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ENUMERATIVE VS. SYMPLECTIC INVARIANTS
AND OBSTRUCTION BUNDLES

ALEKSEY ZINGER

We describe in detail a gluing construction for pseudoholo-
morphic maps in symplectic geometry, including in the pres-
ence of an obstruction bundle. The main motivation is to
try to compare the symplectic and enumerative invariants of
algebraic manifolds. These descriptions can also be used to
enumerate rational curves with high-order degeneracies of lo-
cal nature in projective spaces.
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1. Introduction

1.1. Background and Motivation. Suppose (3, j) is a nonsingular Rie-
mann surface of genus g > 2 and (V, J,w) is a Kahler manifold of complex
dimension n. If A\ € Hy(V;Z), denote by Hx (V') the set of simple (J, j)-
holomorphic maps u from ¥ to V' such that u.[X]=A. Let p=(p1,...,un)
be an N-tuple of proper oriented submanifolds of V' such that

=N
(1.1) codim p = Z codim 1y = 2({c1(V,J),A\) =n(g — 1) + N).

=1
For many Kahler manifolds (V, J,w) and choice of constraints p, the cardi-
nality of the set

(12) Hsa(n) = {(Sspn.. . oyviu) ueHsa(V);

ylezv U(yl)eﬂl vz:lvaN}

is finite and depends only on the homology classes of u1,...,un. The car-
dinality |Hx (p)| of the set Hyx; x(x) is then an enumerative invariant of the
complex manifold (V,J). Such numbers for algebraic manifolds (V, J), e.g.,
the complex projective spaces P", have been of great interest in algebraic
geometry for a long time.

If (V,w, J) is a semipositive symplectic manifold, the symplectic invariant
of (V,w),

RTg,)\(; :U) = RTg,/\(; Hiyeeey MN)
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of [RT], is a well-defined integer. Due to the two composition laws of [RT],
this symplectic invariant is often more readily computable than the enu-
merative invariant |Hx z(p)|. In fact, all such symplectic invariants of P"
are easily computable. It is also shown in Section 10 of [RT] that the ap-
propriately defined genus-zero enumerative invariants of P" agree with the
corresponding symplectic invariants. On the other hand, even for P? and
for genus one, the two invariants are no longer equal. In [I], the difference

RTy a (s pi2s - -5 piv) — [Hsa (1)

is computed for genus-one surfaces > and all projective spaces using an
obstruction-bundle approach, first introduced by [T] in a very different set-
ting. In [Z2], the difference

RTo( i) — [Hea ()]

is computed for genus-two surfaces ¥ for P? and P? using a similar ap-
proach. Both differences are linear combinations of genus-zero enumerative
invariants.

The purpose of this paper is to describe in detail a gluing construction
for pseudoholomorphic maps which is suitable for analyzing relationships
between symplectic and enumerative invariants of Kahler, or more generally
almost Kahler, manifolds. In particular, this paper supplies the most tech-
nical portion of the justification needed for the main analytic setups in [I]
and [Z2]. The explicit nature of the gluing construction can yield useful esti-
mates for obstructions to smoothing pseudoholomorphic maps from singular
domains and for the behavior of derivatives of pseudoholomorphic maps un-
der gluing; see Subsection 4.1 and Theorem 2.8 in [Z2]. Such estimates are
used in an essential way in [I] and [Z2].

The power series expansions of Theorem 2.8 and Proposition 4.4 in [Z2],
and their analogues in other genera, are useful in both enumerative geome-
try and Gromov-Witten theory. For example, Theorem 2.8 of [Z2] is used
in [Z3] to describe a method for solving a large class of enumerative problems
involving rational curves in P”. On the other hand, a genus-one analogue
of Proposition 4.4 in [Z2] is used in [Z4] to describe the "main compo-

nent” M?’k(V, A) of the moduli space My ;(V, A) of genus-one stable maps
into V. This main component is a closed subset of Mj (V, A) and contains
the subspace ./\/l(l)’k(V, A) of My ,(V, ) consisting of stable .J-holomorphic
maps with smooth domains. If J is sufficiently regular, ﬂ?’k(V, A) is the
closure of MY, (V,\) and carries a fundamental class.

The author is grateful to T. Mrowka for pointing out the paper [I], en-
couraging the author to work out all of the analytic issues arising in [I], and
sharing some of his expertise in applications of global analysis over countless
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hours of conversations. The author would also like to thank G. Tian, for first
introducing him to Gromov’s symplectic invariants and helping him under-
stand [LT], and the referee, for corrections and suggestions on the original
version of this paper.

1.2. Summary. In this subsection, we first recall the definition of Gromov-
Witten fixed-complex structure invariants for a semi-positive almost Kahler
manifold (V,J,w). We then outline the rest of the paper and roughly de-
scribe the statements of the two main theorems.

If ¥ and V are as in the previous subsection, we denote by

s, Ty uxXV — 3V
the two projection maps. Let
AT T* Y@ TV — S xV
be the bundle of (J, j)-antilinear homomorphisms from 73T'% to 7{, TV . If
v eD(SxV; A n5T*SenyTV),
we denote by My, » the set of all smooth maps u from ¥ to P" such that
ul[X] = A and ul: = v|zue) VzZED.

If v is an N-tuple of constraints as above, put

M) = {(S;iy1,- . ynsu): u€ My z;

yeES, uly)em Vl=1,...,N}.

If (V,w, J) is semipositive, for generic choices of v and p, My, ,, 5 is a smooth
finite-dimensional oriented manifold, and My, \() is a zero-dimensional
finite submanifold of My, ,, 5 X ¥V whose signed cardinality depends only
the homology classes of p1, ..., un; see Section 1 of [RT]. The symplectic
invariant RTy \(; pt) is the signed cardinality of the set My, x(1).

If[[villco — 0 and (Z; .5 u;) € M 1, (1), a subsequence of {(X;y, u;)}524
must converge in the Gromov topology to one of the following;:

(1) an element of Hx »(u);

(2) (Z7;9;u), where X1 is a bubble tree of S%’s attached to ¥ with marked
points y1,...,yn, and u: X1 —V is a holomorphic map such that
u(y))ew forl=1,..., N, and

(2a) uly is simple and the tree contains at least one S?;
(2b) w|y is multiply-covered;
(2c) |y is constant and the tree contains at least one S2.

This convergence statement says that for all ¢ sufficiently small, every
element of My 4, \(1) lies near one of the spaces described by (1)-(2c).
In many practical applications it is easy to show that there is a bijection
between the elements of Hy; y(1) and the nearby elements of My 4, A (11); see
Proposition 3.30. This is the case for all projective spaces, provided A is a
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sufficiently high multiple of the line. In [I] and [Z2], Cases (2a) and (2b) do
not occur, but they may have to be considered when dealing with higher-
dimensional projective spaces or higher genera. If the signed cardinality of
Ms (1) is RTy 5 (; ) for all £> 0 sufficiently small, the number of elements
of Ms; 1, A(p) that lie near the spaces described by (2) is thus exactly

CRy (1) = RTgx(; 1) = Hs A (1)]-

The goal of this paper is to describe C'Ry \(p) in terms of the spaces of holo-
morphic maps themselves, which can be viewed as an enumerative object,
rather than a symplectic one. We do need to assume that certain spaces of
holomorphic maps are smooth, but they do not need to have the expected
dimension.

While there is a very good understanding of what constitutes a stable
map, there is little in a way of commonly accepted notation for stable maps
and various spaces of stable maps. In Section 2, we recall the definition of
bubble or stable maps as well as set up analytically convenient notation.
Our notation for bubble maps evolved from that of D. McDuff’s lectures
at Harvard. In Subsection 2.4, we restate the definition of the Gromov
topology on the set of all bubble maps in our notation. In Subsection 2.5,
we define various spaces M7 and U7 of bubble maps and bundles of gluing
parameters F'7 over My and FT over Us.

As is typical in symplectic geometry, our gluing construction has two
steps: pregluing and perturbation. The pregluing step is usually carried out
in the target space V. In this paper, we work with the domains to construct
an approximately holomorphic map. Indeed, given a pseudoholomorphic
map b= (3, up) in M7 (or U7) and a gluing parameter v € F, 7 (or ve F7T)
for b, we construct a Riemann surface ¥, and a nearly holomorphic map

Qv Xy — 2ip;

see Subsection 2.2. We then take the approximately holomorphic map cor-
responding to v to be

b(v) = (Ev,uv = uboqv).

This explicit construction at the pregluing step leads to the estimates of
Theorem 2.8 and Proposition 4.4 in [Z2].

For the second step of a typical gluing construction, one needs to define
a family of spaces T'; (v) of admissible perturbations of b(v) and sometimes
a family of obstruction bundles T'%'(v), which together will be called an
obstruction bundle setup. The former space should be a maximal subspace
of all perturbations I'(v) of b(v) on which a certain operator D,, is fiberwise
uniformly invertible, i.e., the norm of its inverse may depend on b, but not
on v € Fy7. The obstruction bundle F(i’l(v) should be the complement of the

image of D,, on f‘+(v) in the target space of D, and should be isomorphic
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to the cokernel F(ll(b) of a certain operator Dy. It may appear there are

obvious choices for 'y (v) and T%!(v), i.e., the high eigenspaces of D* D,
and the low eigenspaces of D, D;,. These spaces, however, are not an option
for an obstruction bundle setup. The usual difficulty with the second step
of gluing constructions in symplectic geometry is that the operator D} D,
has eigenvalues that tend to zero as the gluing parameter tends to zero, but
then disappear as the gluing parameter hits zero. This is not really dealt
with in [I], but there are now several standard approaches to this problem.
We use the modified Sobolev norms of [LT], redefined in Subsection 3.3 in
the notation of Section 2, and describe the requirements for an obstruction
bundle setup in Subsection 3.5.

The main goal of Section 3 is to describe the number of elements of
M 12 (1) lying near the stable maps of type (2) in terms of objects intrinsic
to the space of such maps. Given a sufficiently regular stratum S(u) C M7
of stable maps of type (2), Theorem 3.29 describes the number of elements
of My, 1,2 (1) lying near S(u) as the number of zeros of a map between two
vector bundles over S(u). The target vector bundle is the obstruction, or
cokernel, bundle %! The domain vector bundle is the direct sum of the
bundle FT of gluing parameters with the normal bundle of S in M7. In
Section 4 of [Z2], we use convenient choices of an obstruction bundle setup
to approximate all such bundle maps by much simpler polynomial bundle
maps. The latter maps involve derivatives of rational maps into P".

We also give a local description of spaces of stable rational maps into V'
under certain regularity assumptions, i.e., in the unobstructed cases. By
Theorem 3.33, the normal bundle of a stratum U7 in such a space is F7 .
This is still the case if generic constraints p are imposed on the stable maps.
This is a known fact in symplectic, as well algebraic, geometry. However,
the explicit nature of the identification maps that appear in the statement
of Theorem 3.33 is used to obtain the estimates of Theorem 2.8 in [Z2] for
the behavior of derivatives of pseudoholomorphic maps.

Section 4 contains proofs of continuity, injectivity, and surjectivity of the
gluing maps. These are usually omitted in the literature, but in the given
case one has to choose the obstruction bundle setup carefully to ensure that
these properties of the gluing map actually hold. In particular, Section 4
contains what [LT] may mean by “asymptotic analysis near the nodes,”
which they omit. The appendix deals with even more technical details of
the analysis.

We note that the gluing construction described in this paper deals only
with attaching rational bubble components to a smooth principal compo-
nent. However, it can be generalized to allow singular principle components.

1.3. Fundamental Notation. In this subsection, we collect the most fre-
quently used combinatorial and analytic notation.
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Definition 1.1.

(1) A finite partially ordered set I is a linearly ordered set if for all i1,i9, h€ T
such that i1, 79 <h, either i1 <ig or io <iy.

(2) A linearly ordered set I is a rooted tree if I has a unique minimal
element, i.e., there exists 0 €I such that 0<h for all he .

(3) If I and I’ are linearly ordered sets, bijection ¢: I — I’ is an iso-
morphism of linearly ordered sets if for all h,i€ I, i <h if and only if

¢(i) <o (h).

A linearly ordered set can be represented by an oriented graph. In Fig-
ure 1, the dots denote the elements of I. The arrows specify the partial
ordering of the linearly ordered set I. By definition, there is at most one
outgoing edge at each vertex. A linearly ordered set I is a rooted tree if and
only if its graph is connected. The minimal element, or root, 0 of a rooted
tree I is the unique vertex of the graph associated to I that has no outgoing
edges.

Figure 1. A Linearly Ordered Tree and A Rooted Tree.

If I is a linearly ordered set, we denote the subset of the non-minimal ele-
ments of I by I, i.e.,

I= {hGI: 1< h for someiEI}.

This is the collection of the vertices of the graph corresponding to I that
have an outgoing edge. For every he€ I, the set {i€l:i<h} has a unique
maximal element ¢y, i.e.,

th < h and 1<y foralliel st.i<h.

The vertex ¢p, is the endpoint of the unique edge leaving h. For reasons
clarified in Subsection 2.1, ¢: I — I will be called the attaching map of I.
It is clear from Definition 1.1 that I has a unique splitting

I=||IL
keK

such that I, C I is a rooted tree and k is a minimal element of I. The rooted
trees I are the connected components of the graph corresponding to I. The
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attaching map of I restricts to the attaching map of each I, which will still
be denoted by ¢.

Let I be a rooted tree. We denote the unique minimal element of I by
07, or simply by 0 if there is no amblgulty If I * I, and I'x are rooted trees,
we will write I*, I,, and I for I* I*, and T* x, respectively; here * denotes
any string of Symbols. Ifiel, let

The subset D;I of I consists of all vertices of I that are “upstream” from
i. Every rooted tree I has a number of subsets that are rooted trees; the
subsets D;I are one example. If H is a subset of I, the set

M ={iel:ifhVheH)}
is also a rooted tree. If i€ I, denote I by 1) If H is a subset of I, let
={iel:i}hVheH}, I(H)=HU{0}.

If hel, denote I1h} by I".

If My and My are two sets, let M LM, be the disjoint union of M7 and Ms.
Finally, if NV is a nonnegative integer, let [N]={1,...,N}.

We now introduce some analytic notation. Let 3: R—[0, 1] be a smooth
function such that

0, ift<1;
1. = ’ -7 ! if 1,2).
(1.3) m>{LﬁQZ and  B(t) > 0if te(1,2)

If r>0, let 8, € C°(R;R) be given by §,.(t) = ﬁ(r_%t). Note that

1 1 _1 _
(1.4)  supp(B,) = [r2,2r2], |B.lco < Cpr™2, and ||B)]co < Cpr™?

Throughout the paper, 8 and 3, will refer to these smooth cutoff functions.
Let qn,qs: C— S? CR? be the stereographic projections mapping the
origin in C to the north and south poles, respectively. Explicitly,

2z 1—|z? 22 —1+|z?
1.5 = CxR .

Denote the south pole of S?, i.e., the point (0,0, —1) €R3, by co. We identify
C with S?~{oco} via the map gy. If z € S>~{oo}, we define the corresponding
verse exponential map

(1.6)  ¢p: S?—{oc} — C by  dpz=2—2=q3'(2) — a5 (@)

Note that this map is a biholomorphism. If g is a Riemannian metric on
Riemann surface (X,j) of positive genus, = € ¥ and v € T3, we write
exp, , v €Y for the exponential of v defined with respect to the Levi-Civita
connection of g. Let inj,z denote the corresponding injectivity radius at x
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and dg4 the distance function. If x € X, we define the corresponding inverse
exponential map

(1.7) Gga: {2€X: dg(x, 2) <inj,z} — T, % by

eng,;z; ¢g,mz =z, ’¢g,$2‘g7g§ < injgl'.

