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WONG’S EQUATIONS IN POISSON GEOMETRY

Oliver Maspfuhl

We show that the Hamiltonian systems on Sternberg-Wein-

stein phase spaces which yield Wong’s equations of motion for

a classical particle in a gravitational and a Yang-Mills field,

naturally arise as the first order approximation of generic

Hamiltonian systems on Poisson manifolds at a critical La-

grangian submanifold. We further define a second order ap-

proximated system involving scalar fields which first appeared

in Einstein-Mayer theory. Reduction and symplectic realiza-

tion of this system are interpreted in terms of dimensional

reduction and Kaluza-Klein theory.

1. Introduction

In 1970, when quantized non-abelian gauge theory was developing into a cor-
nerstone of today’s theoretical physics, Wong ([29]) wrote down his famous
equations of motion generalizing Lorentz’ equations for classical particles in
gravitational and Yang-Mills fields. In 1977/78, Sternberg and Weinstein
([23, 28]) showed that Wong’s equations could be understood as a Hamil-
tonian system. From a modern point of view, the underlying Sternberg-
Weinstein phase space is a Poisson manifold, obtained as the quotient of the
cotangent bundle of a principal fiber bundle P → B by the lifted action of
the structure group ([19, 20]). As usual, the gravitational and Yang-Mills
fields are modelled by a metric on B and a principal connection form on
P , respectively. Further work has been done to study the structure and
properties of the Sternberg-Weinstein phase space and generalizations (see
[8], and the overview below).

On the other hand, Weinstein’s splitting theorem ([27]) implies that a
local linear approximation to any Poisson manifold is given by the product
T ∗X×g∗ of a cotangent bundle with the dual of a Lie algebra endowed with
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the natural Poisson structure, which is locally equivalent to a Sternberg-
Weinstein phase space. Our aim is to describe a global version of such an
approximation which extends to the dynamical level.

1.1. Notation. For a manifold M , we denote by τM : TM → M (πM :
T ∗M → M) the (co)tangent projection, Ω(M) := ⊕dim M

k=0 Ωk(M) (X(M) :=

⊕dim M
k=0 Xk(M)) the (contravariant) exterior algebra, [·, ·] the Schouten-Nijen-

huis bracket on X(M), and iX (LX ) the contraction (Lie derivative) with

respect to X ∈ X1(M). The tangent map of f : M → M̃ is denoted by Tf .
For a fiber bundle p : E → M over M , Γ(E) denotes the global sections of

E, and V E the vertical tangent bundle. The product bundle of E and Ẽ
over M is denoted by E ×M Ẽ, and we write (pr1, pr2) : E ×M Ẽ → E × Ẽ
for the component projections. The dual of a linear map of vector bundles
φ : E → Ẽ over f : M → M̃ is denoted by φ∗ : SkẼ∗|f(M) → SkE∗, in

consistency with the pull-back since φ∗s̄ = φ∗s = φ∗ ◦ s ◦ f ; by ū ∈ C∞(E)
we denote the fiber-polynomial function defined by a section u ∈ Γ(S•E∗),
S•E∗ = ⊕∞

k=0S
kE∗, where Sk denotes the k-th symmetric tensor product.

If M = M̃ , we write E ⊕M Ẽ (E ⊗M Ẽ) for the Whitney sum (fiberwise

tensor product). For q ∈ Γ(E ⊗M Ẽ) (σ ∈ Γ(E∗ ⊗M Ẽ∗)), we denote

q♯ : Ẽ∗ → E (σ♭ : E → Ẽ∗) the corresponding bundle morphism. Given a
Poisson manifold (Z, ̟), we denote by Xf = ̟♯ ◦df the Hamiltonian vector
field of f ∈ C∞(Z). For a principal bundle P → M , the associated fiber
bundle to P with standard fiber F will be denoted by F (P ). Scalar products
and metrics are understood to be pseudo-euclidean in general.

1.2. Overview. Below we describe the construction of Sternberg and Wein-
stein, and the transitive Lie algebroid structure on the restriction of the
cotangent bundle of every Poisson manifold Z to a symplectic leaf S ⊂ Z.
The last allows to define the notion of an E-connection form, intimately
related to gauge fields. Similar results have earlier been obtained by Y.
Vorobjev [26]. In Section 2, using the general fact that the dual bundle
to any Lie algebroid carries a natural Poisson structure (see [2]), we con-
struct, for any Lagrangian submanifold X ⊂ S such that dH|X = 0 for a
generic Hamiltonian H on Z, a Poisson manifold Z ′ and a canonical Hamil-
tonian system defined by a Hamiltonian H ′

1 on Z ′, which can be considered
as a linear approximation of Z and H, respectively. Locally, it is deter-
mined by a metric and a Yang-Mills field on X, as for the system yielding
the Wong equations. Furthermore, we show that another system on Z ′,
related to Einstein-Mayer theory ([7]), can be seen as a natural quadratic
approximation, containing additional scalar fields. In Section 3 we con-
strain the construction to a coisotropic submanifold Q ⊂ Z, which leads to
an approximated system well-known from dimensional reduction ([4]). It
allows to interpret reduced scalar fields as Higgs fields. Finally, we show
in Section 4 that our constructions can be locally related to Kaluza-Klein
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and gauge theory via the choice of a locally minimal symplectic realization
ρ : W → U ⊂ Z. In particular, it allows to interpret the original system
locally as describing particle motion in a Yang-Mills field with values in a
general Poisson-algebra. This will be treated in another work, except for
some comments in section 4.1. The Yang-Mills equations for classical gauge
theories involving non-linear Poisson structures should be similar to those of
the Poisson sigma model of N. Ikeda ([10]) and Schaller-Strobl ([21]). This
will also be treated separately.

Since the Lie algebras of usual gauge theories lead to linearizable Poisson
structures, classical gauge theory turns out to be a generic setting in the
Poisson geometric framework. Notice also that the results of this work
should partly fit into the more general technical framework developed in
[12] for studying linearized dynamics near invariant isotropic submanifolds.

1.3. The Sternberg-Weinstein phase space. If (W, ω) is a symplectic
manifold with a surjective submersive moment map λ : W → g∗

L
generating

the right action of a Lie group G with Lie algebra Lie(G) = gL on W , and
if the quotient W/G is a manifold, we know that the natural projection
ρ : W → W/G coinduces a Poisson structure on W/G, and the G-orbits are
symplectically orthogonal to the fibers of λ ([27]). We consider the following
special case of this situation.

Proposition 1.1. Let p : P → B be a principal fiber bundle over the man-
ifold B with connected structure group G and Lie(G) = gL. The canonical
lift of the (right) G-action on P to (T ∗P, ω), where ω is the canonical sym-
plectic form, is generated by a moment map λ : T ∗P → g∗

L
given by α 7→

(ϕy)
∗(α|VyP ), where y = πP (α) and ϕ : P × gL → V P , (y, D) 7→ (DP )(y),

DP being the fundamental vector field of D ∈ gL. Assuming that the quotient
T ∗P/G is a manifold, there is a coinduced Poisson structure ̟ on it. If ρ

denotes the projection, (g∗
L
, wgL)

λ
← (T ∗P, ω)

ρ
→ (T ∗P/G, ̟) is a dual pair.

Definition 1.2. We call the quotient space (T ∗P/G, ̟) the Sternberg-
Weinstein phase space. Since G was supposed connected, the leaves of the
symplectic foliation of T ∗P/G are in bijection with the symplectic leaves of
g∗
L
, that is, the coadjoint orbits. A coadjoint orbit O ⊂ g∗

L
endowed with

its symplectic structure and moment map is called a generalized charge, in
analogy with the special case G = U(1) related to electrodynamics.

Remark 1.3. Sternberg ([23]) and Weinstein ([28]) directly constructed the
phase space corresponding to a specific choice of a coadjoint orbit, perform-
ing a Marsden-Weinstein reduction. Notice that the charge 0 corresponds
to a particular symplectic leaf of minimal dimension and which is naturally
identified with the base phase space T ∗B.

Any metric γ on B naturally defines a Hamiltonian H0 on T ∗B, quadratic
on the fibers and describing geodesic motion in a gravitational field modelled
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by γ on B. Given in addition a Yang-Mills field modelled by a G-equivariant
principal connection 1-form Â on P , we dispose of the projections

(1.1) µÂ : T ∗P → T ∗B and µ̌Â : T ∗P/G → T ∗B.

Then, H = µ̌∗
Â
H0 defines a Hamiltonian system on T ∗P/G (minimal cou-

pling). Consider the bundle g∗
L
(P π) for P π = T ∗B ×B P

pπ=pr1

−→ T ∗B, with

the induced and coadjoint right G-action. The map ψ̂Â defined by

ψ̂Â = (µ̂Â, λ) = (µÂ ×B πP , λ) : T ∗P −→ P π × g∗
L

is a G-equivariant diffeomorphism. Thus, it induces a diffeomorphism of the
quotient spaces ψÂ : T ∗P/G −→ g∗

L
(P π). Denoting pπ

g∗
L

: g∗
L
(P π) → T ∗B the

natural projection, we obtain the commutative diagram:

T ∗B
µ

Â←− T ∗P
ψ̂

Â−−−−−−−−−→ P π × g∗
L

տ µ̌Â

yρ

y ցpπ◦pr1

T ∗P/G
ψ

Â−−−−−−−−−→ g∗
L
(P π)

pπ
g∗
L−→ T ∗B

If we define a Poisson structure and a Hamiltonian on g∗
L
(P π) by setting

̟Â = (ψÂ)∗̟ and H0̂ = (pπ
g∗
L

)∗H0, then the systems (T ∗P/G, ̟, H) and

(g∗
L
(P π), ̟Â, H0̂) are ψÂ-related. In addition, g∗

L
(P π) is naturally fibred

over T ∗B, the phase space corresponding to the charge 0, while the gauge
field influences the dynamics only via the Poisson structure. This is the
natural phase space for writing down the equations of motion of particles in
a gravitational and a Yang-Mills field, by calculating ̟Â explicitly.

Definition 1.4. The systems (T ∗P/G, ̟, H) and (g∗
L
(P π), ̟Â, H0̂) are

called the Wong system and the left gauged Wong system, respectively.

It is well-known that Kaluza-Klein theory provides a description of Wong
dynamics on the realization space T ∗P ([11], [14], [13]).

Definition 1.5. Let p : P → B be a principal fiber bundle with structure
group G. Let gL = Lie(G), and let ι be a scalar product on gL. To any

metric γ on B, and to any principal connection form Â on P , we associate
a Kaluza-Klein metric (or bundle metric) κ by setting

(1.2) κ = p∗γ + Â∗ι

where (Â∗ι)s(U, V ) = ι(Âs(U), Âs(V )) for all s ∈ P ; U, V ∈ TsP .

Theorem 1.6. Let p : P → B, γ, Â, ι and κ be as in definition (1.5), and
let H0 and K be the Hamiltonians defined by γ and κ on T ∗B and T ∗P ,
respectively. Let ρ : (T ∗P, ω) → (T ∗P/G, ̟) be the Poisson projection as
in Proposition 1.1, define µ̌Â : T ∗P/G → T ∗B as in (1.1) and set H :=
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µ̌∗
Â
H0. Then, the Hamiltonian systems (T ∗P, ω, K) and (T ∗P/G, ̟, H) are

ρ∗-related. Furthermore, the projections by p of the geodesics of the Kaluza-
Klein metric (1.2) coincide with the projections by πB ◦ µ̌Â : T ∗P/G → B of
the solutions of the Hamiltonian equations defined by H on (T ∗P/G, ̟).

1.4. The Lie algebroid over a symplectic leaf. Let (Z, ̟) be a Pois-
son manifold. The following well-known observation implies that the triple
(T ∗Z,−̟♯, {·, ·}) is a Lie algebroid (see [16]) over Z.

Proposition 1.7. There exists a unique R-bilinear, skew-symmetric opera-
tion {·, ·} : Ω1(Z) × Ω1(Z) → Ω1(Z) such that {df, dg} = d{f, g} and

(1.3) {α, fβ} = f{α, β} − (̟♯ ◦ α)(f)β

for all f, g ∈ C∞(Z), α, β ∈ Ω1(Z). This operation is given by the formulas

{α, β} = L̟♯◦βα − L̟♯◦αβ − d̟(α, β) = i̟♯◦βdα − i̟♯◦αdβ + d̟(α, β).

Furthermore, it provides Ω1(Z) with a Lie algebra structure such that −̟♯◦
is a Lie algebra homomorphism, i.e., −̟♯ ◦ {α, β} = [−̟♯ ◦ α,−̟♯ ◦ β].

The dual bundle to any Lie-algebroid carries a natural Poisson structure
(see ([2]). The natural Poisson structure of the tangent bundle TZ is called
the tangent Poisson structure on TZ, while (T ∗Z,−̟♯, {·, ·}) is called the
tangent Lie algebroid (see [1]). Recall that the pointwise transversal Lie al-
gebra and Poisson structures arise as restrictions of the bracket to (arbitrary
extensions of) elements of the annihilator spaces (TzSz)

0 and its natural dual
TzZ/TzSz, respectively, where Sz is the symplectic leaf through any z ∈ Z.

