′

ui
− 1)uγ(γ̃ui) + λY(0,w̃) + Ew̃ξ̃ + ñ(λ, ξ̃)

〉

2,t
= 0,

where ñ is some nonlinear term in λ, ξ̃. By (57), when γ̃ui(s) ≥ |γ0|,

‖uγ(γ̃ui)‖−1
2,t |〈uγ(γ̃ui), Ew̃ξ̃ + ñ(λ, ξ̃)〉2,t|
≤ C8(‖ξ̃‖2,1,t + ‖ξ̃′‖2,t)/γ̃ui + C ′

8(‖ξ̃‖2,1,t + λ)2.

Write γλ,ui
= γui in (11) to emphasize the parameter λ used in the defi-

nition, and let

∆s,i(γ) := γ−1
λ,ui

(γ) − γ̃−1
ui

(γ).

Comparing the defining equations for γλ,ui
and γ̃λ,ui

, and using (59) and the
above estimate for ‖uγ(γ̃ui)‖−1

2,t |〈uγ(γ̃ui), Ew̃ξ̃ + ñ(λ, ξ̃)〉2,t|, we find that for
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all i ∈ {0, . . . , k},

|∆s,i(γ+) − ∆s,i(γ−)| ≤
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣
∣
∣
∫ γ0

0 (O(ε) + O(λ)) dγ
∣
∣
∣ ≤ C1ε if 0 ≤ γ+, γ− ≤ γ0;

∣
∣
∣
∫ ri

γ0
C7(εγ(λ + γ−4) + (λ + γ−4)2γ2) dγ

∣
∣
∣ ≤ C6ε if γ0 < γ+, γ− ≤ ri;

∣
∣
∣
∫∞

ri

C5(εγ(λ+γ−4)+(λ+γ−4)2γ2) dγ
(1+λγ2)2

∣
∣
∣ ≤ C4ε if γ+, γ− ≥ ri.

(63)

Similar estimates hold for negative γ+, γ− when i ∈ {1, . . . , k + 1}. For
i = 0 and any two negative γ+, γ−, or for i = k + 1 and any two positive
γ+, γ−, the estimate in the first case above holds.

Combining this with the initial conditions from (58):

∆s,0(0) = 0; ∆s,i−1(∞) = ∆s,i(−∞) ∀i ∈ {1, . . . , k + 1},

we have

|∆s,i(γ)| ≤ Cε ∀γ, i for a λ-independent constant C > 0.

Applying the mean value theorem and the estimate for w′
χ in (20), and

recalling the assumption (58), we see that w̃ = exp(wχ, ξ̃χ) for an ξ̃χ with:

〈(u0)γ , (0), (γ−1
u0

)∗ξ̃χ(0)〉2,t = 0;

‖ξ̃χ‖2,1,t ≤C ′(λ + εγ−2
ui

) on Ii ∩
⋃

j

[γ−1
uj−1

(γ0), γ−1
uj

(−γ0)] ∀i.(64)

4.2.4. From pointwise estimates to Ŵχ estimates. Recall that our goal
is to show that given (λ, ŵ) ∈ M̂Λ

P in a chain-topology neighborhood of S,
as prescribed in Section 4.2.1, we may write

(65) (λ, w) = e(λ′, wχ′ ; αχ′ , ξχ′)

for some χ′ = (χ, λ′) ∈ Ξ(S), χ := {û0, . . . , ûk+1}, with (αχ′ , ξχ′) satisfying

(66) (1) ‖(αχ′ , ξχ′)‖Ŵχ′
≤ Cε; (2) (αχ′ , ξχ′) ∈ Bχ′ ,

where C is a λ-independent constant, and Bχ′ is the B-space chosen so that
[ker Ê(λ′,wχ′ ) → ∗]Bχ′ forms a K-model for Ê(λ′,wχ′ ).

Lemma. Suppose the (αχ′ , ξχ′) given in (65) satisfies

|αχ′ | ≤ C ′λ3/2ε;

‖ξχ′‖2,1,t ≤ C ′
ξ(λ + εγ−2

ui
) on Ii ∩

⋃

j

[γ−1
uj−1

(γ0), γ−1
uj

(−γ0)] ∀i(67)

for λ-independent constants C ′, C ′
ξ. Then (66.1) holds.
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Proof. First, notice that the assumption on αχ′ implies ‖(αχ′ , 0)‖Ŵχ′
≤

C1λ
1/2−1/(2p)ε. On the other hand, the assumption that (λ, ŵ) is close to χ′

in chain topology implies that over Θc := Θ\
⋃

j [γ
−1
uj−1

(γ0), γ−1
uj

(−γ0)] × S1,

‖ξχ′‖Wχ′ (Θc) ≤ C2‖ξχ′‖Lp
1(Θc) ≤ C3ε for λ-independent constants C2, C3.

Thus, it remains to estimate ‖ξχ′‖Wχ′ ([γ−1
uj−1 (γ0),γ−1

uj
(−γ0)]×S1). We shall focus

on estimates on the region [γ−1
ui

(γ0), γ−1
ui

(∞)) × S1 for an i ∈ {0, . . . , k},
since estimates on the rest are similar.

By the definition of γui , on this region the flow equation has the form:

(68) (∂̄JXλ′ wχ′)Tw + Ê(λ′,wχ′ )(αχ′ , ξχ′) + n̂(λ′,wχ′ )(αχ′ , ξχ′) = 0.

(Tw here means the transverse component with respect to w′
χ′ , in contrast

to Ty below).
Subdivide the region again into [γ−1

ui
(ri), γ−1

ui
(∞)) × S1 and the rest.

Over the first region, namely when γui ≥ ri, in place of ξχ′ and its
Wχ′-norm, it is equivalent to estimate

ξ0 := Twχ′ ,ȳξχ′ ∈ Γ(ȳ∗K) in the norm

‖ξ0‖W λ′
0

:= (λ′)−1/2‖ξ0‖p,1 + (λ′)−1‖(ξ0)′
Ly

‖p,

where (ξ0)Ly(s) = 〈ey, ξ0(s)〉2,tey is the “longitudinal direction with respect
to y.” Notice that ey differs from the original longitudinal direction
Twχ′ (s),yw

′
χ′(s)‖w′

χ′(s)‖−1
2,t by an ignorable factor of C(λ′/ε)1/2. Let the

transversal direction Ty and the Lλ′
0 -norm be similarly defined.

Rewriting the flow equation in terms of the above transverse and longi-
tudinal directions, we have:

Eȳ(ξ0Ty) = −αχ′(Twχ′ ,ȳY(λ,wχ′ ))Ty + ZTy + ΥTy

− (Twχ′ ,ȳn̂(λ′,wχ′ )(αχ′ , ξχ′))Ty ,

Eȳ(ξ0Ly) = −αχ′(Twχ,ȳY(λ,wχ′ ))Ly + ZLy + ΥLy

− (Twχ′ ,ȳn̂(λ′,wχ′ )(αχ′ , ξχ′))Ly ,

(69)

where

• ZTy , ZLy come from the difference between Eȳ and Ewχ′ . Thus, their
L2

1,t-norms are bounded by C‖ξχ′‖∞,1,tγ
−1
ui

;
• ΥT , ΥL are terms coming from (∂̄JXλ′ wχ′)Tw . The computation in the

proof of Lemma 2.4.2 shows that ‖ΥTy‖2,1,t is bounded by C1λ
′γ−1

ui
,

while ‖ΥLy‖2,1,t is bounded by C2λ
′γ−2

ui
.
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Now, the length estimate for [γ−1
ui

(ri), γ−1
ui

(∞)) × S1 (cf. (21)) and the
assumption (67) yield

(λ′)−1/2
(
‖ξ0‖Lp([γ−1

ui
(ri),γ−1

ui
(∞))×S1) + ‖ξ̇0‖Lp([γ−1

ui
(ri),γ−1

ui
(∞))×S1)

)

≤ C ′(λ′)1/2−1/(2p) 
 ε.

In addition, the second line of (69) and the above estimates for terms therein,
combined with (67) and the length estimate for this region yield

(λ′)−1‖ξ′
0Ly

‖Lp([γ−1
ui

(ri),γ−1
ui

(∞))×S1) ≤ C ′
L(λ′)1/2−1/(2p) 
 ε.

In sum, we have

‖ξχ′‖Wχ′ ([γ−1
ui

(ri),γ−1
ui

(∞))×S1) ≤ C1‖ξ0‖W λ′
0 ([γ−1

ui
(ri),γ−1

ui
(∞))×S1) 
 ε.

To estimate on the second region, namely on [γ−1
ui

(γ0), γ−1
ui

(ri)]×S1, let β+
i (s)

be a smooth cutoff function with:
• support on [γ−1

ui
(γ0) − 1, (1 + ε)γ−1

ui
(ri)] =: Θβ+

i
;

• value 1 over [γ−1
ui

(γ0), γ−1
ui

(ri)], and
• |(β+

i )′| < C ′λ1/2 on [γ−1
u1

(ri), (1 + ε)γ−1
ui

(ri)].

Notice that (γ−1
ui

)∗(β+
i ξχ′) ∈ W ′

ui
, and since Eui |W ′

ui
an isomorphism, we

have from Lemma 3.2.1 and (68) that

‖β+
i ξχ′‖Wχ′ ≤ ‖Ewχ(β+

i ξχ′)‖Lχ′

≤ |αχ′ |‖β+
i Y(λ′,wχ′ )‖Lχ′ + ‖β+

i (∂̄JXλ′ wχ′)Tw‖Lχ′

+ ‖β+
i n̂(λ′,wχ′ )(αχ′ , ξχ′)‖Lχ′ + ‖(β+

i )′ξχ′‖Lχ′ .

By assumption (67) and the length estimate |γ−1
ui

(ri)−γ−1
ui

(γ0)| ≤ C ′(λ′)−1/2,
we may bound each terms on the RHS as follows:

• The first term may be bounded by C1|λ′|1/2−1/(2p).
• The second term is already estimated to be small in Proposition 2.4.1.
• The computation in the proof of Lemma 2.5.2 shows that

‖β+
i n̂(λ′,wχ′ )(αχ′ , ξχ′)‖Lχ′

≤ Cn

⎛

⎝
‖(αχ′ , 0)‖2

Ŵχ′
+ ‖(αχ′ , 0)‖Ŵχ′

· ‖β+
i ξχ′‖Wχ′

+ ‖σ
1/2
χ′ ξχ′‖L∞(Θ

β+
i

) · ‖β+
i ξχ′‖Wχ′

⎞

⎠

≤ C ′
n

(
C1(|λ′|1/2−1/(2p))2 + C2(|λ′|1/2−1/(2p) + εγ−1

0 + λ1/2)‖β+
i ξχ′‖Wχ′

)
.

• By the defining properties of β+
i ,

‖(β+
i )′ξχ′‖Lχ′ ≤ C ′′|λ′|1/2−1/(2p).
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Collecting all the above and rearranging, we obtain

‖ξχ′‖Wχ′ ([γ−1
ui

(γ0),γ−1
ui

(ri)]×S1) ≤ Ciε.

Now that we have the estimates for the Wχ′-norm over all the various regions,
we conclude ‖ξχ′‖Wχ′ ≤ Cε, and hence the claim of the lemma. �

4.2.5. Concluding the proof of Proposition 2.1 (a). Recall from Sec-
tion 4.1.1 the K-model for Ê(λ′,wχ′ ): [ker Ê(λ′,wχ′ ) → ∗]Bχ′ , where Bχ′ was

chosen to be the following subspace of Ŵχ′ :

Bχ′ =
{

(0, ξχ′)
∣
∣
∣ 〈(u0)γ(0), (γ−1

u0
)∗ξχ′(0)〉2,t = 0

}
.

Thus, setting λ′ = λ and χ′ = χ, (αχ′ , ξχ′) = (0, ξχ), and ξχ can be
expressed in terms of ξ̃χ (cf. Section 4.2.3) and ξ̃ (cf. Section 4.2.2). In
particular, by (58) and the first line of (64), (66.2) holds. On the other
hand, combining Lemma 4.2.2 and the second line of (64), we see that the
assumption (67) holds, and therefore Lemma 4.2.4 implies the validity of
(66.1). The arguments in Section 1.2.7 then complete the last step of the
proof of Proposition 2.1 (a). �

4.3. Gluing broken orbits. We now discuss the modification needed for
the proof of Proposition 2.1 (b).

Given a broken orbit {û1, û2, . . . , ûk} connected at y, and an λ ∈ (0, λ0),
the pregluing wχ associated to χ = ({û1, û2, . . . , ûk}, λ) ∈ Ξ(S) is given by

wχ = wχ,

where wχ is given by the same formula (11), except that now i ∈ {1, . . . , k}
only, and instead of taking values in R, s now takes value in R/TχZ, where

Tχ := lk+1.

With this explained, the material in Sections 2 and 3 transfers directly to
the case of broken orbits, but the discussion in Sections 4.1 and 4.2 above
requires the following modification.

4.3.1. Constructing the gluing map. At a closed orbit (λ, (T, w)) ∈
BΛ

O = Λ×BO, the deformation operator is D̂(λ,(T,w)): Rα ⊕R
 ⊕Lp
1(w

∗K) →
Lp(w∗K),

D̂(λ,(T,w))(α, �, ξ) = α∂λθ̌Xλ
+ D̃(T,w)(�, ξ),

namely, it is a rank-2 stabilization of Dw (cf. Section 3.3.1). (Rα, R


above, respectively, parameterize variation in λ and in the period T ). In our
context, this operator is a map between the weighted spaces

Ŵχ := Rα ⊕ R
 ⊕ Wχ and Lχ.
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Let Kχ = Span{eui}k
i=1, Cχ = Span{fj}k

j=1. The analog of Proposition 3.1.3
shows that [Kχ → Cχ] forms a K-model for Dwχ , which induces a K-model
for D̂(λ,(Tχ,wχ)) by stabilization.

However, since s is now periodic instead of real, the matrix
λ−1/2+1/(2p)(Pfj

Dwχeui) is no longer (approximately) triangular, and hence
not clearly uniformly invertible. Consequently, it is no longer clear that, with
the choice of Qχ in Section 4.1, reduction by Qχ gives another K-model for
the deformation operator. Instead, use the following subspace QO,χ ⊂ Ŵχ:

QO,χ = Rα ⊕ ∗ ⊕ Span{eui}k−1
i=1 .

Note that from (52) and the uniform boundedness of Pfj

Cα−λ1/2−1/(2p) ≤ λ3/2Pfj
∂λθ̌Xλ

(wχ) ≤ Cα+λ1/2−1/(2p)

for constants Cα± > 0 independent of λ. Supplementing Lemma 4.1.3 (b)
with this additional estimate, we see that the matrix representation of the
operator

λ−1/2+1/(2p)ΠCχD̂(λ,(Tχ,wχ))|QO,χ

with respect to the bases
{

(λ3/2, 0, 0), (0, 0, e1), . . . , (0, 0, ek−1)
}

, {f1, . . . , fk}

is, modulo ignorable terms, of the form
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+ − 0 · · · 0
+ + − 0 0

+ 0 +
.. .

...
...

...
. . . . . . −

+ 0 · · · 0 +

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(+/− denote positive/negative numbers of O(1)),

which is easily seen to have a uniformly bounded right inverse. Thus, the
rest of Section 4.1 may be repeated with Qχ replaced by QO,χ to define a
gluing map in this case, which is also a local diffeomorphism.

4.3.2. Surjectivity of the gluing map. As the choice of Qχ′ is changed,
the definition of the B-space Bχ′ changes accordingly. In this situation,

Bχ′ =
{

(α′, 0, ξχ′)
∣
∣
∣ 〈(uk)γ(0), (γ−1

uk
)∗ξχ′(0)〉2,t = 0

}
⊂ Ŵχ′ .

(Note that in the case of broken orbits, i ∈ Z/kZ, thus u0 = uk.) The work
in Section 4.2 needs corresponding modification.

Given a (λ, (T, w)) ∈ M̂Λ
O close to the broken orbit {û1, . . . , ûk}, one

may define w̃ and γ̃ui in essentially the same way as Section 4.2.1, and the
estimates in Section 4.2.2 still hold. However, for χ = ({û1, . . . , ûk}, λ),
the period Tχ of the pregluing wχ differs from those of w̃ or w. Thus,
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instead of comparing with wχ, we compare w or w̃ with wχ′ , where χ′ =
({û1, . . . , ûk}, λ′), and λ′ = λ + α′ is chosen so that the period of wχ′ agrees
with the period of w (which is also the period of w̃). With this choice of χ′,
assumption (58), together with the definition of Bχ′ above, implies (66.2).