Note that if g is flat on a neighborhood U of z in ¥, then ¢4 .|v is holomor-
phic.

Let gy be the Kahler metric of (V, J,w). Denote the corresponding Levi-
Civita connection, exponential map, and distance function by V", expy
and dy, respectively. For every A€ Hy(V;Z), let |A\|=(w, ). The number
|\ is the gy-energy of any element of Hy y; see Chapter 1 in [MS]. By
rescaling w, it can be assumed that || > 1, whenever A # 0 and Hgz , #0.
If g is any Kahler metric on (V,J), denote the corresponding Levi-Civita
connection, exponential map, distance function, injectivity radius, and the
parallel transport along the geodesic for X €TV by VY, expg, dg, inj,, and
I, x, respectively. If g€V and d €R, let

By(q,9) = {q’EV: dg(q,q’)gé}.

In our construction, we allow g vary in a smooth family. Without causing
any additional difficulty in the gluing construction, consideration of such
families simplifies computations in specific cases such as in [Z2]. If (S, ) is
a smooth Riemann surface and u € C*(S;V), put

L(u) = T(S;u*TV), TI''(u)=T(S;T*S@u*TV);

% (u) = D(S; A% T*S@u*TV), du= - (du+ Joduoj)e T (u).

DO | —

We denote by Dy and D, the linearizations of J-operator with respect to
the metrics gy and g on V, respectively. Since both metrics are Kahler, Dy
and D, commute with J; see [Z1].

It should be mentioned that it is not essential for the main gluing con-
struction described in this paper that (V,.J, g) is Kahler or even symplectic.
If (V, J,g) is not Kahler, we would need to choose an orientation on certain
spaces of holomorphic maps and take the induced orientation on the coker-
nel bundle; see Subsection 3.2. Dropping the Kahler assumption would have
almost no effect on the analysis, but would slightly complicate the notation.

2. Spaces of Bubble Maps

2.1. Bubble Trees. Let S be either the Riemann sphere S? or a smooth
Riemann surface Y of genus at least 2. Allowing the genus-one case would
lead to somewhat more complicated notation, but would have no effect on
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the analysis done in Section 3. We put

o _ S—{oo}, if §=52%
1S, if S=X.
Definition 2.1. A bubble tree based on S is a tuple T =(S, [;x), where

(a) T is a rooted tree and z: [ — SUS? is a map;
(b) x,€8* if 1;,=0 and x;, € 5% —{oo} otherwise;
(c) if hi#hg and ty, =thy, Thy #Thy-

Given a bubble tree T as above, let X1 be the nodal complex curve

£1= [ ({0} xS) U] | ({h}yx5?) /N, where  (h, 00) ~ (tn, z1) Vhel.
hel

In other words, the algebraically irreducible components of X1 are indexed
by the set I. The point (h,o0) on the component

ET,h = {h} X 52
is attached to the point (i, xp) on the component ¥t ,,, where
ET 0= {0} xS,

We will call the component Y+ 5 corresponding to the root 0 of I the prin-

cipal component of T or X1. For each ief, Y1, will be called the ith bubble
component of T or ¥t or simply a bubble component. Let X%, and X%
denote the open subsets of smooth points of ¥t ; and ¥+, respectively, i.e.,

* Y1 —{,00)} = {(i,zp): =1}, ifiéf; . .
e {S—Z{@ 21): 1y =0} fico, ST = U
sLh) bh=— bl — U, iel
The complement of ¥% in 3 is the set of the singular points or nodes of .
If iel and hef, we put

TO=(5.1%al;0)  and  Th=(S,1%2]p).

These tuples are again bubble trees based on S. The complex curve X+
is obtained from Y1 by dropping all bubble components descendant from
the ith bubble component. The curve ¥+ is obtained by dropping the hth
bubble component along with all bubble components descendant from it.

If S=52 and hel, we denote the inverse exponential map ¢, defined in
(1.6) by QZ)T,h‘ If ZEET,I', put

|1 hz|, ifi=u, and 27 o0;
rT () =

(2.1) |
100, otherwise.
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If >0, let Bt p(0)={z€X7:7r74(2)<0}. We set
(2.2) rT = 1}1[11? (‘qgl(a:h) ,min {7 (v, z): l#h}).
€

The positive number 1+ measures the separation of the nodes of X1 pairwise
and from the point (0, 00) of the principal component ¥ o- This point will
be a special marked point. ’

If S=% and hel is such that Lh el , we again let ¢ j denote the inverse
exponential map ¢, of (1.6) and define r1j and Bt ,(6) as above. If g is
a Riemannian metric on X, ¢, =0, and z€XT,, put

dy(zp,2), ifi=0;
(2.3) mg,mz):{ o, 2)

100, otherwise.

We denote by ¢t 4, the inverse exponential map ¢g., of (1.7) and by
Bt 4 1(9) the ball By(zy,6). We set

(2.4) rT¢ = min <mir} {T‘T’gvh(bl, xp): l#h},

tp=0

: min{rr’h(u, :Bl) : l;é h})) .

The positive number r1+¢g measures the separation of the nodes of ¥+. We
say g is a T-admissible Riemannian metric on X if there exists § > 0 such
that for all hel with ¢, =0, the metric g is flat on Bt 45 (9).

. 1
min (Jag " (xn)

2.2. The Basic Gluing Construction. In this subsection, we describe a
gluing construction on bubble trees, which is the basis of all the other gluing
constructions in this paper. Lemma 2.2 plays a very important role in the
next section and in the explicit computations of [Z2].

Let T=(S,I;z) be a bubble tree. If hel, put

(0) C, if xp, €5 (0) (0)
2.5 Fr4 = = Fr2.
(2.5) R, {Txhz, if 2y €%, T €h|2 hT
€

If S=52, for any § >0, put
F‘(F(TBS = qv=(T,v;): vaF(O), lv| = Z lop| < &
hel

1
Let 6T €(0,1) be such that 807 <rt. If S=X and g is an admissible metric
on X, put

0 0
FO = o=(T,05): ;€ FO oy = S Junly + - lonl <6 ¢,
ip=0 Z;ﬁé()



456 A. ZINGER

where |vp|g = |vh|g,2,- Let 0179 € (0,1) be such that 8((579)%
metric g is flat on B, (:Bh, 4(5Tg)%) for all hel with ¢, =0.

For each v e FQ()ST if S=5% and ve ng)irg if =%, we will construct a
bubble tree T(v) and a smooth map

<rT1g and the

Qu: XT(v) — LT

The Riemann surface X1, is obtained from Yt by replacing the attaching
node of the bubble ¥+ ; by a thin neck whenever vj, #0. The map ¢, simply
pinches all these necks. Alternatively, the map ¢, can be described as a
stretching of small neighborhoods of the points (¢p, ) in X1 ,, around the
bubbles X1 p,.

First, for every hel and vy, EF#-% with
lun| €(0,0) if z;,€ 8% and  |vy|,€(0,0) if ;€ X,
we define local stretching maps
Qhy(epon)t 2T — STy iz € 5?2 and
Qg.h,(zn,on) ° Yrep) — YT if xp €.

These maps will stretch a small neighborhood of the point (¢p,xp) in X7,
around the bubble Y1 5, which is attached to ¥, at (vp,zp). If 25 € S2,
let

1
Ph(enon)’ Bt 5(203) — CU{oo} and
1
pf—:(l‘mvh) : BT,h(25%) — TthQ
be the maps given by

Prtenon () = (1= B 2lémaz) () and

OT h2
P o) (2) = B (16702 (9702).
We note that
1 i 1
(2.6) — = 2 VZGBTJl("Uh’Q/Q)_
ph,(z;“vh) (Z) Uh

Define g, (g, v,y Xrh — L1 by

_ . 1
(R as(Pp (4 o) (), 770 (2) <on 25
_ . 1 1
(27) qh,(:ch,vh)(z) = (Lhaqb‘rylhp;(xh,vh)(z))a if |’Uh|2 érT,h(Z)§2|Uh|2;

z, otherwise.

This map wraps the ball Br,h(]vh]%) around the sphere X1 . It stretches
the ball B—r,h(]vh]%ﬂ) by the factor of 1/vy, as can be seen from (2.6). The
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map gy, (g, ;) 18 Smooth everywhere and is a diffeomorphism, outside of the

circle r1 p(z)= |vh|% in ¥1,,.
If x, € ¥ and thus vy, €T, ¥, similarly to the above, let

N|—=

) — CU{oo} and
) — Ty, 2

p;h,’l}h : BT,g,h(25

NI

Pyhw, s BTgn(20

be the maps given by

(2.8) Py b, (2) = (1 - /Buhg(QWT,g,hZ’g))m and

p;_,h,vh (Z) = ﬁ|”h‘g(‘(bT’gth’g)(ng,g,hz)-

Note that the ratio vy /¢T 42 is well-defined as an extended complex num-
ber, since T}, ¥ is one-dimensional and vy, #0. We define

dg,hp @ 2Th — 2(n)

by
_ . 1
(h7 qS(pg,h,Uh(Z)))’ lf rT,g,h(z)S‘vh‘Q;
_ . 1 1
(2'9) dg,h,vp (Z) = (Lh7 ¢g,1T,hp;_,h,vh (z)))7 if ‘Uh‘ 2 < TT,g,h(z) < 2‘Uh‘ 23
z, otherwise.

Similarly to the case xj, € S?, dg.h,v, 15 smooth and is a diffeomorphism,
except on the circle rv 4 ,(2) = |vh|g% in X1, .

If S =52 for every h €I and v € FQ%, we now define a bubble tree
Th(v) and a smooth map g, 5 : X7, () — X(n. Choose an ordering of I
consistent with its partial ordering. If h=0, we take

L) ={0},  Taw)=(S,Tn(v);), and q,n=Ids.
Suppose h#0 and
Tho1(v) = (S, In—1(v); 24(v))
with I,_; (v) C I. If v, =0, put
In(v) = I—1(v) U {h},

(th(U)axhl(U)) — {(Lh—lyl(v)vl‘h—l,l(v)), if lEIh_l(U);

Qo (thy 1), otherwise.
Let quh\gThilm =qu -1 and g, p(h, 2)=(h, z). If v, #0, let

In(w) = I-1(v),  (thi(v), zhi (V) = (th=1,4(V), Th-1,(V)).
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We take Qu,h = qh,(zp,0n) OQvh—1- Inductively this procedure defines a bubble
tree T(v)=Tp=(v) based on S and a smooth map

Qu=Guh*: LT(v) — X7,

where h* is the largest element of I. This map is a diffeomorphism outside of
|I —1(v)| disjoint circles. The resulting bubble tree and map are independent
of the choice of the extension of the partial ordering. While the domains
of the maps ¢, do depend on such a choice, whenever we make use of the

maps ¢, 5, below, the result will also be independent of the choice. If S=3%,

for every hel and ve FT(-OL 5

we define bubble tree T, 5 (v) and maps
Qgoh* BT, (0) — BT

similarly to the above, but replacing gy, (2, v,) PY qg,hv, Whenever ¢, = 0.
We let Tg4(v) =Tyn(v) and gg=qgu,n As before, gy, is smooth and a
diffeomorphism outside of |I—I(v)| disjoint circles.

If S=5? and v, #0, put

1 1
(2.10) AL =a, ({ZGET,W |2 <7r1o0(2) SQ\UW});
_ 1 1, 1 1
App = Qo 1 2€ 5T 0 glonl2 <rTa(z) <fonl> ¢ ).

Note that Aih C ET(U)7i2(U)’ where
ip(v) =min{i€l:i<hand vy #£0if i<h'<h} =max {i€l(v):i<h}.
If S=% and v, #0, we similarly define
+ 1 3 3
@10 AL = g ({2€ ST 0l Srron(2) <2103 });
- _ 1 1 1
Ao = taban ({26503 glonld <rrn()<ionld ).

where |vp,|, and 77 45 denote |vy| and rp if el

Lemma 2.2. If S =52, the map q, is holomorphic outside of the annuli
Aih with v, #0. For such h and for all quU,Lh(A;h),

||dq}7q(xh,vh) ||CO(QU,Lh (Af’h)) S C’

5(qvoq;}h)‘z = _2’Uh’7% <¢Uh )dqs‘

T,h?

odoT

(o) | 1 y
Ph,(zp,,vp)? 2vp|” 2¢T 02 Z
where the norm is computed with respect to the standard metric on S?, and
B is a viewed as a function on C via the standard norm on C. If S=3, the
map qq,. 15 holomorphic outside of the annuli A;tv p, With v, #0. For such h
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and for all z € qg ., (A )

”dqg’h’”hHCO(qg,U,Lh(A;U’h)) <0, if 1y, =0;

qu}l,(iﬂh,’vh)||CO(Qg,U,Lh(A;;u,h)) g C Zf Lh#(j?

- - 1/
8(Qg,vOQg,11),Lh) }z = —2|vn] é <¢—|—2z> qu‘

od¢r |,

O /8‘ _1
Ph,(zp,vp)* 2lvp|” 29T n2

where we regard 3 as a function on Ty, ¥ via the metric g and denote ¢g4 1 p,
by o1 n if tn=0.

Proof. The first statement in each of the two cases is immediate from the
construction. The estimates on the differential of gy (4, v,) and qg sy, follow
from (1.4). Suppose S=%, 1,=0, v,#0, and z EA;UJL. Since g0 = qg,0,0,
on A, and gg is anti-holomorphic, from (2.8) and (2.9) we obtain

)d(Js’ 0 9|

Pg,h,(zp,,vp)?

EQg,U |z = qu|

Pg,n,(zp,vp)?

_1 v
= 2oy * (5
7g7

1 o dPT g n,-
- 7g7
2lvnlg 26T 9,02 #

The other cases are proved similarly, since
71 _ —
dg,v © Agv.u, = h,(zh,vp) Ol Gg,u,uy (Ag,uh)

and a similar statement holds in the case S=52.

2.3. Curves with Marked Points.

Definition 2.3.
(1) If M is a finite set, a curve with M -marked points based on S is a tuple

C = (S, M, I;x, (7, y)), where

(a) Te = (S, I;:E) is a bubble tree based on S, and j: M — I and
y: M — SUS? are maps;
(b) (i, y) X7, ;, and y;# oo for all l€ M;
(c) for all Iy, lo € M with Iy #l2 and ji, =Ji,, Y1, Y, -
(2) The curve C is stable if

[{h: =i} + [{l: ji=i}| > 2
for allicl if S=X and all i€ I if S=S2.