Let now iS : S → Z be the inclusion of a fixed symplectic leaf (S, ωS).
The mutually dual vector bundles over S defined by

E = T ∗Z|S −→ S and E∗ = TZ|S −→ S.

are called the Lie algebroid and the dual Lie algebroid associated to S, re-
spectively. Furthermore, the mutually dual vector bundles

L = (TS)0 −→ S and L∗ = TZ|S/TS −→ S,

where (TS)0 denotes the annihilator subbundle in T ∗Z|S , are called the
Lie algebra bundle and the dual Lie algebra bundle to Z at S, respectively.
Writing ̟♯ for ̟♯|S , we have the exact sequence of vector bundles over S

(1.4) 0 −→ L →֒ E
−̟♯

−→ TS −→ 0.

Lemma 1.8. There is a well-defined bracket on the space of sections of E

(1.5) {·, ·} : Γ(E) × Γ(E) → Γ(E) {α|S , β|S} = {α, β}|S

for all α, β ∈ Ω1(Z), where the bracket on the right is the bracket of Propo-
sition 1.7. The restriction of this bracket to Γ(L) is given by the fiberwise
bracket of the transverse Lie algebras to S, and Γ(L) ⊂ Γ(E) is an ideal.
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Proof. Let X ∈ X1(Z). Cartan’s formula yields

(1.6) {α, β}(X ) = (̟♯ ◦ β) · α(X ) − (̟♯ ◦ α) · β(X ) + (LX̟)(α, β).

Since ̟♯(E) = TS, this shows that {α, β}|S depends only on α|S and β|S .
For α ∈ Γ(E), β ∈ Γ(L), it follows from (1.6) with X|S ∈ X1(S) and thus
LX̟|S ∈ X2(S) that {α, β} ∈ Γ(L). The other assertions are clear. ¤

Corollary 1.9. The bundle E with the bracket (1.5) on Γ(E) and the anchor
map −̟♯ is a transitive Lie algebroid. Furthermore, L is a natural Lie
subalgebroid of E, and E∗ and L∗ carry natural Poisson structures.

Definition 1.10. A 1-form θ ∈ Γ(T ∗S⊗S E) on S with values in E is called

an E-connection form iff the associated bundle morphism θ♭ : TS → E is a
splitting of (1.4), that is, −̟♯ ◦ θ♭ = IdTS . The set of E-connection forms
is denoted by A.

As for principal connections, the Leibnitz identity implies:

Proposition 1.11. Let θ be an E-connection form. There exists a 2-form
on S with values in L satisfying

(1.7) Φθ(X1,X2) = {θ(X1), θ(X2)} − θ([X1,X2]) ∀X1,X2 ∈ X1(S).

Definition 1.12. The 2-form Φθ is called the curvature of θ.

If φ : Z → Z is a Poisson automorphism such that φ(S) = S, its tangent
map induces a map φ∗ : Γ(∧kT ∗S ⊗S E) → Γ(∧kT ∗S ⊗S E) of φ given by

(1.8) (φ∗α)♭ = (Tφ|S)∗ ◦ α♭ ◦ ∧kT (φ|S) ∀α ∈ Γ(∧kT ∗S ⊗S E),

where α♭ denotes the bundle morphism associated to the form α. It is
straightforward to show that (φ ◦ ψ)∗α = ψ∗ ◦ φ∗ for any two φ and ψ pre-
serving S, that the action of φ preserves the space A and the bracket defined
in Lemma 1.5, and thus Φφ∗θ = φ∗Φθ. This is analogous to active gauge
transformations for usual principal connections. Since Poisson manifolds are
locally split, we might call such transformations splitting transformations.
In deed, one can easily see that every splitting map determines a local E-
connection form with vanishing curvature, and that it is possible to write
down splitting transformations as transitions between splittings, recovering
formulas similar to local gauge transformations ([18]). Recall that the fibers
of E are all isomorphic to some fixed Lie algebra g.

Definition 1.13. The bundle r : R → S whose fiber at x ∈ S consists of
all Lie algebra isomorphisms f : g → Lx is called the Lie frame bundle at S.

Proposition 1.14. R is a principal bundle over S with structure group
Aut(g), where the group action is given by (f, a) → f ◦ a for (f, a) ∈ R ×
Aut(g). With respect to the diagonal (right) action of Aut(g) on R × g, we
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have a canonical isomorphism L ∼= g(R). Any E-connection form θ defines
a covariant derivative on L given by

(1.9) ∇θ : Γ(L) −→ Γ(T ∗S ⊗S L) η 7−→ {θ, η}.

Here, the brackets denote the bracket of section of E defined in Lemma
1.8. Furthermore, it defines a principal connection form Aθ in the principal
bundle R, which takes values in the inner derivations of g. The curvature
form of ∇θ is given by

(1.10) F θ
∇(X1,X2) = ∇θ

X1
∇θ

X2
−∇θ

X2
∇θ

X1
−∇θ

[X1,X2] = (ad ◦ Φθ)(X1,X2)

for all X1,X2 ∈ X1(S). Here, ad denotes the adjoint action of the Lie algebra
structure of the fibers of L. In particular, the curvature form takes its values
in the inner derivations on the fibers of L, and the corresponding curvature
2-form F θ = dAθ + 1

2
[Aθ, Aθ] on R in the inner derivations of g, i.e., ad(g).

Proof. Since all fibers are isomorphic to g, L ∼= g(R) by standard construc-
tions (cf [15]). Let now θ be an EX -connection form. Since Γ(L) ⊂ Γ(E)
is an ideal, (1.9) makes sense, and one can easily check that by (1.3) it de-
fines a covariant derivative corresponding to a linear connection on L, and
induces a principal connection in the corresponding frame bundle. Since ∇θ

acts by the Lie bracket of forms, it is a derivation of the Lie algebra struc-
ture in the fibers, and thus, parallel transport will act by automorphisms.
Consequently, the connection in the principal frame bundle reduces to the
Lie frame bundle R. Furthermore, the action of ∇θ is by inner derivations
of the fibers of g(P ). Thus, the principal connection form takes values in
ad(g). Finally, we obtain (1.10) as an immediate consequence of the Jacobi
identity for {·, ·}. Thus, the 2-form F θ on R takes values in ad(g), and F θ

∇
takes values in the inner derivations of the fibers of L. ¤

2. Sternberg-Weinstein approximation

Here we construct a natural linear approximation to a Hamiltonian system
on Z by a Wong system. The construction depends on the choice of an
embedded Lagrangian submanifold iX : X → S of the fixed leaf S ⊂ Z.

2.1. The Poisson structure. Let (TX)0 and (TX)0 denote the subbun-
dles of T ∗Z|X and T ∗S|X given by the annihilator spaces of the fibers of TX
as a subbundle of TZ|X and TS|X , respectively. Since X is Lagrangian, the

restriction −̟♯
X = −̟♯|(TX)0 yields a map

(2.1) −̟♯
X = TiS ◦ (−ω♭

S)−1 ◦ (TiS)∗|(TX)0 : (TX)0 → (TX)0 → TX.

If we define the (dual ) Lie algebroid and (dual ) Lie bundle at X by

EX = (TX)0 ⊂ T ∗Z|X = E|X E∗
X = TZ|X/TX = E∗|X/TX

LX = (TS)0|X = L|X L∗
X = TZ|X/TS|X = L∗|X ,
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respectively, EX , E∗
X and LX , L∗

X being duals, we obtain an exact sequence

(2.2) 0 −→ LX −→ EX −→ TX −→ 0.

Lemma 2.1. There is a well-defined bracket on the space of sections of EX

(2.3) {·, ·} : Γ(EX) × Γ(EX) → Γ(EX) {α|X , β|X} = {α, β}|X

for all α, β ∈ Ω1(Z) such that α|X and β|X take values in EX , where the
bracket on the right is the bracket of Proposition 1.7. Furthermore, Γ(LX) ⊂
Γ(EX) with the fiberwise bracket is an ideal.

Proof. Let α, β ∈ Ω1(Z) such that α|X and β|X take values in EX , and
α♯ = ̟♯ ◦ α etc. From Cartan’s formula, we saw that for X ∈ X1(Z),

{α, β}(X ) = iα♯(iXdβ) − iβ♯(iXdα) + X · ̟(α, β)(2.4)

= β♯ · α(X ) − α♯ · β(X ) + (LX̟)(α, β).(2.5)

Now, (2.1) shows that α♯|X and β♯|X take their values in TX, and thus,
the restriction to X of (2.5) depends only on the values of α and β on
X. Furthermore, assume that X|X ∈ X1(X). Then, the last term in (2.4)
vanishes on X, as does the first term iα♯(iXdβ) = dβ(X , α♯) = α♯ · β(X ) −
X · β(α♯) − β([X , α♯]), and also the second term for similar reasons. This
shows that the bracket of EX -valued forms is EX -valued. The last assertions
follow from Lemma 1.8. ¤

Corollary 2.2. The bundle EX with the bracket (2.3) on Γ(EX) and the

anchor map −̟♯
X is a transitive Lie algebroid with LX as a Lie subalgebroid,

and E∗
X and L∗

X are endowed with natural Poisson structures.

Definition 2.3. A 1-form α : X → T ∗X ⊗X EX on X with values in EX

is called an EX-connection form if the associated bundle morphism over X

α♭ : TX → EX is a splitting of (2.2), i.e., satisfies −̟♯
X ◦ α♭ = IdTX . The

set of EX -connection forms is called AX .

Proposition 2.4. For any θ ∈ A, i∗Xθ ∈ AX , and AX = i∗XA. For any α =
i∗Xθ ∈ AX , there exists a 2-form on X with values in LX satisfying, for all

X1,X2 ∈ X1(X), Φα(X1,X2) = i∗XΦθ = {α(X1), α(X2)}−α([X1,X2]). If φ is
a Poisson isomorphism preserving S and X, it yields an action on AX as in
(1.8) by setting φ∗(i∗Xθ) = i∗X(φ∗θ) for all θ ∈ A, and Φφ∗α = φ∗Φα. Finally,
any α ∈ AX induces a principal connection in the restricted principal bundle
RX := R|X and the associated bundle g(RX) = g(R)|X .

Definition 2.5. The 2-form Φα is called the curvature of α.
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Now we turn to the Poisson structure on E∗
X and show that it is a natural

linear approximation to Z near X by describing its construction explicitly.
We denote by τ : E∗

X → X the projection induced by τZ : TZ → Z.

Proposition 2.6. There is a natural extension of the bracket defined in
Lemma 2.1 on the sections of EX , seen as vertically linear functions on the
dual bundle E∗

X , to an exact Poisson bracket {·, ·}′ on C∞(E∗
X).

Proof. Clearly, it suffices to specify the Poisson bracket on a family of
functions whose differentials span T ∗E∗

X at each point. Let the subspace
τ∗C∞(X) ⊕ Γ̄(EX) ⊂ C∞(E∗

X) be the sum of the subspaces of vertically
constant and linear functions, respectively, the last corresponding to ele-
ments of Γ(EX). One easily verifies that T ∗

t (E∗
X) = d(τ∗C∞(X) ⊕ Γ̄(EX))t

for all t ∈ E∗
X . We can naturally define the Lie bracket {·, ·}′ to be the trivial

Lie bracket on τ∗C∞(X) and induced on Γ̄(EX) by the Lie algebroid bracket
on Γ(EX). From the Leibnitz identities for the Lie algebroid brackets and
the bracket {·, ·}′, it follows that for V ∈ Γ(E), denoting the corresponding
function as V̄ ∈ Γ̄(EX), and f ∈ C∞(X), we must have

(2.6) {V̄, τ∗f}′ = −XV̄τ∗f = τ∗((−̟♯
X ◦V)f) = ((−̟♯

X)∗ ◦df)V̄ = Xτ∗f V̄,

where the section (−̟♯
X)∗◦df : X → T ∗X → E∗

X of E∗
X is seen as a constant

vertical vector field on E∗
X , which is thus the Hamiltonian vector field of τ∗f .

(2.6) gives us a map α : Γ̄(EX) → der(τ∗C∞(X)), and a Poisson bracket
{·, ·}′ on τ∗C∞(X)⊕ Γ̄(EX) ⊂ C∞(E∗

X) can thus be naturally defined as the
semidirect sum τ∗C∞(X)⋊α Γ̄(EX). It remains to verify that the extension
of {·, ·}′ to C∞(E∗

X) satisfies the Jacobi identity.