Moreover, the length estimates in Section 2.2.1 show that

C−λ−1/2 ≤ Tχ ≤ C+λ−1/2;

combining with the estimate for the difference in periods of w and wχ given
by (63), we have:

(70) |α′| ≤ Cλ3/2ε.

For such λ′ = λ + α′, the difference γ−1
λ′,ui

− γ̃−1
ui

satisfies estimates similar
to (63). Thus, (67) holds for this choice of χ′, which in turn implies (66.1),
via Lemma 4.2.4.

5. Gluing at births

The purpose of this section is to prove Proposition 5.1 below. The proof is
in many ways similar to the proof of Proposition 2.1, but simpler in Step 2,
since here we glue only a single flow line, and the generalized cokernel in
this case is trivial.

5.1. Statement of the gluing theorem. The next proposition verifies
part of (RHFS2c, 3c) for admissible (J, X)-homotopies.

Proposition. Let (JΛ, XΛ) be an admissible (J, X)-homotopy connecting
two regular pairs, and x, z be two path components of PΛ\PΛ,deg. Then a
chain-topology neighborhood of JP (Λ,x, z; �) in M̂

Λ,1,+
P (x, z; wt−〈Y〉,eP ≤ �)

is l.m.b. along JP (Λ,x, z; �).
Furthermore, ΠΛ maps these neighborhoods to birth-neighborhoods.

We shall restrict our attention to

û ∈ M̂0
P,λ((x, [w]), (z, [v])) ∩ JP (Λ,x, z; �),

where one of xλ and zλ is a death–birth, and gr+((xλ, [wλ]), (zλ, [vλ])) =
gr((x, [w]), (z, [v])). The other cases follow either from standard gluing the-
ory or from structure theory of parameterized moduli spaces, since the flow
lines decay exponentially to the critical points in these cases.

Without loss of generality, assume as in Sections 2–4 that λ = 0, that
zλ = y is in a standard death–birth neighborhood, and that the (J, X)-
homotopy is oriented such that C ′

y > 0. Under these assumptions, a birth
neighborhood is (−λ0, 0) ⊂ Λ, for a small λ0 > 0.

Our goal is thus to construct a gluing map from Ξ(S) to
M̂

Λ,1
P (x, z; wt−〈Y〉,eP ≤ �), where

S = M̂0
P,0(x,y; wt−〈Y〉,eY ≤ �); Ξ(S) = S × (−λ0, 0) for a small λ0 > 0.
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We shall again focus on a single û ∈ S, since in this case S also consists
of finitely many isolated points. Notice that when x0 = y, û can be the
constant flow at y, ȳ. The argument required for this case is somewhat
different from the other cases. We discuss this case in Section 5.3, and the
other cases in Section 5.2.

5.2. When u �= ȳ. Assume without loss of generality that x0 �= y is nonde-
generate, so that we may concentrate on the region where s > 0.

5.2.1. Pregluing. Let χ := (λ, û) ∈ Ξ(S) as above, and let u be a centered
representative. Write

u(s) = exp(y, µ(s)) for large s,

and as in I.5.3.2, let
yλ− = exp(y, ηλ−) ∈ Pλ

be the critical point near y of index ind−(y). Note that 〈ey, µ〉2,t(s) >
0 is a decreasing function for large s, sending (s0,∞) to (C, 0) for some
positive numbers s0, C. Since 〈ey, ηλ−〉2,t is a small positive number, it
equals 〈ey, µ(s)〉2,t for certain large s = γ̆λ. From the estimates in Lemma
I.5.3.2 and Proposition I.5.1.3, we have

C|λ|−1/2 ≤ γ̆χ ≤ C ′|λ|−1/2.

Let R < γ̆χ − 1 be a λ-independent large positive number such that u(s)
is close to y for s ≥ R, and set R± = ±C0|λ|−1/2 for some λ-independent
constant C0 > 0. Define uλ ∈ Γ((−∞, γ̆χ) × S1, p∗

2Tf ) by

(71) uλ(s) :=

{
eR−,R+(0, u; λ, 0) when s ≤ R/2,

exp
(
y, µ(s) + β(s − R)Π⊥

ker Ay
ηλ−
)

when s ≥ R/2,

Lemma. There is a function γχ(s) defining a homeomorphism from R to
(−∞, γ̆χ), such that

(72)

{
〈w′

χ(s), ∂̄J,Xλ
wχ(s)〉2,t = 0; when s ∈ [γ−1

χ (0),∞);
γ′

χ = 1 otherwise.

Proof. Write dγχ

ds = h(γχ), where

h(γ) :=

{
1 − 〈(uλ)γ , ∂̄JXλ

(uλ)〉2,t‖(uλ)γ‖−2
2,t when s ∈ [γ−1

χ (0),∞);
1 otherwise.

We now examine the behavior of ∂̄JXλ
uλ(γ) near γ = γ̆χ. Here since uλ

is close to yλ−, expanding ∂̄JXλ
about yλ− and writing exp(yλ−, µλ(γ)) =

uλ(γ), we have

Tuλ,yλ− ∂̄JXλ
uλ(γ) = (µλ)γ + Ayλ−µλ + nyλ−(µλ).
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By definition, µλ(γ̆χ) = 0; hence h(γ̆χ) = 0. Thus,

h(γ) =
〈
(uλ)γ(γ), Tyλ−,uλ

Ayλ−T−1
yλ,uλ

((γ̆χ − γ)((uλ)γ(γ))
〉

2,t
‖(uλ)γ(γ)‖−2

2,t

+ O
(
|γ̆χ − γ|2‖(uλ)γ(γ)‖2,1,t

)
.

By the estimate for minimal eigenvalue of Ayλ− in I.5.3.2, this is bounded
above and below by multiples of |λ|1/2(γ̆χ − γ). Integrating like (15), we see
that for large s

(73) C ′
5e

−c′
6|λ|1/2s ≤ γ̆χ − γχ ≤ C5e−c6|λ|1/2s,

while on the other end γχ(s) = s + cλ for some constant cλ. We define γχ

such that γχ(s) = s for s < 0. �

Definition. The pregluing wχ corresponding to gluing data χ = (λ, u) is

wχ(s) := uλ(γχ(s)).

5.2.2. The weighted norms. The norms Wχ, Lχ here are defined by the
same formulae in Definition 2.3.1, with the weight function σχ replaced by

σχ(s) :=

⎧
⎪⎨

⎪⎩

‖w′
χ(γ−1

χ (0))‖−1
2,t when s ≤ γ−1

χ (0),
‖w′

χ(s)‖−1
2,t when γ−1

χ (0) ≤ s ≤ γ−1
χ (rχ),

‖w′
χ(γ−1

χ (rχ))‖−1
2,t when s ≥ γ−1

χ (rχ),

where rχ = rχ(λ, ε) = Cτ (λ/ε)−1/2 < γ̆χ is chosen such that 1 − h(s) ≤ ε
where s ≤ rχ for a small positive number ε.

We shall frequently call on the following useful facts.
(a) In this case, γ′

χ ≤ 1.
(b) ‖Π⊥

ker Ay
ηλ−‖2,2,t ≤ C|λ| by I.(55), Lemma I.5.3.2, and the decay esti-

mates in Proposition I.5.1.3.
(c) σχ ≤ C|λ|−1.
In particular, Fact (b) often implies that in addition to estimates analo-

gous to those in the proof of Proposition 2.1, the extra terms introduced by
the cutoff function β in the definition of uλ is usually ignorable.

5.2.3. Error estimate. Proceeding to Step 1 of the gluing theory, we have
Lemma 5.2.3.

Lemma. ‖∂̄JXλ
wχ‖Lχ ≤ Cλ1/2−1/(2p).

Proof. Consider the two regions (a) γ−1
χ (−R−) ≤ s ≤ γ−1

χ (R), (b) γ−1
χ (R) ≤

s ≤ ∞ separately. The point is to expand ∂̄JXλ
wχ(s) = Π̃⊥

u′
λ
(∂̄JHλ

uλ(γχ(s)))
differently in the two regions: expand uλ about u in region (a) and about
yλ in region (b).
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In region (a), modulo terms coming from β(γχ − R)Π⊥
ker Ay

ηλ−, the esti-
mate of the norm is entirely parallel to that in Proposition 2.4.1. The time
wχ spends in this region is

γ−1
χ (R) − γ−1

χ (R−) ≤ C|λ|−1/2;

the L∞-norm of σχ∂̄JXλ
wχ can be estimated as in Case 1 of Lemma 2.4.2,

with γ0 replaced by R.
On the other hand, since σχ has a λ-independent uniform bound in this

region, and the Lp
t -norm of the contribution to ∂̄JXλ

wχ from the extra terms
introduced by βΠ⊥

ker Ay
ηλ− can be bounded by C‖Π⊥

ker Ay
ηλ−‖2,1,t ≤ C ′|λ|,

the contribution from these terms to ‖σχ∂̄JXλ
wχ‖p is thus bounded by C|λ|.

For region (b), wχ spends infinite amount of time here; however

Π⊥
(uλ)γ

∂̄JXλ
uλ(γ) = Π⊥

(uλ)γ

(
(δγ)Tyλ−,uλ

Ayλ
(Tyλ−,uλ

)−1(uλ)γ(γ̄))

+ Tyλ−,uλ
nyλ

((δγ)(Tyλ−,uλ
)−1(uλ)γ(γ̄))

)
,

where δγ := γ̆χ − γ; γ ≤ γ̄ ≤ γ̆χ. On the other hand, in this region, σχ(s) ≤
C|λ|−1. Thus by Lemma I.5.3.2, on this region ‖σχ∂̄JXλ

wχ‖p is bounded by
C‖(δγ)‖p|λ|1/2 ≤ C ′|λ|1/2−1/(2p), since δγ ≤ C5e−C6|λ|1/2s by (73). �

5.2.4. Existence and uniform boundedness of the right inverse
Gχ: Lχ → Wχ of Ewχ. We now proceed to Step 2 of the proof. In this
case, W ′

χ ⊂ Wχ is

W ′
χ :=

{
ξ ∈ Wχ | 〈ν(0), ξ(γ−1

χ (0))〉2,t = 0 for all ν ∈ ker Eu

}
,

and we aim to show that there is a uniformly bounded isomorphism
Gχ: Lχ → W ′

χ which is a right inverse of Ewχ . Assume the opposite that
there is a sequence {ξλ ∈ W ′

χ}λ satisfying

‖ξλ‖Wχ = 1;

‖Ewχξλ‖Lχ =: εE(λ) → 0 when λ → 0.(74)

Divide Θ = R × S1 into two parts Θu, Θy−, separated by the line s =
γ−1

χ (rχ). Let Θ′
u := (−∞, γ−1

χ (rχ) + 1) × S1 ⊃ Θu; Θ′
y− := (γ−1

χ (rχ −
1),∞) × S1 ⊃ Θy−.

On Θ′
u, we define ξλ,u ∈ Γ(u∗K) by

Tu,uλ
ξλ,u(γχ(s)) = ξλ(s).

Let (ξλ,u)L be the projection of ξλ,u to the direction of u′ and let (ξλ,u)T =
ξλ,u − (ξλ,u)L. Let βu be a smooth cutoff function supported on γχ(Θ′

u) with
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value 1 on γχ(Θu). Arguing as in the proof of Proposition 3.1.3, one obtains:

‖ξλ‖Wχ(Θu) ≤ C‖ξλ,u‖Wu(γχ(Θu))

≤ C ′‖βuEuξλ,u‖Lu(γχ(Θ′
u)) + C‖β′

u(ξλ,u)T ‖Lu(γχ(Θ′
u))

≤ C ′(1 + 2ε)‖Ewχ(ξλ)‖Lχ(Θ′) + C ′′(ε + |λ|1/2)‖ξλ‖Wχ

+ C‖β′
u(ξλ,u)T ‖Lu(γχ(Θ′

u))

≤ 2C ′εE + C ′′(ε + |λ|1/2) + Cε0.

(75)

(Note in comparison with (25), the second term in the third line above has
a worse factor of |λ|1/2 instead of |λ|; this arises from the difference between
u and uλ.)

On the other hand, on Θ′
y− we consider ξλ,y− ∈ Γ(ȳ∗

λ−K) defined by

Tȳλ−,wχξλ,y− = ξλ.

Let eyλ− be the unit eigenvector associated with the minimal eigenvalue of
Ayλ− , which goes to ey as λ → 0. By I.(57), eyλ− differs from
Twχ,yλ−w′

χ/‖w′
χ‖2,t(s) by O(|λ|1/2) for s ∈ Θ′

y−. Let

(ξλ,y−)L := Πeyλ−
ξλ,y− = (ξλ,y−)

L
eyλ− ,

and (ξλ,y−)T = ξλ,y−−(ξλ,y−)L. The above observation about eyλ− , together
with the fact that in this region σχ is bounded above and below by multiples
of |λ|−1, implies that to estimate ‖ξ‖Wχ(Θy−) or ‖ξ‖Lχ(Θy−), it is equivalent
to estimate ‖ξy−‖Wy−(Θy−) or ‖ξy−‖Ly−(Θy−), where

‖ξy−‖Wy− := |λ|−1/2‖ξy−‖p,1 + |λ|−1‖(ξy−)′
L‖p,

‖ξy−‖Ly− := |λ|−1/2‖ξy−‖p,1 + |λ|−1‖(ξy−)L‖p.

We have a refined version of Lemma 3.3.1 in this case.

Lemma (Refining Floer’s lemma). Let ξλ be as in (74). Then for all
sufficiently small λ,

|λ|1/(2p)‖ξλ,y−‖L∞(Θ′
y−) + ‖(ξλ,y−)L‖L∞(Θ′

y−) ≤ ε0(λ)|λ|1/2+1/(2p),

where ε0(λ) is a small positive number, with limλ→0 ε0(λ) = 0.

Proof. The estimate for ‖ξλ,y−‖L∞(Θ′
y−

) follows easily from the argument
for Lemma 3.3.1. The longitudinal component has a more refined bound
because it has a better bound on the Sobolev norm. Let

ς̃λ(τ) := λ−1/2−1/(2p)(ξλ,y−)
L
(λ−1/2(τ + sλ)) over [1,∞),

where sλ are constants chosen such that λ−1/2(1 + sλ) = γ−1
χ (rχ − 1). Then

by (74), ‖ς̃λ‖Lp
1([1,∞)) is bounded (note the rescaling contributes a factor of
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(λ)−1/(2p) to the Lp
1-norm). Thus (again after possibly taking a subsequence)

ς̃λ converges in C0 to ς̃0, and sλ → s0. ς̃0 satisfies an equation of the form

(76)
dς̃0
dτ

+ χς̃0 = 0, where χ ∼ C1 + C2e−ν′τ .

(The assumption of being in a standard d-b neighborhood is used to simplify
the differential equation above. Notice also that (ξλ)T does not appear in
this equation, because by the L∞

t estimate for ξλ, its contribution vanishes
as λ → 0.) Thus, ‖ς̃0‖∞ ≤ |ς̃0(1)|. Meanwhile, ς̃0(1) = 0 since by the
argument for (35), ‖(ξλ)L(γ−1

χ (rχ − 1))‖∞,t ≤ Cλ1/2+1/(2p)εu. �

Let βy− be a cutoff function on R which vanishes in (−∞, rχ − 1] and is
1 on [rχ,∞). We may estimate the longitudinal component as:

|λ|−1‖(ξλ,y−)′
L‖Lp(Θy−) + |λ|−1/2‖(ξλ,y−)L‖Lp(Θy−)

≤ C|λ|−1‖Eyλ
(βy−(γχ)(ξλ,y−)L)‖Lp(Θ′

y−)

≤ C|λ|−1‖βy−(γχ)(Eyλ−(ξλ,y−)L)L‖Lp(Θ′
y−)

+ C ′|λ|−1‖(βy−)γ(γχ)γ′
χ(ξλ,y−)L‖Lp(Θ′

y−)

≤ C1‖βy− ◦ γχEwχξλ‖Lχ(Θ′
y−)

+ C2|λ|−1/2‖βy−(γχ)e−C6|λ|−1/2(s−γ−1
χ (rχ))(ξλ,y−)L‖Lp(Θ′

y−)

+ C ′|λ|−1‖(βy−)γ(γχ)γ′
χ(ξλ,y−)L‖Lp(Θ′

y−)

+ C3‖βy−(γχ)e−C6|λ|−1/2(s−γ−1
χ (rχ))(ξλ,y−)T ‖Lp(Θ′

y−)

≤ C ′
1εE + C ′

2ε0.