Via the construction in Subsection 2.1, such a tuple C corresponds to a
complex curve ¥¢ = Y1, with marked points {(ji,yi) }iensr. For each i€ 1,
we denote by Y¢; and Ez’i the surfaces X1, ; and E*TC ;» respectively.
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With notation as above, for every h € I , let F, }Eog and FC(O) denote the
(0)

e respectively. If =52 put

spaces F,on)-c and F
. . -1
re = min ( r7., min
C (Tc7l€M(|qS yl‘>

min{rr. (i, y): hel}, min{|¢, 'y |: h#hjh:jz}))

This positive number measures the minimum pairwise separation between
all special points of ¥¢, including the point (0,00). Let d¢c € (0,1) be such
that

1
16(|1| + |M])dz < re.
If v=(C,v;) with vaFéO) and |v| <d¢, we now construct a curve C(v) with
M-marked points as follows. Let
T(v) = (S,I(U);x(v)) and  qy: Y7(y) — ¢

be the bubble tree and the smooth map defined in Subsection 2.2. Then we
take

C(v) = (8, M, I(v);2(v), (j(v),y(v))),
where (ji(v), 41(v)) € X7(v) 5y (v) is defined by
g (Ji(v), yi(v)) = (i, o)
Similarly, if S=3 and ¢ is an admissible Riemannian metric on X, put

rcg = min <rTcg7miI} (mi%{TTc,g,h(jla yl)}a min{|¢;glﬂyh|g: h#lajh:()})a

51=0 tp=

min (|gg"yi|, min{rr,.» (i v1)}, min{|e,, yn!: h#l,jh:jz}))-
2170 th70

Let 6cg€(0,1) be such that
1
16(|I|+[M])(dcg)> <rcyg

and ¢ is flat in Bg(xh,8(5cg)%) for all h € I with ¢, =0. If v e Féo) and
|ulg <dcg, we construct the curve Cy(v) with M-marked points in the same
way as above, but replacing ¢, and T(v) by g4, and T4(v).

Definition 2.4. An isomorphism of curves with M -marked points
C= (S, M, I;z, (7, y)) and C' = (S, M, I, (j’,y’))
is a tuple of maps,
¢o: I — T, ¢r9:8— 5, ¢1p:S? — S? for hel, where
(a) ¢ is an isomorphism of the linearly ordered sets I and I” and ¢o(j;) =,
for all € M,

(b) ¢1, is a biholomorphic map for all i€ I and ¢,  is the identity map if
S=3;
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(c) ¢1i(c0)=o0 for all ie I if S=S% and for all ic T if S=3;
(d) ¢1,Lh($h):xl¢o(h) for hel and ¢4 j,(y;) =y, for all € M.

Such a set of maps corresponds to a continuous map
(;5: EC — EC’

that maps the Ith marked point (j;, ;) on X¢ to the Ith marked point (j;,y;)
on Y and is biholomorphic on each component of ¥¢. If S =52, ¢ also
takes the special marked point (0, o0) on ZC’@ to the special marked point
(0,00) on 2, 5. Note that if C is stable, C has no nontrivial automorphisms.

Let [C] denote the equivalence class of C in the set of all curves based on
S with marked points. Denote by M& M the set of all equivalence classes of
stable curves based on S with M-marked points. If S =52, MS, M can be
identified with the moduli space ﬂm M|+ of all stable rational curves with
|M|+1 marked points, or more canonically with the space MQMI_,{()} of all

stable rational curves with the marked points labeled by the set M L{0}.
If S =3 has genus bigger than two and is generic, Mg is the closed
subset of Mg, M consisting of all stable curves of genus g with M-marked
points that have a fixed complex structure on the principal component. If
S has genus two, Mg M is a double cover of the corresponding set for g=2,
since any smooth genus-two curve has a holomorphic automorphism of order
two; see [GH, p. 254]. The reason we require that ¢, 5=1ds is that the
symplectic invariant of [RT] disregards the automorphisms of X.

2.4. Bubble Maps.

Definition 2.5.

(1) A V-valued bubble map is a tuple b= (S, M, I;zx, (j,y),u), where
(a) I is a linearly ordered set, which is a rooted tree if S=X;
(b) u: I—C™(S; V)UC™(5% V) is a map;
(c) if I= | ] Iy is the splitting of I into rooted trees, then M = | | M}
kEK kEK
for some subsets M, of M such that C,= (5’, My, I.; x]fk, (7, y)|Mk)

is an Mj-marked curve based on S;

(d) upeC=(S; V) if he I-1I, up e C®°(S?; V) if hel is a smooth map,
and uy,(c0)=u,, (z;,) for all heT;

(e) for all iel if S=% and i if S=52,

{hel:uy=i}| +|{leM: ji=i}| < 2 = up[S?] # 0 € Hy(V;Z).

(2) The bubble map b is simple if I is a rooted tree; b is J-holomorphic if
Jju; =0 for all 1€ 1.
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With notation as in Definition 2.5, every bubble map b corresponds to a
continuous map

Up: Lp = |_| Ye, — V,
keK

which is smooth on the components of ¥¢, . If i € I}, the restriction of u;, to
Ypi = Xy
is of course u;. If he Iy, we put

0) _ 7(0)
Fhp = They

Similarly, let
0 0 * * * X
Fb( : = @ FC('k)> Eb = U ECk C X, Eb,i = Eckﬂ = Eb’i'
k€K keK

If b is simple, denote by T} the bubble tree T¢, for the unique element k€ K.
Definition 2.6. An isomorphism of V-valued bubble maps
b:(S,M,I;x,(j,y),u) and b’:(S,M,I’;x',(j’,y’),u’)
is a tuple of maps
do: [—T', ¢p1;: S—Sforiel—1I, ¢pr;: S?— 8% foriel, where

(a) ¢o is an isomorphism of the linearly ordered sets I and I’ such that
qbo(jl) :]l, for all € M;

(b) ¢1; is a biholomorphic map for all ¢ € I and is the identity map if
S=7%andi¢l;

(c) ¢ri(c0)=o0 for all ie ] if S=S2 and for all ic 1 if S=3;

(d) b1, (xn) =l (1 for all he T and 1, (y) =y; for all 1€ M;

(e) u:ﬁo(i) o0¢1; =u; forall iel.

Such a set of maps corresponds to a continuous map
¢Z Zb — Eb’

that maps the marked points of b to the marked points of ¥, intertwines
the maps up: X — V and wuy : 3y — V/, and is biholomorphic on each
component 3y ; of Xy, If $=52, ¢ also takes the special marked point (0, 00)
on X ; to the special marked point (0, 00) on e

Let Gy denote the group of automorphisms of the bubble map b. This
group is necessarily finite by the stability condition (e) of Definition 2.5. If
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NE Hy(V;7), let

C_'E’)?;M)(S; V) = {b = (S, M, I;z, (j,y),u) is V-valued bubble map:

3 ui[Sh) = )\}/ ~;

el
C’(Of\’;M)(S; V)={b= (S, {0}, (O,y),ué) is V-valued bubble map:
UO*[S]:)‘}/ ™~

where the equivalence relation is given by isomorphisms of V-valued bubble
maps. If p=pys is an M-tuple of submanifolds of V, let

C(AM (S; ) ={b=[S, M, I;z,(j,y),u ]GCFSM)(S'V)'UjZ(yl)GMlVZGM}
Counn (S 1) = ={b=[S, M, {0}:,(0,9), uO]EC()\M)(S V) ug(yr) € Ve M},

A topology on C(/\_M)(S; V') and its subsets C’E’/‘\)_M)(S; V), C’()\.M)(S; u), and

Coan(S: ) is defined below.

Definition 2.7. Suppose
b*:(S;MaI*an*7(3*79*)>u*) and bk:(S7M7Ik733k7(Jk7yk)7uk)

be simple bubble maps. If S =52 the sequence {b;} converges to b* if for
all k sufficiently large one can choose
(i) M-marked curves Cp= (S, M, I*; 2, (*,y*)), and
(ii) elements (vy);. EFC(S) with 16]%] <r§k, such that with vy = (C, (V&) . ).
(a) lim z, =) forall hel, and lim |vg| = 0;
k—o0 ™ k—o0
(b) C(Uk) = (S) Mu Ik7 L, (jk:u y(vk)))a
mqu, (it yit) = Gy y7) VieM,  and
lim  sup dy(up(qu,(2)), up, (2)) = 0.

k—so0 ZGEC(uk)
If S=3, convergence is defined in the same way, but |vx| and C(v) are re-
placed by |v|s and Cg(vy), respectively, for a Tp+-admissible metric g on 3.

This notion of convergence is independent of the choice of an admissible
metric on Y. Definition 2.7 induces a topology on the space C’(Cf,M)(S; V),

which will be referred to as the Gromov topology.

Remark. It is often appropriate to strengthen the last condition in (b)
above to LF-convergence, for p>2, with additional conditions on the behav-
ior near the nodes. However, this is not necessary for the purposes of [I]
and [Z2], for example.
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2.5. Strata of Bubble Maps. In this subsection, we introduce the notion
of a bubble type. We then define various spaces of holomorphic bubble maps
indexed by bubble types and vector bundles over them.

Definition 2.8.

(1) A bubble type is a tuple 7 = (S, M, I;j,A) such that
(a) I is a linearly ordered set, and j: M — I and \: [ — Hy(V;7Z)
are maps;

(b) for all il if S=% and all ie I if =52,
Ni#0 if [{hrg =it { =i < 2

(2) Bubble type 7 is simple if I is a rooted tree; 7 is basic if I=0.

(3) Two bubble types 7 = (S,M,I;j,A) and 7" = (S, M, I’;j/,X) are
equivalent if there exists an isomorphism of linearly ordered sets ¢y :
I — I’ such that ¢o(j;) =] for all le M and )\'ﬁso(i) =)\ forall iel.

(4) 7= (S, M, I*;j*,g*) and 7 = (S, M, I;j,A) are two bubble types,
T*<T if ICT*,

jl:max{ielzigjl*} YieM and M\ = Z A Viel.

i=max{i'€l:i'<h}

(5) f 7= (S, M, I;j,A) is a bubble type, a 7 -bubble map is a bubble map
b= (S, M, I;x, (j,y),u) such that u.[Xp;]=X; € Ho(V;Z) for all i€ 1.

The splitting of I into rooted trees I; induces a splitting of 7 into simple
bubble types

7;6 = (87 Mk7 Ika]kaAk:)7

where ji and )\, are the restrictions of j and A to My and I, respectively.
Similarly, each 7-bubble map b corresponds to a K-tuple of bubble maps
bx = (bg)kek, where by is a Ti-bubble map.

We denote the equivalence class of the bubble type 7 by [7] and the group
of automorphisms of 7 that fix all minimal elements of I by A(7). This
group acts naturally on the set of all 7-bubble maps. The partial ordering
on the set of bubble types induces a partial ordering on the set of their
equivalence classes. If b and o' are 7- and 7’-bubble maps, respectively,
such that [b] =[], then [7]=[7']. Furthermore, if {bs} is a sequence of
7-bubble maps, b* is 7*-bubble map, and [b;] converges to [b*] with respect
to the Gromov topology, then [77*] <[T].

Let T = (S, M, I;37, A) be a bubble type. We denote by (7) the basic
bubble type such that (7)>7. It can be described explicitly as follows.

Let I = || I be the splitting of I into rooted trees and M = | | My the
keK keK
corresponding splitting of M; see Definition 2.5. It can be assumed that
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K=1I-1 and k is the unique minimum element of I. For every k€ K and

e My, let
P= X, ji=k

1€y,

Then (T)=(S,M,K;j', \).
Suppose 7 = (S, M, I;j,A) is a simple bubble type. If H is a subset of I,
we define bubble type 7 (H)= (S, M, HU{0};5/,\') by

jl’:max{iEHu{ﬁ}:iSjl} and
No= > X with i}y = max {i*€ HUO : i* <i}.

it <h<i

Then 7 (H) is again a bubble type. The bubble type 7 (H) is the bubble
type obtained by gluing 7-bubble maps with the parameter v; such that
vp, =0 if and only if h € H; see the next section.

Given a bubble type 7= (S, M, I;j,\), let d(7): I — R be given by

(2.12) di(T) = |N| + [{leM: ji=i}| + > dn(T) Viel.

Lh=1

Since I is a linearly ordered set, the numbers d;(7) are uniquely defined
by (2.12). If

b= (S, M, I;z,(j,y),u)

is a T-bubble map, b is 7 -balanced if for all i€ ]
(Bl) f(C |dul o qN‘QZ + Z dh(T)ﬂ?h + Z Y = 0,

Lth=1 Ji=t

(B2) [, Idu; o qnPA(=l) + X du(T)B(an) + X Alwil) = L.

Lhp=1 Ji=1
The integrals above are computed with respect to the metric gy on V. Recall
that we consider C to be a subset of S? via the map ¢y. Thus, x;, and y;

can be viewed as complex numbers, as done above. If S =52 and b is as

above, b is completely T -balanced (or ¢b) if (B1) and (B2) hold for all i€ 1.
Denote by Hy the set of all holomorphic 7-bubble maps. Let

PSLY) = {gePSLy: g(o0) =00},  Gr = HPSL%O).
hel

The group G acts on H7 by reparametrizations. In other words, if

b= (S,M,I;x,(j,y),u) € Hr and 9=49; € 0r,
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then gb = (S, M, I; gz, (4, gy), (gu)) is defined by

(g2)n = {gbha}h, if Lth; (gy)1 = {gjlyl, if jlef;

v, gl y, il
gi - Ui, ifief;
(gu)i = o
Uj, ifigl,

where for any map f: S?—V and g€ PSLs, we define
g-f:8°—V by {g-f}z)=[f(g"2)
Let M(TO) CH7 denote the subset of 7-balanced holomorphic maps and

Gr=]]s" cér,
hel
Since every element of G is a map on I, A(7) acts naturally on G7. The

semi-direct product A(7 )xG7 acts on Mg}) and all the stabilizers are finite.
Denote the quotient by M7, and let

If A(T)={1}, corresponding to the quotient My = M(TO)/GT, we obtain
|Z| line (orbi)-bundles
(L, T — Mg:hel},

that carry natural norms:

boen)l = len]  if beMP and ¢, eC.
If A(T)#{1}, the fiber products and connect sums of the above line bundles
taken over each orbit of A(7) are well-defined. Let F) }EO)T—>M(TO) be the
bundle with the fiber Fy ) at be MY, Le.,

(0) : 2.
F,EO)T _ M7 G ?f T € 5% where 73,(b) = xp,
w3, if xpeX,

with notation as above. The action of G on M(TO) lifts to an action on each

bundle F° }EO)T by
b, g, g o), ife Gf;
g (y0n) = (9 D ). el
(9-b.g;  vn), if th 1.

Here and in the rest of the paper, we identify S' with the unit complex
numbers in the usual way. Let Fj,7 be the line orbi-bundle over M+ given by

FT =FOT/Gr.
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This bundle has a natural norm unless ¢, =0 and S=¥. In such a case, any
metric g on ¥ induces a norm on Fy7. Let

0 _ (0) O _ (0)F| . _ ©)F _ (0
F( >T_@Fh T, F,’T=F9T|; FT = F.T, Fy, T=F( )T\[b].
hel hel

Note that if 7* <7, there is a natural splitting
(A(T")xGr+) = A(T) x (G xG),
with G determined by 7 and 7*. Thus, G acts on Mgg) and the line

bundles F,EO)T*, while G7+ acts on M(TO) and F,EO)T )
If S=52, let

BT:{b: (S, M, I;zx, (j,y),u) EHr: b is cb; u;, (00) =u,(00) Vi, igEI—f}.
Denote by Ug)) C M the quotient B/ (A(T) X GT). The group
Gr= [
iel—-1I
acts on ng) ) and M7 as follows. If
[b] = [(S*, M, L; 2, (j,y),u)] € M7 and g = (gi),;_;€GT,
define g[b]=[(S%, M, I; gz, (j, 9y), gu)] by

(42) xp,  ifu€l; (09) w, ifjel;
gxr)p = . A gyt = PR
9unTh, if ta €1, gy, it i g1,

Uj, ifiel ;

(gu)i = e o 4 F

g; - Uq, if 4 Q 1.
As in the previous paragraph, all stabilizers are finite. Furthermore, this
Gr+-action on M7 naturally lifts to an action on ./\/l(TO) and along with the

(0) (0)
T

Gr-action on M’ induces an action of CNJTEG} X G7 on My’ as well as

on F,EO)T by

((g%,9) - b, g7, g on), if n &1.
Note that G%, =G% whenever 7' <7T. Let
ur=ul/cy, Uy = Juy, Ur=J ur.
TI<T TI<T

With respect to the Gromov topology, the space 0le7(—0 )

(g, 9) - (b,on) = {((9*79)'6’%9’:10’1)’ if el

is Hausdorff and

compact; see [RT]. Furthermore, G} acts continuously on L{T(P,) as can be
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easily seen from Definition 2.7. If follows that U7 is also Hausdorff and
compact in the quotient topology. Denote by

{LiT —Ur:ieI-I}

the line orbi-bundles corresponding to the quotient Uy = Z/_[ép ) /G%. Let

AT = (BT, ) /Gr — Uz, FupT = BTy
FT=@AT, FyT =FT|,.
hel

The line bundles F;,7 have natural norms, defined as in the previous para-
graph.
If T=(S,M,I;j,\) is a bubble type and
b= (S,M,I;[B, (j:y)au)
is a 7-bubble map, for any [ € M, let ev;: Hr — V be the map given by

evi((S, M, I;z, (4, y),u)) = uj (w)-
This map descends to the quotients defined above and induces continuous
maps on the spaces M, ﬁg(—]), and U7. If = pps is an M-tuple of subman-
ifolds in V, put
HT(,U,) = {bEHT: evl(b)e,ul VZGM}.