We take Darboux coordinates (xµ, pµ, ra), 1 ≤ µ ≤ m = 1
2rk(wx0

) and 1 ≤
a ≤ n = dim Z − 2m, centered at x0, such that (with Einstein’s convention)

̟ =
∂

∂xµ
∧

∂

∂pµ
+ 1

2
̟ab(ra))

∂

∂ra
∧

∂

∂rb

where ̟ab(ra) = ̟c
ab(ra)rc = cc

abrc + O(r2) and cc
ab = ̟c

ab(0) are the struc-
ture functions and constants of the transverse structure and Lie algebra g at

x0, respectively. Jacobi’s identity reads
∑

cycl ̟
lj ∂̟ik

∂xl = 0 (sum over ijk).
Since our claim is local, we can assume that our Darboux coordinates on

Z cover all of X. Then they induce coordinates (xµ, ẋµ, ṗµ, ṙa) on TZ|X
with respect the vector fields (∂/∂xµ, ∂/∂pµ, ∂/∂ra) whose values at x span
TxZ for all x ∈ X, and coordinates (xµ, [ṗµ], [ṙa]) on E∗

X = TZ|X/TX
with respect to the sections ([∂/∂pµ], [∂/∂ra]) of E∗

X whose values at x span
(E∗

X)x for all x ∈ X. On the other hand, the values at x of the sections
(dpµ|X , dra|X) of T ∗ZX span EX = (TX)0 at each x ∈ X. By definition,
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xµ ∈ τ∗C∞(X), while [ṗµ] = ¯dpµ|X , [ṙa] = ¯dra|X ∈ Γ̄(EX). Thus, we have

{xµ, xν}′ = 0

{[ṗµ], [ṗν ]}
′ = [dpµ|X , dpν |X ]EX

= (d{pµ, pν}|X) = 0

{xµ, [ṗν ]}
′ = ((̟♯

X ◦ dpν |X) · xµ = ∂xµ/∂xν = δµ
ν

{xµ, [ṙb]}
′ = ((̟♯

X ◦ drb|X) · xµ = 0

{[ṗµ], [ṙb]}
′ = [dpµ|X , drb|X ]EX

= (d{pµ, rb}|X) = 0

{[ṙa], [ṙb]}
′ = [dra|X , drb|X ]EX

= (d{ra, rb}|X) = cc
abd̄rc|X = cc

ab[ṙc]

where we used the definitions above. Hence, with respect to the coordinates
(xµ, [ṗµ], [ṙa]), the bivector ̟′ defined by the bracket {·, ·}′ on C∞(E∗

X) reads

(2.7) ̟′ =
∂

∂xµ
∧

∂

∂[ṗµ]
+ 1

2
cc
ab[ṙc]

∂

∂[ṙa]
∧

∂

∂[ṙb]
.

Since the cc
ab are structure constants of the Lie algebra g, it follows that

̟′ satisfies the Jacobi identity [̟′, ̟′] = 0 as required. If I ∈ X(E∗
X) is

the linear vertical vector field on E∗
X corresponding to the identity bundle

morphism IdE∗
X

∈ Γ(E∗
X ⊗X EX), then I = [ṗµ]∂/∂[ṗµ] + [ṙa]∂/∂[ṙa], and

one easily verifies that ̟′ = −[̟′, I], that is, ̟′ is even exact. In addition,
we note that (xµ, [ṗµ], [ṙa]) are Darboux coordinates for ̟′ on E∗

X at x0. ¤

Corollary 2.7. Let Γ̄(S•EX) = Γ(S•EX) be the subalgebra of fiber-polyno-
mial functions on E∗

X . If CX = {f ∈ C∞(Z)|f |X = 0}, there is a natural
map CX → Γ̄(S1EX) given by f 7→ d̄f |X . For any f ∈ CX , the adjoined
action of d̄f |X on Γ̄(S•EX) is given by

(2.8) {P̄ , d̄f |X}′ = Xd̄f |X
· P̄ = (LXf

P̂ )|X ∀P ∈ Γ(S•EX),

where P̂ ∈ Γ(S•(T ∗Z)) is any extension of P to a neighborhood of X.

Proof. The identifications are obviously canonical. Thus, since {·, Xd̄f |X
}′

and LXf
are both derivatives of the respective associative algebra structures,

it suffices to verify (2.8) for elements of Γ(S0EX) = C∞(X) and Γ(S1EX) =
Γ(EX). For P ∈ C∞(X), we have P̄ = τ∗P , and thus

{P̄ , d̄f |X}′ = −((−̟♯
X ◦ df |X) · P ) = (Xf |X · P ) = (LXf

P̂ )|X

for any extension P̂ of P since Xf |X is tangent to X for f ∈ CX . For

P ∈ Γ(EX) and any extension P̂ , we have further

{P̄ , d̄f |X}′ = {P, df |X} = (i̟♯◦dfdP̂ − i̟♯◦P̂ d(df) + d(̟(P̂ , df)))|X

= (iXf
◦ dP̂ + d ◦ iXf

P̂ )|X = (LXf
P̂ )|X .

¤
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Corollary 2.8. There is a canonical injection Γ(∧nT ∗X⊗XEX) →Ωn(E∗
X),

defined by the tensor product of the pull-back by τ with the identification of
corollary 2.7, which we denote again by a bar. Any α ∈ AX defines a
projection hα : X1(E∗

X) → X1(E∗
X) with τ∗ ◦ hα = τ∗ given by

hα = ad(α) ◦ τ∗, where ad(α)(X ) = −X
α(X )

∀X ∈ X(X).

The following structure equation and Bianchi identity hold good:

dᾱ ◦ hα = Φ̄α + 1

2
{ᾱ, ᾱ}′ dΦ̄α ◦ hα = 1

2
{ᾱ, Φ̄α}′,

where {ᾱ, ᾱ}′(Y1,Y2) = {ᾱ(Y1), ᾱ(Y2)}
′ − {ᾱ(Y2), ᾱ(Y1)}

′ etc.

Proof. Because of (2.6), we have in deed τ∗ ◦ hα(Y) = −̟♯ ◦ α♭ ◦ τ∗(Y) =
τ∗(Y). Let Yi ∈ X1(E∗

X), Xi = τ∗Yi, i = 0, 1, 2. Then, we obtain

hα(Yi) · ᾱ(hα(Yj)) = −X
α♭◦τ∗(Yi)

· α(τ∗ ◦ hα(Yj))

= {α(Xi), α(Xj)}
′,

Φ̄α(Y1,Y2)

= {α(X1), α(X2)} − α([X1,X2])

= {α(X1), α(X2)}
′ − {α(X2), α(X1)}

′ − α([X1,X2]) − {α(X1), α(X2)}
′

= hα(Y1) · ᾱ(hα(Y2)) − hα(Y2) · ᾱ(hα(Y1)) − ᾱ([hα(Y1), h
α(Y2)])

− {ᾱ(Y1), ᾱ(Y2)}
′ = (dᾱ ◦ hα − 1

2
{ᾱ, ᾱ}′)(Y1,Y2)

which implies the structure equation. For the Bianchi identity, we compute

Φ̄α ◦ hα(Y0,Y1,Y2)

= d(dᾱ − 1

2
{ᾱ, ᾱ}′) ◦ hα(Y0,Y1,Y2)

= − 1

2
d({ᾱ, ᾱ}′)(hα(Y0), h

α(Y1), h
α(Y2))

= −
∑

cycl

{
α(X0),

{
α(X1), α(X2)

}′
}′

+
∑

cycl

{
α([X0,X1]), α(X2)

}′

=
∑

cycl

{
α(X0),

{
α(X1), α(X2)

}′
}′

−
∑

cycl

{
α(X0), α([X1,X2])

}′

=
∑

cycl

{
α(X0), {α(X1), α(X2)} + α([X1,X2])

}′

= 1

2
{ᾱ, Φ̄α}′(Y0,Y1,Y2),

where the summation runs over all cyclic permutations of the indices 0, 1, 2,
and we used the Jacobi identity for the fourth equality. ¤

Definition 2.9. For any Poisson manifold (Z, ̟) and any Lagrangian sub-
manifold X ⊂ S of a symplectic leaf S, the Sternberg-Weinstein approxi-
mation at X is given by the Poisson manifold (Z ′, ̟′), where Z ′ = E∗

X =
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TZ|X/TX, and ̟′ is the Poisson tensor defined by the Poisson bracket {·, ·}′

on C∞(Z ′) in lemma 2.6, given in Darboux coordinates by (2.7).

Corollary 2.10. The subbundle S′ = TS|X/TX ⊂ Z ′ is a symplectic leaf,
which contains the zero section, identified with X, as a Lagrangian subman-
ifold. Setting EX = (TX)0 and ω♭

X = ω♭
S |TX , we have bundle isomorphisms

−ω♭−1
X : EX −→ TX (−ω♭

X)∗ : S′ = E∗
X −→ T ∗X

which are the anchor map for the Lie algebroid structure on EX (set Z = S)
and a symplectomorphism with respect to the canonical symplectic structure
on T ∗X, respectively. The subspace CS′ = {f ∈ C∞(Z ′)|f |S′ = 0} is an
ideal of C∞(Z ′), and the subspace Γ̄(LX) of the functions on E∗

X defined by
sections of LX is an ideal of Γ̄(EX). The canonical projection

(2.9) l : Z ′ −→ L∗
X

∼= g∗(RX),

is a Poisson morphism for the canonical Poisson structure on L∗
X . That is,

(2.10) {l∗f, l∗g}(l−1(n)) = {f |(L∗
X)x

, g|(L∗
X)x

}x(n),

for all f, g ∈ C∞(L∗
X) and n ∈ (L∗

X)x, where {·, ·}x denotes the Poisson
bracket on (L∗

X)x
∼= g∗. Finally, the Sternberg-Weinstein approximation of

Z ′ at X ⊂ S′ is canonically isomorphic to Z ′.

Proof. The assertions are easily checked in our Darboux coordinates. For

(2.10), LX = ker(̟♯
X) implies {τ∗C∞(X), Γ̄(LX)} = 0 and by lemma 2.1,

Γ̄(LX) ⊂ Γ̄(EX) is an ideal. For the last fact, we use that for every vector
bundle M → N , we have vector bundle isomorphisms TM |o(N)/T (o(N)) ∼=
V (M)|o(N)

∼= M , where o(N) ∼= N is the image of the zero section. ¤

Remark 2.11. We can see here that Z ′ is locally equivalent to T ∗X×g∗, and
in particular, transversally linear at S′ = T ∗X. Since Z is locally equivalent
to V × N , and there is always a local symplectic isomorphism from V to
T ∗X, we see that Z is locally Poisson equivalent to Z ′ iff it is linearizable
at V . In corollary 4.4 we will see that the Sternberg-Weinstein phase space
is naturally isomorphic to its Sternberg-Weinstein approximation. ♦

2.2. The Wong system. We will now approximate a given Hamiltonian
system on Z by a Wong system on Z ′.

Theorem 2.12. Let X ⊂ S
iS
→֒ Z be a Lagrangian submanifold of the

symplectic leaf (S, ωS) of the Poisson manifold (Z, ̟). Every Hamiltonian
H ∈ C∞(Z) with dH|X = 0 naturally defines a bundle morphism t2XH :
E∗

X → EX , in the notation of 2.1. If the composition t2XH0 = (TiS)∗◦t2XH :
E∗

X → EX is invertible, then the bundle morphisms

γ♭
H = (−ω♭

X)∗ ◦ (t2XH0)
−1 ◦ (−ω♭

X) : TX −→ T ∗X

α♭
H = t2XH ◦ (t2XH0)

−1 ◦ (−ω♭
X) : TX −→ EX
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define a metric γH and an EX-connection form αH on X, as well as a
principal connection form AH = AαH on RX .

Proof. The tangent map of dH|S : S → E yields bundle morphisms

T (dH)|TS|X : TS|X −→ (dH|X)∗T (E) = TS|X ⊕X E|X

pr2 ◦ T (dH)|TS|X : TS|X −→ E|X(2.11)

(TiS)∗ ◦ pr2 ◦ T (dH)|TS|X : TS|X −→ T ∗S|X ,(2.12)

the decomposition being canonical over the zero section. Since dH|X =
0, the later maps vanish on TX. On the other hand, since d(i∗SdH) =
d(d(H|S)) = 0, (2.12) defines symmetric bilinear forms on the fibers of
TS|X . Thus, it induces symmetric bilinear forms on the fibers of the quotient
bundle E∗

X and an associated bundle morphism E∗
X → EX . Hence, (2.11)

must take values in EX , and as claimed, we obtain the bundle morphisms

(2.13) t2XH : E∗
X −→ EX t2XH0 = (TiS)∗ ◦ t2XH : E∗

X −→ EX .

If t2XH0 is invertible, then γH is obviously a metric on X. On the other

hand, −̟♯
X ◦ α♭

H = TiS ◦ (−ω♭
S)−1 ◦ (TiS)∗ ◦ t2XH ◦ (t2XH0)

−1 ◦ (−ω♭
X) =

IdTX , showing that αH is an EX -connection form on X, inducing a principal
connection form on RX . In summary, we have the diagram

E|X −−−−→ EX −→ EX

−ω♭
X←−−−− TX

pr2◦T (dH)|TS|X

x t2XH տ t2XH0

x
yt2XH−1

0

yγH

TS|X −−−−→ E∗
X

−(ω♭
X)∗

−−−−−→ T ∗X

where α♭
H = t2XH ◦ (t2XH0)

−1 ◦ (−ω♭
X) : TX −→ EX . ¤

Corollary 2.13. Any section h ∈ Γ(E) with h|X = 0 naturally defines a
bundle morphism tXh : TS|S → EX . If the composition tXh0 = (TiS)∗◦tXh
is invertible and d(i∗Sh)|X = 0, then tXh uniquely defines a metric, an EX-
connection form and an associated principal connection form on RX . Given
in addition a linear connection in the bundle E, which provides a splitting
TE = TS ⊕S V E over S, any h ∈ Γ(E) with d(i∗Sh) = 0 defines a metric
and an E-connection form on the leaf S.