(77)

The first inequality above follows from the eigenvalue estimate for Ayλ− in
I.5.3.2. The second term in the penultimate expression above comes from
the difference between Ewχ and (a conjugate of) Eyλ− , while the last term
arises from (T−1

ȳλ−,wχ
EwχTȳλ−,wχ(ξλ,y−)T )L. (Note that this term would have

an extra factor of |λ|−1/2 if I.5.3.1 (1c) is not assumed.) We have also used
Lemma 5.2.4 and the estimates that in this region,

|(βy−)γγ′
χ| ≤ C|λ|1/2 exp(−C6|λ|1/2(s − γ−1

χ (rχ))) and that

‖µλ(γχ(s))‖2,2,t ≤ C ′|λ|1/2 exp(−C6|λ|1/2(s − γ−1
χ (rχ)),

which in turn follows from the computation in the proof of Lemma 5.2.1.
Similarly, the transversal direction can be estimated by:

|λ|−1/2(‖(ξλ,y−)′
T ‖Lp(Θy−) + ‖(ξλ,y−)T ‖Lp(Θy−))

≤ C‖βy−(γχ)Ewχξλ‖Lχ(Θ′
y−) + C ′|λ|1/2−1/(2p)ε0(λ)

≤ C ′′εE + C ′|λ|1/2−1/(2p)ε0.

(78)
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Combining (77), (78), and (75), we obtain ‖ξλ‖Wχ 
 1 for all large enough
λ, and hence the desired contradiction.

5.2.5. Surjectivity of the gluing map. Estimates for the nonlinear terms
required for Step 3 in this case are not very different from those discussed in
Section 2.5, and hence will be omitted. The argument in Section 1.2.1 then
defines a gluing map, which is a local diffeomorphism onto a B-topology
neighborhood of the image of pregluing map. Again, we need to show that
the latter neighborhood contains a chain-topology neighborhood of S.

To adapt the proof in Section 4.2, given (λ, ŵ) ∈ M̂1,Λ(x,yλ−) close to û ∈
S in the chain-topology neighborhood, we may again choose a representative
w and w̃ as in Section 4.2.1, satisfying conditions similar to (57) and (58).

• w̃(s) := uλ(γ̃χ(s)), where γ̃χ: R → (−∞, γ̆χ) is a homeomorphism
determined by

(79) Πey ζ̃λ(s) = Πeyζ(s) ∀s ∈ [γ̃−1
χ (R + 1),∞),

and ζ, ζ̃λ are defined by w(s) = exp(y, ζ(s)), w̃(s) = exp(y, ζ̃λ(s)) as
in Section 4.2.1.

• γ−1
χ (0) = γ̃−1

χ (0); 〈uγ(0), γ̃∗
χξ̃(0)〉2,t = 0.

Equation (59) is in this case replaced by the following lemma.

Lemma. ∀s ∈ [γ̃−1
χ (R + 1),∞),

‖ξ̃(s)‖2,2,t + ‖ξ̃′(s)‖2,1,t

≤ C(|λ| + ‖Πey(ζ̃λ(s) − ζ̃λ(∞))‖3
2,t)‖Πey(ζ̃λ(s) − ζ̃λ(∞))‖2,t.

(80)

Proof. Write u(γ̃χ(s)) = exp(y, ζ̃(s)), and let b(s) := Πey ζ̃(s), c(s) := ζ(s)−
ζ̃(s). Note that Πey ζ̃ = Πey ζ̃λ, and on this region ζ̃λ − ζ̃ = ηλ− ∀s. The
functions b(s), c(s) still satisfy (62), (61). However, we want to estimate
instead

cd(s) := ζ(s) − ζ̃λ(s) = c(s) − Π⊥
ker Ay

ηλ−.

From the definitions, estimates for cd would imply similar estimates for ξ̃.
Let bd(s) := 〈ey, ζ̃λ(s) − ζ̃λ(∞)〉2,t; bd(s) = bd(s)ey. Noting that

−AyΠ⊥
ker Ay

ηλ−

= (1 − Πker Ay − ∇b(∞)ZΠker Ay)
(
n̂(0,y)(λ, ζ̃(∞) + c(∞)) − ny(ζ̃(∞))

)

− ∇b(∞)Z(λC ′
yey),

we see that (61) may be rewritten in terms of cd as:

(81)

−c′
d = Aycd − ∇bd

Z
(
λC ′

yey + Πker Ay(n̂(0,y)(λ, ζ̃λ(∞)) − ny(ζ̃(∞)))
)

+ (1 − Πker Ay − ∇bZΠker Ay)

(
n̂(0,y)(λ, ζ̃λ + cd) − ny(ζ̃)

− n̂(0,y)(λ, ζ̃λ(∞)) + ny(ζ̃(∞))

)



446 Y.-J. LEE

By the nature of u, uλ, and n̂(0,y), this leads to the familiar estimates:

‖cd+‖′
2,t ≥ ν+‖cd+‖2,t − ε+‖cd‖2,t − C+|λbd|;

‖cd−‖′
2,t ≤ −ν−‖cd−‖2,t + ε−‖cd‖2,t + C−|λbd|.(82)

Subtracting the two inequalities, we get

(‖cd+‖2,t − ‖cd−‖2,t)′ ≥ ν ′(‖cd+‖2,t − ‖cd−‖2,t) − C ′|λbd|.

Taking convolution product with the integral kernel of d/ds − ν ′, we find
that for s ≥ s0

‖cd+‖2,t(s) − ‖cd−‖2,t(s)

≥ (‖cd+‖2,t(s0) − ‖cd−‖2,t(s0))eν′(s−s0) − C ′
∫ s

s0

|λbd(s)|eν′(s−s) ds,

and since bd(s) > 0 decreases with s, this implies that for all large enough s,

(83) ‖cd+‖2,t(s) ≤ ‖cd−‖2,t(s) + C ′′|λbd(s)|,

otherwise ‖cd+‖2,t(s)−‖cd−‖2,t(s) would be growing exponentially as s → ∞,
contradicting the fact that by construction, lims→∞ ‖cd(s)‖2,t = 0.

Plugging in this back to (82), we get

(84) ‖cd−‖′
2,t ≤ −ν ′

−‖cd−‖2,t + C ′
−|λbd|,

where ν ′
− is a positive numbers close to ν−. Taking convolution product

with the integral kernel of d/ds + ν ′,

(85) ‖cd−(s)‖2,t(s) ≤ C0e−ν′
−s +

∫ s

s0

|λ|bd(s)e
ν′

−(s−s) ds.

We claim that there is a positive constant ν ′′
− slightly smaller than ν ′

− such
that

(86) bd(s) ≤ 2bd(s)e
ν′′

−(s−s)/4 for s0 ≤ s ≤ s.

Using this in the integrand in (85), we arrive at

‖cd−(s)‖2,t(s) ≤ C0e−ν′
−s + C ′

0|λ|bd(s)

≤ Cdbd(s)(b
3
d(s) + |λ|).

(In the second step above, we used (86) again to bound

e−ν′
−s = (e−ν′′

−s/4)4 ≤ C8bd(s)
4 for large s.)

Combining with (83), we obtain a similar estimate for ‖cd(s)‖2,t:

‖cd(s)‖2,t(s) ≤ C1e−ν′
−s + C ′

1|λ|bd(s)(87)

≤ C ′
dbd(s)(b

3
d(s) + |λ|).
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We now return to verify the claim (86). To see this, note that projecting
the flow equation to ker Ay, we have

−b′
d = Πker Ay

(
n̂(0,y)(λ, ζ̃λ + cd) − n̂(0,y)(λ, ζ̃λ(∞))

)
.

Then the properties of n̂(0,y), ζ̃λ(∞) and u again give the estimate:

(88) b′
d ≥ −ε′′(bd + ‖cd‖2,t)

for a small positive constant ε′′. Subtracting a small multiple of this from
(84) and using (83), we have

(‖cd−‖2,t − ε1bd)
′ ≤ −ν ′′(‖cd−‖2,t − ε1bd).

Taking convolution product with the integral kernel of d/ds + ν ′′, we have

‖cd−‖2,t ≤ ε1bd + C1e
−ν′′s.

Plugging this back in (83) and (88), we get

b′
d ≥ −ν ′′

4
bd − ε2e−ν′′s.

Now taking convolution product with the integral kernel of d/ds + ν ′′/4, we
have for s < s:

bd(s) ≥ bd(s)e
ν′′(s−s)/4 − 4ε2

3ν ′′ (e
−3ν′′s/4 − e−3ν′′s/4)e−ν′′s/4

≥ 1
2
bd(s)e

ν′′(s−s)/4.

To obtain the second inequality above, first use the first inequality and the
fact that s > s ≥ s0 � 1 to obtain bd(s) ≥ Ce−ν′′s; then use this (with s
replaced by s) to estimate

4ε2

3ν ′′ (e
−3ν′′s/4 − e−3ν′′s/4) ≤ bd(s)

2
eν′′s/4.

Claim verified.
Next, to get estimates for higher derivatives of cd from (87), we need to

elliptic bootstrap using (81) and apply Sobolev embedding as in the proof
of Lemma I.5.1.7. To obtain the estimates claimed in the lemma, we need
to bound the average of bd in an interval about s in terms of bd(s). This is
obtained using (86) and the fact that bd is decreasing. �

Next we compare w̃(s) with the pregluing wχ(s) to get a pointwise esti-
mate of ξ(s), as in Section 4.2.3. In this case, the first two formulas of
(63) are still valid (with ri there replaced by rχ) by arguments similar to
those in Section 4.2, but the third needs to be modified. In this region
(where γ ≥ rχ), we need to expand about yλ instead of uλ as in the proof
of Lemma 5.2.1, keeping in mind that µλ is of order λ1/2 while (µλ)γ is of
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order λ. Recall that γχ satisfies the equation γ′
χ = h(γχ), with h given by

(73). The function γ̃χ satisfies a similar equation:

γ̃′
χ = h(γ̃χ) + ‖(µλ)γ(γ̃χ)‖−2

2,t

〈
(µλ)γ(γ̃χ), Eyλ

Twχ,yλ
ξ̃(s) + o(‖ξ̃(s)‖2,1,t)

〉

2,t
.

By (80) and (79), the absolute value of this can be bounded by

C1|λ|−1/2(‖µλ(γ̃χ)‖3
2,1,t + |λ|)‖µλ(γ̃χ)‖2,1,t

≤ C2|λ|3/2(γ̆χ − γ̃χ)(1 + λ2(γ̆χ − γ̃χ)3).

Recall also the estimate for h from Section 5.2.1; we then obtain

|∆s(γ) − ∆s(rχ)| ≤ C3

∫ γ

rχ

∣
∣
∣
|λ|3/2(γ̆χ − γ)(1 + λ2(γ̆χ − γ)3)

|λ|(γ̆χ − γ)2
dγ
∣
∣
∣

≤ C4|λ|1/2
(
λ2(γ̆χ − γ)2 + | ln(γ̆χ − γ)|

)∣
∣
∣
γ

rχ

.

Using this and the facts that in this region

‖w′
χ‖2,2,t ≤ C5|λ|e−C6|λ|1/2(s−γ−1

χ (rχ)) and

γ̆χ − γχ(s) ≤ C ′
5|λ|−1/2e−C6|λ|1/2(s−γ−1

χ (rχ)),
(89)

we can bound
‖ξ̃χ‖2,2,t ≤ ε7|λ|e−C′

6|λ|1/2(s−γ−1
χ (rχ)),

where ξ̃χ is defined by w̃(s) = exp(wχ(s), ξ̃χ(s)) as in Section 4.2. Recall
also that w(s) = exp(wχ(s), ξχ(s)). Combining the above estimate with (80)
and the other two lines of (63), we have

‖ξχ(s)‖2,2,t

≤

⎧
⎪⎨

⎪⎩

ε7|λ|e−C′
6|λ|1/2(s−γ−1

χ (rχ)) if s ∈ [γ−1
χ (rχ),∞),

ε8|λ| if s is between γ−1
χ (rχ) and γ−1

χ (R),
ε(λ) otherwise.

(90)

So over (−∞, γ−1
χ (rχ)] × S1 ⊂ Θ, we can estimate ‖ξχ‖Wχ by the same

argument as in Section 4.2. The estimate over Θy− := [γ−1
χ (rχ),∞) × S1 is

replaced by the following. By (90),

(91) |λ|−1/2‖ξχ‖Lp(Θy−) + |λ|−1/2‖ξ̇χ‖Lp(Θy−) ≤ ε9|λ|1/2−1/(2p) 
 1.

Next, to estimate ξ′
χ, it is equivalent to estimate ξ′

χ,y−, which is obtained by
expanding the flow equation about yλ−. Here, we have an equation similar
to (69), with ȳ replaced by ȳλ−, and α = 0. Using the error estimate in this
region in the proof of Lemma 5.2.3, (89), Lemma I.5.3.2, we find

|λ|−1/2‖(ξχ,y−)′
T ‖Lp(Θy−)|λ|−1‖(ξχ,y−)′

L‖Lp(Θy−) ≤ C9|λ|1/2−1/(2p) 
 1.
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This together with (91) shows that ‖ξχ‖Wχ(Θy−) 
 1. Now one may follow
the argument in Section 1.2.7 to complete Step 4 of the proof of the gluing
theorem.

5.3. When u = ȳ. We now assume that x0 = z0 = y, and u = ȳ, the
constant flow at y.

5.3.1. The pregluing. Let b0
λ(s) be the solution of

(92) −(b0
λ)′ = C ′

yλ + Cy(b0
λ)2, with b0

λ(0) = 0,

where Cy, C
′
y are as defined in I.5.3.1. In other words, there are positive

λ-independent constants C0, C
′, such that

(93) b0
λ(s) = C0|λ|1/2 tanh(C ′|λ|1/2s).

Let b0
λ(s) := b0

λ(s)ey. Denote by b0±
λ = lims→±∞ b0

λ(s) = ±C0|λ|1/2. Let

ζ̃λ := b0
λ + β+(ηλ+ − b0+

λ ) + β−(ηλ− − b0−
λ ),

where ηλ± are defined by exp(y, ηλ±) = yλ±, and β−(s) := β(|λ|−1 + s);
β+(s) := β(|λ|−1 − s).

We define the pregluing wλ in this case by

wλ := exp(y, ζ̃λ).

5.3.2. The weighted norms. Recall the definition of Wy−, Ly− from Sec-
tion 5.2.4. Let Wy+, Ly+ and Wy, Ly be similarly defined for elements in
Γ(ȳ∗

λ+K) and Γ(ȳ∗K), respectively, with longitudinal directions given by
eyλ+ and ey.

Via the map Ty,wλ
: Γ(ȳ∗K) → Γ((wλ)∗K), the norms Wy, Ly on Γ(ȳ∗K)

induce norms on Γ((wλ)∗K), which we denote by Wλ, Lλ. The associated
spaces shall be the domain and range for Ewλ

.
By the estimates for ηλ±, it is easy to see that the induced norms on

Γ((wλ)∗K) via Tyλ±,wλ
from Wy±, Ly± are commensurate with Wλ, Lλ.

5.3.3. Error estimates. Divide Θ into three regions: Θa, Θb, and Θc cor-
responding to s < −|λ|, |s| < |λ|, and s > |λ|, respectively. We will expand
∂̄JXλ

wλ around yλ+, y, yλ−, respectively, in the three regions.
Over Θb, using (92) and the fact of y being in a standard d-b neighbor-

hood, we have

(Ty,wλ
)−1∂̄JXλ

wλ

= Ey ζ̃λ + ny(ζ̃λ) + (Ty,wλ
)−1δλV(wλ)

= −β′
+(ηλ+ − b0+

λ ) + β′
−(ηλ− − b0−

λ ) + β+Ay(ηλ+ − b0+
λ )

+ β−Ay(ηλ− − b0−
λ ) + Cy〈ey, 2b0

λ + δ〉2,tδ + Π⊥
ey

O((‖ζ̃λ‖2,1,t + |λ|)2),

(94)

where δ := β+(ηλ+ − b0+
λ ) + β−(ηλ− − b0−

λ ).
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From the estimates for ηλ± in the proof of Lemma I.5.3.2, one sees that

(95) |λ|−1‖δL‖2,1,t + |λ|−1/2‖δT ‖2,1,t ≤ C|λ|1/2 ∀s,

and therefore from (94)

‖∂̄JXλ
(wλ)‖Lλ(Θb) ≤ C|λ|1/2−1/p.