Define spaces M(TO) (1), Mz (1), Mz (), etc. similarly. If S=S52, we define
another evaluation map,

ev:Br — V by ev((S*,M,I;xz,(j,y),u)) = ug(c0),

where 0 is any minimal element of I. This map induces continuous maps on
the spaces Z;{? ) and Ur. If u=p 7 18 an M-tuple of constraints, let

Ur(p) = {beUr:evi(b) e YIeM N M, ev(b)eu Yie M—M}

and define L[g) ) (), etc. similarly.

3. The Gluing Construction and the Obstruction Bundle

3.1. Summary and Notation. We now present a gluing construction on
the spaces M7 (u) such that Hy is a smooth manifold with the tangent
bundle isomorphic to the kernel of the linearization of the d-operator, as de-
fined below. The space H7 is well-known to be smooth if the linearization
of the J-operator is surjective; see Chapter 3 in [MS]. However, surjectiv-
ity of the linearization is not a necessary condition; see [Z2] for examples.
In fact, there are two main cases of primary interest to us. The first is
when 7 = (52, M, I;3j,)\) and the linearization of the d-operator is indeed
surjective. In this case, we give an analytic description of a neighborhood of
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Ur(p) in Z;lg) (u) for a generic set of constraints p. The second case is when
7= (E, M, I;j,)\) and the cokernels of the linearization of the J-operator
form a vector bundle over Hz, which will be the analogue of Taubes’s ob-
struction bundle of [T] in the gluing construction below. Using the same
analysis as in the first case, we describe any sufficiently nice element of
Chan (3 1) lying near Mz (p), where A=>" A;. The elements of My 4, x (1)
lying near M7 (u) will correspond to the zero set of a certain section of the
obstruction bundle.

For our gluing construction, we fix a smooth family {gy;: be M7} of
Kahler metrics on (V,J). We assume that this family is (A(7)x G71)-
invariant if S=Y and (A(7)x GT)—invariant if S=52. If be M, X,Y €
T,V,and u: (D, j)—V is a smooth map from a one-dimensional complex
manifold, let

expy , X = expg, . X, Vb = v, IL, xY =1lg, xY, Dyy = Dy, u;
see Subsection 1.3 for more details. If S=3:, we also choose a smooth family
{97 2: 2= (x){hnh:()ﬁ xp €X; xp, #FTh, if h1#ha}
of Riemannian metrics on X such that each metric g7, is flat on a neigh-
borhood of z;, in ¥ for all h €I with ¢, =0. Existence of such a family of

metrics is shown in [FO]. If

b= (%M, Lz, (j,y),u) €Hr,

let g, 5 denote the metric 97 (), on ¥. If i €1, we write gp,; for the

h:Lh:f)}
standard metric on S?. Similarly, if S=52, for all i€ I, we write g;; for the
standard metric on S2.

If b= (S, M, I;x,(j, y),u) eHr, let
I'(b) = P T(wi); T(b) =T(up) = {& ET'(b): €n(00) =&, (z1) VhET};
el
PUo) =Tl wm) = P w)  TOH0) = T (up) = @DT (u).
i€l iel
Define Dy: I'(b) —T'%1(b) by
(Dbf])i = Db,uigi Viel.

We denote the kernel of the operator Dy, on I'(b) by I'_(b). If £ €I'(u;) or
g€l (us), let [[€]l, or and [[€]lp,2 denote the C*- and L?-norms of § computed

with respect to the metrics gy, on V and gp; on Xp,. If £ =& € IV(b) or
£eT'Y(b), put

I€lln.cx =Y N€ills.cns N€ls2 = I&llbe-
i€l iel
Let mp—: I'(b) — I'_(b) be the (L2, b)-orthogonal projection map.
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The space Py7 of perturbations of a bubble map b is the collection of
tuples o= (§;;wj,,,), where

C, ifleM & %y;,=5%

€D(w) Viel, wpely) Yhel, wie
‘Ez (Uz) ? wp, h,b Wi Tylza ifleM&Zb»jl:Z'

If o is sufficiently small, we define exp, o= (S, M, I;z(0), (j,y(0)),us) by

. 2.

21(0) Tp+wp, if ¥y, =57
n(o) = .

€XPg, oy, Why if 35, =2;

yit+w, if 3,5, = 5%
yi(o) = { It and Ug; =€XDpy, &i-

engb,(),yl wy, if Xy 5=

If z€X, let |v|, = |v]g, , »- For consistency, if v € C, let |v|, = |v]. Along

with the (L2, b)-norm on the vector fields defined above, we obtain an inner-

product on the space of tuples o as above.

In order to get a good description of the spaces M(TO) as submanifolds of

‘H7, we describe an action of an open subset of 0 in (C@R@R)I on bubble
maps and distinguished elements a((llf)l.) €PyT that correspond to this action.
If
(c,r,0)=(c,r,0); € ((CX]RX]R)I
and b is a bubble map as above, we define
(¢,r,0)-b= (S, M, I;(e,r,0)x, (], (c,r,0)y), (c,r, 0)u)
by setting
((c, T, Q)x)h = ew%(l—i-nh)(wh—i—cbh), ((c, T, H)y)l — Wi (1475)(yi+¢5,),
((c, r, Q)U)i(qN(z)) = u; (qN((1+ri)_1e_i0iz—ci)).

If (¢, r, 0) is sufficiently small, (¢, r,0)-b is again a bubble map, i.e., the maps
into V still agree at the nodes, and the nodes and the marked points are
still all distinct. In fact, the values of the maps at the nodes or the marked
points do not change, i.e.,

((c, T, G)u)bh(((c, T, H)x)h) =u,,(xp), ((c, T, 9)u)h(oo) =up(00),
and ((e,m, Q)U)jl(((c, 7, 0)y)1) =uj(y).-

Furthermore, if b€ Hr, (¢,7,0)-b€ Hy. If bis of type T, the above describes
the action of a neighborhood of the identity in Gz on the space of stable
maps of type 7. The action by C corresponds to the translations of C,
by the first R-component to dilations about the origin, and by the last R-
component to rotations about the origin. If $=5? and (c,,0) € (CXRXR)I
is sufficiently small, we define (¢, , ) - b similarly.
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If ue C°(S% V), define &V, ..., ¢l €T(w) by:

D an(2) = ~dwoaw)| o €2 an(2) = ~dlwoan)| o
f’)(qN(z)) = —d(uoqy) <382 + t%) = —rd(uoqy) Z%,

0 0
€M (an(2)) = d(uo qn) ZG%—Sa) —d(uoqn ’ 20"

where we write z = s+it € C and r = V/s2+t2. These vector fields ex-
tend smoothly by zero over the south pole. For any x € S%— {oo}, let

wg(cl), e ,wg(c4) €C be given by

’U)g(cl) = 1, w:(p2) = i? wé?») = Z, w:(t4) = ix.

If b is a bubble map as above, k=1, ...,4, i*elif S=Y and i*e ] if S=52,
let

(k) (k) k)
Ob,ix) = ((f(b,i*))b (wEb,i*))fuM)

be given by
5 ful , if i=1d*; (k) wé’f}, Lp=1";
®, Z*)’ 0, ife#d" Pbinh = 0, Ly F#1;
k).
w® wél), Ji=1,
TentT o, G

(k)
(b,i*
of stable maps of type 7.

Finally, if X is any space, F'— X a normed vector bundle, and §: X — R

is any function, let

The tuples o ) correspond to the infinitesimal action of G on the space

Fs = {(b,v)eF: |v],<d(b)}.

Similarly, if € is a subset of F, let Q5=Fs N Q. If v=(b,v) € F, denote by
b, the image of v under the bundle projection map, i.e., b in this case.

3.2. The Basic Setup. In this subsection, we describe our assumptions on
the smooth structure of H7 and state some of their implications.

Definition 3.1. Bubble type 7 = (5%, M, I;7j,)) is (V, J)-regular if for all
b= (S,M,I;I’, (]73/)5“) € Hr,

(a) Dpy,;: T(u;) —T%(u;) is onto for all i€ I;
(b) ker Dy, — Ty, (00) V', § —&(00), is onto for all i€ 1.

Definition 3.2. Simple bubble type 7 =(S, M, I;j,A) is (V, J)-semiregular
if
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(a)

(b)
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the space H( S,0.{0}:.70) is a complex manifold, and there exist
(5, C S COO(H(S,@,{G};,)\()); R+)
and for each element b= (S, 0, {0};,ug) of H (5,0,{0}:,0,) & AP
hy o {¢e€ker Dy b 1€l gy ,co <0(D)} — T(up)
such that
1756 (E)llgy b <COIENG, co and
HhT,O;b(f) - hT,O;b(fl)HgV,CO Sc(b)Hf_SIHgV,CW
for all €, & €ker Dy, g with [[€]lyy.c0. €]l y.co < 6(8) and the map
HT,();b: {ﬁeker Dy, - ||£||gv,6'° <5(b)} —>'H(57@7{0};7)\6),
5 — engV,u() (£+h’]’7();b(£))a

is an orientation-preserving diffeomorphism onto an open neighbor-
hood of b in H(S@ 030" Furthermore, the family of maps {H, ., :
bGH(&@’{O};’)\O)} is smooth.

For all b= (S, M, I;z, (j,y),u) eHr

(b-i) Dy, : T(up) — T (uy) is onto for all heT;
(b-ii) ker Dy, — Ty, (00) Vs € —&(0), is onto for all hel.

Remarks.

(1)
(2)

All conditions in both definitions above are independent of the choice
of metric on V.

Condition (a) of Definition 3.2 says that H(S,@,{O};,,\O) is a smooth man-
ifold modeled on ker Dy for beH(Sﬂ?{O};’)\O), as would be the case if

Db: F(ub) E— Fo’l(ub)

were surjective.

The conditions of Definitions 3.1 and 3.2 insure that H7 is a smooth
manifold; see Proposition 3.3 below. However, (b) of Definition 3.1
and (b-ii) of Definition 3.2 are somewhat stronger than necessary to
show that Hg is smooth. They allow us to obtain the second part
of (1) in Proposition 3.3, which is used in the proof of surjectivity of
the gluing map; see Subsection 4.3. These two conditions hold for all
complex homogeneous manifolds; see Section 10 in [RT].

Note that if 7 is semiregular, the homotopy invariance of the index implies
that the vector spaces

%! (b) = cokerDy, ~ ker D ¢ T¥'(b), b€ Hr,
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form a vector bundle over H7. Here D; denotes the formal adjoint of Dy
with respect to a metric g on S} it is a J-linear operator. The space ker Dy is

independent of a conformal choice of the metric g. The bundle ro! —Hr
will be called the T-cokernel bundle. 1t is (A(T )xG7)-equivariant, and thus

descends to a bundle ™' — M, which will be the analogue of Taubes’s
obstruction in our gluing setting.

Let T = (S, M,I;j,)) be a bubble type. If b= (S,M,I;z,(j,y),u) €
Hr, put

KT = {g: (&,wj ;) EPYT : &i€ker(Dyy,) Viel;
(0, 000) =0 Vhe I, ke[4];

&n(00) =&, (zn)+duy, ‘Ihwh Vhef}.
If o=(¢, wfuM) € T, let
o lls,cr = €lle,cx + Z [whlp + Z |wile-
hef leM
We take the default norm on 0,7 to be given by || - ||, co. If b is as above,
v = (Sa Mv I;$I> (]a y/)au)a

and 6 >0, we say d(b,b’) <4 if there exists o € P,7 such that exp, c=0" and
lollp.co <6.
Proposition 3.3.

(1) If T = (S,M,I;j,\) is a regular or semiregular bubble type, Hr is

a complex manifold and there exist er,Cr € COO(MgQ);RJF) with the
following property. If b* € Hr and

b= (S, M, I;x, (g, y),u) is s.t.  d(b*,b) < er(b*) and Ou; = 0 Vi€,
there exist & €T (u;) for i€l such that

I€illgy,co < CT(6%) Y dy (uy, (wn), un(o0))  and
hel

b/ = (Sv M7 I,.T}, (j7y)7u,) S HT:
where ugzué and u;=exp,,, .. & ifiel.

(2) The space M(TO) s @ smooth oriented manifold on which the group G
acts smoothly. The maps

ev:/\/l(;-)) —>V, eV(S,M,I;.T, <],y),U) :uﬁ(oo),
evl:/\/l(q(-)) — V, eVl(S7M7[;~T7 (]73/)7“) :ujz(yl)a

dug|, : ./\/lg(—)) — T"E7,@u; TV, dui|Z(S, M, I;x, (j,y),u) = duy,,
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are smooth. In particular, u; — ||du; ||, co defines a continuous func-
tion on MY
T .
(3) There exist o, CTECOO(MS(—]); R™) and smooth maps
hrp = hg},)b ©® hg?,)b Ky Ts,0 — T'(D) @ (Co R)I’

such that HhT,b(U)Hb co < CT(b)HU”icof

|h75(0) = hr 5 ()|, co < CT(®) (lolls.co + N0 lo.c0) llo—0"[lb,co,
and each map
HE): {(0,0) €KyTo,p oy xR : 0] <7} — MP,
H(T})(b 0) = (h$)(0), 9) ~expy (0 +h), (o)),

is orientation-preserving diffeomorphism onto an open neighborhood

of b in /\/lg(—]).
Proof. (1) Let
Ti = (7., {l: =i} +{h: u,=1},{0}; 0, \).

By (a) of Definition 3.1, and (a) and (b-i) of Definition 3.2, H7; is a complex
manifold for all €. Let

Ay =1 (g0 [[(VXV):qneV
i

The submanifold A{; is the I-product of the diagonal in V' x V. Since V is

oriented, so is the normal bundle of Al,. Claim (1) of the proposition follows
by applying the Implicit Function Theorem, (b) of Definition 3.1 and (b-ii)
of Definition 3.2 to the smooth map

evj: HHT —>H (VxV),

i€l
th((S, M, I; z, (]JJ),U)) = (uh(OO),’LLLh(Ih)).