By Theorem 2.12, a Hamiltonian H on Z with dH|X = 0 defines a map

(α♭
H)∗ : Z ′ → T ∗X and, via the metric γH , a Hamiltonian H ′

0 on T ∗X.
Thus, we can define a Hamiltonian system on Z ′ by

(2.14) H ′
1 = H ′

0 ◦ (α♭
H)∗, where H ′

0(p) = 1

2
p(γ♭−1

H (p)) ∀p ∈ T ∗X.
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Notice that while the definition of H ′
1 requires the invertibility of t2XH0, that

of H ′
0 does not. We now define a bundle morphism over X by

ψH = ((α♭
H)∗, l) : Z ′ −→ Lπ

X = T ∗X ⊕X L∗
X ,

which is obviously a diffeomorphism. It can be used to induce an H-
depending Poisson structure ̟′

H = (ψH)∗̟
′ on Lπ

X . Then, H ′
0 pulls back to

H ′
0̂
∈ C∞(Lπ

X), and by construction, the system (Lπ
X , ̟′

H , H ′
0̂
) is equivalent

to the system on Z ′. But Lπ
X is fibred over T ∗X and X and admits natural

physical coordinates for the equations of motion, if we can calculate ̟H .
The affine bundle morphism (Tpr1 ⊕TX Tpr2) : T (Lπ

X)
∼
→ T (T ∗X) ×TX

T (L∗
X) induces a graded algebra map horπ

H : X(T ∗X) → X(Lπ
X) by

Z = horπ
H(Y) ⇐⇒ pr1∗(Z) = Y, pr2∗(Z) = horH(πX∗(Y))

horH(X ) = (l∗ ◦ ad)(αH)(X ) = −l∗XαH(X )
∀X ∈ X1(X),

where the Hamiltonian vector field is defined by ̟′ and projectable by l since
Γ̄(LX) ⊂ Γ̄(EX) is an ideal. Since by Corollary 2.8 (τL∗

X
)∗ ◦ horH = IdTX ,

where τL∗
X

: L∗
X → X, the map is well defined. Furthermore, the vertical

restriction V (Lπ
X) ∼= V (T ∗X) ⊕X V (L∗

X) induces injections

Γ(∧nT ∗X ⊗X LX) ∋ ϕ 7−→ −→ϕ ∈ Γ(∧nV (Lπ
X)) →֒ Xn(Lπ

X)

Γ(∧nV (L∗
X)) ∋ w 7−→ ←−w ∈ Γ(∧nV (Lπ

X)) →֒ Xn(Lπ
X),

where in the first line, we used also the natural injections ∧nΓ(T ∗X) →
∧nV (T ∗X) and Γ(LX) → C∞(Lπ

X) as constant vertical multi-vector fields
and as vertically linear functions, respectively.

Theorem 2.14. The Poisson structure ̟H on Lπ
X is given by

(2.15) ̟H = horπ
H ◦ wT ∗X +

−→
ΦαH + ←−w L∗

X
,

where wT ∗X is the Poisson tensor on T ∗X, ΦαH is the curvature of αH , and
wL∗

X
is the Poisson tensor on L∗

X .

Proof. We determine the Poisson structure ̟′
H on Lπ

X on the characteristic
set of functions on Lπ

X given by the functions on T ∗X induced by functions
and vector fields on X, and functions induced by sections of LX , denoted
by a double bar. The dual of ψH decomposes into a direct sum as

ψ∗
H = (α♭

H , l∗) : (Lπ
X)∗ = TX ⊕X LX

∼
−→ α♭

H(TX) ⊕X LX
∼= EX .

It follows that for fi ∈ C∞(X) = X0(X), Xi ∈ X1(X), and Vi ∈ Γ(LX),

ψ∗
H

¯̄fi = τ∗fi ψ∗
H

¯̄Xi = αH(Xi) ψ∗
H

¯̄Vi = V̄i i = 1, 2.
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Denoting by {·, ·}′H the Poisson bracket defined by ̟′
H , this implies that

{ ¯̄f1,
¯̄f2}

′
H = (ψ−1

H )∗{τ∗f1, τ
∗f2}

′ = 0 = { ¯̄f1,
¯̄f2}T ∗X

{ ¯̄X1,
¯̄f2}

′
H = (ψ−1

H )∗{αH(X1), τ
∗f2}

′ = (ψ−1
H )∗τ∗((−̟♯

X ◦ αH(X1)) · f2)

= (ψ−1
H )∗τ∗(X1 · f2) = X1 · f2 = { ¯̄X1,

¯̄f2}T ∗X

{ ¯̄f1,
¯̄V2}

′
H = (ψ−1

H )∗{τ∗f1, V̄2}
′ = −(ψ−1

H )∗τ∗((−̟♯
X ◦ V2) · f1) = 0

{ ¯̄X1,
¯̄V2}

′
H = (ψ−1

H )∗{αH(X1), V̄2}
′ = (ψ−1

H )∗{αH(X1),V2} = {αH(X1),V2}

{ ¯̄X1,
¯̄X2}

′
H = (ψ−1

H )∗{αH(X1), αH(X2)}
′

= (ψ−1
H )∗(ΦαH (X1,X2) + αH([X1,X2]))

= ΦαH (X1,X2) + [X1,X2] = ΦαH (X1,X2) + { ¯̄X1,
¯̄X2}T ∗X

{ ¯̄V1,
¯̄V2}

′
H = (ψ−1

H )∗{V̄1, V̄2}
′ = {V1,V2} = { ¯̄V1,

¯̄V2}L∗
X

where we also wrote {·, ·}T ∗X and {·, ·}L∗
X

for the Poisson bracket on T ∗X
and L∗

X , respectively, omitting obvious restrictions. By testing on the char-
acteristic set of functions, we verify expression (2.15) for ̟H . For example,

̟H(d ¯̄X1, d
¯̄X2)

= (pr1∗ ◦ horπ
H ◦ wT ∗X)(d ¯̄X1|T ∗X , d ¯̄X2|T ∗X) +

−→
ΦαH (d ¯̄X1, d

¯̄X2)

= { ¯̄X1,
¯̄X2}T ∗X + ΦαH (X1,X2)

= { ¯̄X1,
¯̄X2}

′
H ,

where we used that by construction, −→ϕ (d ¯̄X ) = d ¯̄X (−→ϕ ) = ϕ(X ) for all
X ∈ X(X) and ϕ ∈ Γ(T ∗X ⊗X LX). ¤

Definition 2.15. The equivalent systems (Z ′, ̟′, H ′
1) and (Lπ

X , ̟′
H , H ′

0̂
)

will be called the Wong system and the gauged Wong system associated to
the Hamiltonian system (Z, ̟, H) at X, respectively.

Wong’s equations ([29]) can now be easily written down. [20] provides
a detailed calculation and discussion of the Poisson structure (2.15) for the
original Sternberg-Weinstein phase space and the (left) gauged Wong sys-
tem. Note that the original Wong system is associated to itself as wanted.

2.3. The Einstein-Mayer system. If t2XH0 in Theorem 2.12 in degener-
ate, it is still possible to define an approximated system on the Sternberg-
Weinstein approximation of the underlying Poisson manifold.

Theorem 2.16. Let X ⊂ S
iS
→֒ Z be a Lagrangian submanifold of the

symplectic leaf (S, ωS) of the Poisson manifold (Z, ̟). Every Hamiltonian
H ∈ C∞(Z) such that dH|X = 0 naturally defines a section d2

XH : X →
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S2EX of symmetric bilinear forms on the fibers of E∗
X , in the notation of

2.1. If d2
XH|E∗

X
is nondegenerate, then d2

XH determines a metric γH and
an EX-connection form αH on X, a principal connection form AH on RX ,
and fiber-quadratic function H ′

20 on L∗
X . Furthermore, if the corresponding

field of quadratic forms is nondegenerate, then d2
XH is nondegenerate and

defines a field η of scalar products on the fibers of EX , which determines,
and is determined by, the triple (γH , αH , χH) of fields on X, where χH is
the field of scalar products on LX = g(RX) defining H ′

20.

Proof. The first jet of dH with dH|X = 0 yields maps

J1dH|X : X → T ∗Z|X ⊗X (dH|X)∗T (T ∗Z) = T ∗Z|X ⊗X (TZ|X ⊕X T ∗Z|X)

pr2 ◦ J1(dH)|X : X −→ S2(T ∗Z|X),(2.16)

where the field of (Hessian) bilinear forms on the fibers of TZ|X defined
in the second line is symmetric since dH is closed. Since in addition, the
corresponding bundle morphism vanishes on TX because of dH|X = 0, we
get an induced field of symmetric bilinear forms on the fibers of E∗

X

d2
XH : X −→ S2EX , with d2

XH♯ : E∗
X −→ EX .

Restriction to the subbundle E∗
X ⊂ E∗

X yields a field d2
XH0 : X → S2EX

of scalar products on the fibers of E∗
X and a bundle morphism t2XH as in

(2.13), with t2XH0 = d2
XH♯

0. If d2
XH0 is nondegenerate, we obtain a metric

and an EX -connection form as in theorem 2.12 given by

γ♭
H = (−ω♭

X)∗ ◦ d2
XH♯−1

0 ◦ (−ω♭
X) : TX −→ T ∗X

α♭
H = d2

XH♭ ◦ TiS ◦ d2
XH♯−1

0 ◦ (−ω♭
X) : TX −→ EX .

In addition, αH yields a principal connection form AH in RX , and the bundle
identification ψH : E∗

X
∼
→ T ∗X ⊕X L∗

X . Let lαH : L∗
X → ker(α♭

H)∗ ⊂ E∗
X be

the induced inclusion, whose image is by construction orthogonal to T ∗X ∼=
E∗

X ⊂ E∗
X with respect to d2

XH. Then, if l is the projection (2.9),

(2.17) d2
XH = (α♭

H ◦ (−ω♭−1
X ))∗d2

XH0 + l∗((lαH )∗d2
XH),

and H ′
20 is defined as the function given by the field (lαH )∗d2

XH ∈ S2(LX). If
this field is nondegenerate, then d2

XH is nondegenerate, too. The remaining
assertions follow by dualizing (2.17). Summarizing, we obtain the diagram:

(2.18)

LX −−−−→ EX
(T iS)∗

−−−−→ EX

−ω♭
X←−−−− TX

yχ♭
H η♭

y
xd2

XH♯ d2

XH♯
0

x
yd2

XH♯−1

0

yγ♭
H

L∗
X ←−−−− E∗

X
TiS←−−−− E∗

X

(−ω♭
X)∗

−−−−−→ T ∗X

where α♭
H = d2

XH♯ ◦ TiS ◦ d2
XH♯−1

0 ◦ (−ω♭
X). ¤
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Corollary 2.17. Let X ⊂ S
iS
→֒ Z be a Lagrangian submanifold of the

symplectic leaf S of the Poisson manifold Z. Any 1-form h ∈ Ω1(Z) with
h|X = 0 naturally defines a field dXh : X → S2EX of bilinear forms on
the fibers of E∗

X . If dXh is nondegenerate and dh|X = 0, then it defines a
field η of scalar products on the fibers of EX and, if dXh|E∗

X
and η|LX

are

nondegenerate, a triple (γh, αh, χh) of fields on X, where γh is a metric, αh

is an EX-connection form, determining a principal connection in RX , and
χh is a field of scalar products on the associated vector bundle LX = g(RX).

From (2.17), we deduce that the Hamiltonian defined by d2
XH on E∗

X , i.e.,
the Sternberg-Weinstein approximation (Z ′, ̟′) to (Z, ̟) at X, is given by

(2.19) H ′
2 = 1

2
d2

XH = H ′
1 + l∗H ′

20

if H ′
1 is the Hamiltonian (2.14) of the Wong system for nondegenerate d2

XH0.

Definition 2.18. The equivalent systems (Z ′, ̟′, H ′
2) and (if it is defined)

(Lπ
X , ̟′

H , H ′
0̂
+pr∗2H

′
20) are called the Einstein-Mayer system and the gauged

Einstein-Mayer system associated to (Z, ̟, H) at X, respectively.

Remark 2.19. In 1932, Einstein and Mayer considered a unified theory of
gravitation and electricity inspired by Kaluza-Klein theory (cf. section 4.1)
which was based on an alternative tangent bundle to the four-dimensional
space-time manifold ([7]). This work could be regarded as a precursor of
Lie algebroid ideas in physics before their apparition in mathematics. The
Wong system can be regarded a special case of the Einstein-Mayer system
(cf. Definition 4.8), or as an approximation to it exploiting only part of the
Hessian of H in (2.19) and requiring the nondegeneracy of d2

XH0.

3. Dimensionally reduced approximation

Poisson reduction theory ([25]) allows to obtain new Poisson manifolds from
constraints in a given one. Under Sternberg-Weinstein approximation, this
process becomes related to the dimensional reduction procedure for symmet-
ric gauge fields ([4]). For the original Sternberg-Weinstein construction, this
relation was pointed out in [22]. Let us fix an embedded coisotropic subman-
ifold iQ : Q →֒ (Z, ̟), i.e., ̟|(TQ)0 ≡ 0, or, equivalently, ̟♯((TQ)0) ⊂ TQ.
A standard result of reduction theory is the following.