The estimates on Θa and Θc are similar, so we shall focus on Θc. In this
region, writing wλ(s) = exp(yλ+, µλ+(s)), we have

(96) (Ty,wλ
)−1∂̄JXλ

wλ = Eyλ+µλ+ + nyλ+(µλ+).

From the definition of µλ+, ‖µλ+(s)‖p,1,t ≤ C‖b0+
λ − b0

λ(s)‖p,1,t. So by (93),
(96),

‖∂̄JXλ
(wλ)‖Lλ(Θc) ≤ C|λ|−1/2−1/pe−C′|λ|−1 → 0 as λ → 0.

5.3.4. Existence and uniform boundedness of right inverse to
Ewλ

: Wλ → Lλ. In this case, let

W ′
λ := {ξ ∈ Wλ| ξL(0) = 0}.

Again assume the existence of a sequence {ξλ ∈ W ′
λ}λ satisfying (74), with

the obvious modification.
Divide Θ into three regions Θy, Θy± corresponding, respectively, to the

three possibilities: |s| ≤ |λ|−1/2, ±s ≥ |λ|−1/2. Let Θ′
y ⊃ Θy be the region

in which |s| < (1 + ε)|λ|−1/2; let Θ′
y± ⊃ Θy± be the region in which ±s >

(1 − ε)|λ|−1/2, where 1 � ε > 0. Instead of estimating ‖ξλ‖Wλ
, we shall

estimate
ξλ,y := Twλ,yξλ, ξλ,y± := Twλ,y±ξλ

in Wy or Wy±-norm over Θy and Θy±, respectively. First, observe the fol-
lowing analog of Lemma 5.2.4 over Θy and Θy±.

Lemma (Analog of Floer’s lemma). Let ξλ be as in (74) with Wχ, W ′
χ,Lχ

replaced by Wλ, W ′
λ, Lλ respectively. Then for all sufficiently small λ, there

is a small positive number, ε0(λ), limλ→0 ε0(λ) = 0, such that

(a) |λ|1/(2p)‖ξλ,y‖L∞(Θ′
y) + ‖(ξλ,y)L‖L∞(Θ′

y) ≤ ε0(λ)|λ|1/2+1/(2p);

(b) |λ|1/(2p)‖ξλ,y±‖L∞(Θ′
y±) + ‖(ξλ,y±)L‖L∞(Θ′

y±) ≤ ε0(λ)|λ|1/2+1/(2p).

Proof. The L∞
t -estimate for ξλ (and hence ξλ,y and ξλ,y±) is now routine.

The estimates for the longitudinal components follow the rescaling argument
in the proof of Lemma 5.2.4, with the following modifications.

On Θ′
y, one may similarly define a sequence ς̃λ of Lp

1-bounded functions
on [−1, 1], which converges to ς̃0 which satisfy also an equation of the form
(76), but now χ ∼ C tanh(C ′τ). Because (ξλ)L(0) = 0, ς̃0(0) = 0, and thus
ς̃0 = 0. This proves part (a) above.
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On Θ′
y±, we have another version of ς̃λ and ς̃0 (which are now functions

on [1,∞), (−∞,−1], respectively), and the argument in the proof of Lemma
5.2.4 again gives a bound on ‖ς̃0‖∞ by |ς̃0|(±1), which vanishes by the esti-
mate for ‖(ξλ)L‖L∞(Θ′

y) obtained in part (a). This proves part (b). �

We now return to estimate ‖ξλ,y‖Wy(Θy) and ‖ξλ,y±‖Wy±(Θy±).

On Θ′
y: let χy be a smooth cutoff function which vanishes outside (−1, 1)

and let βy(s) := χy(s/|λ|−1/2). Since (ξλ,y)L(0) = 0, applying Lemma 3.3.3
(c) to the longitudinal component, one may estimate:

‖βyξλ,y‖Wy(Θy) ≤ C‖Eȳ(βyξλ,y)‖Lλ(Θ′
y)

≤ C1‖Ewλ
ξλ‖Lλ(Θ′

y) + C2(|λ|1/2‖βyξλ‖Wλ(Θ′
y)

+ ‖βy(ξλ,y)L‖Wy(Θ′
y)) + C3‖β′

yξλ‖Lλ(Θ′
y)

≤ C1εE + C4(|λ|1/2 + ε0).

(97)

In the above, the second term in the penultimate line came from the differ-
ence between Ewχ and the conjugate of Ey, using the fact that ‖ζ̃λ‖∞,1,t ≤
C|λ|1/2. The last line used Lemma 5.3.4 (a) and the equation for (ξλ,y)L.

On Θ′
y± one may estimate similarly. Let βy± be smooth cutoff functions

supported on Θ′
y± with value 1 over Θy± and |β′

y±| ≤ C|λ|1/2. By the
eigenvalue estimate for Ayλ± in I.5.3.2,

‖βy±ξλ,y±‖Wy± ≤ C‖Eyλ±(βy±ξλ,y±)‖L± .

The RHS can be estimated like (77), (78) using Lemma 5.3.4 (b) below.
Finally, from the estimates for ξλ,y and ξλ,y± above, we obtain the desired

contradiction that ‖ξλ‖Wλ

 1.

5.3.5. Surjectivity of the gluing map. We have the routine estimate for
the nonlinear term to define the gluing map. The main isssue is again to show
that the gluing map surjects to a neighborhood of S in the parameterized
moduli space of broken trajectories.

Let (λ, ŵ) ∈ M̂
Λ,1
P (y+,y−) be in a chain-topology neighborhood of ȳ ∈

M̂
Λ,1,+
P . Choose a representative w of ŵ such that writing

w(s) = exp(y, ζ(s)), wλ(s) = exp(y, ζ̃(s)),

the difference η := ζ−ζ̃ satisfies ηL(0) = 0. Writing w(s) = exp(wλ(s), ξ(s)),
we want to show that ‖ξ‖Wλ


 1; equivalently, it suffices to estimate η.
Let ε′ � |λ|1/2 be a small positive number. Consider the three regions

Θε′
a = (−∞,−ε′|λ|−1]×S1, Θε′

b = [−ε′|λ|−1, ε′|λ|−1]×S1, Θε′
c = [ε′|λ|−1,∞)×

S1 separately.
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From the flow equation and the definition of wλ, we find that ηL, ηT

satisfy, respectively:

η′
L

+ Cy(ζ̃L
+ ζ

L
)η

L
= O

(
(|λ| + ‖ηT (s)‖2,1,t)2 + ‖ζL(s)‖4

2,1,t

)
;(98)

η′
T (s) + AyηT (s) = O((|λ| + ‖ζ‖2,1,t)2).(99)

(In the usual notation, ηL =: η
L
ey; ζL =: ζ

L
ey.)

Equation (99) and the fact that η(∞) = η(−∞) = 0 imply:

(100) ‖ηT ‖2,2,t ≤ C1(|λ| + ‖ζL‖∞)2 ∀s.

The argument to get this estimate should be by-now familiar to the reader
(cf., e.g., the proof of Lemma 5.2.5): Take L2

t -inner product of (99) with ηT−,
ηT+, respectively, and integrate over s, one obtains

‖ηT ‖2 ≤ C2(|λ| + sup
s

‖ζL‖2,t(s))2.

Then apply the usual elliptic bootstrapping and Sobolev embedding to get
estimates on higher derivatives. Finally, observe that on the 1-dimensional
subspace of longitudal direction, the various norms are all commensurate.

On the other hand, ζL satisfies

ζ ′
L

+ Cyζ
2
L

+ C ′
yλ = O

(
(|λ| + ‖ηT ‖2,1,t + ‖δT ‖2,1,t + ‖ζ‖2

2,1,t)
2
)
,

with ζ ′
L(∞) = 0 = ζ ′

L(−∞) (so when |ζ
L
|(s) reaches maximum, ζ ′

L
= 0).

Combining this with (95) and (100), we have

|ζL|∞ ≤ CL|λ|1/2.

Plugging this back in (100), we get

(101) ‖ηT ‖2,2,t ≤ C1|λ|.
Using these L∞ estimates for ηT , ζL and multiplying (98) with η

L
, we obtain

−C ′|λ|2 ≤ |η
L
|′ + Cy(ζ̃L

+ ζ
L
)|η

L
| ≤ C|λ|2.

Now since ζ̃
L
, ζ

L
are both ≥ 0 when s ≥ 0, and are both ≤ 0 when s ≤ 0,

we see that
|η

L
|′ ≤ C|λ|2 when s ≥ 0;

−|η
L
|′ ≤ C|λ|2 when s ≤ 0.

Integrating using the initial condition that ηL(0) = 0, we see that

(102) ‖ηL‖
L∞(Θε′

b ) ≤ C1ε
′|λ|.

Combining this with (101), we get

‖ξ‖
Wλ(Θε′

b ) ≤ C2ε
′1+1/(2p)|λ|1/2−1/p → 0 as λ → 0.
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We now turn to estimating ξ over Θε′
a and Θε′

c . We shall only consider
Θε′

c since the other works by analogy. On this region, writing wλ(s) =
exp(yλ−, ζ̃λ−(s)), we have from the definition of wλ that

‖ζ̃λ−‖2,2,t(s) ≤ C3|λ|3/2e−C6|λ|1/2(s−ε′|λ|−1) + terms involving δ.

We may ignore the terms involving δ since by (95), its contribution to the
W -norm is at most of order |λ|1/2. On the other hand, by standard esti-
mates w(s) has the same exponential decay behavior in this region, and so
combining the estimate for ζλ−(ε′|λ|−1) above and (101), (102), we have on
this region

‖ζλ−‖2,2,t(s) ≤ C4ε
′|λ|e−C′

6|λ|1/2(s−ε′|λ|−1),

where ζλ− is defined by exp(yλ−, ζλ−) = w(s). Together with the previous
expression, we obtain a pointwise estimate for ξ(s) on this region, which,
when combined with (98), (99), yields

‖ξ‖Wλ(Θε′
c ) ≤ C5ε

′|λ|1/2−1/(2p) 
 1.

6. The handleslide bifurcation

The purpose of this section is to verify the bifurcation behavior at handle-
slides predicted in I.4.3, namely, Propositions 6.1.1, 6.1.2 below.

6.1. Summary of results. Combined with the previous gluing theorems:
Propositions 2.1, 5.1, the following proposition completes the verification of
(RHFS2c), (RHFS3c) for admissible (J, X)-homotopies.

6.1.1. Proposition. Let (JΛ, XΛ) be an admissible (J, X)-homotopy con-
necting two regular pairs, and x, z be two path components of PΛ\PΛ,deg.
Then:

(a) a chain-topology neighborhood of TP,hs-s(x, z; �) in
M̂

Λ,1,+
P (x, z; wt−Y,eP

≤ �) is l.m.b. along TP,hs-s(x, z; �);
(b) a chain-topology neighborhood of TO,hs-s(�) in M̂

Λ,1,+
O (wt−Y,eP

≤ �) is
l.m.b. along TO,hs-s(�).

The proof follows the standard gluing construction outlined in Section 1.2,
and shall be omitted. A description of the relevant K-models will be given
in Section 7.3.2 and 7.3.3. A result analogous to part (a) above is also given
by Proposition 4.2 of [6].

The rest of this section will be devoted to the proof of Proposition 6.1.2.

6.1.2. Proposition. Let (JΛ, XΛ) be an admissible (J, X)-homotopy, and
u ∈ M̂

Λ,0
P (x,x). Then (NEP) holds for u.

Without loss of generality, we restrict our attention to a J |X-homotopy
without death–birth bifurcations throughout this section.
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6.2. Nonequivariant perturbations on finite-cyclic covers. This
subsection contains the main body of the proof of Proposition 6.1.2. We first
discuss a simpler situation in which the nonequivariant perturbation may be
obtained from a vector field on a finite-cyclic covering of M . In general, we
need to resort to nonlocal perturbations.

6.2.1. A special case: local perturbations from finite-cyclic covers
of M . If a finite-cyclic cover Cν,m → C is (a path component of) the pull-
back bundle of a finite-cyclic cover M̂ → M via ef : C → M (cf. I.3.1.1), then
a nonequivariant function or vector field on M̂ may induce a nonequivariant
function or vector field on Cνe,m.

Example. Assume the conditions of Corollary I.2.2.5 (namely, M is mono-
tone, f is symplectic isotopic to id, and γ0 is the trace of a point under
the symplectic isotopy). We claim that in this case, for any m ∈ Z

+ not
dividing div([u]), there exists a u-breaking m-cyclic cover of C via the above
pull-back construction. Thus, in this case, Proposition 6.1.2 may be proven
by simply repeating the argument for Proposition I.6.2.2 for nonequivariant
Hamiltonian perturbations over finite-cyclic covers of M . (In fact, only
Lemma I.6.2.5 needs to be redone.)

To see the claim, recall that in this case,

H = H1(C; Z) = π2(M) ⊕ H1(M ; Z), and ef∗ = 0 ⊕ id

with respect to this decomposition. Notice that ef∗([u]) is a nontorsion
element in H1(M ; Z). Otherwise, by the commutative diagram from I.(12),

k[u] = b ∈ ker c1

∣
∣
∣
π2(M)

for some k ∈ Z
+.

But then by monotonicity of M ,

[YX ](k[u]) = ω(b) − e∗
fθX(k[u]) = 0,

contradicting the fact that u has positive energy.
Thus, for any m ∈ Z

+ not dividing div([u]), one may simply set
νM ∈ H1(M ; Z) to be a primitive class with νM (ef∗([u])) = div([u]) and
take Cν,m = e∗

fMνM ,m. Furthermore, such a finite-cyclic cover is always
H-adapted, and u-breaking if m does not divide div([u]).

However, this simple construction does not give all the u-breaking finite
covers we need.

6.2.2. The general case: nonlocal perturbations. Let Cν,m be a u-
breaking, H-adapted m-cyclic cover of C introduced in I.4.4.5.

We shall often make use of the following convenient description of Cν,m:

Cν,m =
{

(z, [µ]) | z ∈ C, µ: [0, 1] → C; µ(0) = γ0, µ(1) = z
}

/ ∼,
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where (z1, [µ1]) ∼ (z2, [µ2]) iff z1 = z2 and ν([µ1 − µ2]) = 0 mod m. Such
an equivalence class shall be denoted by a pair (z, [µ]m).

Recall that ν ∈ Hom(H, Z). The fact that Cν,m is u-breaking implies that
ν is nontorsion. Thus, one may find a class ν2 ∈ H2(Tf ; R) extending ν by
linearity, that is, satisfying ν2((iH ker ν) ⊗ R) = 0, and ν2(iH[u]) = div(u)
where iH: H ↪→ H2(Tf ; Z) is the inclusion. Let ων be a smooth closed 2-form
on Tf in the cohomology class ν2.

The 2-form ων defines an R-valued function Ων on C̃, by setting

Ων(z, [µ]) :=
∫

[0,1]×S1
1

µ∗ων .

This induces an R/mZ-valued function on Cν,m, which we shall denote by
the same notation.

Definition (A class of nonlocal perturbations). Let χ: R/mZ → R be
a smooth function, and let P ∈ H. We define the formal vector field ℘χP

on Cν,m by

(103) ℘χP (z, [µ]m) := χ(Ων(z, [µ]m))∇P (z).

For a path (u(s), [µ(s)]m) in Cν,m, let

∂̄χP
JX(u, [µ]m) := ∂̄JXu + ℘χP (u, [µ]m).

Similarly, for a smooth function χΛ: Λ × R/mZ → R and PΛ ∈ HΛ, one
may define a path of formal vector fields {℘χλPλ

}λ∈Λ and the section ∂̄χΛPΛ

JΛXΛ

on BΛ
P or BΛ

O.

For the rest of this section, a “χP -perturbed flow” or simply a “perturbed
flow” will refer to a solution of ∂̄χP

JX(u, [µ]m) = 0. One may define the moduli
spaces of such flows, MP ;ν,m(J, X; χ, P ), MO;ν,m(J, X; χ, P ), etc., and their
parameterized versions, in the usual manner (cf. I.2.1.2, I.4.3.1). Notice
that if one chooses P ∈ V k

δ (J, X) and PΛ ∈ V Λ;k,κ
δ (JΛ, XΛ), then

P(X; χ, P ) = P(X); PΛ(XΛ; χΛ, PΛ) = PΛ(XΛ),

and in both equalities, the former is nondegenerate iff the latter is. We shall
show in the next subsection that in this case, when χ, χΛ are sufficiently
small, and if (J, X) is regular and (JΛ, XΛ) admissible, then the moduli
spaces of χP -perturbed flows and their parameterized versions satisfy all
the usually expected regularity and compactness properties, as described by
(FS2), (FS3) and (RHFS2*), (RHFS3*).