Note that HT—GV ( AI )

(2) For any u€ C> (5%, V), define YueC, UG yeR, and PueCxR by

- 1
wu = (00, %00) = ([ Jauoayfe, [ lawo oo - 3 ).
C C
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where the integrals are computed using the metric gy. For i* € IifsS=x
and i* € if S=52, we define maps

‘I’T,z‘*IHHTi—>CXR by

iel
lIlT,i* (57 M, I; x, (.77 y)vu) = <\i’ul*+2dh(7)$h+z Y,
o —i* Ji=i*
Ve + > dn(T)B(|lzn])+ Y B( |yz|>
Lp=1* Ji=i*

These maps W7 ;« are smooth, since the smooth structure on all Hz; is
described similarly to (a) of Definition 3.2. Furthermore, if be/\/l(;-)), itel,
and k*=1,2,3, since ¥ ;(b)=0 for all ¢ and ' does not change sign, by
Lemma 3.4,

=0, ifiti;
d‘l’(Tk,iZ ba((f,)i) £0, ifi=i k=k*;
=0, if kAK #3,

where £k =1,2,3. By (b) of Definition 3.1 and (b-ii) of Definition 3.2, it
follows that the map

[IHs — (CxR) x H (VxV), b ((W7,(0)),pevi(D)),

el

is transversal to the submanifold {O}XA{,. The preimage of this submanifold

is precisely the space M(TO). Thus, /\/l(TO) is a smooth oriented manifold by
the Implicit Function Theorem.

Lemma 3.4. For any k€ [4] and ue C>(S?; V), £€¥)(00)=0. Furthermore,
(3.1) \il((c, r0)-u) = (1+r)(\ilu + c||du||%) V(e,r)€CxR;

d = uo 25 z z
—/Crd< )28 (12D,

(3.2) %\I/(?’)((O,r, 0)-u
where (c,r) - u is defined as in Section 3.1. Finally, D, ™0 if Qu=0.

Proof. The first and last statements are immediate. We use the change of
variables

— (14+r) 2 —c
to prove (3.1):

/’d c, T‘ OC]N)} Z:/C(1+T)_2’d(uOqN)’?1+r)—1zcZ

= (140) [ Jdwo ) (e+0) = (L) (Bu+ eldul),
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Similarly,

/‘d T-u) oqN)‘ ﬂ]z\ :—/|duoqN | )W B((1+7)] z|)‘

- / ld(w o gn)*8 (12]) 2!
C

The lemma is now proved, since the action by the f-component does not
change W.
If 7=(S% M,I;3j,)) is a regular bubble type, with notation as above, let

KyT = {o= (€, wy ) EKT 2 (o, Ufb,6)>:0 VEke[4],

&y (00) =&, (00) Vit in€I—1}.
By (b) of Definition 3.1 and the same argument as in the proof of Proposi-

=0

tion 3.3, we can construct smooth maps s )bxhg—)b ICb’Z:;( b) —T'(b)x(CxR)!
such that each map

) (6., KT B 1<) — 1
HY)(0,0) = (h$)(0),0) - expy (o+h5y(0)),

is orientation-preserving diffeomorphism onto an open neighborhood of b
in Br.

3.3. Construction of Nearly Holomorphic Bubble Maps. Let
T = (S, M,1;j,})
be a simple bubble type. In this subsection, for all
be Mgg) and v=(b,v;)

with v; € Fb(o)’]' sufficiently small, we construct a bubble map b(v) with
domain %, where ¥, is as in Subsection 2.2. The map wuy(,) will be just
the composite uy o q,. We then define a Riemannian metric g,; and a
nonnegative function p,; on each component 3, ; of 3,. The metrics will
be such that the C°-norm of the differential of ¢, is bounded independently
of v;. The nonnegative functions are used to modify the Sobolev norms, in
such a way that the norm of the inverse of the operator Dy, on certain
subspaces of I'(b(v)) is bounded independently of v;.

By Proposition 3.3, ./\/l(79) is a smooth manifold. If §=.52, let
57 € C®(MPRH)
be an A(T) x Gr-invariant function such that 7 (b) <7, for all be /\/1(7(-)).
If S=Y, let
o7 € C¥(MP;RY)
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be an A(7) X Gr-invariant function such that for all
b= (23M>I;33> (]ay)vu) S M’(](’))7
(A1) 467 is smaller than the function ¢ of Lemma 5.1;

(A2) 457'(1)) < chgbﬁ.
In both cases, it can be assumed that d7 does not exceed i.

If H is a subset of I , put
FUDT = lv=(b,v;) e FOT: v, =0if and if he H},
FHT = {v=(b,v;]€ FT : v;,=0 if and if h€ H}.

For any v = (b,v;) € FOT let |v| denote |v]y, if S=3. From now on, we
assume that 5€C°°(M(TO);R+) is an A(7 ) x Gr-invariant function if S=%
and an A(7) x G-invariant function if S=52 such that 85 3<67. If

v = (bv,vf) = ((S, M, I;.%', (j,y)7u)’vf) c F(O)’]:S’
let q,,: 3, — X, be the smooth map defined in Subsection 2.2 for
v=(C,v;) = ((S, M, I;z,(4,y)),v;),

using the metric g, 5 on ¥ if S =X%. Let u,=up,0q, and b(v)= (C(v), uy).

We now define a Riemannian metric g, ; on X, ; for each i € I(v) C I.
Along the way, we construct a metric g, ; on ¥, ; for each ¢ € I. Suppose
i€l and for all he I such that tp, =1, we have constructed a metric g, on
b, ,h- For each hel such that tp=1 and vy #0, let g, ;5 denote the metric

on By, p (25(61,)%) which is the pullback of the metric g, by the map

¢, he i TpES?

Db,k
z —qn|—=], where ¢y, n = ]
Un ¢Tbu79b,h7 if xp €.

This metric is conformal with the original metric gy, ; on 3, ;, because the
maps ¢p,, are holomorphic on the set {ry; < d7(b)} and the metric g, p
is conformal with the standard metric on C. Thus, there exists a smooth
positive function A, ;j such that gv,i,h:Agmgw. Let Ay €C™ (%, ,i; RT)
be given by

. . 1
Moi(z) = Ao (2) Bl (1bun(2)) (1-Awin(2)), if th=1, 73, 1(2) <2Jvp]2;
v,i = 1 ~
’ 1, if rbv,h(z)zﬂvhli Vhel.

Since I is a rooted tree, this procedure defines metrics g,,; for each 1€ I(v).

In addition, we define a smooth nonnegative function p,,; on X, ; for each
i€ I(v). As in the previous paragraph, along the way we define a function
pu,i for each i € I. Suppose ¢ €I and for all he I such that ¢, =1, we have
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constructed a smooth function p, on ¥y, . Suppose h € I is such that
tp=1and z€Xy, ;. If v, #0 and

2| =7b, 0(2) < 07 (by),

we put

@) = pus(annz) + 0PI L (2 KDY (a2}

2
|0 ki

where g, v, is defined as in Section 2.3, using the metric g, 5 on X if S=3.
If v, #0 and 07 (by) <|z|n <267 (by), We set

pui(z) = (Iz!% + ‘g“‘;) +ﬂ(6:|rz(’z;;)> {1 _ (\z\% n !‘1?'9}

If v, =0 and |z|, <207 (by), let
2 |21 2
v,i = 1-— .
pui(2) = |2l + 6 (5 7y ) {1 - 112}
If 2|, > 267 (by) for all he I with 1, =i and v; #0 if 7> 0, set p,(2) = 1.
Otherwise, let
poi(2) = lag' (2)]” + B(87 (bo)lag ' (2)){1 — lag " (2)*}.

This construction defines nonnegative functions p,,; on ¥, ; for all i€ I(v).
We finally define norms on the spaces I'(u,) and ' (uy,). If n; € T (uy ),
put

1

P _p—2 ) %
(3.3) 2o = /2 |+ /Z pui® mil?)

where |7;| and the integrals are computed with respect to the metric g, ; on
Y, and gy, on V. Denote by ||7;]|, co.; the C%-norm of n; with respect to
these metrics. If n=7;(, el (u,), let

llop =D Inillogsi, — nlloco = D lnillo.cos-
i€l(v) i€l(v)

Similarly, for any & €TI'(u,;), put

. NP
(3.4) 2€illops = /E ar) s /E i 1612)

H§ v,p, ;i = HfiHvyp;i + vainvm;iv

where we again use the metrics g,,; on X, ; and gy, on V asin (3.3). Denote
by [|&llv.co; the CO%-norm of & with respect to the metric gy, on V. If
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§=E1(v) €T (), let
1€ vp = Z Hfiuv,p;ia H§Hv,p,1: Z Hfz’”v,p,l;iv
)

iel(v iel(v)

0,00 = Z 1€ill v, co,i-
1€l(v)
_p=2
Note that even though the functions p,;" have poles at the singular points
of ¥, all smooth one-forms and vector fields have finite norms defined by
(3.3) and (3.4), respectively, since ’%2 <1. We denote by LF(v) the comple-
tion of I'(u, ) with respect to the (v, p, 1)-norm and by LP(v) the completion

of T%1(u,) with respect to the (v, p)-norm. Finally, let
Dy : T(uy) — T (u,)

denote the linearization of the d-operator at u, with respect to the metric
9gvp, on V.

1€

Lemma 3.5. If T is a simple bubble type and p > 2, there exist §,C €
COO(MS(—));RJF) such that for all ve FOT;,

(1) Nlduo]lpco < Cby) and [|Oullvp < C(bo)|v]7;

(2) [Dotllop < Cbo)ll€]lop,1 for all €T (uy);

(3) [I€llv.co < C)l[Ellvp for all £€T(up);

(@) lI€llvp1 < CO)IDuElwptl€llvp) for all €T (wy).

Proof. If he I-I(v) and S =52, let Afh be the annulus as in Subsection 2.2.
If §=3%, let Aih denote A;tb ohe By definition of the norms, ¢, is an

isometry outside of such annuli, and by Lemma 2.2 the C°-norm of dg,
is bounded on such annuli independently of v;. Thus, the first part of (1)
follows from (2) of Proposition 3.3. Since p, > |v| on A, 4, the second part of
(1) follows from Lemma 2.2. Statement (2) of the lemma is immediate from
the definition of the norms. The last two claims are proved in the appendix;
see Propositions 5.7 and 5.11. In fact, the C%-norm of ¢ is bounded by the
usual L{-norm of &.

3.4. Scale of Variations. In Subsection 3.6, we consider perturbations of
the bubble maps {b(v)} in directions “away” from the space of such bubble
maps. More precisely, we look at replacing u,, by exp,, , & with £ lying in
a certain subspace of L(v) complementary to “the tangent space” of the
space of maps {b(v)}. If 7 is regular, one obvious candidate for such a
subspace is the (L?,v)-orthogonal complement of the kernel of D,. While
the construction in Subsection 3.6 would go through, we would run into
significant difficulty showing injectivity and surjectivity of the gluing map;
see Subsections 4.2 and 4.5. In this subsection, we start by describing a
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choice of the complementary subspace which will work for the purposes of
Subsections 3.6, 4.2, and 4.5. We then describe norms on the tangent spaces
to F'T and the properties of our setup that are sufficient to show injectivity
and surjectivity of the gluing map.

Suppose v= ((S, M, I;z,(j,y),u), v) e FOOT;, where T is a simple bubble
type as before. For any £ €T'(b,), define R,& € LY (v) by

{Ru&}(2) = E(qu(2))-

Note that R,& is smooth outside of the |I —I(v)| circles mapped by ¢, to
the nodes of ¥,, and is continuous everywhere, since I'(b,) is the set of
smooth vector fields on the components of ¥;  that agree at the nodes. It
follows that R,¢ is indeed of class LY. Let I'_(v) be the image of ker(Dy,)
under the map R,. This space models the “tangent bundle” to the space
of maps {b(v)}. Denote by I'y(v) its (L?, g,)-orthogonal complement in
L} (v). Let m, — and m, 4 be the (L2, g,)-orthogonal projections onto I'_ (v)
and '} (v), respectively.
With Hc I and ve FU Ty, let

T,FET = {w:(ﬁ,wfuM,Of,rf_H): (& wi ) €K, T Qh,rhER};
TUFHT: {(§,wfuM,9f,rf_H)eTvFHT:wh:O VhEH}.

Given w as above, put

Izl = 1€llp.co + > lwnle, + > lwils, + > 1061+ > Iral.

hel leM hel hel—H

If 07 and Hé%u are as in Proposition 3.3 and ||w| < d7(by), put
bw = (Sa Ma I;l‘(@), (]>y(w))>u(w)) = H(TO,ZU (§7wjuM70f) € M'(]('))a

if z;, € 9%
(14 rp) vh’_l %JUh it heH
débv,h‘¢bv,hxh(w)vh7 if z, €¥;

0, if he H;

v(w) = (be, (v(@));)-
Then v(w) € FUTy; if ||w|| < (by,) for some & € COO(M(TO);Rﬂ sufficiently
small. If H=0, T, F*T =T,F"T models the tangent space of [v] in FHT.

If H#(, the bundle F#7 and the construction in the previous subsection
lift to a bundle 7 F'T over

M? EM,(ZQ)/{ngGTZgh::[ Vge H}.

Then T, F'T models the tangent space of [v] in ? F7. On the other hand,
T, F?T models the tangent space of [v] in the restriction of # F'T to the

vp(w) =
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subspace

{ [b':(S, M, I;2, (j,y'),u)] €M¥: T =y VhEH}.
The reason for defining subspaces T, FZT is that if x), #xy, for some h' € H,
b(v) and b(v') do not have the same singular points for all v € Fb(H)T and
vE Fb(,H)T . Since the perturbation construction of Subsection 3.6 does not
change the singular points of b(v) and b(v’), the resulting bubble maps b(v)
and b(v’) will necessarily be different.

We now define norms on TUAF HT which make the estimates in Lemma 3.6
dependent only on b,. If he I—H, let

_ 0
Wiy, = Gby hu(w) i, (Tos, (ths T)) € F;;)

In such a case, let

v if q’U(w),Lh (Q;}h ([‘h7 J;h)) € Zb’LMLh.
wy, + wy,
Uh

Otherwise, put ||w|[,,=1. Let ||w|,=|w|+ > ||@|vhn-
hel—H
In order to simplify notation, we replace v(w) by w whenever there is no
ambiguity. If |||, is sufficiently small, define (5 €I"(u,) by

[]lv.n =

€XDPb,,,ue (oo = Usms ||<w||bU,CU < inj gvp, -

Similarly, [ € M, define w;(@) € Ty, (1)L, j,(v) bY

exPg, ) Wi(w) =y (v(@)),  [wi(@)| = [wi(@)lg, < injy,()9o-
If we TEMT and €€ (u,), let Rpé €T (ug) be the vector field given by

ng(z) = HbU7Cw(z)£(2)‘
Note that since b(v) and b(w) have the same singular points whenever w €
TFHT, Iy, ¢ does indeed map T'(uy) to I'(ug). If n €T (uy), we define
Ron €Tl (ug) similarly. Let S, denote the inverse of R.

Lemma 3.6. There exist 5,C€C°°(M(O);]R+) such that for all ve FUH) Ty
and we T, FET;,

(1) C(bv)_l”wuv < HCw v,p,1 +ZZM|wl(w)’gu < C@U)HWHU;
€
2) [[522= = 1f|es < CO)I], |22 — 1|0 < Cuo)l@llo, and [|5= -

gv,by 9v
1| o < Cbw)llwllo; 1
(3) [[Szdum—duul|, , < Cby)ll@llo, |Sz0um—dus |, , < Cbu)l]? |[w]l0;
@) [[Szv =v,,, < Cbv)||=ll;
(5) [|SeDeRet—Dugll,  <Cb) I |ol€llop1 and

stww,ing—migHW’l <C(by)||w|lolléllopr for all €T (uy).
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Proof. The first statement of (2) is clear. Proofs of (1), the last two claims
of (2), (3), and the last claim of (5) are direct, though lengthy, computations,
all of the same nature. The statement of (4) is immediate from (1). The
first claim of (5) follows from (2) and basic Riemannian geometry estimates
as in [Z1].