Proposition 3.1. If the subcharacteristic distribution N(Q) = ̟♯((TQ)0)
has constant dimension, it is differentiable and integrable to a subcharacter-
istic foliation C. If C is transversal to the symplectic leaves of Z and given
by the fibers of a submersion q : Q → Z̃ = Q/C, there is a reduced Pois-

son structure on Z̃ whose symplectic foliation is given by the symplectically
reduced symplectic leaves of Z with respect to their intersections with Q.
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In addition, let us suppose that Q is locally closed. Let P = C∞(Z), and
C = {f ∈ P|f |Q = 0} be the subspace of constraints. Then Q is coisotropic
iff ∀f ∈ C, Xf |Q ∈ X1(Q) or equivalently, {C, C} ⊂ C. Let N = NP(C) be
the idealizer subalgebra of admissible functions. They are precisely those
whose Hamiltonian vector fields are tangent to Q, and which are constant
along the leaves of C, that is, C∞(Z̃) ∼= q∗C∞(Z̃) = i∗QN ∼= N/C. We see
that if the conditions of proposition 3.1 are not satisfied, a reduced Poisson
bracket can still be defined as a quotient algebra on the subspace

(3.1) P̃ = i∗QN ∼= N/C

of C∞(Q), which we will call the reduced Poisson algebra of P.

3.1. Reduced Sternberg-Weinstein approximation. Let us suppose
S ⊂ Q and apply the reduction procedure sketched above to Z ′. We set

AX = (TQ)0|X ẼX = (TX)0 ⊂ T ∗Q|X L̃X = (TS)0|X ⊂ T ∗Q|X

Q′ = Ẽ∗
X = TQ|X/TX L̃∗

X = TQ|X/TS|X ,

with the canonical bundle isomorphisms ẼX
∼= EX/AX and L̃X

∼= LX/AX .

Lemma 3.2. The submanifold iQ′ : Q′ → Z ′ is given as the common zero
level set of the functions in Γ̄(AX) defined by differentials (dC)|X ∈ Γ(AX)
as in Corollary 2.7, and the fibers of (TQ′)0 ⊂ T ∗Z ′ are spanned at each
point by the differentials of these functions. In particular, Q′ is coisotropic.

Proof. It suffices to notice that the subspaces (AX)x ⊂ (LX)x are spanned
by the differentials (dC)x at each point x ∈ X. In particular, {df, dg}x =
(d{f, g})x shows that Q′ is coisotropic as soon as Q is. ¤

Definition 3.3. Let P′ = C∞(Z ′). The subalgebras C′ = {f ∈ P′|f |Q′ = 0}
and N′ = NP′(C′) are called the Sternberg-Weinstein constraint algebra and

admissible function algebra, respectively. Setting P̃′ = i∗Q′N′ ∼= N′/C′, we

call (Q′, P̃′) the (Q-)reduced Sternberg-Weinstein approximation of Z at X.

Let l̃ : Q′ → L̃∗
X denote the natural projection. Clearly, l̃∗C∞(L̃∗

X) =
i∗Q′(l∗C∞(L∗

X)). The fact that the Sternberg-Weinstein bracket of functions

on Z ′ which are pull-backs of functions in L∗
X only depends on their restric-

tions to the fibers allows us to characterize, by means of two assumptions,
those elements of l̃∗C∞(L̃∗

X) ∩ P̃′ which are vertically polynomial.
From the proof of lemma 3.2 we know that for all x ∈ X, (AX)x is a Lie

subalgebra of (LX)x
∼= g. We will make the following assumption:

(3.2) The fibers of AX are all isomorphic to some subalgebra c ⊂ g.

We will further make the stronger assumption that for every fiber there exists
an isomorphism which is the restriction of an isomorphism a ∈ (RX)x. If
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NAut(g)(c) denotes the stabilizer subgroup of c in Aut(g), this means that:

(3.3) The Lie-frame bundle RX can be reduced to N = NAut(g)(c).

Definition 3.4. If (3.3) is valid, the reduced subbundle of RX given by

Rc
X → X (Rc

X)x = {a ∈ Rx|a : c → (TQ)0x} ∀x ∈ X,

with structure group N , is called the constraint Lie frame bundle. We write

Si(L̃X) = (Rc
X × Si(g/c))/N Si(L̃∗

X) = (Rc
X × Si(c0))/N,

where c0 ⊂ g∗ is the annihilator subspace, for the natural identification of
the i-th symmetric powers with associated vector bundles to Rc

X for the
naturally induced action of N on g/c and c0, respectively.

Definition 3.5. Let C be the analytic subgroup defined by c ⊂ g in some
Lie group with Lie algebra g, and let Si(g/c)C and Si(c0)C denote the sub-
spaces of invariant elements under the (well-defined) induced (co)adjoint
C-action. If ki : N → Gl(Si(g/c)C) are the naturally induced group homo-

morphisms, we set R̃i = Rc
X/Ki and Ñi = N/Ki, where Ki = ker ki. We

define subbundles of Si(L̃X) and Si(L̃∗
X), respectively, by setting

(3.4) L̃i = (R̃i × Si(g/c)C)/Ñi L̃∗
i = (R̃i × Si(c0)C)/N.

In particular, R̃X = R̃1, Ñ = Ñ1, and L̃1 = (R̃X × (g/c)C)/Ñ are called the
reduced Lie frame bundle, reduced structure group, and reduced Lie algebra
bundle, respectively.

Lemma 3.6. The vertically polynomial functions in l̃∗C∞(L̃∗
X) ∩ P̃′ are

those defined on Q′ by the sections of ⊕i≥0L̃i. In particular,

(3.5) Γ̄(L̃X)∩ P̃′ = Γ̄(L̃1), and L̃1 = (R̃X × g̃)/Ñ with g̃ = Ng(c)/c.

Proof. Let s̄ ∈ l̃∗C∞(L̃∗
X) be a vertically polynomial function defined by s ∈

Γ(S•L̃X), and let s̄ = i∗Q′ ˆ̄s, where ˆ̄s ∈ l∗C∞(L∗
X) is defined by ŝ ∈ Γ(S•LX).

Let f ∈ C define df |X ∈ Γ(LX) and d̄f |X ∈ Γ̄(LX). We can interpret ŝ, s
and df |X as equivariant maps

ŝ : Rc
X → S•g s = c ◦ ŝ : Rc

X → S•(g/c) df |X : Rc
X → c

where the restriction C∞(g∗) ⊃ S•g
c

−→ S•(g/c) ⊂ C∞(c0) is given by the
natural projection. Let now m ∈ (E∗

X)x and n = l(m) = [p, d] ∈ g∗(Rc
X),

p ∈ (Rc
X)x, d ∈ g∗. Thanks to the equivariance, for any choice of p and d,

{ˆ̄s, d̄f |X}′(m) = {ˆ̄s|(L∗
X)x

, d̄f |X |(L∗
X)x

}x(l(m)) = {ŝ(p), df |X(p)}g∗(d)

= Xdf |X(p) · (ŝ(p))(d) = d/dt|t=0(Ad∗(−t df |X(p)))∗ŝ(p)(d)

where {·, ·}x and {·, ·}g∗ denote the Poisson brackets on (L∗
X)x and g∗, re-

spectively, Ad∗ the coadjoint action, and we used that for all D ∈ gL ⊂
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C∞(g∗
L
), l ∈ g∗

L
, X−D(l) = d/dt|0Ad∗(exp(tD))(l), where gL is the anti-

isomorphic Lie algebra. Since at all points, the differentials dfx span (AX)x
∼=

c, and those of the functions d̄f |X span (TQ′)0, we have

s̄ ∈ P̃′ ⇐⇒ ˆ̄s ∈ N′ ⇐⇒ {ˆ̄s,C′}′ ⊂ C′ ⇐⇒ i∗Q′{ˆ̄s, d̄f |X}′ = 0 ∀f ∈ C

⇐⇒ d/dt|t=0(Ad∗(−t df |X(p)))∗ŝ(p)(d) = 0 ∀p ∈ Rc
X , d ∈ c0

⇐⇒ Ad∗(C)((c ◦ ŝ)(p)) = (c ◦ ŝ)(p) ∀p ∈ Rc
X

⇐⇒ Ad∗(C) ◦ s = s ⇐⇒ s ∈ Γ̄(⊕i≥0L̃i)

where Ad∗(C) denotes the induced action on S•(g/c). For i = 1, we have

(3.6) [n] ∈ g̃ ⇐⇒ ad(c)[n] = 0 ⇐⇒ Ad∗(C)([n]) = [n] ⇐⇒ [n] ∈ (g/c)C ,

completing the proof. In particular, L̃1 is a bundle of Lie algebras. ¤

3.2. The reduced Einstein-Mayer and Wong systems. Let H ∈ P

such that dH|X = 0. We will show that it defines an admissible Einstein-

Mayer Hamiltonian on Q′ if H is admissible, i.e., H̃ = i∗QH ∈ P̃.

Theorem 3.7. Let X ⊂ S
iS
→֒ Z be a Lagrangian submanifold of the sym-

plectic leaf (S, ωS) of the Poisson manifold (Z, ̟), and Q ⊃ S a locally closed

coisotropic submanifold. Every H̃ ∈ C∞(Q) such that dH̃|X = 0 naturally

defines a field d2
XH̃ : X → S2ẼX of symmetric bilinear forms on the fibers

of Ẽ∗
X , in the notation of 3.1 and thereabove . If H̃ = i∗QH for H ∈ P, then

H̃ ′
2 = i∗Q′H ′

2, where H ′
2 is given by (2.19), and H̃ ′

2 = 1/2 d2
XH̃ ∈ C∞(Q′).

Furthermore, H̃ ∈ P̃ implies H̃ ′
2 ∈ P̃′.

Proof. The transversal Hessian of H̃ yields d2
XH̃ as in theorem 2.16 with

(Z, H) replaced by (Q, H̃). If H̃ = i∗QH for H ∈ P with dH|X = 0, then

by construction d2
XH̃ = (TiQ)∗d2

XH, i.e., H̃ ′
2 = i∗Q′H ′

2. Let us show that

H̃ ∈ P̃ implies H̃ ′
2 ∈ P̃′ or, equivalently, H ∈ N implies H ′

2 ∈ N′.
Since Q is coisotropic, Xf is tangent to Q for all f ∈ C and its flow

defines a local family of diffeomorphisms exp(tXf ) : Q → Q, t ∈ R (omitting
obvious restrictions). The first jet prolongation of (T exp(tXf ))∗ can be
restricted to the image of X under the zero section of T ∗Q, and under the
identification (2.16) of jets with tensor fields over the zero section, it becomes
identified with ⊗2(T exp(tXf )|X)∗ acting on ⊗2T ∗Q|X . Since because of
df |S ∈ (TQ)0|S ⊂ (TS)0, Xf |S = 0 and exp(tXf )|S is the identity, this

induces bundle morphisms of S2ẼX . Finally, for any section dH̃ : Q → T ∗Q

J1(T ∗ exp(tXf )) ◦ J1(dH̃) ◦ exp−1(tXf ) = J1(d(exp(−tXf )∗H̃)),
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which reads with our identification (since Xf |X = 0)

⊗2T ∗ exp(tXf )|X ◦ d2
XH̃ = d2

X(exp(−tXf )∗H̃) ∀f ∈ C,(3.7)

⇐⇒ LXf
(d2

XH̃) = d2
X(−Xf · H̃)(3.8)

⇐⇒ i∗Q′(LXf
(d2

XH)) = i∗Q′(d2
X(−Xf · H))

⇐⇒ 2 i∗Q′{H ′
2, d̄f |X}′ = d2

X(i∗Q{f, H}) ∀f ∈ C,(3.9)

where we used Corollary 2.7. By Lemma 3.2, the differentials of the functions
df |X span (TQ′)0 ⊂ T ∗Z ′|Q′ at each point of Q′. Hence, it follows from (3.9)

that H ∈ N implies H ′
2 ∈ N′ and thus, H̃ ′

2 ∈ P̃′. ¤

We expect that generically, d2
XH̃ should define corresponding reduced

fields η̃, αH̃ χH̃ , d2
XH̃0 = d2

XH0, and γH̃ = γH , as shown in the diagram

(3.10)

L̃X −−−−→ ẼX −−−−→ EX

−ω♭
X←−−−− TX

yχ♭
H̃

η̃♭

y
xd2

XH̃♯ d2

XH̃♯
0

x
yd2

XH̃♯−1

0

yγ♭
H̃

L̃∗
X ←−−−− Ẽ∗

X
TiS←−−−− E∗

X

(−ω♭
X)∗

−−−−−→ T ∗X

(3.11) where α♭
H̃

= d2
XH̃♯ ◦ TiS ◦ d2

XH̃♯−1
0 ◦ (−ω♭

X) = (TiQ)∗ ◦ α♭
H

is called the ẼX-connection form defined by H̃. There is the following result.