Proof of Proposition 6.1.2. Let � ∈ R
+ and Cν,m be fixed as in the statement

of (NEP). Without loss of generality, assume ΠΛu = 0.
The admissible (J, X)-homotopy (JΛ, XΛ) induces a homotopy of formal

flows on Cν,m, which satisfies all the properties listed in I.6.2.3 for admissi-
bility, except for Property (8) (injectivity of ΠΛ|

M̂
Λ,0
P

): at λ = 0, there are
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m distinct elements in M̂0
P (Jλ, Xλ), which are precisely the m different lifts

of u.
We write this induced homotopy of vector fields as {Vν,m(Jλ, Xλ)}λ∈Λ.
To achieve Property (8), we shall consider homotopy of vector fields on

Cν,m of the form

{Vν,m(Jλ, Xλ; χλ, Pλ)}λ∈Λ := {Vν,m(Jλ, Xλ) + ℘χλPλ
}λ∈Λ,

where

(104) PΛ ∈ V Λ;k,κ
δ (JΛ, XΛ).

In fact, since M̂
Λ,0
P (JΛ, XΛ; wt−〈Y〉,eP ≤ �) consists of finitely many points,

each projecting under ΠΛ to distinct values, we may assume that

(105) Pλ = 0 for λ ∈ Λ\S,

where S is a small interval about ΠΛ(u) = 0, so that

S ∩ (Λdb ∪ ΠΛ(M̂Λ,0
P (JΛ, XΛ; wt−〈Y〉,eP ≤ �)\{u}) = ∅.

Such perturbed homotopy of formal flows might no longer be co-directional;
however, Properties (1)–(6) of I.6.2.3 are preserved. Moreover, we shall see
in the next subsection that as long as χ is sufficiently small in Cε-norm, the
parameterized moduli spaces remain �-regular (i.e., �-truncated version of
I.6.2.3 (7) holds).

We now describe an explicit choice of χΛ, PΛ among all those satisfying
both (104), (105), so that I.6.2.3 (8) may be achieved. For this purpose, the
argument in the proof of Lemma I.6.2.5 is revised as follows.

Replace un there by u, let B be a small neighborhood in Q1∩Q2 ⊂ R×S1.
Let P0 ∈ V k

δ (J0, X0) be supported in a small neighborhood B ⊂ Tf , such
that u−1(B) ⊂ B, similar to the definition of Hλn

in I.6.2.5. Let PΛ be an
extension of P0 satisfying (104) and (105), which is in turn the analog of
HΛ in I.6.2.5.

Let ũ1, . . . , ũm be the m distinct lifts of u in Cν,m. With the above choice
of P0, the perturbation ℘χ0P0(ũi(s)) is nontrivial only when s is in the small
interval

IB := pr1(B),
where pr1 : R × S1 → R denotes the projection. By construction, the values
of Ων at different lifts of a point in C differ by multiples of m. Thus if IB

is sufficiently small, the image Ων(ũi(IB)) forms disjoint intervals in R for
different ũi. We denote the interval corresponding to ũi by Ii and choose χ0
such that

χ0(φ) = Ci when φ ∈ Ii, i = 1, 2, . . . , m,
where Ci are distinct constants and χ0 is very small in Cε-norm. With this
choice,

℘χ0P0(ũi(s)) = Ci∇P0(ũi(s)),
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and the analog of I.(71) now reads

Eũiξ + αiYũi + Ci∇P0(ũi) = 0,

this, together with the contraction mapping theorem, shows that ũi per-
turbs into a ṽi, so that ΠΛṽi − ΠΛu are, up to higher order correction
terms, proportional to Ci. Hence the perturbed flows have distinct values
under ΠΛ.

As remarked before, the regularity of �-truncated moduli spaces is unaf-
fected by this perturbation, and thus {Vν,m(Jλ, Xλ; χλ, Pλ)}λ∈Λ satisfies
all the �-truncated versions of I.6.2.3 (1)–(8). In particular, it has all
the �-truncated versions of the properties (RHFS*), except for (RHFS2c),
(RHFS3c), and (RHFS4).

To see that the remaining properties also hold, we need to verify that
the gluing theorems proven in previous sections still hold. (The arguments
for (RHFS4) to appear in Section 7 below depend on the perturbation only
through the existence of Fredholm theory, and the linear gluing theorem in
Section 1.2.4.)

By construction, S ∩ Λdb = ∅. Thus, no gluing for births or deaths (as in
Sections 2–5) is necessary.

The proofs of standard gluing theorems such as Proposition 6.1.1, Lemma
1.2.4 do require updates. However, because of our choice of PΛ, ℘χλPλ

vanishes near the critical point xλ. Thus, we have the usual exponential
decay of flows to critical points and the same error estimates. Only two
facts need to be verified for the standard arguments sketched in Section 1.2
to go through:

(1) Fredholm theory and surjectivity of the perturbed version of deforma-
tion operators EJλ,Xλ;χλ,Pλ

ṽ , ÊJλ,Xλ;χλ,Pλ
ũ , where ũ, ṽ are the perturbed

flows to be glued;
(2) the usual quadratic bound on the nonlinear term Nwχ , namely, (3).

We shall verify these in the next subsection.
�

6.3. �-truncated moduli spaces of perturbed flows. The structure
theory of the moduli spaces of such perturbed flows is not covered in the
literature or in the discussion of Part I. We need to start from scratch and
check the foundation of this more general theory. The major components of
the expected structure theory are examined in turn below.

We have already mentioned the following basic fact:

6.3.1. Fact (Exponential decay). A perturbed flow decays exponentially
to a nondegenerate critical point.

This is due to our choice that PΛ ∈ V Λ;k,κ
δ (JΛ, XΛ), in particular, Pλ

vanishes up to kth order at the critical points. In fact, this also shows
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that a perturbed flow decays polynomially to a good minimally degenerate
critical point as described in Section I.5. However, we do not need this fact.

6.3.2. Fredholm theory. Consider the linearization of ∂̄χP
JX(u, [µ]m). We

denote it by EJ,X;χ,P
(u,[µ]m) or DJ,X;χ,P

(u,[µ]m) , depending on whether (u, [µ]m) is an con-

necting flow line or an orbit. In addition to the well-understood EJ,X
(u,[µ]m)(ξ)

or DJ,X
(u,[µ]m)(ξ), it has the following extra terms due to ℘χP :

χ(Ων(u, [µ]m))∇ξ∇P (u)

+ χ′(Ων(u, [µ]m))
∫

S1
ων(ξ, ∂tu) dt ∇P (u).

(106)

Observing that the first term is a 0-th-order multiplicative operator, and
the second term is a mixture which is infinitely smoothing in t and 0-th-
order in s, this implies that DJ,X;χ,P

(u,[µ]m) is still Fredholm. To see that EJ,X;χ,P
(u,[µ]m)

is Fredholm, we use in addition Fact 6.3.1 above, and the usual excision
argument for Fredholmness in this situation.

The deformation operators for parameterized moduli spaces are finite-
rank stabilizations of the above operators, and their Fredholmness is thus
evident from the above discussion.

6.3.3. Estimating the nonlinear term. The contribution of the pertur-
bation to the nonlinear term NJ,X;χ,P

(u,[µ]m) (ξ) is

χ(Ων(u, [µ]m))∇ξ∇ξ∇P (u)

+ 2χ′(Ων(u, [µ]m))
∫

S1
ων(ξ, ∂tu) dt ∇ξ∇P (u)

+ χ′′(Ων(u, [µ]m))
(∫

S1
ων(ξ, ∂tu) dt

)2
∇P (u)

+ χ′(Ων(u, [µ]m))
∫

S1
ων(ξ, ∂tξ) dt ∇P (u).

It is straightforward to check that each term above may be bound by

C‖ξ‖C0‖ξ‖Lp
1

≤ C ′‖ξ‖2
Lp

1
.

We omit the straightforward estimate for the parameterized version.

6.3.4. Compactness. Let us go over the main ingredients in the usual
proof one by one.

• Elliptic regularity. By the above estimate on the nonlinear term, and
the form of (106), the elliptic bootstrapping argument still hold, pro-
vided a C0 bound can be established. The latter relies on the Gromov
compactness.
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• Gromov compactness. Going through the rescaling argument, we note
that the extra term ℘χP disappears in the limit, and therefore again
(local) compactness is lost only through bubbling off honest holomor-
phic spheres. This possibility is eliminated via transversality as in
Section 3 of Part I.

• Energy bound. With this definition of nonlocal perturbations, there
might not be a good action functional for the perturbed flows.1 How-
ever, we still have the requisite energy bound for perturbed flows with
weight ≤ �. Let (u, [µ]m) be such a χP -perturbed flow. Then

E(u, [µ]m) = ‖∂su‖2
2

= α wt−〈Y〉,eP(u, [µ]m) +
∫ 〈

∂su, χ(Ων(u, [µ]))∇P (u)
〉

2,t
(s) ds.

(107)

On the other hand,

Lemma. Let (u, [µ]m) be a χP -perturbed flow (either a connecting
flow line or an orbit). Then there is a constant C independent of s or
(u, [µ]m), such that

‖∇P (u)‖2,t(s) ≤ C‖∂su‖2,t(s) ∀s.

Proof. This follows from the L∞
1 -boundedness of P , the fact that P

vanishes to up order k > 2 at the critical points, and the following.

Palais–Smale condition. There exists an ε′ > 0 such that for any
(z, [µ]m) ∈ Cν,m with ‖J(z)∂tz + θ̌X(z)+℘χP (z, [µ]m)‖2,t ≤ ε′, there is
a critical point z0 such that z = exp(z0, ξ) for a small ξ, and

‖J(z)∂tz + θ̌X(z) + ℘χP (z, [µ]m)‖2,t ≥
⎧
⎪⎨

⎪⎩

C1‖ξ‖2,t when z0 is nondegenerate
C2‖ξ‖2

2,t when z0 is minimally degenerate
in a standard d-b neighborhood.

This in turn follows from the Ascoli–Arzela argument as in the unper-
turbed case, since by our condition on P , ℘χP can be ignored near
critical points. �
Thus, if ‖χ‖Cε ≤ ε, the absolute value of the last term in (107) can be
bounded by Cε‖∂su‖2

2, and by rearranging,

E(u, [µ]m) ≤ (1 − Cε)−1α wt−〈Y〉,eP(u, [µ]m) ≤ (1 − Cε)−1α�.

• Global compactness (for M̂P , M̂Λ
P ). As in the unperturbed case, to go

from local compactness to global compactness, we just need in addition
Fact 6.3.1.

1We may easily modify the definition of ℘χP so that there is; however we would run
into difficulty with Gromov compactness.
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6.3.5. Transversality. The transversality arguments in Part I uses a
unique continuation theorem extensively. However, Aronszajn’s theorem or
the Carleman similarity principle used in [7] is no longer applicable as the
nonlocal term is introduced. While it might be possible to prove a unique
continuation result in this situation, we choose not to develop a general
theory here. Instead, for the purpose of proving Proposition 6.1.2, we only
need the following.

Claim. Let (J, X) be regular, χ be sufficiently small (in Cε norm), P ∈
V k

δ (J, X) and i ≤ 2. Then for M = MP or MO, Mi
ν,m(J, X; χ, P ; wt−〈P〉,eP ≤

�) is (Zariski) smooth. Similarly for the parameterized versions.

Take MP , for example; the arguments for MO or the parameterized ver-
sions are similar. Due to Lemma 1.2.4, for regular (J, X) and u in a neigh-
borhood of a lower-dimensional strata of M̂

i−1,+
P (J, X; wt−〈P〉,eP ≤ �), the

deformation operator Eu has a uniformly bounded right inverse. Combin-
ing this with the compactness of M̂

i−1,+
P (J, X; wt−〈P〉,eP ≤ �), there is a

small number δ > 0 such that any element in {D |D − EJX
v ‖ < δ, v ∈

M̂i−1
P (J, X; wt−〈P〉,eP ≤ �)} is surjective. In particular, there is a δ′ = δ′(δ),

such that for any element w in
{

exp(v, ξ) | ‖ξ‖∞,1 < δ′, v ∈ M̂i−1
P (J, X; wt−〈P〉,eP ≤ �)

}
,

EJX;χP
(w,[µw]m) is surjective for any lift (w, [µw]m) of w in Cν,m, ∀χ with ‖χ‖Cε <

δ′. Thus, the claim follows from the following.

Lemma. Fix P , i, and � as above. Then there is an ε′ > 0 such that for all
χ with ‖χ‖Cε < ε′, any element (u, [µ]) ∈ M̂i−1

P ;ν,m(J, X; χ, P,wt−〈P〉,eP ≤ �)
is close to M̂i−1

P (J, X,wt−〈P〉,eP ≤ �) in the sense that

(∗) u = exp(v, ξ), ‖ξ‖∞,1 < δ′ for some v ∈ M̂i−1
P (J, X,wt−〈P〉,eP ≤ �).

Proof. Suppose the contrary. Then there exists a sequence {χn} such that
limn→∞ ‖χn‖Cε = 0, and a sequence

{
(un, [µn]m)

}

n
⊂ M̂k

P,m(J, X; χ, P ; wt−〈P〉,eP ≤ �)

such that none of them satisfies (*). By Gromov compactness theorem,
such a sequence

{
(un, [µn]m)

}
must weakly converge to an element v in

M̂k
P (J, X; wt−〈P〉,eP ≤ �) together with some bubbles. Since by the regular-

ity of (J, X), there is no such bubble, (un, [µn]m) are close to v, contradicting
our assumption. �

This also shows that when χ is sufficiently small and (J, X) regular, these
χP -perturbed flows avoid pseudo-holomorphic spheres, as in the case before
perturbation.



REIDEMEISTER TORSION IN FLOER–NOVIKOV THEORY, II 461

7. Orientation and signs

In this section, we tie up the last loose end of this article by addressing
all orientation issues so far ignored: we verify (FS4) for the Floer theory
described in Section I.3 and show that an admissible (J, X)-homotopy sat-
isfies (RHFS4).

In Section 7.2, we show that the various moduli spaces MP (x, y), M1
O and

their parameterized variants are orientable; furthermore, we introduce the
notions of coherent orientations for MP , MΛ

P and grading-compatible orien-
tations for M1

O, MΛ,2
O and show that these moduli spaces may be endowed

with such orientations. This completes the verification that the formal flow
associated to a regular pair (J, X) forms a Floer system. The coherence
of orientation is determined by linearized versions of the gluing theorems
proven in the previous sections; this is, in fact, why we have postponed
this discussion. Compared with the full gluing theory, major simplifications
for these linearized versions arise from the fact that we may substitute the
complicated polynomially weighted Sobolev spaces used in Sections 2–5 by
larger, exponentially weighted versions, due to the removal of constraints
from nonlinear aspects of general gluing theory. Furthermore, deforma-
tion operators between these exponentially weighted spaces are conjugate
to deformation operators between the usual Lp

k spaces with perturbation by
asympotically constant 0-th-order terms, making it possible to work only
with the ordinary Sobolev norms throughout this section.

In Section 7.3, we verify the signs in the expressions for TP,db, . . . , TO,hs-s
given in (RHFS4) (cf. Section I.4.3.7). This is obtained by examining the
orientations of the K-models used in the proofs of the gluing theorems in
previous sections. With this done, the verification that admissible (J, X)-
homotopies satisfy the assumptions of Proposition I.4.6.3 is complete, which
in turn implies the general invariance theorem, Theorem I.4.1.1.

7.1. Basic notions and conventions. We first review some basic mate-
rials to fix terminology and conventions.

7.1.1. Orientation for direct sums and exact sequences. Given a
direct sum of an ordered k-tuple of oriented vector spaces, E = E1⊕· · ·⊕Ek,
we orient it by e1 ∧ · · · ∧ ek ∈ det E, where ei ∈ det Ei orients Ei.

An exact sequence of finite-dimensional vector spaces

0 → E1
i1→ F1

j1→ E2
i2→ F2 · · · jn−1→ En

jn→ Fn → 0

determines an isomorphism
⊗

k det Ek �
⊗

k det Fk, by writing

Ek = BE
k ⊕ jk−1B

F
k−1, Fk = ikB

E
k ⊕ BF

k

for appropriate oriented subspaces BE
k , BF

k , over which ik, jk restrict to
isomorphisms.
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7.1.2. Orientation for determinant lines and K-models. Given a
Fredholm operator D: E → F , the determinant line

det D := det ker D ⊗ det(coker D)∗.