Remark. The second claim in (5) above is proved by choosing an orthonor-
mal basis {&,;} for the kernel of D, for b lying near b, in /\/lg(—]), so that each
&p,i varies smoothly with b. Then the claim follows immediately from an esti-
mate on Se Ry() &b, i — Rup,i, since the projection maps can be expressed
in terms of inner-products with &, ;. Note that if we had defined I'_(v) to
be the kernel of D,, in the case 7 is regular, this claim, if true, would have
been much harder to prove because of the presence of small eigenvalues of

D} D,; see Subsection 3.6 for more details.

If ve FO7; (2,,9,) can be viewed as a connected sum of the surfaces
{(37,,9,,:)} with very thin necks. If we K, T C T, F?T is as above and
|wp| > 2\vh]%, the maps u, : ¥ — V and ug: ¥ —V are very far apart
in the C%norm even if ||| is small. However, we can still compare the
two maps and the various objects of Lemma 3.6, appropriately defined, on
the corresponding direct summands. If the gluing map of Subsection 3.6 is
defined only on F 75, and not on F75, we need to be able to do such com-
parisons in order to adjust the gluing map in the presence of constraints p;
see Subsection 3.8.

In order to state an analogue of Lemma 3.6 with ||ew||, for we T, FHT
replaced by ||| for

w € Ky, T CTwF'T,
for each w € Ky, 75(3), with ¢ sufficiently small, we construct a smooth map
Jw: (Zv, 9v) — (Xw, g ), which is almost an isometry. The map will depend
only on the elements wy, € Fb(%). The structure of the construction is similar

to the construction of the map ¢, in Subsection 2.2. For each h € I with
ty =0, let Pp o By, n(407(by)) — X be the (holomorphic) (9, 00 Ip.0)-
isometry provided by Lemma 5.1. We define gj, o : ¥ — ¥ by setting

Ghw(2) = <Z>b_vl7h{¢bv,hﬁh,w(z)+55;(bv) (76,,1(2)) (¢bv,h(z)_¢bu,hﬁh,w(z))}

if 73, (2) < 207(by) and taking () = z otherwise. If h € I and 1 #0,
define

qh:(xh’wh) : Eb’[’h - Eb’[’h
by setting

Ghw(2) = </5b_vl,h{¢bu,h(z) + Wh = B2 5, (Tbu,h(z))wh}
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if ry, n(2) < 207(by) and taking G (2) = z otherwise. Let G_ 4= Ids. If
hel and Gw,1p, © 22— 2 has been constructed, let

g h( ) qw Lh (ph w( ) (QW,Lh (QW,Lh (Z)))), if Tby h,h (QW,L;L (Z)) < QéT(bv);
z oo, (2), if Tbyy 1ok (qubh (2)) > 207 (by).

Going through all of I, we obtain a map §n : ¥ — X, which shifts the
connect-summands of (X,g,) to the connect-summands of (X, g5). The
important properties of such maps ¢, as summarized below.

Lemma 3.7. There exist 0, C'EC"X’(M(TO);R) and a smooth family of maps
{(jw X —X ’ w GICbU%(bv) CTUFISQ))T, v GFI;(,?)%(IJU) }, such that
(1) Go=1Idy and ¢, =qw°Gw on Egv7i:EZw,i outside of the annuli
Ag = 2t 02k, ({2 €0, 07(b) Smon(2) <207 (0,)})
which contain no marked points of b(v) or b(w).

059w _ G9!
(2) wng guv

(bv)l|lw—='|| for all @, =" € Ky, Tsp,)-

These maps ¢ allow us to compare operators on vector fields and one-
forms on (X,,u,) and (X4, uy) whenever |||l is sufficiently small. Define

(w €'(uy) by
CXDPb,,,ue gvlﬂ = Ug O QW7 ||Czlv||bv,CO < IHJ 9b,, -
For £ €T (uy), let R_£ET (uw) be given by
{RLE}(2) = 1T, O (Gt (z))§(~_l(z))'
Similarly, for any n€T%!(u,), let R_neT% (uy) be given by
Ron}|, =T, ¢r =12 © Mgtz © 0 .-
Denote by S. the inverse of R.. Similarly to Lemma 3.6, we have

Lemma 3.8. There exist 6,C € C"X’(./\/lg—));R*) such that for all ve FO)T;
and wEICbUTCTUFng,

(1) Co) el < ¢ lops + 3 lwi(@)lg, < Clbo)lell;
leM

(2) ||Smdue — duvHv,p < C(bo)llwll, [|Sm0um — dusl|,, , < C(bo)o]7|[oll;

©) Iszo sl <=l

4) ||SLD R’é DuﬁH by) = |l1€
| S £ R f—wvivapl_ (bo) = ||

vp1 and
Ellopa for all £€T(uy).
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3.5. Obstruction Bundle Setup. In the next subsection, we look for so-
lutions of the equation
5eprv’uv E=tv

with £ lying in a fixed complement of I'_(v). If ¢ is sufficiently small, we are
able to solve this equation up to an element of a vector bundle of the same
rank as the dimension of I'_(b,,), called obstruction bundle. This element is
the obstruction to solving the equation. There are choices to be made for
this obstruction bundle as well as for the subspace complementary to I'_(v).
We describe in this subsection what conditions these choices must satisfy for
the gluing construction to work properly.

If b* = (S, M, I;x*, (4,y"), u*) EM%Q) and
b= (S7M7I;x7 (jay)auf):H’T,b*(Uva)
for some o€ Kyp«7 and HERf, let &+ p=Ep b1 €I7(D) be given by

XDy yx Sb* by = Ui Héb*,@iHm < inj gy
Let Hb*,b:Hb*,fb*,b-

Definition 3.9. Suppose b* = (S, M, I;z*, (j,y*),u*),
bk: (S7 M7 I,IEk, (.77 yk)yuk) S M’(](‘))a

and vy, = (b, vx) € FOT are such that the sequences {by} and {|ug|s, }

converge to b* EM(;-)) and 0€R, respectively.

(a) The sequence {&; € L (uy, )} C-converges to £* €T (b*) if
(a-i) the sequence {Hb_*lbk (&koqy,t)} CP-converges to £* on compact sub-
sets of ¥}.;
(a-ii) there exists C'>0 such that ||k ||y, p1 <C for all k.

(b) The sequence of subspaces {Vi C I'(uy, )} C°-converges to subspace
V* CT'(b*) if there exists a sequence of bases {{5;“}1211\7 C Vk} such
that

(b-i) for each i fixed, the sequence {&;} C-converges to some & € V*;
(b-ii) the set {£} has cardinality N and is a basis for V*.

Lemma 3.10. If the sequence {v;} C FOT converges to b* € /\/lg(-)) and
the sequences {& € LY (vg)} and {& € LY (vk)} converge to &* € I (b*) and
el (b*), respectively,

i (6, Ei)o2 = ((€7,6))ur 2

—00

Proof. If vy, — b*, the metrics 9vb,, on V and Gby,,i ON 2T CO-converge
to gvp+ and gy« ;, respectively. On the other hand, by (a-ii) of Definition 3.9
and (2) of Lemma 3.5, there exists C'>0 such that

||£k||vk,007 ”gk”»ulwco <C VEk.
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Thus, the claim follows from (a-i) of Definition 3.9.

Definition 3.11. Suppose € is an open subset of F(")7 such that b(v) is
defined for all v€Q. An (A(T)xGr)-invariant smooth complex subbundle
I~ —Q of the Banach bundle LY —Q is a tangent-space model over §) if

a) for every sequence {vi} C €2 converging to b*e/\/l(o)7 a subsequence of
Yy seq gimng T q

{T'_(uv},)} COconverges to a subspace V* CT'(b) such that m, _: V* —
I'_(b*) is an isomorphism;
(b) if 7, : LX(v) — T'_(v) is the (L2, v)-orthogonal projection, there
exist 4, CEC“(M%Q);RJ“) such that for all veQs and all £€T(uy),
(b-i) [|So e, R & — T’rv,,wa2 < C(by)||@llv |€ll,p,1 for all w €
TUF(Q)%(E)V);
(b-ii) || S 7w, — Ry — ﬁv,,gHU’z < C(by)||l@|||€llvp,1 for all w e Ky, T C
T, FOTy,).

One example of a tangent-space model is {T'_(v): v € F"7T;}. In such
a case, the limit V* in (a) of Definition 3.11 is I'_(b*) and thus depends
only on b*, and not on the sequence {vi}. However, for computational
reasons, it is sometimes advantageous to work with other choices. With the
choices in [Z2], the limit V* in (a) of Definition 3.11 usually depends on the
sequence.

The following lemma collects some of the implications of (a) of Defini-
tion 3.11. Condition (b) is needed in Subsections 4.2 and 4.5. For any
tangent space model over 2 and v € 2, we denote the (L?,v)-orthogonal
complement of I'_(v) by T'y (v). Write f‘j;l(v) for the image of I'; (v) under
the operator D,,.

Lemma 3.12. Let I'_ — Q be a tangent-space model. Then there exist
C, 56000(/\/1(70);]R) such that for all ve Qg

(1) [[Elopa < Cbo)[Ellv2 for all E€T'—(v);

(1b) (|70, ~&llvpa < C(I{U>H§Hv,p,1 for all €T (uy);

(20) LE(v) = T_(v) & T+ (1);

(2b) if 71— and T4 are the projection maps corresponding to the above de-

composition,

1702 llop1 < C(bu)[1€

|v,p,1 VfEF(uv).

Proof. (1) Suppose there exists a sequence {v; €2} converging to b* EM(;-))
and a sequence {&, €T _(vg)} such that [|€g v, p1 = 1, While |||y, .2 — 0.
Since ||€k|lve,p1 =1, by (2) of Lemma 3.16 and (a) of Definition 3.11, a
subsequence of {£} C%-converges to some nonzero ¢* € I'(b*). However,
since [[&k|lvg,2 — 0, [|£*]]p=2 =0 by Lemma 3.10. This is a contradiction,
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and thus (1a) holds. Claim (1b) is an immediate consequence of (1a) and (2)
of Lemma 3.16.

(2) Claim (2a) is equivalent to saying that no nonzero element of T'_(v)
is orthogonal to I'_(v). So, suppose vy — b* € M(TO) and {&, € T_(vy)} is
such that & is orthogonal to T'_(v) and ||&g||v, p1=1. Since & €T (vy,) and
€k llve.p1 = 1, by (a) of Definition 3.11, a subsequence of {{;} converges

to some nonzero £* € I'(b*). By Lemma 3.10, £* is orthogonal to I'_(v).
However, this contradicts the second part of (a) of Definition 3.11.

(3) Due to (1b), Claim (2b) is equivalent to saying that there exist C,d €
C*®°(Mr;R) such that

[€llop1 < Co)[T0,~Ellopr  VoeQs and LT (v).
Suppose there exists a sequence {vy} C ) converging to some b* GM(TO) and
a sequence {{x €' (vy)} such that ||, —&kll,,2 — 0, while [[&k /v, pa=1.
By Definition 3.11, a subsequence of {I'_(vy)} converges to a subspace V' C
['(b). On the other hand, a subsequence of {£;} C°-converges to a nonzero

element £* €I'_(b*), which must be orthogonal to V' by Lemma 3.10. This
contradicts the second part of (1) of Definition 3.11.

Definition 3.13. Suppose € is an open subset of F(")7 such that b(v) is
defined for all ve Q. An (A(7)x Gr)-invariant smooth complex subbun-

dle T%'(v) — Q of the Banach bundle L? — Q with the same rank as
ot —>./\/l(79) is an obstruction bundle if

(a) there exists CECOO(MS(—)); R) such that
Inllop < CO)lnllz and [IDinllos < Clb)o]r  VoeQ, nel™ (v);
(b) if 772’,17 . LP(v) — I'"!(v) is the (L2,v)-orthogonal projection, there
exists (5€C°°(M(TO);R+) such that for all v€Qs and all n€T% (uy,),
(b-) [|Sw 7o Ronp = woim |,y < C(00) @l €],y for all @ €
T, FO Ty, );
(b-ii) [[Shmes_Ripn — molnll, 5 < CO@E]lup for all @ € K, T C
T, FOTy,).

Such an obstruction bundle is related to the cokernel bundle I'* — /\/1(7(-)).
However, if I#0, the low eigenspaces of D, D} are too large to form an
obstruction bundle; see Remark below. Examples of bundles that satisfy
Definition 3.13 can be found in [Z2]. Given such an obstruction bundle, we
denote by n?;jr the (L2, v)-orthogonal projection onto F(J)r’l(v), the (L%, v)-
orthogonal complement of I'’! (v). The following lemma is clear from (a) of
Definition 3.13.
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Lemma 3.14. If %' — Q is an obstruction bundle, there exists C €
C®(Mr;R) such that

Imorinloy < COlnllvy — YoERQ, nET (uy).

Definition 3.15. If 7 is a semiregular bubble type, an obstruction bundle
setup for (V,J,T) is a tuple (6, T_,T%", R), where

(a) o€ COO(M(TO);R*) is (A(T)x Gr)-invariant and b(v) is defined for all
ve FOT;:

(b) T_— FO 75 and T%' — FO7; are a tangent-space model and an
obstruction bundle, respectively;

(¢) R: w* %' —T%! is a smooth oriented (A(T) x Gt)-equivariant bun-
dle isomorphism over F(O7j, where 7: F(O)T; —>M(7(-)) is the bundle
projection map.

For the rest of the paper, we fix such an obstruction bundle setup. How-
ever, whenever we refer to 6 € C®°(Mz;R"), we will mean any function
smaller than the function § in Definition 3.15. The following lemma states
some of the consequences of our setup that are crucial for the construction
of the next subsection. If 7 is a regular bubble type, we take I'_(v) and
%' (v) to be I'_(v) and {0}, respectively, and define the other bundles and
the projection maps in the same way.

Lemma 3.16. If 7T is a simple bubble type, there exist 6, C’GCOO(MgQ);R+)
such that for any ve FOTy if T is regular and any v € FOT5 if T is
semiregular,

@) lIgllo.p1 < COu)II1Dotllop for all €T+ (v) and all £el(v);

@) Imoallop < CONI7 0lup for all nely (v);

(3) wg’i : f(jr’l(v) — F&l(v) is an isomorphism with the norm of the
inverse bounded by C(by).

Proof. (1) The first statement of the lemma is proved in the appendix; see
Proposition 5.13. It is consequence of (2) and (4) of Lemma 3.5 and of (a) of
Definition 3.11. The second claim is immediate from (a) of Definition 3.13
and the first claim.

2) Let W be the (L2, g,)-orthogonal complement of Wg:fr(fg_’l(v)) in
I‘gr’l(v). The second claim implies that

(3.5) LP(v) = (T2 (v) @ W) @ T2 (v).
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Since f&l(u) is the image of f+(v)~under D,,, with respect to the decompo-
sitions (3.5) and LY (v) =T_(v) ® T4 (v),

Dy 0

Dy :| pi) pd)

Since D1(,++) is an isomorphism by (1) of the lemma,
(3.6) ind D, = ind D) = dimT_(v) — (dim %" (v) 4 dim W)
= (dimT_(b,) — dimT%"(b,)) + dim W = ind Dy, — dim W.
On the other hand, by the Index Theorem, with n=dim¢ V,
(3.7)

ind Dy =2( > (Vi) Xi(v)) = n(g(E7,) — 1)) = n(l{(v)| - 1)
hel(v)

=2 Y (a(V.J),\) —n(g(S) — 1) | =ind D,
hel(v)

By equations (3.6) and (3.7), W = {0}, and the last claim of the lemma
follows from the second one.