Theorem 3.8. If the field d2
XH̃ defined by H̃ = i∗QH in Theorem 3.7 is

nondegenerate, it naturally defines fields of scalar products η̃ on ẼX and χH̃

on L̃X , a metric γH̃ and an ẼX-connection form αH̃ on X as in (3.10) and

(3.11), provided that d2
XH̃|E∗

X
and η̃|L̃X

are also nondegenerate. η̃ and the

triple (γH̃ ,αH̃ ,χH̃) determine each other. Furthermore, suppose that H̃ ∈ P̃,
and that the assumptions (3.2, 3.3) are valid. Then, for every X ∈ X(X),

iXαH̃ ∈ Γ̄(ẼX)∩P̃′, and αH̃ defines a principal connection form AH̃ on R̃X

taking values in ad(g̃). Finally, χH̃ ∈ Γ(L̃∗
2), with L̃∗

2 defined in (3.4).

Proof. The first two assertions follow from Theorem 2.16 with (Z, H) re-

placed by (Q, H̃). Let now H̃ ∈ P̃ and H̃ = i∗QH with H ∈ N. Since

exp(−tXf )|S is the identity, (3.7) implies (T exp(tXf )|X)∗ ◦α♭
H̃

= α♭
H̃

for all

f ∈ C. Hence, using Corollary 2.7,

LXf
(iXαH̃) = i∗Q′(LXf

(iXαH)) = i∗Q′{iXαH , d̄f |X}′ = 0 ∀f ∈ C

⇐⇒ iXαH ∈ Γ̄(EX) ∩ N′ ⇐⇒ iXαH̃ = i∗Q′(iXαH) ∈ Γ̄(ẼX) ∩ P̃′(3.12)

for all X ∈ X1(X). Since Γ̄(L̃X) ∩ P̃′ = Γ̄(L̃1) by Lemma 3.6, this means

that αH̃ defines an adjoined action on Γ̄(L̃1) by the reduced bracket on P̃′
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and thus, a covariant derivative on Γ(L̃1) and, since Ñ acts effectively on

the standard fiber of L̃1, a principal connection form on R̃X . This is a form

(3.13) AH̃ : R̃X −→ T ∗R̃X ⊗ ad(g̃) ad(g̃) ⊂ ñ = Lie(Ñ) = n/k1,

where n = Lie(N) and k1 = Lie(K1). In deed, we deduce from (3.12) and
Lemma 3.6 that the form AH = AαH on RX takes values in ad(g) ∩ n =
ad(Ngc), and, consequently, restricts to Rc

X . Its equivariance implies that
Lie(k1) ◦ AH |Rc

X
, where Lie(k1)|ad(Ngc) : ad(Ngc) → ad(g̃) is the induced

map, is constant on the fibers of the projection pr : Rc
X → R̃X , and we have

Lie(k1) ◦ AH |Rc
X

= pr∗AH̃ , showing (3.13).

From (3.8), we deduce that for H ∈ N, LXf
(d2

XH̃) = 0 = LXf
η̃ for all

f ∈ C. Now, the function on ẼX defined by η̃ ∈ Γ(S2Ẽ∗
X) can be restricted

to the function on L̃X defined by χH̃ ∈ Γ(S2L̃∗
X), and since S is preserved,

LXf
χH̃ = 0 ∀f ∈ C ⇔ l̃∗H̃ ′

20 ∈ Γ̄(S2L̃X) ∩ P̃′ = Γ̄(L̃2) ⇔ χH̃ ∈ Γ(L̃∗
2),

where H̃ ′
20 is the function defined by χ♭−1

H̃
on L̃∗

X , and we used Corollary 2.7

and Lemma 3.6. This completes the proof of the theorem. ¤

Corollary 3.9. There is a well-defined curvature ΦH̃ = ΦαH̃ of αH̃

ΦH̃(X1,X2) = {αH̃(X1), αH̃(X2)} − αH̃([X1,X2]) ∀X1,X2 ∈ X1(X),

taking values in L̃1. The curvature form of AH̃ takes values in ad(g̃).

Corollary 3.10. Let H̃ ′
1 = H̃ ′

0 ◦ (α♭
H̃

)∗, where α♭
H̃

: TX → ẼX , and H̃ ′
0

denotes the Hamiltonian defined by 1/2 γ♭−1
H̃

on T ∗X. Then, H̃ ′
1 ∈ P̃′.

The restriction of ψH to Q′ is given by the bundle isomorphism

ψH̃ = ψH |Ẽ∗
X

= ((α♭
H̃

)∗, l̃) : Ẽ∗
X −→ T ∗X ⊕X L̃∗

X =: L̃π
X ⊂ Lπ

X .

Thus, L̃π
X is a coisotropic submanifold of (Lπ

X , ̟H). Let P̃′
H̃

= (ψ−1
H̃

)∗(P̃′).

Definition 3.11. The triples (Q′, P̃′, H̃ ′
1) and (L̃π

X , P̃′
H̃

, pr∗1H̃
′
0) are called

the reduced and gauged reduced Wong systems, and the triples (Q′, P̃′, H̃ ′
2)

and (L̃π
X , P̃′

H̃
, pr∗1H̃

′
0 + pr∗2H̃

′
20) the reduced and gauged reduced Einstein-

Mayer systems associated to (Z, ̟, H; Q) at X, respectively.

Remark 3.12. The study of the elements of (S2c0)C and its decomposition
into irreducible subspaces under the action of the reduced structure group
was carried out systematically; cf [18], [6] for the example of Manton [17],
which yields in particular a field of hermitian forms. Higgs fields of this form
appear in interaction terms between spinor fields ([24]).

Remark 3.13. As in classical mechanics, the presence of the constraint Q
can be related to d2

XH̃ being precisely the nondegenerate part of a d2
XH.
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4. Local Kaluza-Klein realization

The existence of a locally minimal symplectic realization of the Poisson
manifold Z and the associated dual pair ([27, 25]) is related via Sternberg-
Weinstein approximation to classical Yang-Mills and Kaluza-Klein theory.
In the presence of coisotropic constraints, we obtain the reduction theorem
for bundles with homogeneous fibers ([4]).

Let us recall that for a fixed Poisson manifold (Z, ̟) and any z0 ∈ Z,
there exists an open neighborhood U ∋ z0 such that (U, ̟) (omitting the
restriction) is realizable by a surjective Poisson submersion ρ : (W, ω) →
(U, ̟), where (W, ω) is a symplectic manifold of (locally minimal) dimension
dmin = 2(dim Z − (1/2)rk(̟z)). In addition, this realization is essentially
unique ([27, 25]). The fibers of ρ define the foliation F whose leaves we will
presume connected. If the dual (i.e., symplectically orthogonal) foliation F⊥

has connected leaves, and is such that the quotient map λ : W → W/F⊥ =:
Υ is a submersion onto a manifold Υ with coinduced Poisson structure υ,

(4.1) (Υ, υ)
λ

←− (W, ω)
ρ

−→ (U, ̟)

will be a dual pair. Referring to this case, we will simply say that (4.1) exits.
Let F = ρ∗C∞(U) and F⊥ = λ∗C∞(Υ) be the polar function groups,

Z = Z(F) denote the center (Casimir functions), and Ph be the subalgebra
in C∞(W ) of functions whose Hamiltonian vector field is projectable by ρ∗
into the subspace Ham(U) of Hamiltonian vector fields on U .

Lemma 4.1. We have F = ZC∞(W )(F
⊥), F⊥ = ZC∞(W )(F), where ZC∞(W )

denotes the centralizer in C∞(W ), and Z(C∞(U)) ∼= Z = F∩F⊥ = Z(F⊥) ∼=
Z(C∞(Υ)). Furthermore, let K ∈ Ph be such that ρ∗XK = XH for some
H ∈ C∞(U). Then, for some J ∈ C∞(Υ), there are decompositions

(4.2) K = ρ∗H + λ∗J XK = Xρ∗H + Xλ∗J ,

unique for XK and unique up an element of Z for K. Thus Ph = F + F⊥,
and the sequence 0 → F⊥ → Ph → F/Z ∼= Ham(U) → 0 is exact. In
particular, Ham(U) ∼= Ph/F⊥.

Proof. For (4.2), we define Ĵ ∈ C∞(W ) by Ĵ = K − ρ∗H. By assumption,

ρ∗XĴ = 0, and thus, ZC∞(W )(F) = F⊥ ∋ Ĵ = λ∗J for some J ∈ C∞(Υ).
The other assertions are well-known or easily verified. ¤

Let S denote the symplectic leaf through z0, and let V := S ∩ U , V̂ :=
ρ−1(V ) and F := ρ−1(z0). We assume that these manifolds are connected.

Lemma 4.2. The manifold V̂ is a coisotropic submanifold of W , and the
characteristic foliation is given by the fibers of the submersion ρ|V̂ . In par-

ticular, the fibers are isotropic submanifolds of W , and F = ρ−1(z0) is a

Lagrangian submanifold of N̂ = ρ−1(N) for any transverse submanifold N
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to V representing the transverse structure at z0. Furthermore, U can be
chosen such that ρ|V̂ : V̂ → V is a fiber bundle over V with standard fiber

F . On the other hand, we have λ(w1) = λ(w2) =: l0 ∈ Υ for all w1, w2 ∈ V̂ ,
and rkl0υ = 0, i.e., l0 is a symplectic leaf, and Υ is its own transverse struc-
ture at l0, with linear approximation given by Tl0Υ

∼= g∗
L
, with gL denoting

the Lie algebra anti-isomorphic to the transverse Lie algebra g to V at z0.

Proof. The first assertions are again well-known ([27]). Let us suppose that
U is split by a splitting map sp : U → V × N , where N is an arbitrary
transverse submanifold through z0 to V representing the transverse struc-
ture. Since the sp is Poisson, we know that sp−1 ◦(IdV , ρ|N̂ ) : V ×N̂ → U is
a realization of minimal dimension. After restricting U and W , the essential
uniqueness of the minimal realization implies that there is a symplectomor-
phism ŝp : W → V × N̂ such that ρ = sp−1 ◦ (IdV , ρ|N̂ )◦ ŝp. The restriction

of ŝp to V̂ yields a trivialization ŝp|V̂ : V̂ → V × F , of the bundle V̂ with
standard fiber F . By counting dimensions, we find dim Υ = dimN , which
implies the remaining assertions. ¤

4.1. Kaluza-Klein realization and dynamics. Let ρ : (W, ω) → (U, ̟),
V , F as above, and X ⊂ V an embedded Lagrangian submanifold. Suppose
z0 ∈ X and that ρ|V̂ : V̂ = ρ−1(V ) → V is a fiber bundle with standard fiber

F . Then, we also have a fiber bundle Y ⊂ V̂ over X given by

(4.3) Y = ρ−1(X)
p

−→ X p = ρ|Y .

The total space is an embedded Lagrangian submanifold iY : Y → W , since
it is coisotropic as the preimage of a coisotropic submanifold, and lemma
4.2 implies 2 dimY = 2 dimX + 2 dimF = dim V + dim N̂ = dimW . Thus,
the Sternberg-Weinstein approximation to W at Y is given by

W ′ = TW|Y /TY
(−ω♭

Y )∗

−→ T ∗Y, ω♭
Y = ω♭|TY : TY → (TY )0,

where (−ω♭
Y )∗ is a symplectomorphism for the canonical structure on T ∗Y .

Proposition 4.3. The map ρ′ : W ′ → U ′ induced by Tρ|Y is a symplectic
realization of U ′. If the dual pair (4.1) exists, there is an induced dual pair

(4.4) g∗
L
∼= Υ′ λ′

←− W ′ ρ′
−→ U ′,

where U ′ and Υ′ are the Sternberg-Weinstein approximation of U at X ∩ U
and Υ at l0, respectively, and λ′ is the map induced by Tλ|Y .

Proof. Since ρ is a surjective submersion, the same is true for ρ′. For Dar-
boux coordinates (xµ, pµ, ra) on U , inducing coordinates (xµ, [ṗµ], [ṙa]) on
U ′ as in Proposition 2.6, it is always possible to choose Darboux coordi-
nates (x̂µ = ρ∗xµ, p̂µ = ρ∗pµ, ŷa, p̂a) on W , inducing Darboux coordinates

(x̂µ, [ ˙̂pµ] = (ρ′)∗[ṗµ], ŷa, [ ˙̂pa]) on Z ′ ∼= T ∗Y which are holonomic with respect
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to coordinates (x̂µ|Y , ŷa|Y ) on Y . In these coordinates, one easily shows that
ρ′ induces the Sternberg-Weinstein Poisson structure. If (4.1) exists, we see
as before that (4.4) forms a dual pair. By Lemma 4.2, Υ′ = Tl0Υ

∼= g∗
L
. ¤

Corollary 4.4. The Sternberg-Weinstein approximation of the Sternberg-
Weinstein phase space T ∗P/G associated to a principal fiber bundle P → B
with structure group G at B ⊂ T ∗B is naturally isomorphic to T ∗P/G.

Proof. Obviously, T ∗P is a global symplectic realization of T ∗P/G of dimen-
sion dmin. Furthermore, the isomorphism (T ∗P )′ = T (T ∗P )|P /TP ∼= T ∗P
is natural, symplectic and compatible with the projection maps ρ : T ∗P →
T ∗P/G and ρ′ : T (T ∗P )|P /TP → T (T ∗P/G)|B/TB since ρ is defined by a
fiberwise linear action of G. Thus, it induces a natural Poisson equivalence
of the quotient manifolds. ¤

Definition 4.5. The Sternberg-Weinstein approximation W ′ ∼= T ∗Y will
be called a Kaluza-Klein realization of Z at z0. We denote by π : W ′ → Y
the natural projection.