It is well known that for a continuous family (in operator norm) of Fredholm
operators, the determinant lines above form a real line bundle over the
parameter space, namely the determinant line bundle. We use or(D) to
denote the space of possible orientations for det D when it is orientable,
and similarly, or(DΛ) denotes the space of possible trivializations of the
determinant line bundle for the family DΛ when it is orientable. These are
affine spaces under Z/2Z. If Dλ1 ,Dλ2 are elements of the family of operators
DΛ, we say that o1 ∈ or(Dλ1) and o2 ∈ or(Dλ2) are correlated via DΛ if they
are restrictions of the same trivialization O ∈ or(DΛ). They are said to be
of relative sign ρ ∈ {±1} (with respect to DΛ), denoted [o1/o2], if o1 and
ρo2 are correlated.

It is convenient to describe the orientation of det D in terms of K-models.
Recall the definition of oriented K-models and the exact sequence (6) from
Section 1.2.3. This exact sequence induces the isomorphism:

det D � det K ⊗ det C∗.

Thus, an orientation of a K-model for D decides an orientation for det D.
Given an orientation of det D, an oriented K-model [K; C] of D is said to
be compatible with this orientation, if the orientation of [K; C] induces the
orientation of det D.

Two K-models of D are said to be co-oriented if they give rise to the same
orientation of det D. Let [Dλ1 : Kλ1 → Cλ1 ]Bλ1

, [Dλ2 : Kλ2 → Cλ2 ]Bλ2
be

fibers of a family K-model for DΛ. They are said to be mutually co-oriented
via the family DΛ if they are, respectively, compatible with orientations of
det Dλ1 and det Dλ2 correlated by DΛ.

7.1.3. Induced orientation of a stabilization. Let D̂Ψ: R
k ⊕ E → F

be a stabilization of D: E → F ; recall the definition of stabilized K-models
from Section 1.2.3.

Given an orientation o ∈ or(D), we define the induced orientation ô ∈
or(D̂Ψ) from o as follows. Given an oriented K-model [D: K → C]B compat-
ible with o, let ô be the orientation given by the stabilization [D̂Ψ: K̂ → C]B̂,
where K̂ is oriented as

K̂ = (−1)k ind D
R

k ⊕ K.

7.1.4. Reduction of oriented K-models. Let the K-model [K ′ → C ′]
be a reduction of another K-model, [K → C], by Q (cf. Section 1.2.3).
Then the orientation of one K-model induces an orientation of the other via
writing

K = K ′ ⊕ Q; C = C ′ ⊕ ΠCD(Q)
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as oriented spaces. Note that changing the orientation of Q results in a
co-oriented K-model.

7.1.5. Orientation for glued K-models. Recall the definitions and nota-
tions in Section 1.2.4. Given an ordered k-tuple of finite-dimensional sub-
spaces K1, . . . , Kk in E or F , and sufficiently large R1, . . . , Rk, we orient the
glued space K1#R1 · · ·#Rk−1Kk or K1#R1 · · ·#Rk−1Kk#Rk

by its natural
isomorphism with K1 ⊕ K2 ⊕ · · · ⊕ Kk.

Let D1, D2 be an ordered pair of glueable Floer-type operators, and
let D be a cyclically glueable Floer-type operator. Given o1 ∈ or(D1),
o2 ∈ or(D2), o ∈ or(D), we define o1#Ro2 ∈ or(D1#RD2), o#R

∈ or(D#R)
as follows. Let [K1 → C1], [K2 → C2], [K → C] be oriented K-models
compatible with o1, o2, and o, respectively. Then the induced orientation,
o1#Ro2 and o#R, are, respectively, the orientation given by the oriented
K-models

(108)
[
(−1)dim(C1)·ind D2K1#RK2 → C1#RC2

]
, [K#R → C#R].

The orientations for the generalized kernels and generalized cokernels of
stabilized, reduced, or glued K-models given above are chosen such that
co-oriented K-models give rise to co-oriented stabilized, reduced, or glued
K-models. Thus, we have well-defined homomorphisms of affine spaces under
Z/2Z:

sΨ: or(D) → or(D̂Ψ),

gR: or(D1) × or(D2) → or(D1#RD2),

sgR: or(D) → or(D#R),

sending o to ô, o1 × o2 to o1#Ro2, and o to o#R, respectively. We call sΨ
the stabilization isomorphism, and gR, sgR the gluing homomorphisms. As a
consequence of the independence of K-models, the above constructions also
work in the family setting to define induced orientations for the determinant
line bundles of stabilized or glued operators. In addition, the gluing homo-
morphisms above may be extended to be defined for arbitrary k-tuple of
glueable or cyclically glueable Floer-type operators, by observing that any
glued operator or cyclically glued operator can be obtained by a combina-
tion of translation and the two gluing operations discussed above. Morever,
with the above definition, it is straightforward to check that the oriented
K-model for the same glued operator obtained from different combinations
are actually the same.

Remarks. (1) Alternatively, one may define induced orientation for stabi-
lization by the oriented K-model [Rk ⊕ K → C] instead. We have so chosen
our definition because in our context, det DΨ gives the orientation of a fiber
bundle, where R

k corresponds to the tangent space of the base. We prefer
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the “fiber-first” convention for orienting a fiber bundle. With our defini-
tions, the gluing homomorphism commutes with the (rank k) stabilization
isomorphism on D2, but commutes with stabilization on D1 modulo the sign
(−1)k ind D2 .
(2) The definitions of the orientation for a stabilization and glued operators
in [4] differ from ours. Their definitions have the following disadvantage.
Given an orientation of a determinant line bundle for a family {Dλ}λ∈Λ,
the stabilization isomorphism of [4] gives a possibly discontinuous, nowhere
vanishing section of the determinant line bundle of the stabilized family
{D̂λ,Ψ}λ∈Λ. Furthermore, the gluing morphisms in [4] commute with stabi-
lization only up to a sign depending on the dimension of R

k.

7.2. Orienting moduli spaces. This subsection addresses the orientabil-
ity issues required by (FS4) and (RHFS4).

By an orientation of a moduli space M = MP or MO, we mean the follow-
ing. Notice that the configuration spaces Bk

P (x, y), Bk
O parameterize families

of deformation operators, {Eu |u ∈ Bk
P (x, y)}, {D̃(T,u) | (T, u) ∈ Bk

O}. Thus,
they carry determinant line bundles, which we denote by LBk

P (x, y), LBO.
The moduli space M ⊂ B = Bk

P (x, y) or Bk
O parameterizes a subfamily

of deformation operators, and thus carries a determinant line bundle LM,
which is the pull-back of LB. An orientation of M will mean a trivialization
of LM. In this article, this will always be the pull-back of a trivialization of
LB, and we shall therefore focus on orienting LB for various configuration
spaces B. Similarly, parameterized moduli spaces MΛ will be oriented by
orienting LBΛ. Since the deformation operators for MΛ are stabilizations of
those for M, this also orients the fiber moduli spaces Mλ for λ ∈ Λ.

Notice that the above definition does not require nondegeneracy of the
moduli spaces M, and hence we make no such assumptions in this subsection.
Nevertheless, when M is nondegenerate, the determinant line for the relevant
deformation operator det Du = det TuM at any u ∈ M. In this case, this
definition agrees with the usual definition of the orientation of a manifold.

We do, however, assume nondegeneracy of the spaces of critical points.
Namely, we assume (FS1) for a Floer theory (C,H, ind;Yχ, Vχ), and assume
(RHFS1*) for a CHFS throughout this subsection.

We now begin with some general discussion on abstract Floer theories in
Sections 7.2.1–7.2.4.

7.2.1. General strategy for orientability. Below we roughly outline a
scheme to establish orientability of LB, which is particularly useful for sym-
plectic Floer theories, when the configuration spaces have complicated topol-
ogy. To begin, construct a map

m: B → Σ/G,
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where Σ is a contractible space parameterizing certain operators and G is
a suitable automorphism group. The map m is typically defined by identi-
fying the deformation operator at u ∈ B to an operator in Σ, after certain
trivialization is chosen. G is usually the group of automorphisms relating
different possible trivializations.

The space Σ parameterizes a trivial determinant line bundle LΣ,
over which the action by G extends. Moreover, (LΣ)/G = L(Σ/G) and
LB = m∗L(Σ/G). One next shows that G induces trivial actions on the
determinant lines. Thus L(Σ/G), and hence also LB, are trivial.

In family settings, B and Σ above are both replaced by bundles BΛ, ΣΛ

over the parameter space Λ, and m above will be a bundle map.
In the case B = BP (x, y), in order for the deformation operator to be

Fredholm, x, y ∈ P have to be nondegenerate. More generally, one may
consider exponentially weighted versions of deformation operators E

(σ1,σ2)
u

(cf. Section I.3.2.3) instead of Eu. When x, y are, respectively, σ1-weighted
nondegenerate and σ2-weighted nondegenerate, this defines another determi-
nant line bundle over BP (x, y), which we denote by L(σ1,σ2)BP (x, y). Under
this weighted-nondegeneracy condition on x, y, the determinant line bundle
L(σ1,σ2)BP (x, y) is independent of small perturbations to the weights σ1, σ2.

These weighted versions are useful for dealing with the case when one
of x, y is minimally degenerate: in this case, the deformation operator Eu

is defined as a map between complicated polynomially weighted Sobolev
spaces (cf. Section I.5). However, we showed in Section I.5.2.5 that Eu

has identical kernel and cokernel as E
(−σ,σ)
u for any small positive σ. As

we are only concerned with the linear aspect (Kuranishi structure) of the
Floer theory, there is thus no harm in replacing Eu by the simpler E

(−σ,σ)
u :

the orientation of MP (x, y) in this case will be given by an orientation of
L(−σ,σ)BP (x, y).

Turning now to the family situation of a CHFS {Vλ}λ∈Λ satisfying prop-
erties (RHFS1*), given x,y ∈ ℵΛ and an interval S ⊂ Λ, let BS

P (x,y) =
⋃

λ∈S∩Λ̄x∩Λ̄y
BP (xλ, yλ). Under the assumption (RHFS1*), one may choose

a set of intervals {Si} covering Λ, such that each Si contains at most one
death–birth, and all overlaps Si ∩ Sj for different i, j contains no death–
birth. Over each Si, one may choose appropriate weights σx,i, σy,i with
small absolute value, such that xλ is σx,i-weighted nondegenerate and yλ

is σy,i-weighted nondegenerate for all λ ∈ Si ∩ Λ̄x ∩ Λ̄y. An orientation of
L(σx,i,σyi )BSi

P (x,y) determines an orientation of MSi
P (x,y) as well as ones for

its fibers MP,λ(x,y), which agree with our previous discussion on orienting
MP (x, y) for nondegenerate or minimally degenerate x, y. Note again that
the precise values of the weights σx,i, σy,i are immaterial; in particular, when
Si contains no death–birth, they can be chosen to be 0. Otherwise, only the
signs of these weights matter.
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Lastly, we may patch up the determinant line bundles L(σx,i,σyi )BSi
P (x,y)

for all intervals Si to define a determinant line bundle LBΛ
P (x,y) over

BΛ
P (x,y), by observing that, since for all λ ∈

⋃
i,j Si ∩ Sj , xλ, yλ are nonde-

generate, determinant line bundles with different weights over B
Si∩Sj

P (x,y)
can be identified.

More concretely, in Section 7.2.5 we shall apply the above general scheme
to the specific Floer theory described in Section I.3. See also [8] for its
application in other versions of symplectic Floer theories. In gauge-theoretic
settings, the configuration space B itself has the structure of A/G, where A

is an affine space and G is the gauge group, which is often connected under
the assumption of simple-connectivity of the underlying manifold. Thus,
much of the above scheme also carries over to this context.

7.2.2. Coherent orientations for LBP . Assuming the orientability of
LBk

P (x, y) and LB
Λ,k+1
P (x,y) for any pair of x, y ∈ P or x,y ∈ ℵΛ and any

k ∈ Z, we explain in Sections 7.2.2–7.2.3 how the orientations of all these
should be related, so as to endow the moduli spaces of broken trajectories
with a correct oriented manifold-with-corners structure.

Notation. Given a determinant line bundle LQ over a parameter space
Q, LQ\zero section contracts to a Z/2Z-bundle over Q, which we denote
by Or(LQ). LQ is orientable if Or(LQ) is trivial; in this case, the space
of sections of Or(LQ) is denoted or(LQ): this Z/2Z-torsor is the space of
possible orientations for LQ.

Recall the continuity of the gluing homomorphism gR(D1,D2) in D1, D2,
and R. Thus, it defines a gluing homomorphism

g : or(LBk1
P (z1, z2)) × or(LBk2

P (z2, z3)) → or(LBk1+k2
P (z1, z3))

for any z1, z2, z3 ∈ P and k1, k2 ∈ Z. We write g(o1, o2) = o1#o2.

Definition. Let (C,H, ind;Yχ, Vχ) be a Floer theory satisfying (FS1); in
particular, P consists of finitely many nondegenerate elements. A coherent
orientation of

LBP =
∐

k∈Z

∐

x,y∈P

LBk
P (x, y)

is a section, s, of Or(LBP ), so that for all k1, k2 ∈ Z, z1, z2, z3 ∈ P,

(109) s|
B

k1
P (z1,z2)

#s|
B

k2
P (z2,z3)

= s|
B

k1+k2
P (z1,z3)

.

A moment’s thought (or cf. [4]) reveals that coherent orientations always
exist. Fixing an x ∈ P, a coherent orientation for LBP is determined by
choosing an element in or(LB

ky

P (x, y)) for each y �= x and an integer k =
gr(x, y) mod 2Nψ, and in the case when Nψ �= 0, an additional element of
or(LB

2Nψ

P (x, x)). The cases of card(P) = 0, or card(P) = 1 and Nψ = 0 are
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excluded: in the first case, BP is empty, while in the second case, there is no
nonconstant connecting flow line. Thus, there is nothing to orient in these
cases.

The following fact is immediate from the definition of coherent orientation,
but shall be important later.

Lemma. Let s be an arbitrary coherent orientation of LBP . Then for any
x ∈ P, s|B0

P (x,x) is the canonical orientation of LB0
P (x, x).

In the above, the canonical orientation of LB0
P (x, x) is that determined by

the canonical orientation of det Ex̄, the latter being due to the identification
of the kernel and cokernel of Ex̄ = d/ds + Ax via the facts that ker Ex̄ =
ker Ax, coker Ex̄ = coker Ax, and that Ax is self-adjoint.

Proof. The coherence condition (109) requires the gluing maps

g(s|B0
P (x,x),−): or(LBk

P (x, y)) → or(LBk
P (x, y));

g(−, s|B0
P (x,x)): or(LBk′

P (z, x)) → or(LBk′
P (z, x))

to be the identity map. �

7.2.3. Coherent orientations for LBΛ
P . Given a CHFS

{(C,H, ind;Yλ, Vλ)}λ∈Λ satisfying (RHFS1*), we aim to orient LBΛ
P , where

BΛ
P =

∐

k∈Z

∐

x,y∈ℵΛ

B
Λ,k
P (x,y).

There is a natural projection map ΠΛ: BΛ
P → Λ, whose fiber over

λ ∈ Λ is:
• BP,λ =

∐

xλ,yλ∈Pλ

BP (xλ, yλ), when λ is not a death–birth,

• BP,λ =
∐

xλ,yλ∈Pλ\{zλ}∪{zλ+,zλ−}
BP (xλ, yλ), when Pλ contains a unique

minimally degenerate critical point zλ.
The elements zλ+, zλ− should be regarded as the end points of the two path
components z+, z− of PΛ\PΛ,deg connected at zλ, with ind(z+) = ind+(z),
ind(z−) = ind−(z) respectively. We write

LBP (xλ, zλ±) = ρ∗
λLBΛ

P (x, z±) = L(σx,∓σ)BP (xλ, zλ), for 0 < σ 
 1,

where ρλ : BP,λ ↪→ BΛ
P is the inclusion.

First, observe that it is also useful to identify det E
(σ1,σ2)
u with det E

[σ1,σ2]
u ,

where

E[σ1,σ2]
u := ςσ1,σ2Eu(ςσ1,σ2)−1 = Eu + (σ2sβ(s) + σ1sβ(−s))′
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is a map between ordinary Sobolev spaces. With this identification, one may
extend the gluing homomorphism to the weighted case:

g : or(L(σ1,σ2)Bk1
P (z1, z2)) × or(L(σ2,σ3)Bk2

P (z2, z3)) → or(L(σ1,σ3)Bk1+k2
P (z1, z3)).