Remark. It is essential for claim (1) of Lemma 3.16 that p>2. The operator
D*D, has at least |I|(dim V) eigenvalues that tend to 0 as [v| — 0. The
corresponding eigenfunctions converge to vector fields on the components of
Y, that do not agree at the nodes. If 7 is semiregular, the operator Dy, has

cokernel F%l(b). In such a case, the number of low eigenvalues of D} D,,,
including 0, is (dim T%*(b)) + |I](dim V).

Let ﬁg:i : F?r’l(v) — f&l(u) denote the inverse of Wg’jr : f‘?r’l(v) —

FS)F’IN(U). We extend frgi to all of LP(v) by taking it to be ﬁg’i o 7T31+ If
n EFT(U), let P,neTl';(v) be the unique element such that D, P,n = 7. We

extend P, to all of LP(v) by taking it to be P, o ﬁgi From Lemma 3.16,
we immediately obtain

Corollary 3.17. If T is a simple bubble type, there exist 9§, C €
COO(MgQ);RJF) such that for all ve FOTy if T is reqular and ve FOT;
if T is semireqular,

(1) 17l < COnllop for all neT(v);

2) 1 Ponllop < C00)nllop for all €T (v).
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3.6. The Gluing Map. In this subsection, we look for small vector fields

¢ € T (v) such that expy, 4, & i holomorphic if 7 is regular and lies in

M 5 if T is semiregular. In Subsection 4.5, we show that all holomorphic

maps if 7 is regular and all maps in My, 4, \X¥ YM if T is semiregular that lie

near My with respect to the Gromov topology can be obtained in this way.
If £ €T (uy), define exp, £: ¥, — V and 9,6 €I'%!(u,) by

{exp, €}(2) = expy, 0, (1 £(2), {Ou€}: =10, ) 0 Dfexp, €} .
If S=% and veT(T; AY i T*S @i TV), let vy, ¢ €79 (u,,) be given by
~1
VU7§’Z = Hbng(z) 0 V|(z,{expv £}z)-
Then,
(3.5) Bexp, €}() = tv
Write
(3.9) 5115 = 5“1} + Dy§ + Ny§ and Vv,§|z = V|(z,uv(z)) + Lu,vﬂz-
Then the second equation in (3.8) is equivalent to
(3.10) Dy& + Ny € = tv — Ouy,
and by Proposition 2.11 in [Z1] and (1) of Lemma 3.5, there exist Cg, 6 €
COO(MS(—));RJF) such that for any ve FOOT; and &, & €T (uy),
(3.11) [[Nu,wwé1 = Now€allop < Cylbo) (I61llvp1 +182llvp,1 +) 1€1-E2 ]l p.1-

If 7 is semiregular, the term v will be fixed, and we will be looking for
solutions of (3.10) with ¢ >0 very small for ve FO7;. If T is regular, we
will consider (3.10) with t=0 and v € F(9)7;. In both cases, we will consider
only solutions ¢ of (3.10) that lie in the subspace I'y (v) of L (v), since the
subspace I'_(v) corresponds to moving along the image of the pregluing
map v — b(v).

Vector field £ = P,n with nef‘er’l(v) solves equation (3.10) if and only if

(fexpy £}() E= Ou€ = tryg.

(3.12) n+ Wg:iNv,tquﬁ = ngi (tu - 5uv)
(3.13) and %! (ty — Ouy, — ﬁg:in — NU7tVPU77> =0.

v,—

Denote the map n —>7T2”£LNU¢,,PU17 by Nj By Corollary 3.17 and equa-

v
tion (3.11), there exist Cj, 5€C°°(Mg(—]);]R+) such that for any ve F(O7; if
T is regular and ve FOT; if T is semiregular,

(3.14) [NFm = Nfpellop < Cabo) (lmllop + In2llop + ) Im—mn2llvs

for all 7,75 €T (v) such that {191 ]|vp, [72]lu.p < ().
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Lemma 3.18. There exist € 66000(/\/1(0) RT) such that for all ve FO)T;
and t=0 if T is regular, UGF(@)’Z} and t€10;9(by)] if T is semiregular, and
a€F+ Y(0) with lla|lo,p <€(by), the equation

n+Ng,n=

has a unique solution nq in I 1( ) such that ||na|lvp <2€(by,). Furthermore,
such a solution satisfies ||nq ’p_2||oz||v7p

Proof. Put €(b)=(6C5(b)) ", where Cj is as in (3.14). Define
o {WGFT(U)Z Inllvp < 2laflop} — T3 1( )

by Uo(n) = a—N, 7. By equation (3.14),

a(llvp < ledlop + Ca( o) (1l + ) Inllop < 2llalop;
Wal(m) = Ya(2)llvp < Cabo)(llmllvp + ln2llvp + O)llm -

< 6!\771—772||v,p-

It follows that W, is a contracting operator, and thus has a unique fixed
point 74, i.e.,

ot N o = & and  [|nallvp < 2[lallvp.

The uniqueness claim follows immediately by taking the difference of the
corresponding equations.

Corollary 3.19. If T is a simple bubble type, there exist R* -valued smooth
functions d,¢,C on M(O) such that for allve FOT; and t=0 if T is reqular
and v € F(Q))'Z; and t € [0;0(by)] if T is semiregular, there exists a unique

nv,tl,EFO Y(v) such that Mot Satisfies equation (3.12) and ||ny v llvp < €(by).
Furthermore,

1
70,0 llv,p < C(bv)(t + ‘U‘p)-
Proof. This corollary follows from Lemmas 3.18 and 3.5.

We now put &1 = Pyny s and Gy, 4 = exp, §pro- Replacing u, in b(v)
by Uy, we obtain a new bubble map that will be called by, (v). If T
is regular (and thus t = 0), we will write @, and b(v) for @, o and by(v),
respectively. We can assume that the functions 4, e and C' of Corollary 3.19
are (A(T)xGr)-invariant if S=5% and (A(7)xG7)-invariant if S=3. For
T regular, we have thus constructed a gluing map

’Ny,gg)) : F(O)'Zs — ./\;l<7~>, v — B(U)
Since this map is (.A(’T) X GT)—invariant, as can be seen from the construc-
(0)

tion, 75 induces a map on the quotient
(3.15) Jr: FT; — Mg
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By the smooth dependence of solutions of (3.12), the restrictions

¥ P75 — MEIO()H)

are smooth. However, continuity of 47 on all of F'Zs is not immediate. In the
next section, we show the map 77 is a homeomorphism onto a neighborhood
of ./\/l']’ in M<T>

If T is semiregular and ¢ >0, we have constructed a map

:V(To,)tv : F(m)%‘efl(—t,t) — C(o;);M)(Z; V),

which again is (A(7)x Gr)-invariant and thus descends to a map

(3.16) AT v FQ)'Z;‘ y — CE’;M)(Z; V).

e (=t.t)/(A(T)xGr
The map u; lies in My 4,y if and only if equation (3.13) is satisfied, i.e.,
bt,/('l_)) e

(3.17) vaq—’w(v) =tv — 5”1} - frg’,inv,w - Nv,tupvnv,tu =0¢e Fgl(v)v

since 1,4, satisfies equation (3.12).

3.7. An Implicit Function Theorem. In this subsection, we prove a
refined version of the Implicit Function Theorem. It will be used in the rest
of this section to modify the gluing maps of Subsection 3.6 for the spaces

MT(M)? u’T(H)? ete.

Let S be a smooth oriented manifold, and NS, AN*, and F oriented
Riemannian vector bundles over S. We denote by b, (b,7), (b, o), and (b, v)
general elements of S, N'S, N#, and F, respectively. If  is any subset of
F and §>0, let

Q6) = {(b,7i,v)eENS® F: (bv)eQ; |ii, |v|<d}.
Let U be an open neighborhood of S in NS®N#GF and h: U — RF a
smooth map such that
h(b,7,0,v) = h(b,7,0,0), hls =0, and
d(h: NI —R")p0: M — R”

is an orientation-preserving isomorphism for all b€ S. Let U be a subset of
U such that U is the fiber product along S of an open neighborhood of § in
NSON# and an open subset Q of F. Suppose ds >0, C € C®(S;RT), and
hi: U —RF is a family of smooth functions with ¢ € [0, §s] such that

Ohy  Oh

1
B h‘(b,ﬁ,a,v)’ 6—0' B % (b,71,0,0) < C(b)(\v\z’ + t)

vte(0,6s), (b,i,o,v)eU,

B

where g—g denotes the differential of h along the fibers of AV/¥.
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Lemma 3.20. Let B be an open ball about 0 € R*. If f: B—R* is a
smooth function and
_q-1
k|[Df|. = Dflo| < [(Dflo)™'|" VzeB,
then f is injective on B.

Proof. Let f; denote the ith component of f. By the Mean Value Theorem,
for all z,y € B, there exists z;(x,y) € B such that

Adding up these equations over all i, we obtain

i=k 1=k
S O 1fi@) = £iw)| = [Dfilo|lx — yl - ksgg |Df|. — Dflo||lz — yl
i=1 i=1 Z

-1
> (|(Df10) 77" = ksup | Df]: = Dflo| )l — ol
zE€
Lemma 3.21. For every precompact subset K of S, there exists ¢ >0 such
that for all t€(0,€) and (b,7,v) €Q(e)|x, the map
{(b,o)eN*: |o|<e} — hi(b, 7, 0, v)

is defined and injective, and its differential defines an orientation-preserving
1somorphism between ./\flf and RF.

Proof. The map above is defined as long as
{(b,7,0,v)ENS BN/ & F:be K, (b,i1,v) €Qe),|o|<e} C U.

Since K is precompact, existence of >0 such that the last inclusion holds
is trivial. The other two statements follow from the third property of h and
the second property of h; (see above); Lemma 3.20 is needed to prove the

injectivity. Note that the variation of % over K can be bounded from the
variation g—g and the second property of h;.

Lemma 3.22. For every precompact subset K of S and € > 0 sufficiently
small, there exists § >0 such that for all t€(0,6) and (b,7,v) € Q(6)|k, the
image of the map

{(b,0)eN*: o|<e} — hy(b, 7, 0,0)
contains 0 € R,

Proof. We assume € > 0 does not exceed the number provided by Lemma
3.21. Then by precompactness of K and the proof of Lemma 3.21,

1
(3.18) & =min {\h(b, i, o,v)|: (b,7,0) €Qe| K, (b,0) eENH, |0\:§6} > 0.
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Since for each (b,7i,v) € Q(€)|k, the image of the map
{(byo)eNt: |o| < e} — h(b, 71, 0,0)

contains a neighborhood of 0 in R and h; is continuous, the claim follows
from the first property of h; along with equation (3.18).

Corollary 3.23. For every precompact open subset K of S, there exist
9, C' >0 with the following property. For all t€(0,6), there exists a smooth
section

¢r € D(Q(0)|x; T NH),
where m: Q)| x — K is the bundle projection map, such that
Q) — hi 1(0),  (b,7i,0) — (b7, (b, 7, ), v),
is an orientation-preserving diffeomorphism. Furthermore,
o1 (b, 75, 0)| < CJu]P +t+[7]) (b, 7, v) €Q(6) k-

Finally, if G is a group that acts on the space S and bundles NS, N*, and
F, and preserves h, hy, Q, and K, then ¢; is G-equivariant.

Proof. With € as provided by Lemma 3.21, let 6 > 0 be as provided by
Lemma 3.22. Then,

Fy: {(b,ﬁ, o,v): (b,7,v)€Q(0)|k, |0|<6} — Q(5)ka,
Ft(b7ﬁ7 0‘,1}) = (ba ﬁ,’l],iLt(b,’ﬁ:,U)),

is a diffeomorphism onto an open subset W of the target space. The inverse
of F; must have the form

E7Nb,it,0,6) = (b, i1, ¢y(b, 7, v,5),v)
for some smooth function ¢;. By Lemma 3.22, Q(0)|x x {0} C W. Thus,
@tGF(Q(5)|K;7T*N“)a ot(b, 7, v) = ¢e(b, 7, v,0),
is a well-defined section, and by definition of ¢y,
Q)| — h;1(0), (b, 7, v) — (b, 7, (b, 7, v),v),

is a diffeomorphism. It is orientation-preserving by Lemma 3.21. The esti-
mate on ¢; follows from the three properties of h, the first property of hy,
and the proof of Lemma 3.20. The final statement of the lemma is clear,
since our construction commutes with the G-action.
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3.8. The Orientation of My, (1) and the Gluing Map. At this
point, our treatments of regular and semiregular cases diverge. In this sub-
section, we assume that 7 = (X, [N],I;j,\) is a semiregular bubble type
and p is an N-tuple of constraints in general position as defined below. Let
A=) \; as before. We recall how each element of My, 4, \(pt) is assigned a

sign and then specialize to the elements I;t,,(v) € Ms o a(1). We conclude
this subsection with Theorem 3.29 that describes the elements of My 1, \ (1)
lying near the space Mz ().

Definition 3.24.
(1) Section
v € TN SX VA s T S@my TV)
is A-regular if for all t€ (0,1) and u€ My 4, \, the operator
(DV7U—V,VV): ['(u) — T%(u)

is surjective.
(2) If v is A-regular, N-tuple p of oriented submanifolds of V' is v-regular
if for all t€(0,1),

D TuywV = Im devi|, + €D Tyt

le[N] le[N]
¥ b=(%,[N], {0};, (0,9), up) € Mspa(n),
where
dev(y ‘b: ker (DV,% —V,Vy) & @ 20— @ T,. o)
le[N] le[N]

devy|, (&, win) zé(yl)erug}ylwg.

(3) If T is a (V, J)-semiregular bubble type, tuple u of oriented submani-
folds of V is 7T -reqular if

@ T, )V = Im devpy|, + @ T
lE[N]

le[N]
Vb=(%,[N], I;z, (j,y), u) € Hr (1),

where

deV[N]|b KyT — @ yz)V
l€[N]
devl‘b(&,wm[m) =&, (y) + duy, ’yzwl’
(4) If T is a (V, J)-semiregular bubble type, S C M7 is a smooth subman-
ifold, and S CM%Q) is the preimage of S under the quotient projection
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map, N-tuple u of oriented submanifolds of V' is S-regular if
D T,V = devim |, (K0T NTS) + D Ty, i
le[N] le[N]
VbeS(u) =S nMP ().

Note that all four definitions above are independent of the choice of met-
rics on V. Throughout this subsection, we assume that v is A-regular, 7 is
semiregular, and p is v- and 7 -regular.