Lemma 4.6. Suppose that the dual pair (4.4) exists. Then, the fibers of ρ′|Y
are given by the orbits of a local right action of the connected and simply
connected Lie group G1 with Lie algebra gL on Y , and the fibers of ρ′ are
given by the orbits of the canonical Hamiltonian lift to W ′ ∼= T ∗Y of this
local action, which in addition is locally free. Furthermore, there is a natural
bundle morphism a : Y → RX over IdX which is locally equivariant with
respect to the canonical homomorphism Ad : G1 → Aut(g).

Proof. It is well-known ([2]) that the fibers of ρ′ are given by the orbits
of the local action of a connected and simply connected Lie group G1 on
W ′ induced by λ′. The fundamental vector fields of D ∈ gL ⊂ C∞(g∗

L
) is

the Hamiltonian vector field of −(λ′)∗D. Since λ′ is surjective, it follows
that these Hamiltonian vector fields span TW ′ at each point and thus, the
action is locally free. For y ∈ Y , λ′|y : TyW/TyY ∼= T ∗

y Y → g∗
L

is a linear
map, an thus, −(λ′)∗D|T ∗yY is a linear function, that is, an element of TyY .
Hence, −(λ′)∗D is a vertically linear function on W ′ ∼= T ∗Y corresponding
to a vector field DY ∈ X(Y ). On the other hand, it is well-known that the
Hamiltonian vector field of a function defined on T ∗Y with its canonical
symplectic structure by a vector field on Y is precisely the unique Hamil-
tonian lift of this vector field. In particular, DY = X−(λ′)∗D|Y . Thus, the
local action of G1 on T ∗Y is the unique Hamiltonian lift of the restricted
local action on Y . Consequently, we can define the map

a : Y → RX a(y)(D) = (pr2 ◦ (ω♭−1 ◦ ρ̂∗)−1 ◦ DY )(y) ∀D ∈ g

where ρ̂∗ is the bundle morphism to be defined in (4.8). Note that (ω♭−1 ◦
ρ̂∗)(Y ×X (TV )0|X) = V Y so that we have in deed a(y) : g → Lp(y), and

since ω♭ and D → DY and are Lie algebra anti-automorphisms (since g is
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anti-isomorphic to gL), and ρ is Poisson a morphism, this is a Lie algebra
isomorphism. On the other hand, a is equivariant since

a(yg)(D) = (pr2 ◦ (ρ̂∗)−1 ◦ ω♭ ◦ DY )(yg)

= (pr2 ◦ (ρ̂∗)−1 ◦ ω♭ ◦ TRg ◦ (Ad∗(g)(D))Y )(y)

= (pr2 ◦ (ρ̂∗)−1 ◦ (ρ′yg,g)
∗ ◦ ω♭ ◦ (Ad∗(g)(D))Y )(y)

(a(y) ◦ Ad∗(g))(D) = (pr2 ◦ (ρ̂∗)−1 ◦ ω♭ ◦ ((Ad∗(g)(D))Y )(y)

where Rg : Y → Y denotes the action of g ∈ G1 on Y whenever it is defined,

and ρ′yg,g = ρ′|−1
TyW/TyY ◦ ρ′|TygW/TygY . Here we used (TRg)

∗ ◦ (−ω♭
Y )∗ =

(−ω♭
Y )∗ ◦ ρ′yg,g) and ρ̂∗|Y ×X(TX)0 = (π, ρ′)∗ (cf lemma 4.12). ¤

Theorem 4.7. Suppose that the dual pair (4.1) exists. Let H ∈ C∞(U) be
a Hamiltonian such that dH|X = 0, and K ∈ C∞(W ) such that dK|Y =
0 and ρ∗XK = XH . Then, the Einstein-Mayer systems (W ′, ω′, K ′

2) and
(U ′, ̟′, H ′

2) are ρ′∗-related. Writing κ = K ′
2, η = H ′

2 and ι = J ′
2, the

Einstein-Mayer approximation of J at l0, we have a decomposition

(4.5) κ = (ρ′)∗η + (λ′)∗ι.

If d2
Y K, d2

XH, d2
l0
J are nondegenerate, then κ, η, ι are functions defined by

a metric κ on Y , η, and some scalar product ι on gL, respectively. Further-
more, (ρ′)∗η corresponds to a (locally) G1-invariant metric on Y .

Proof. If λ exists, lemma 4.1 yields a decomposition K = ρ∗H+λ∗J for some
J ∈ C∞(Υ). Thus dK = ρ∗dH + λ∗dJ , and similarly as in the proof of the-
orem 3.7, this implies K ′

2 = (ρ′)∗H ′
2 +(λ′)∗J ′

2, i.e., (4.5), and ρ′∗XK′
2

= XH′
2
.

Under the nondegeneracy assumptions, κ corresponds to a fiber-quadratic
function on (W ′)∗ ∼= TY , i.e., metric on Y . According to lemma 4.6, the
term (ρ′)∗η is a (locally) G1-invariant fiber quadratic function on W ′, and
thus, a G1-invariant metric on Y . ¤

Definition 4.8. The triple (W ′, ω′, κ) is called a Kaluza-Klein dynamics
corresponding to (Z, ̟, H) at zo ∈ X. By a given κ, the fields αH and γH

defined by a corresponding η are well-determined, while χ
H

= l∗H ′
20 and ι

are determined up to a Casimir function. If χ
H

(ι) is itself a Casimir, we will

call κ of Sternberg-Weinstein (invariant) type, if both are (not), of Casimir
(mixed) type. Notice that only d2

XH0 needs to be nondegenerate here.

Darboux’s theorem implies that locally, we have a symplectic inclusion
iW : W →֒ T ∗Y ∼= W ′ identifying W with an open neighborhood of the
zero section in T ∗Y . Consequently, it becomes simultaneously a symplectic
realization of U and its Sternberg-Weinstein approximation U ′. The inclu-
sion iW allows us to assume that K ∈ C∞(W ) with ρ∗XK = XH for a
H ∈ C∞(U) is well-defined by a metric on Y , that is, K = K ′

2. Then,
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theorem 4.7 implies that we also have ρ′∗XK = XH′
2
. In summary:

(U ′, ̟′, XH′
0
)

(ρ′,ρ′∗)
←− (W, ω, XK)

(ρ,ρ∗)
−→ (U, ̟, XH)

Hence, we can consider the Poisson structure ̟ as a nonlinear deformation
of the Poisson structure ̟′, obtained by a nonlinear deformation in W of
the foliation F ′ defined by ρ′ to the foliation F defined by ρ. Equally, the
Hamiltonian system defined by H appears as a nonlinear deformation of the
Sternberg-Weinstein system defined by H ′

2. The fact that both systems are
projections of a system defined by the same metric κ restricts the possible
deformations to the natural subclass. In particular, it can be shown that the
equations of motion obtained in this way are natural non-linear analogues
to the Wong equations, involving a non-linear Yang-Mills potential and field
strength. An interesting immediate consequence is the following result.

Theorem 4.9. Let a metric κ on Y be called projectable if its induced
Hamiltonian vector field projects to a Hamiltonian vector field XH on U .
If Z is linearizable at the leaf S ⊃ V , then, in linear local coordinates, any
Hamiltonian H obtained from a projectable metric defines equations of mo-
tion which coincide with those of its Einstein-Mayer approximated system.

Remark 4.10. As the Lie algebras common in physics are semi-simple of
compact type, or semidirect products with R, which are C∞-nondegenerate
(cf [3, 2]), we conclude that Wong’s equations are the generic Hamiltonian
equations of motion obtained as a projection of geodesic equations.

4.2. Local gL-principal connection forms. Let us see how EX -connect-
ion forms are related to local gL-principal connection forms.

Lemma 4.11. Suppose that (4.4) exists and that λ′ is complete. Then, the
bundle Y is a fiber bundle with homogeneous standard fiber Gy0

\G1, where
Gy0

is the discrete stabilizer subgroup of a point y0 ∈ F , and the G1-action
corresponds to the right action of G1 on Gy0

\G1. In particular, if Gy0
is

normal, then Y is a principal bundle with structure group G = Gy0
\G1.

Furthermore, we have natural isomorphisms LX
∼= g(Y ) and Lπ

X
∼= T ∗X×X

g∗(Y ), with respect to the (co)adjoint action of G.

Proof. The definition of Y implies that there are local trivializations Yi
∼=

Xi × F , where {Xi, i ∈ I} is an open covering of X, Yi = ρ−1(Xi), and
F = ρ−1(z0). The local G1-action constructed in Lemma 4.6 extends to a
global action if λ′ is complete. Since we assumed that F was connected,
this yields a locally free transitive action on F , and thus, via the choice of
y0 ∈ F , a diffeomorphism F ∼= Gy0

\G1 as claimed. Note this map will be
G1-equivariant since it is induced by the restriction of a Poisson morphism.
If Gy0

is normal, then Y becomes a principal fiber bundle with structure
group G, and the bundle morphism a of Lemma 4.6 induces isomorphisms
of associated bundles defined by g(Y ) ∋ [y, D] 7→ [a(y), D] ∈ LX etc. ¤
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Lemma 4.12. Let θ : V → T ∗V ⊗V E|V and α : X → T ∗X ⊗X EX be
an E-connection form on V and an EX-connection form on X, respectively.
There are associated connections on the bundles ρ|V̂ : V̂ → V and p : Y → X
(4.3), respectively, given by the bundle morphisms

θ̂ = −ω♭−1 ◦ ρ̂∗ ◦ (IdV̂ , θ♭) : V̂ ×V TV → T V̂ ,(4.6)

α̂ = −ω♭−1 ◦ ρ̂∗ ◦ (IdY , α♭) : Y ×X TX → TY,(4.7)

where ρ̂∗ : W ×U T ∗U → (TF)0 ⊂ T ∗W(4.8)

is the canonical bijective morphism of fibred manifolds over U induced by
the surjective submersion ρ : W → U , whose restriction to Y ×X (TX)0 is
precisely the dual to ρ̂ = (π, ρ′).

Proof. By Lemma 4.2, F ∩ V̂ , i.e., the fibers of ρ|V̂ : V̂ → V , form the

characteristic foliation of V̂ ⊂ W . Thus ω♭−1(TF)0|V̂ ) = T V̂ , and θ̂ is well

defined. In order to show that it defines a connection in ρ|V̂ : V̂ → V , it

remains to show that (τV̂ , Tρ) ◦ θ̂ = IdV̂ ×V TV . Since both sides are bundle

morphisms over IdV̂ , this follows from (̟♯)ρ(w) = Twρ ◦ (ω♭−1)w ◦ (Twρ)∗.
Proposition 2.4 states that α = i∗Xθ for some θ ∈ A, and we have α̂ =

θ̂ ◦ (iY , T iX). Since (τV̂ , Tρ) ◦ θ̂ = IdV̂ ×V TV , it follows that (τY , Tp) ◦ α̂ =

IdY ×XTX , and this shows that α̂ takes its values in TY . Thus, α̂ defines a
connection on Y . By definition, the restriction ρ̂∗ : Y ×X (TX)0 → (TY )0

is dual to ρ̂ = (π, ρ′) : TW |Y /TY → Y ×X TZ|X/TX. ¤

Proposition 4.13. Suppose that (4.4) exists, λ′ is complete, and Gy0
is a

normal subgroup. If α ∈ AX , then the connection on Y induced by α̂ defined
in (4.7) is given by a principal connection form Â on Y with

Â♭ = −pr2 ◦ (λ̂∗)−1 ◦ ω♭ ◦ (IdTY − α̂ ◦ (τY , Tp)) : TY → T ∗
l0Υ = gL,

where λ̂∗ : W ×Υ T ∗Υ → (TF⊥)0 ⊂ T ∗W

is the canonical bijective morphism of fibred manifolds over Υ induced by
the surjective submersion λ : W → Υ. Furthermore, ad◦ Â♭ = (a∗Aα)♭. The

gL-valued curvature 2-form F̂ = dÂ + 1

2
[Â, Â] of Â corresponds to

F̂ ♭ = −pr2 ◦ (λ̂∗)−1 ◦ ρ̂∗ ◦ (τ2
Y , (Φα)♭ ◦ ∧2Tp) : ∧2TY → T ∗

l0Υ = gL,

where τ2
Y : ∧2TY → Y is the natural map, and (Φα)♭ : ∧2TX → LX is

the bundle morphism defined by the curvature of α. Furthermore, ad(F̂ ) =
a∗Fα, where Fα denotes the curvature 2-form of Aα.