For any triple z1, z2, z3 ∈ ℵΛ with Λ̄z1 ∩ Λ̄z2 ∩ Λ̄z3 �= ∅, and any pair of inte-
gers k1, k2, one has also the parameterized version of gluing homomorphism

g
Λ : or(LB

Λ,k1
P (z1, z2)) × or(LB

Λ,k2
P (z2, z3)) → or(LB

Λ,k1+k2
P (z1, z3))

extending the gluing homomorphism g over the fibers LBP,λ.

Definition. Given a CHFS satisfying (RHFS1*) as above, a coherent ori-
entation of LBΛ

P is a section, s, of Or(LBΛ
P ), so that:

(1) For any triple z1, z2, z3 ∈ ℵΛ with Λ̄z1 ∩ Λ̄z2 ∩ Λ̄z3 �= ∅, and any pair
of integers k1, k2,

s|
B

Λ,k1
P (z1,z2)

#s|
B

Λ,k2
P (z2,z3)

= s|
B

Λ,k1+k2
P (z1,z3)

;

(2) For all yλ ∈ PΛ,deg, s|B1
P (y+,y−)) is the standard orientation of

L(−σ,σ)B1
P (yλ, yλ), namely, the orientation given by the oriented

K-model [E(−σ,σ)
ȳλ

: Reyλ
→ ∗]B.

Again, it is easy to see that such coherent orientation always exists. When
Nψ �= 0, there are card(ℵΛ) possible coherent orientations. When Nψ = 0,
there are card(ℵΛ)−1 of them. Condition 2 in the above definition is imposed
so that the short flow line between the two new critical points yλ± described
in Section 5.3 has positive sign.

7.2.4. Grading-compatible orientation for LB1
O. The definition of our

invariant IF involves both M1
O and M1

P , which are related by gluing elements
in M0

P (x, x) during a CHFS. It is thus crucial to orient M0
P (x, x) and M1

O
consistently. The notion of “grading compatible orientation” describes such
a suitable compatibility relation. More generally, one may consider com-
patibility conditions relating the orientations of higher-dimensional moduli
spaces M

2kNψ+1
O , and MP (x, x)2kNψ , but this does not concern us, since our

invariant involves only low-dimensional moduli spaces.
Let Bk

O ⊂ BO be the subset consisting of elements (T, u) with gr(u) =
k −1, and LBk

O be the determinant line bundle of the family of deformation
operators D̃(T,u). Assume that LB1

O is orientable.
Recall that the relative grading gr in a Floer theory is typically defined

via spectral flow by identifying deformation operators Ax with elements in a
space of self-adjoint operators ΣC (cf. Section I.3.1.4 for the version relevant
to this article). On the other hand, the orientation of LB1

O is defined by
a map mO: B1

O → Σ1
O/GO, where Σ1

O is a space of Fredholm operators of
index 1, which includes rank-1 stablizations of the operator

DA;T := ∂s + A, s ∈ S1
T

for any surjective A ∈ ΣC and T ∈ R
+.
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Definition. For a Floer theory (C,H, ind;Yχ, Vχ), the grading-
compatible orientation of LB1

O, or more generally LΣ1
O/GO (also called the

orientation compatible with the absolute Z/2Z-grading ind), is the orienta-
tion given by the canonical orientation of det D̃A,T , where D̃A,T ∈ ΣO is the
rank-1 stabilization of DA,T by the zero map, and A is a surjective operator
in ΣC of even index.

In the above, the canonical orientation of D̃A,T is the stabilization of the
canonical orientation of DA,T , which in turn is defined in the same way as
the canonical orientation of Ex̄ (cf. Section 7.2.2). Note that the choice
of A and T do not matter in the above definition: as on varies T , DA,T

remains surjective; on the other hand, the independence of the choice of A

is a consequence of the following basic Lemma.

Lemma. For any two surjective operators A, A′ ∈ ΣC , the canonical ori-
entations of det DA,T and det DA′,T are of relative sign (−1)gr(A,A′) with
respective to the family {DA,T |A ∈ ΣC}, where gr(A, A′) denotes the relative
index between A and A

′.

An immediate corollary is as follows.

Corollary. Suppose that LΣ1
O/GO is orientable. Then for any surjective

A ∈ ΣC and T ∈ R
+, the relative sign between the grading-compatible orien-

tation of LΣ1
O/GO and the canonical orientation of det DA,T is (−1)ind A.

7.2.5. Orientability in symplectic Floer theory. We now apply the
general strategy described in Section 7.2.1 to establish the orientability of
moduli spaces for the specific version of Floer theory considered in this
article.

(1) Orienting LBP . This follows from [4], which we now review in our
terminology. Let J ∈ J

reg
K , X be J-nondegnerate (cf. Section I.3.2.1), and

ΣC be as in Section I.3.1.4. Given two self-adjoint, surjective operators
A−, A+ ∈ ΣC , let ΣP (A−, A+) be the space of operators of the form:2

∂s + J(s, t)∂t + ν(s, t): Lp
1(R × S1; R2n) → Lp(R × S1; R2n),

where J is a smooth complex structure on the trivial R
2n-bundle over R×S1,

compatible with the standard symplecic structure on R
2n. ν is a smooth

matrix-valued function, and both J and ν extend smoothly over the cylinder
[−∞, +∞]×S1 that compactifies R ×S1. Furthermore, over the two circles
at infinity,

J(−∞, t)∂t + ν(−∞, t) = A−; J(∞, t)∂t + ν(∞, t) = A+.

2ΣP (A−, A+) is basically the space Θ in Proposition 7 of [4].
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The contractibility of ΣP (A−, A+) follows from well-known contractibility
of the space of complex structures, and the fact that ν lies in a vector space.

Next, denote by Tx the space of unitary trivializations of x∗K for x ∈
P and let T =

∐
x∈P Tx. This is a C∞(S1, U(n))-bundle over P. Fix a

g ∈ C∞(S1, U(n)) and a section Φ: P → T, such that the inclusion S: =
{gkΦ(x) | k ∈ Z, x ∈ P} ↪→ T induces an isomorphism iπ: S = π0S → π0T.

Recall from Section I.3.1.4 that we have a bundle map (over P) from P̃

to π0T: from a fixed unitary trivialization of γ∗
0K and a path w ⊂ C from

γ0 to x ∈ P, we extend the trivialization over w∗K to obtain a homotopy
class of trivializations of x∗K. If w′ is another path in the same equivalence
class, i.e., im[w − w′] = 0, then (w − w′)∗K is trivial, since cf

1(im[w − w′]) =
0. Hence w, w′ induce the same homotopy class of trivializations of x∗K.
Composing this map with i−1

π , we have a map assigning to each (x, [w]) ∈ P̃

a trivialization Φx,[w] ∈ Sx. Let

A(x,[w]) := Φx,[w]AxΦ−1
x,[w].

We have a map mP : Bk
P ((x, [w]), (y, [v])) → ΣP (A(x,[w]), A(y,[v]))/GP , defined

as follows.
A u ∈ BP ((x, [w]), (y, [v])), together with a trivialization Φu of the

symplectic vector bundle u∗K that restricts, respectively, to Φ(x,[w]) and
Φ(y,[v]) at the circles at −∞ and ∞, assigns an element in ΣP . Namely,
Eu := Φu∗EuΦ−1

u∗ .
The space of such trivializations Φu is an affine space under

GP =
{

Ψ
∣
∣
∣Ψ ∈ C∞([−∞,∞] × S1, Spn), Ψ|{±∞}×S1 = 1

}
.

Let mP (u) be the GP -orbit of Eu. It is shown in Lemma 13 of [4] that
any orbit of GP in Or(LΣP (A(x,[w]), A(y,[v]))) is contained in a single-path
component of Or(LΣP (A(x,[w]), A(y,[v]))); thus, L(ΣP (A(x,[w]), A(y,[v]))/GP )
is trivial; hence so is LBP ((x, [w]), (y, [v])).

Notice that by definition, for any (z1, [v1]), (z2, [v2]), (z2, [v3]) ∈ P̃,
(E1, E2) ∈ ΣP (A(z1,[v1]), A(z2,[v2])))×ΣP (A(z2,[v2]), A(z3,[v3]))) is glueable. This
gives rise to a gluing homomorphism

or(LBP ((z1, [v1]), (z2, [v2])) × or(LBP ((z2, [v2]), (z3, [v3]))

→ or(LBP ((z1, [v1]), (z3, [v3])).

Lastly, observe that if gr((x, [w), (y, [v])) = gr((x, [w′], (y, [v′])) = k, the
spaces ΣP (A(x,[w]), A(y,[v]))) and ΣP (A(x,[w′]), A(y,[v′]))) may be identified via
conjugation by ḡi for some i ∈ Z and ḡ ∈ C∞([−∞,∞]×S1, Spn), ḡ(s, t) :=
g(t). Thus, the above discussion in fact verifies the orientability of LBk

P (x, y)
for any x, y ∈ P, k ∈ Z, and the gluing homomorphism above gives the gluing
homomorphism g described in Section 7.2.3.
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(2) Orienting LBΛ
P . Suppose (JΛ, XΛ) generates a CHFS satisfying the

properties (RHFS1*). Let (x, [w]), (y, [v]) be two path components of the
space P̃Λ/P̃Λ,deg.

The deformation operator of MΛ
P at uλ, Êuλ

, may be regarded as a sta-
bilization of Euλ

. Because of the stabilization isomorphism for families, to
orient the determinant line bundle det{Êuλ

}uλ∈BΛ
P ((x,[w]),(y,[v])), it is equiv-

alent to orient the determinant line bundle

LBΛ
P ((x, [w]), (y, [v])) := det{Euλ

}uλ∈BΛ
P ((x,[w]),(y,[v])).

This can be oriented by repeating part (1) above, replacing ΣP by the param-
eterized version:

ΣP (A−,A+) :=
⋃

λ∈Λx∩Λy

ΣP (A(xλ,[wλ]), A(yλ,[vλ])),

which is a ΣP -bundle over Λx ∩ Λy. In the above, A(xλ,[wλ]) ∀(xλ, [wλ]) ∈ P̃

is defined via a smooth section ΦΛ: PΛ → TΛ, TΛ :=
⋃

xλ∈PΛ Txλ
. This is

again a contractible space, since it is a bundle with contractible fibers and
base.

As in (1), this in turn demonstrates the orientability of LBΛ,k+1(x,y) and
defines the parameterized version of gluing homomorphism gΛ described in
Section 7.2.3. Now one may follow the arguments in Section 7.2.3 to define
a coherent orientation of LBΛ

P .

(3) Orienting LB1
O and LB

Λ,2
O . Since D̃(T,u) is a rank-1 stabilization of

D(T,u), it is equivalent to orient LB1
O := det{D(T,u)}(T,u)∈B1

O
.

Similarly to parts (1), (2) above, we introduce a map mO: B1
O → Σ1

O/GO,
where Σ1

O is the space of rank-1 stabilizations of operators of the form:

∂̄J,ν;T := ∂s + J(s, t)∂t + ν(s, t): Lp
1(S

1
T × S1; R2n) → Lp(S1

T × S1; R2n)

for some T ∈ R
+, with J, ν defined similarly to part (1). The determinant

line bundle LΣ1
O is canonically oriented as follows. Note that Σ1

O contracts
to the subspace consisting of complex linear ∂̄J,ν;T , which we denote by Σ′

O.
However, LΣ′

O is canonically oriented by the complex linearity of kernels
and cokernels. Next, note that u∗K is trivial for any (T, u) ∈ B1

O. Given a
(u, T ) ∈ B1

O and a trivialization Φu of u∗K, one has

D̃(T,u) := Φu∗D̃(T,u)Φ̃
−1
u∗ ∈ ΣO,

where Φ̃−1
u∗ := 1 ⊕ Φ−1

u∗ as an endomorphism of R ⊕ Lp
1(S

1
T × S1; R2n). This

defines mO.
It is not hard to see that GO acts trivially on the Z/2Z-bundle Or(LΣ1

O)
by conjugation: by continuation (cf. the commutative diagram in p. 28 of
[4]), it suffices to check this for Or(LΣ′

O). However, for Or(LΣ′
O), this is

obvious, again by the complex linearity of elements in Σ′
O.
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The orientability of LB
Λ,2
O follows immediately from that of LB1

O, since
B

Λ,2
O = B1

O × Λ by definition.
Finally, note that for this version of symplectic Floer theory, the canonical

orientation of LΣ1
O/GO is compatible with the mod 2 Conley–Zehnder index

ind: the former is given by the canonical orientation of det D̃A0,T , where A0
is such that DA0,T is complex linear. By the definition of Conley–Zehnder
index (cf. Section I.3.1.4), CZ(A0) is even.

7.3. The signs. It was shown in [4] that with a coherent orientation for
MP , the Floer complex indeed satisfies ∂̃2

F = 0. In this subsection, we gen-
eralize this result to the setting of CHFSs and verify the second statement
of (RHFS4). Namely, we show that with MΛ

P endowed with coherent ori-
entations and M

Λ,2
O endowed with the grading-compatible orientation, the

various 0-dimensional strata JP , TP,hs-s, TP,db in M̂
Λ,1,+
P and their analogs

for broken orbits are expressed in terms of products of 0-dimensional moduli
spaces, with relative signs given by the formulae (I.28–I.33).

As the signs for JP , JO given in (I.28, 31) follow immediately from the
definition of coherent orientation, we shall concentrate on the signs for
TP,hs-s, TO,hs-s, TP,db, and TO,db: the formulae (I.30, 33, 29, 32) are, respec-
tively, rephrased in terms of the gluing theorems Propositions 2.1, 6.1.1 in
Lemmas 7.3.2–7.3.5 below.

We assume throughout this subsection that LΣP /GP , LΣO/GO and their
parameterized versions are endowed with coherent orientations/grading-
compatible orientations, and all the oriented K-models are compatible with
these orientations, unless otherwise specified.

The results and arguments in this subsection apply to general Floer the-
ory, in which the relevant moduli spaces are oriented according to the scheme
in Sections 7.2.1–7.2.4 above.

7.3.1. Preparations. (1) Signs of flowlines. The sign of a flow in a
0-dimensional reduced moduli space, û ∈ M1/R, in general, means the rela-
tive sign [u′]/ ker Du for any representative u ∈ M1 in the unreduced moduli
space, where Du is the deformation operator of M1. It will be denotedy by
sign(u).

(2) Trivializations of deformation operators. Instead of working with the
deformation operators Eu, D̃(T,u) and their parameterized versions, it is often
more convenient to work with their corresponding operators in ΣP or ΣO

via lifts of the maps mP , mO. These will be denoted by boldface letters such
as Eu, D̃(T,u). When LΣP /GP , LΣO/GO are orientable, the choice of liftings
does not matter. We shall also omit specifying the class [v] in A(y,[v]) =: Ay,
when the precise choice is immaterial.

For the symplectic Floer theory discussed in this article, this means
replacing the deformation operators by their conjugates by trivializations
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of u∗K, namely Φu (cf. the definition of Eu, Du in Section 7.1.5). We write
(f)Φ := Φu∗f , e.g., f = u′ for u ∈ BP or BO.

The families of operators considered in the rest of this subsection will
always be subfamilies of various versions of ΣP , ΣO. Thus, we shall refer
to the correlation and relative signs of orientations of determinant lines, or
mutual co-orientation of K-models without specifying the family.

The following consistency conditions on the choice of liftings will be
assumed in the following discussion:

(a) for a subfamily U ⊂ B, the lifting m̃: U → Σ is continuous;
(b) the liftings are “coherent” in the sense that they are consistent with

gluing.

7.3.2. Signs for TP,hs-s. To verify the sign in (I.30), we need to examine ori-
ented K-models for the gluing theorem, Proposition 6.1.1 (a). Let (JΛ, XΛ)
be an admissible (J, X)-homotopy, for any x1,x2 ∈ ℵΛ and R0 � 1, the
(omitted) proof of Proposition 6.1.1 (a) defines a gluing map

GlP,hs(x1,x2; �): TP,hs-s(x1,x2; �) × (R0,∞) → M
Λ,2
P (x1,x2; wt−Y,eP

≤ �).

Let (λ0, û) ∈ M̂
Λ,0
P (x,y; JΛ, XΛ) be a handleslide. Without loss of general-

ity, assume λ0 = 0. Let q, z ∈ ℵΛ be of indices ind y + 1 and ind y − 1,
respectively. Let

v̂− ∈ M̂0
P (q0, x0; J0, X0), v̂+ ∈ M̂0

P (y0, z0; J0, X0)

and v−, v+, u be centered representatives of v̂−, v̂+, û, respectively. Let

w#−(R) = v−#Ru, w#+(R) = u#Rv+

be the pregluings defined in Section 1.2.2, and let

(λ−(R), w−(R)) := GlP,hs(q,y; �)({v̂−, û}, R),

(λ+(R), w+(R)) := GlP,hs(x, z; �)({û, v̂+}, R).

be the images of the gluing map obtained by further perturbing w#−(R) and
w#+(R), respectively. To simplify notation, we shall omit R when there is
no danger of confusion.

Lemma. Let u, v±, (λ±, w±) be as above. Then

(1) − sign(λ−) sign(w−) = sign(v−) sign(u)

(2) sign(λ+) sign(w+) = sign(u) sign(v+).
(110)

Proof. We shall focus on case (1) below, since case (2) is entirely parallel.
According to Sections 7.1.3, 7.1.5, and the choice of coherent orientation,
we have the oriented K-models:
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(i±) [ Ê(0,w#±) : K̂#± → C#±], where

K̂#− = −R ⊕ (ker Ev−#R ker Eu), C#− = ∗#R coker Eu;

K̂#+ = R ⊕ (ker Eu#R ker Ev+), C#+ = coker Eu#R ∗ .

(ii) [ Ê(0,u): R ⊕ (ker Eu) → coker Eu].

Since u is by assumption a nondegenerate element of M
Λ,1
P , the standard

oriented K-model for Ê(0,u) may be viewed as a reduction of the oriented
K-model (ii) by −R, taking

coker Eu = −R(Y(0,u))Φ and

ker Eu = ker Ê(0,u) = sign(u)R(u′)Φ

as oriented spaces. (Recall that Y(0,u) is a cutoff version of ∂λVλ appearing
in the definition of Ê(0,u), cf. I.6.1.5.)

Next, decompose K̂#− into the direct sum of the ordered triple of oriented
subspaces

∗ ⊕ (ker Ev−#R∗), R ⊕ ∗, and ∗ ⊕(∗#R ker Eu).

By Lemma 1.2.4 (2), for large R, the restriction of ΠC#−Ê(0,w#−) to the first
and last subspaces are small, while its restriction to the second subspace
approximates the multiplication by Πcoker Eu Ỹ (under the natural identifi-
cation of the domain and range spaces), where Ỹ is another cutoff version
of ∂λVλ which agrees with (Y(0,u))Φ except in the region where s 
 −1.
Let Yν := ν(Y(0,u))Φ + (1 − ν)Ỹ for ν ∈ [0, 1], and Êν be the rank-1 stabi-
lization of Eu by multiplication by Yν . By the surjectivity of ∂s + Ay and
Ê0 = E(0,u), and an excision argument (as outlined in Section 1.2.5), Êν has
uniformly bounded right inveres. Thus, we may conclude that Πcoker Eu Ỹ ,
and hence also ΠC#−Ê(0,w#−)|R⊕∗, are positive of O(1). This implies that
the reduction of the oriented K-model (i−) by −R ⊕ ∗ is equivalent to the
standard oriented K-model of Ê(0,w#−), which is in turn equivalent to the
standard oriented K-model of Ê(λ−,w−), due to the the proximity between
w− and w#−. In other words, the projection

ΠK#− : ker Ê(λ−,w−) → ker Ev−#R ker Ê(0,u) =: K#−.

is an orientation-preserving isomorphism. We have the following ordered
bases compatible with the former and latter oriented spaces above:

{
sign(w−)(0, w′

−), (∂Rλ−)−1(∂Rλ−, ∂Rw−)
}

,
{

sign(v−)(0, v′
−), sign(u)(0, u′)

}
.
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Observing that sign(∂Rλ−) = − sign(λ−), and recalling the description of
Π

ιj#KJ
in Section 1.2.4, one finds that with respect to these bases, ΠK#− is

a matrix of the form
(

C1 sign(w−) sign(v−) C ′
1 sign(λ−) sign(v−)

C2 sign(w−) sign(u) −C ′
2 sign(λ−) sign(u)

)

for C1, C
′
1, C2, C

′
2 ∈ R

+.

Equation (110.1) follows from the requirement that this matrix has positive
determinant. �

7.3.3. Signs for TO,hs-s. To verify the sign in (I.33), we examine the ori-
ented K-model for the gluing theorem Proposition 6.1.1 (b). Let y, u be as in
Section 7.3.2, but now assume that the handleslide u is of Type II, namely,
x = y. Let w#(R) = u#R be the glued orbit introduced in Section 1.2.2,
and let (λ(R), (T (R), w(R))) := GlO,hs(û, R) be the image of the gluing
map obtained by perturbing w#(R), where GlO,hs : TO,hs-s(�) × (R0,∞) →
M̂

Λ,1
O (wt−Y,eP

≤ �) is the gluing map in the (omitted) proof of Proposition
6.1.1 (b).

Lemma. In the above notation, sign(w) = (−1)ind y sign(λ) sign(u).

Proof. According to Corollary 7.2.4, sign(w) = (−1)ind y[(w′)Φ]/keroy D̃(T,w),
where keroy D̃(T,w) denotes ker D̃(T,w) endowed with the orientation corre-
lated to the canonical orientation of D̃Ay ,T . We compute [(w′)Φ]/keroy D̃(T,w)
in two steps.

Step 1. The relative sign [(w′)Φ]/ keroy D́(λ,w). Let D́(λ,w) be the rank-1
stabilization of Dw defined by

D́(λ,w)(α, ξ) = α∂λVλ(w) + Dwξ.

Performing cyclic gluing to the oriented K-model [Ê(λ,u): R ⊕ ker Eu →
coker Eu], we obtain an oriented K-model for D́w# , a rank-1 stabilization
of Dw# by multiplication with a cutoff version of ∂λVλ(w#). The argument
in Section 7.3.2 shows that a reduction of this oriented K-model by R is
equivalent to a standard K-model for D́w# , which is in turn equivalent to
a standard K-model for D́(λ,w). Moreover, according to the continuity of
gluing homomorphisms and Lemma 7.2.2, the orientation of this standard
K-model is correlated to the canonical orientation of D̃Ay ,T . In other words,

[(w′)Φ]/keroy D́(λ,w) = sign(u).

Step 2. The relative sign keroy D́(λ,w)/ keroy D̃(T,w). Notice that the oper-
ators D́(λ,w), D̃(T,w) have a common stabilization, namely D̂(λ,(T,w)) =
(∂λVλ, (−w′/T, Dw)). The 2-dimensional space ker D̂(λ,(T,w)) is spanned by
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{∂R(λ, (T, w)), (0, (0, w′))}. This means Πcoker Dw

(
∂Rλ∂λVλ+∂RT (−w′/T )

)

= 0, and hence the relative sign is computed by

keroy D́(λ,w)/ keroy D̃(T,w) = − sign(∂Rλ)/ sign(∂RT ) = sign(λ).

Finally, the Lemma is obtained taking the product of the relative signs
obtained in Steps 1 and 2 above with (−1)ind y. �

7.3.4. Signs for TP,db. To verify the signs in (I.29), we need to analyze
the orientation of the K-model for the gluing theorem Proposition 2.1 (a).
Let λ, u0, . . . , uk+1 be as in Section 2.2, and let (λ, w) be the image of
({u0, u1, . . . , uk+1}, λ) under the gluing map defined in Section 4.1.4.

Lemma. Under the assumptions in Section 2.1 and in the above notation,

sign(w) = (−1)k+1
k+1∏

i=0

sign(ui).

Proof. As explained earlier in this section, since we work with the ordinary
Sobolev norms instead of the complicated polynomially weighted ones, it
is convenient to replace the delicate pregluing wχ defined in Section 2.2 by
ordinary glued trajectories or orbits. Choose Ri, R′

i, i ∈ {1, . . . , k + 1} and
L appropriately so that:

w# := τL

(
u0#R1 ȳ#R′

1
u1#R2 · · ·#R′

k+1
uk+1

)

is pointwise close to w and wχ: more precisely, w#(s), w(s), wχ(s) are
Cε-close to each other ∀s, and

wχ(γ−1
ui

(0)) = w#(γ−1
ui

(0)).

As explained in Sections 7.2.1 and 7.2.3, the deformation operator in ΣP

corresponding to w# is:

E
σ
w#

:= E
[0,σ]
u0

#R1E
[σ,−σ]
ȳ #R′

1
E

[−σ,σ]
u1

#R2E
[σ,−σ]
ȳ #R′

2
· · ·#R′

k
E

[−σ,0]
uk+1

for a small σ > 0. Let ēσ
y (s) := ς−σ,σ(s)ey, and recall that

ker E
[−σ,σ]
ȳ = coker E

[σ,−σ]
ȳ = Rēσ

y ; coker E
[−σ,σ]
ȳ = ker E

[σ,−σ]
ȳ = ∗.

Then by Lemma 1.2.4, we have the following oriented K-model for Ew#

compatible with the coherent orientation:

[ Eσ
w#

: K# → C#], where C# = ∗#R1Rēσ
y#R′

1
∗ · · ·#R′

k
∗,

K# = (−1)k+1 ker E
[0,σ]
u0

#R1 ∗ #R′
1
ker E

[−σ,σ]
u1

#R2 ∗ #R′
2
· · ·#R′

k
ker E

[−σ,0]
uk+1

.

On the other hand, in Section 3, we constructed the following K-model:

[Ewχ : Kχ → Cχ] =
[
Reu0 ⊕ · · · ⊕ Reuk+1 → Rf1 ⊕ · · · ⊕ Rfk+1

]
.
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(Ewχ is now considered as an operator between ordinary Sobolev spaces. As
remarked before, the polynomially weighted spaces are commensurate with
the ordinary Sobolev spaces, and we do not need uniform boundedness of
right inverses in this section. We have also suppressed the subscript Φ and
written eui = (eui)Φ, fj = (fj)Φ above for simplicity.)

Using the descriptions of ΠKχ and ΠCχ given in Section 1.2.4 and
Lemma 4.1.1 and the proximity between E

σ
w#

and Ewχ , one may easily check
that the oriented K-model [K# → C#] is equivalent to

[
(−1)k+1

k+1∏

i=0

sign(ui)Kχ → Cχ

]
,

implying that the latter is also compatible with the coherent orientation.
Next, observe that (w′)Φ projects positively to all eui . This, together with

the form of ΠCχEχ|Kχ given in Lemma 4.1.3 (b), implies that the reduction
of the above oriented K-model,

[
(−1)k+1

k+1∏

i=0

sign(ui) R(w′)Φ → ∗
]
,

is equivalent to the standard oriented K-model for Ewχ , which is in turn
equivalent to the standard oriented K-model for Ew, due to the proximity
between w and wχ. These observations immediately imply the lemma. �

7.3.5. Signs for TO,db. To verify the sign in (I.32), we examine the orien-
tation of the K-model in the proof of Proposition 2.1 (b). Let {û1, . . . , ûk}
be a broken orbit, ui be the centered representative of ûi, and (λ, (T, w)) be
the image of ({û1, . . . , ûk}, λ′) under the gluing map defined in Section 4.3.1.

Lemma. Under the assumptions in Section 2.1 and in the above notation,

sign(w) = (−1)ind− y+k
k∏

i=1

sign(ui).

Proof. As argued in the proof of Lemma 7.3.3,

(111) sign(w) = (−1)ind− y sign(λ)(w′)Φ/ keroy− D́(λ,w),

where the superscript oy− indicates the orientation correlated with the
canonical orientation of D̃Ay+σ,T . (Recall the definition ind− y = ind(Ay +
σ).) According to the assumption of Section 2.1, sign(λ) = 1.

Instead of working with the standard K-model for D̃Ay+σ,T , we find it
easier to work with the following mutually co-oriented K-model: [D́y:
− (ey)Φ → ∗], where D́y is the stabilization of DAy ,T by multiplication with
(ey)Φ. To see that they are indeed co-oriented, observe that the interpolation
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between them, D́ν = ((1 − ν)(ey)Φ, DAy+νσ,T ), is surjective ∀ν ∈ [0, 1] and
has the following continuous basis for the kernel: ξν := (νσ, −(1 − ν)(ey)Φ).

We now consider mutually co-oriented K-models for two operators approx-
imating D́(λ,w) and D́y, respectively. The proximity of the operators implies
that these K-models also form mutually co-oriented K-models for to D́(λ,w)

and D́y, respectively. Choose an glued orbit

w# = τL(ȳ#R1u1#R′
1
ȳ#R2 · · ·#Rk

uk#R′
k
)

appproximating w and wχ pointwise in the sense of Section 7.3.4, and let

D́
σ
w# :=

(
∂λVλ(w#), E

[σ,−σ]
ȳ #R1E

[−σ,σ]
u1

#R′
1
E

[σ,−σ]
ȳ #R2E

[−σ,σ]
u2

· · · E[−σ,σ]
uk

#R′
k

)

D́
σ
y# :=

(
− (ey)Φ, E

[σ,−σ]
ȳ #R1E

[−σ,σ]
ȳ #R′

1
E

[σ,−σ]
ȳ #R2E

[−σ,σ]
ȳ · · · E[−σ,σ]

ȳ #R′
k

)
.

Since [ E[−σ,σ]
ui : ker E

[−σ,σ]
ui → ∗] and [E[−σ,σ]

ȳ : Rēσ
y → ∗] are mutually co-

oriented K-models (by coherent orientation), the continuity of gluing homor-
phisms and stabilization imply that we have the mutually co-oriented K-
models [D́σ

w#: K̂w# → C#]gl, [D́σ
y#: K̂y# → C#]gl, where

K̂w# =(−1)k+1
R ⊕ (∗#R1 ker E

[−σ,σ]
u1

#R′
1
∗ #R2 ker E

[−σ,σ]
u2

· · · ker E
[−σ,σ]
uk

#R′
k
)

C# =(Rêσ
y )#R1 ∗ #R′

1
(Rêσ

y ) · · · ∗ #R′
k
,

K̂y# =(−1)k+1
R ⊕ (∗#R1(Rêσ

y )#R′
1
∗ #R2(Rêσ

y ) · · · (Rêσ
y )#R′

k
).

Note that the orientation of these K-models is different from the grading-
compatible orientation or the oy− orientation. We call it the “glued orien-
tation,” indicated by the superscript gl above.

We now compute the sign of (w′)Φ relative to the gl-orientation above.
As in Section 7.3.4, this is done by comparing the glued K-model above
to [D́(λ,wχ): K̂χ → Cχ] := [Rα ⊕ Reu1 ⊕ · · · ⊕ Reuk

→ Rf1 ⊕ · · · ⊕ Rfk],
constructed previously in Section 4.3. In this case, we find [D́σ

w#: K̂w# →
Cw#]gl equivalent to

[D́(λ,wχ): (−1)k+1Πi(sign(ui)) K̂χ → Cχ].

On the other hand, in Lemma 4.1.3 (b), ΠCχD́wχ |K̂χ
is computed in the

bases {1, eu1 , . . . euk
}, {fj} to be of the form:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+ − 0 · · · · · · +
+ + − 0 · · · 0

+ 0 +
.. . · · · 0

... 0 0
. . . . . .

...
+ 0 · · · · · · + −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(+/− denote positive/negative numbers.)
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modulo ignorable terms. Combining this with the fact that, in terms of the
same basis,

ΠK̂χ
(w′)Φ = (0, +, +, · · · , +),

we see that

(112) [(w′)Φ]/kergl
D́(λ,w) = −

k∏

i=1

sign(ui).

Next, we need to find the relative sign between the gl and oy orienta-
tions. For this purpose, we compute explicitly the form of the operator
ΠC#D́y#|K̂y#

. In terms of the bases {1, e1, . . . , ek, } and {fj}, where

ei := ∗#R1 ∗ · · · ∗ #Ri ē
σ
y#R′

i
∗ · · · ∗ #R′

k
;

fj := ∗#R1 ∗ · · · ∗ #R′
j−1

ēσ
y#Rj ∗ · · · ∗ #R′

k
,

it has the following form:
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+ + 0 · · · · · · −
+ − + 0 · · · 0

+ 0 − . . . · · · 0
...

...
. . . . . . . . .

...
+ 0 · · · 0 − +

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Combining this with the facts that, in the same basis,

ΠK̂y#
(−(ey)Φ) = (0,−,−, · · · ,−),

we have by the proximity between D́y# and D́y that

sign(oy−/gl) = −[(ey)Φ]/kergl
D́y = (−1)k+1.

The Lemma now follows by combining this with (112) and (111). �
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