Proof. In the proof of Lemma 4.6, we saw that the fundamental vector field
induced by D ∈ gL ⊂ C∞(Υ′) at y ∈ Y was given by

(4.9) DY (y) = X−λ′∗D(y) = −ω♭−1 ◦ λ̂∗(y, D)
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where −ω♭−1 ◦ λ̂∗ : Y × T ∗
l0
Υ → (T V̂ )0|Y → V Y is a bundle isomorphism

since V̂ = λ−1(l0) (Lemma 4.2) is coisotropic with a characteristic foliation

given by the fibers of p = ρ|Y (Lemma 4.2). But (4.9) implies that Â(I)Y =
(IdTY − α̂ ◦ (τY , Tp))(I) for all I ∈ TY . Thus, the vertical projection

corresponding to α̂ is given by I → Â(I)Y , and Â is a principal connection
form corresponding to α̂ iff α̂ is equivariant, i.e., TRg ◦ α̂ = α̂ ◦ (Rg, IdTX)
for all g ∈ G. This follows form a calculation as at the end of the proof of
Lemma 4.6. The fibers of the Ad∗-equivariant bundle morphism a : Y → RX

are precisely the orbits of the center Z = kerAd∗ ⊂ G, and thus ad ◦ Â♭ is
constant on these fibers. It is easy to see that ad ◦ Â and Aα induce the
same covariant derivative on LX

∼= g(Y ), which implies ad ◦ Â♭ = (a∗Aα)♭.

Now, the map α̂♭ ◦ (τY , Tp) is the horizontal projection corresponding to

Â. For X1,X2 ∈ X1(Y ), writing Tp(X1) for Tp ◦ X1 etc., a straightforward

calculation using that −ω♭−1 ◦ ρ̂∗ is a Lie algebra isomorphism yields

(IdTY − α̂ ◦ (τY , Tp))([α̂ ◦ (τY , Tp)(X1), α̂ ◦ (τY , Tp)(X2)])

= −ω♭−1 ◦ ρ̂∗ ◦ (τ2
Y (X1 ∧ X2), (Φ

α)♭(Tp(X1) ∧ Tp(X2))),

F̂ ♭(X1,X2) = dÂ(α̂ ◦ (τY , Tp)(X1), α̂ ◦ (τY , Tp)(X2))

= −Â([α̂ ◦ (τY , Tp)(X1), α̂ ◦ (τY , Tp)(X2)])

= −pr2 ◦ (λ̂∗)−1 ◦ ρ̂∗ ◦ (τ2
Y (X1 ∧ X2), (Φ

α)♭(Tp(X1) ∧ Tp(X2)))

This last assertion follows easily. ¤

Theorem 4.14. In the situation of Theorem 4.7, suppose that d2
Y K and

d2
XH0 are nondegenerate, and that κ is of Sternberg-Weinstein type. With

the assumptions of the proposition, let ÂH be the principal connection form
determined by αH . Then κ = p∗γH + Â∗

HιH , where ιH is the scalar product
on gL corresponding to ι + χ

H
seen as a quadratic function on g∗

L
, pro-

vided that the last is nondegenerate. That is, κ is precisely the Kaluza-Klein
metric (1.2) determined by γH , ÂH , and ιH . In Theorem 1.6, the system
(T ∗P, ω, K) ∼= ((T ∗P )′, ω′, K ′

2) is a Kaluza-Klein dynamics (of Sternberg-
Weinstein type) corresponding to (T ∗P/G, ̟, H) ∼= ((T ∗P/G)′, ̟′, H ′

1).

Proof. By checking the definitions (recall Z = F ∩ F⊥ by Lemma 4.1). ¤

Remark 4.15. For der(g) = ad(g), T ∗RX with its Aut(g)-action and the
Hamiltonian defined by the Kaluza-Klein metric determined by γH , AH and
some metric on ad(g) is a global symplectic realization of the reduced system
defined by H on Q′ ⊂ Z ′, where Q′ is the subbundle of E∗

X annihilating
the subbundle of LX whose fiber at x ∈ X is the center of (LX)x. Since
EX -connection forms are related globally to ad(g)- but locally to gL-valued
principal connection forms, we could say that localization allows the passage
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from the adjoined structure group to the group itself. A similar transition
appears in the duality of quantized gauge theories [9].

4.3. Reduced Kaluza-Klein realization. Let iQ : Q → U be a locally

closed coisotropic submanifold with V ⊂ Q. Then iQ̂ : Q̂ = ρ−1(Q) →֒ W is

obviously a coisotropic submanifold of W . Let Ĉ denote the characteristic
foliation of Q̂, and suppose that there is a reduction of W via Q̂ given
by q̂ : Q̂ −→ Q̂/Ĉ =: W̃ , such that (W̃ , ω̃) is a symplectic manifold with

reduced symplectic form ω̃. Since Q̂ is a union of leaves of the foliation F
defined by ρ, Ĉ is a subfoliation of the orthogonal foliation F⊥, for which we
suppose that (4.1) exists. Consequently, there is a unique map λ̃ : W̃ → Υ

such that λ◦ iQ̂ = λ̃◦ q̂. We denote the constraints and admissible functions

by Ĉ = {f ∈ C∞(W )|f|Q̂ = 0} and N̂ = NC∞(W )(Ĉ), respectively, such

that q̂∗C∞(W̃ ) = i∗
Q̂
N̂ ∼= N̂/Ĉ. Then F⊥ ⊂ N̂, every λ∗f ∈ F⊥ reduces to

λ̃∗f ∈ C∞(W̃ ), and λ̃∗ is an isomorphism of Poisson algebras. Finally, the

orbits of the flow of the Hamiltonian vector fields of F̃⊥ = λ̃∗C∞(Υ) are

precisely given by F̃ := q̂(F ∩ Q̂). Since λ̃ is not surjective, this will be a

nonregular foliation of W̃ in general, and the image of ρ̃ : W̃ −→ Ũ := W̃/F̃
might not be a manifold.

However, we can define C∞(Ũ) = (ρ̃∗)−1C∞(W̃ ), and an isomorphic sub-

algebra of C∞(W̃ ) by F̃ = ZC∞(W̃ )(F̃
⊥) = ρ̃∗C∞(Ũ). On the other hand,

Q̂ = ρ−1(Q) also implies that C ∼= Ĉ∩F and N ∼= NC∞(W )(Ĉ∩F)∩F = N̂∩F,

and thus, Ũ can be identified with the image of the projection q : Q → Z̃ =
Q/C. With (3.1) (for Ũ instead of Z̃), we get the commutative diagrams:

(4.10)

Υ
λ

←− Q̂
ρ

−−−−→ Q

λ̃ տ
yq̂

yq

W̃
ρ̃

−−−−→ Ũ

i∗
Q̂
(N̂ ∩ F)

∼
←−−−− P̃

x≀

x≀

F̃
∼

←−−−− C∞(Ũ)

Lemma 4.16. Let K ∈ C∞(W ) be a Hamiltonian such that ρ∗XK = XH

for some Hamiltonian H ∈ C∞(U). Then, K is admissible for Q̂ iff H is

admissible for Q. In this case, the reduced Hamiltonian K̃ ∈ C∞(W̃ ) is

given as K̃ = ρ̃∗H̃Ũ + λ̃∗J , where H̃ = q∗H̃Ũ , and ρ̃∗H̃Ũ is precisely the

reduction of ρ∗H by Q̂.

Proof. Lemma 4.1 gives us the decomposition K = ρ∗H + λ∗J , where J ∈
C∞(Υ). N ∼= N̂∩ F implies that ρ∗H is admissible for Q̂ iff H is admissible

for Q. On the other hand, F⊥ ⊂ N̂ shows that every λ∗J ∈ F⊥ is admissible
for Q̂. This implies the remaining assertions. ¤

Hence, we may think of the dynamics induced by K̃ on F̃ as a ”symplectic
realization” of the reduced dynamics induced by H on P̃.
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Proposition 4.17. Let Q̂ = ρ−1(Q) ⊂ W and (W̃ , ω̃) be as above. Then

iQ̂′ : Q̂′ = TQ̂|Y /TY → W ′ is a coisotropic submanifold. There is a reduced

manifold of W ′ by Q̂′ given by the Sternberg-Weinstein approximation of
W̃ at q(Y ), that is, by W̃ ′ = TW̃|Ỹ /T Ỹ ∼= T ∗Ỹ , where Ỹ := q̂(Y ) ⊂ W̃

is a Lagrangian submanifold, and the identification with T ∗Ỹ is given by
(ω̃♭|T Ỹ )∗. The projection defined by the characteristic foliation Ĉ′ of Q̂′ is

given by the map q̂′ : Q̂′ → W̃ ′ naturally induced by T q̂|Y . Furthermore, the

restriction of local G1-action of lemma 4.6 to Q̂′ projects to a local G1-action
on W̃ ′ which is the Hamiltonian lift of the restricted projected action on Ỹ .
There is a natural bijection ρ̃′ : Ũ ′ ∼

→ Q′/C′ of the orbit space Ũ ′ with the
set of leaves of the subcharacteristic distribution C′ of Q′.

Proof. Since Q̂′ = (ρ′)−1(Q′), Q̂′ is coisotropic. Furthermore, in local Dar-
boux coordinates providing an identification W ∼= W ′ ∼= T ∗Y , it is easy to
see that ker ω′|Q̂′ = T Ĉ|Y /TY = ker q̂′, and obviously, q̂′(Q̂′) = TW̃ |Ỹ /T Ỹ =

W̃ ′, where Ỹ = q̂(Y ) is a Lagrangian submanifold as the reduced image of
a Lagrangian submanifold of W . If λ′ : W ′ → g∗

L
exists, we see that there

is an induced map λ̃′ : W̃ ′ → g∗
L

such that λ′ ◦ iQ̂′ = λ̃′ ◦ q̂′. Thus, every

(λ′)∗D, D ∈ gL yields a reduced Hamiltonian (λ̃′)∗D on W̃ ′, and as in the
proof of Lemma 4.6, this yields a local G1-action which is given by the unique
Hamiltonian lift of the action on Ỹ , and at the same time the projection of
the restricted G1-action on Q̂′. However, this action will not be locally free
if λ̃′ is not surjective. The last assertion follows from the commutativity
of (4.10); in fact, it yields a Sternberg-Weinstein approximated analogue of
these diagrams. ¤

Proposition 4.18. The orbits of the restricted projected G1-action on Ỹ
define a regular foliation of Ỹ . Under the hypotheses of Lemma 4.11 and
Proposition 4.13, Ỹ is a fiber bundle over X with homogeneous fibers diffeo-
morphic to CL\G, where CL is the analytic subgroup of G defined by c ⊂ g.
The projected G-action in given by the natural right action of G on CL\G.

Proof. Lemma 3.2 implies that TC and T Ĉ′ are spanned at each point by
the Hamiltonian vector fields of the functions s̃ and (ρ′)∗s̃ for all s ∈ Γ(AX),
respectively. Since V ′ = S′ ∩ U ′ ⊂ Q′ and thus (TQ′)0|V ′ ⊂ (TV ′)0, the

Hamiltonian vector field of s̃ vanishes on X. Thus, that of (ρ′)∗s̃ must be
tangent the fibers of ρ′ on Y . On the other hand, and as in the proof of
Lemma 4.6, we see that the restriction to Yx depends only on s(x) ∈ (AX)x

for all x ∈ X and corresponds to an infinitesimal Lie algebra action of (AX)x

on Yx. Fixing a point y ∈ (AX)x, we get (local) isomorphisms G ∼= Yx and

a(y) : c ∼= (AX)x. Under these identifications, the fiber of Ĉ′ through y
is locally given by the orbit of the local CL-action obtained by integrating
the infinitesimal c-action on G, that is, the natural left action, since c ⊂ g
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corresponds to right invariant vector fields on G. Thus, the G1-orbits in
Ỹ = Y/(Ĉ′ ∩ Y ) are locally isomorphic to CL\G, and thus, the foliation is

regular. Under the additional hypotheses, Ỹ is a fiber bundle over X with
homogeneous fibers isomorphic to CL\G. ¤

Theorem 4.19. Let H ∈ N ⊂ C∞(U) such that dH|X = 0 be admissible for
Q, and K ∈ C∞(W ) such that dK|Y = 0 and ρ∗XK = XH . Then, the re-
duction of the Hamiltonian defining the Einstein-Mayer system of K on W ′

is precisely the Hamiltonian K̃ ′
2 defining the Einstein-Mayer system of the

reduced Hamiltonian K̃ of K on W̃ ′. With our nondegeneracy assumptions,

(4.11) K̃ ′
2 = κ̃ = (ρ̃′)∗η̃ + (λ̃′)∗ι,

where κ̃ and (ρ̃′)∗η̃ ∈ F̃′ correspond to a metric and a G1-invariant metric

for the (local) G1-action of Lemma 4.6 on Ỹ , and ι to a scalar product on

gL. Here, η̃ ∈ P̃′ is seen as a function on Ũ ′, analogous to diagram (4.10).

Proof. Theorem 4.7 yields a decomposition κ = (ρ′)∗η + (λ′)∗ι. Applying
Lemma 4.16 in the Sternberg-Weinstein approximated situation, we obtain

the decomposition (4.11) if the reduction of κ = K ′
2 is given by κ̃ = K̃ ′

2,

which follows easily from q̂∗dK̃ = i∗
Q̂
dK. The remaining claims follows from

the nondegeneracy assumption and Proposition 4.17, respectively. ¤

Remark 4.20. Theorems 3.8 and 4.19 yield the reduction theorem for in-
variant metrics on bundles with homogeneous fibers ([4]).
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