The space My, 4, consists of the maps u: X ——V such that

Oul, = tv(z,u(z)) zZ€X.
Thus, the tangent space at u can be described as
TuMs o\ = {£€T(Z;u*TV): Dy,ué—tL, .6 =0},
where L, £ is defined by

_ vV
{Lu,u‘f}('z) = vf(z)”‘ (zyu(2))"

The operator Dy, —tL,, is independent of the choice of the connection
along My 4, » and by assumption has no cokernel if t€(0,1). An orienta-
tion on My 4, ) is determined by an orientation of the bundle AItROp TMs 102
over My 4, , which is the determinant line bundle of the elliptic opera-
tor Dy,,—tL, . Since L, has order zero, the operator Dy,,—tL, , is homo-

topic through elliptic operators to the operator Dy,. Thus, Aﬁgp TMs 102
is homotopic to

det (Dv,u) = (Aﬁgp(ker Dv,u)) ® (Aﬁgp(coker DV,u));

see [LM]. Since Dy, commutes with J, ker Dy, and coker Dy, are both
complex vector spaces and thus have natural orientations, which induce an
orientation on the determinant line bundle of Dy, and via a homotopy
of operators on the determinant bundle of Dy, —tL,,. It follows that
My 2 X ¥V is naturally oriented. If u is a v-regular tuple of submanifold
of V' of total codimension

codim p = dim My, 4,y x 2" = ind Dy, + 2|N|
=2({ex(V, 7)) + (dime V) (1 = g(5)) + V),
the differential of the map

eviNy: ME@,’)\ X ZN — HV7 (27 [N]7 {0}7 ) (07 y)7 u()) - (uﬁ(yl))IE[N}’
le[N]

i.e., deviy) as defined in (2) of Definition 3.24, induces an isomorphism
between T My 1, A@TEN and the normal bundle of p in VY at each point



496 A. ZINGER

of Ms; 1 A(1). Here we identify the N-tuple p with the submanifold
H nr C H v=vV.
l€[N] lE[N]

Since the normal bundle of p is oriented, the evaluation map also induces
an orientation on TMMV’)\EBTEN along My 4,2 (1). Each element b €
M 12 () is assigned a plus sign or is positively oriented if the two orien-
tations agree, and a minus sign otherwise.

For any ve F 7 such that g, is defined, let

LV7’U: ]__‘(u,u) —_— Fo’l(u’u)
be given by
— by
{Loo8}(2) = VetyVl e oy

Denote by ng(’U) the image of '} (v) under the map D, —tL, ..

Lemma 3.25. For any compact subset K of Mg(—]), there exist §,C >0 such
that for all ve FOTg|g and t€(0,0),
(1) [€llopr < CIDuE = tLyéllv,p for all E€T 1 (v);
(2) LP(v) = IV} (v) @ T (v);
(3) if D,y and L, are the (—,—)-components of D, and L, with
respect to the decompositions LY (v) = T'y(v) & I'_(v) and LP(v) =
I‘g’i(v) & T2 (v), then

Ty, ker {DU —tLy,: LY (v) —>Lp(v)}
— ker {Dy7 —tL, i T_(v) —T%' (v)}

v,u,t*

is an orientation-preserving isomorphism, provided one of the two op-
erators is surjective.

Proof. (1) The first claim is immediate from (1) of Lemma 3.16 and (2) of
Lemma 3.5. The second is obtained by the same argument as in the proof
of (3) of Lemma 3.16.

(2) By construction, m, — is an isomorphism of the two kernels of the

lemma. In particular, D, —tL,,, is surjective if and only if D ;" —tL, , is.
Define

& LP(v) eI (v) — LP(v) and W,.:T_(v) ST (v) — T2 (v)
by
(&) = D&+ 7tLyE+n and W (E,m) =7(Dy; +tL, )+

The first map is surjective for all 7€0, 1] by (2) of the lemma, while the sur-
jectivity of the second map is immediate from the definition. Furthermore,
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the maps
¢r:ker @ — I'_(v), ¢-(&,n) =m0 &, and
P ker U — F,(U), wT(gaT/) =¢,

are isomorphisms such that
1/]1_1¢1(57 0) - 7TU7—€) if ¢1(£7 77) = ¢1(§/a 77/)7 n= 77/7
and 0 60T = Juy oo,
It follows that 7, _ is an orientation-preserving map between the two kernels

of the lemma.

If K is a precompact open subset of M7 and é >0 is such that I;t,,(v) is
defined for all ve FOT5|x and te(0,0), let M(K,§) and My, (K,8) denote
the images of F' ®’1:5| K under the maps vz and 77 4, respectively. Both maps
are continuous and injective; see Subsection 4.2. The smooth structure of
FT induces smooth structures on M(K, §) and My, (K, ), with the tangent
bundles described by

d
Tb(v)M(K, 9) = {C;_ECTW‘TO: WETUFT} ® @ Tyl(v)z;
lE[N]

. N d -
T, iy M (K, 8) = {C;ZZEQW\TO: weTUFT} o P 1,0,
le[N]
where T,FT denotes T, F?T: see Subsection 3.4. It is easy to see that
w — (., is nearly complex linear and 7, _ is almost the identity on the
first component of Ty, M(K,§); both error terms are bounded by Ck|v].

Furthermore, by (1) of Lemma 3.6 and Corollary 4.7, w—f{v also nearly
computes with the complex structures and Iy, ¢, wm,,,Hbfvlgv ., 1s almost the

identity on the first component of TBtU(U)MtV(K ,0); in the given case, the

error terms are bounded by Ck (t+]v] %) Thus, the orientations of M(K, )

and My, (K,6) induced by the natural orientation of F7 agree with the
orientations induced from the natural orientation on I'_(v) & @ T}, () via
lE[N]

the maps m, — @ id and Wv,—Hb_Ulgv ., Did, respectively.
By the construction in Subsection 3.6,

d;tl/: -/\;ltl/(Ku 6) — 1-\0,1’ v — tV|ﬂU,t,, - 5ﬂv,tu S FOJ(aU,tV))
determines a section of the bundle TIT'>! over /\;ltl,(K ,0), given by
% (b (v)) = T, ¢,,, T2 (0),

Note that the zero set of this section is precisely the space
(ME,tv,/\ X EN> N Mty(K, 5)
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A linearization of this section is given by

= 0 1 A~
vg‘{ﬂ (tV - auvyt’/) Hbva tv ’U St 7v:—1} 7]‘[_1 C/ H U];gv tu( v—= auU,tV)

by, fv tv

= _Hbvufv,tu (D;t_ - L__ )7TU _H_ fv tué:/

v,V w )

where
w0t LP(v) = TS (v) @ T (v) — T2 (v)

v,t,—
is the projection map.
Corollary 3.26. For any compact subset K of Mg(-]), there exists d >0 such

that for all t € (0,6), the orientation of (Mx % EN) N My, (K, 5) as the
zero set of the section vy, agrees with its natural orientation.

Proof. Suppose by, (v) € (Ms 1A x V) N My, (K, §). Since we can use any
connection in ), ,, T’V to define the natural orientation on Ty, ,, Msx 4, 5, we
can write

{Da,., —tLva,. } =, ¢, . {Dy —th,}Hb oS VEET(Tuy).

v,tv

Thus, by Lemma 3.25, m, _ o Hb_v1 oy D td induces an orientation-preserving
isomorphism

Tbt (,U)ME ty)\@ @ E b keI‘(D L;’;t @
le[N] le[N]

with the natural orientations on the two spaces. By the preceding paragraph,
the same is true for the zero set of vy,.
If v is an N-tuple of constraints as above, let

M(K, 65 1) = {b(v) e M(K, 8): evin(b(v)) Ep},
M (K, 6 1) = {b(v) € My (K, 6): evin (b (v)) € i}

Then M(K,J;p) and MtV(K, 0; ;) are smooth manifolds. In fact, the
smoothness of M(K,d; 1) is immediate from the smoothness of F'7 |y, (),
which is a consequence of 7 -regularity of u. On the other hand, the smooth-
ness of ./\/ltl,(K 0; ) follows from Lemma 3.28 below. Furthermore, since
is v-regular, the section ¢tu is transversal to zero in HFO over ./\/ltl,(K 0 1h)-
By Corollary 3.26, the sign of by, (v v) €My 12 (1) defined at the beginning
of this subsection is its sign as an element of the zero set of the section ),
of TIT™! over My, (K, 5; ).
If b= (E, [N, I;z,(j,y), u) GM(TO)(,u), let

’CNT {(ﬁ,qu )EIC(,T 5]1 (yl) + du]l|ylwl ETu] (y) M VZG[ ]}
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Denote by N{'T the (L?, b)-orthogonal complement of L7 in K, 7. Note
that by (3) of Definition 3.24,

@ TUJ (v1) V deV[N]| N T @ Tug () -

le[N] le[N]

We denote by N'*7 the bundle over Mg—)(u) with fibers AV}'7T and by
NHET — Mz () its quotient by the natural Gr-action.
Suppose & C M7 is a smooth oriented submanifold such that u is S-

regular. Denote by S C M(;-)) the preimage of S under the quotient projection
map. Let . .
NS — S and NS —S

be the normal bundles. Choose an (.A(T ) X GT)—equivariant orientation-
preserving identification ¢g: N'Ss —>M§9) of neighborhoods of S in NS
and ./\/l(TO). Let

dg:n*, FOT — FOT

o

N S
be an (A(T)IXGT) -equivariant vector-bundle isomorphism covering ¢ such
that ®g is the identity on S. Let

¢s: NSs — Mg and Os:7nygFT — FT
be the maps induced by (]35 and g, respectively. Put
S(p) =S8N Mr(p), S(u) =SnMP ().

Since p is S-regular, we can Choose an (A(7T)xGr)-equivariant orientation-
preserving identification gbs HTs| s S(u —>S. Let

Ol 7w, (NS @ F<0>T) — NSa FOT
be a (A(T) X qu—) —equlvarlarit sphttmg—preservmg~ vector-bundle isomor-
phism covering ¢/s such that @/ is the identity on S(u). Denote by
B N'Tsls(y — S and @ iy WS @ FT) — NS@® FT
the maps induced by q?)g and ég, respectively.

Definition 3.27. With notation as above and in Subsection 3.4, (®s, %)
is a reqularization of S(p) if for all be S(u), @@ ENbS(g(b), and o E/%“’]}(b),
there exists w(i, o) € Ks(,mT such that

és(i)g(b, o;m,v) = {(i)s(b, it;v) } (= (7, o)) v UEFb(O)’T.

Note that if p is S-regular, S(u) admits a normalization. In fact, we can
. g asin the preceding paragraph,
wT

. g SO that the triple satisfies the requirements of
nT



=

500 A. ZINGER

the definition. In applications of Theorem 3.29 in [Z2], the exact choice of
q)g does not matter, but that of ®s does play a role.
For the purposes of Theorem 3.29, we assume that &5 and @g also encode

the lifts of ¢s and ¢/ to the bundles 771[51“(21 — & and WX/MTF(II —S(p),
respectively. Put

FOS=NS®FOT, Fs = {(b7 1, U)EF(O)SI vEFb(@)T};
FS=NS®FT, F'S={[b0]cFOS:[bv]cFT)}.

Lemma 3.28. For any (.A(T) X GT) -invariant precompact open subset K

of S(p), there exist an open neighborhood U of K in M(TO) and 6,C' >0
with the following property. If t€(0,6), there exists a smooth (A(T)xGr)-
equivariant section

@, € T(FOSs| 5 w0 sSNHT),
such that HSbg,ty(U)Hbv,CO < C’(t+|v|%) for allve FOSs|x and

F®S5|K - Mtl/(UKa 5; M)a [bv ﬁ? U] I :)/T,tl/ (‘is (i’gﬁﬁgw (ba ﬁa ’U))) 5
is an orientation-preserving diffeomorphism.

Proof. Since 1 is a regular value of ev(y|s and K is precompact, there exists
0 >0 such that the map

{(,75,0,0) € FOSGNHT|.: |, o]}y o0 <5} — FOT,
(b,7,v,0) — é‘g(i)g(b, o1, 0),

is an (A(T) X GT)—equivariant orientation-preserving diffeomorphism onto
its image. Thus, if 6 > 0 is sufficiently small, there exists C' > 0 such that,
with notation as in Definition 3.27,

CHlo—o'lhco < ||@(it,0) = @ (i, o), co < Cllo—0"[lp.c0
VbeS(u), iEN;Ss, 0,0’ eNP'T.
Then by Corollary 4.11 and definition of S_ in Subsection 3.4,
v (651, 73 71), 37,0 (B Db, 037, 0)) )
— dy (BsB4(b. 0" 7). 7. (B BE(b,o'277,0)) | < Ot o] o0l 00
Vte(0,8), beS(u), neNSs, 0,0’ e NFT,ve FVT;.

On a neighborhood of ev(y(b) € y, we can identify the normal bundle of y
in VIV gy-isometrically with the trivial hermitian bundle of the same rank.
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Let m denote the projection onto the fiber. Since p is S-regular,
lo = 0’ [lp,co < Clmevin) (psPs(b, o371)) — mevn) (s P (b, 0’5 1)) |
YoeS(u), RENSs, 0,0’ ENFT.
Thus, we can apply Corollary 3.23 to
h=moeviy)o gz~55 o ég and hy = 0 ev[N] © YT tv © dgso ég

We obtain d,e > 0 and for each t € (0,6) a section ¢, with the claimed
bound such that the map

(Q)S(S‘K B {(bv ﬁ? v, J) : ||U||b,C0 <, eV[N};y’T,tV (i)S ((i)g(bv ﬁv g, U))) Glu}?

(b, ﬁ,v) — (b, ﬁ,v,gf)g 1, (0,71, v)),

is an orientation-preserving diffeomorphism. Since

{[b,7

,0]: [b,7,v] € FUS;, lolp.co < €} — Mu(Uxk, d),
[b it, 0, 0] — A1 1 (Ps (P (b, 75 0,0))),

is orientation-preserving by the discussion above and our assumptions on
¢s, the claim follows. Above

Uk = s (®5({(b.75,0) eENSONT i il co <, ol co<c}) ).

Theorem 3.29. Suppose A\ € Ha(V;7Z), T = (E,[N],I;j,g) is a (V,J)-

semiregular bubble type, with Y A\ = X and cokernel bundle F(l’l—u\/lf[,
el

and (f‘_,FO,’I,R) 18 an obstruction bundle setup. Let S C M7 be a smooth

oriented submanifold,

velr (SxV; AV T Seny TV)

a A-regular section, p a v-, T -, and S-regular N-tuple of submanifolds of V
of total codimension

codim p = 2((c1(V, J), A) + (dime V) (1 — g(S)) + |N]),

and (®s, Pls) is reqularization of S(n). Then for every precompact open
subset K of S(u), there exist a neighborhood Uk of K in CE’/‘\’_N)(E;M) and

d,e,C > 0 with the following property. For every t € (0,€), there exist a
section

s € D(FSsl s mpsNUT), - with |9, (0)]],, 00 < C(t+ v]7),
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and a sign-preserving bijection between My, 4, A(1)NUk and the zero set of
the section @bg ., defined by

W4, € T(FUSs|k; s T,
5 (90g,tu(v)3 wg,tu(v)) = ¥sw (‘I’ﬁ(wg,w(v)));
Vs € F(F@Sg‘SmUK; s T,
Ps (Vs s, (V) = Y10 (Ps(v));
Lk FO,l
yTprl — )7

wT’tV el (Fﬂ% ’MTQUK

va'ﬂtu (U) = 7"'E),yzl_(tljv,t _5(ubu qu) _Dvgv,tu - ﬁv,tu) ,

for some vy ¢, Ty 11 € % (u,) and Eotv € f.,.(v), dependent smoothly on v,
such that

HVv,t - VH'U,Z < C(t + |U|%)’ Hgvvt’/Hv,p,l < C(t + |U|%)’
and i), < Ct+v]7)*.

Furthermore, if z€ ¥ and (B, (uy(2), C0), J, gvp,) is isometric to a ball in
C", then 1y 4, (2) = 0.

Remark. In specific applications, the main goal would be to express the
number of zeros of %, in terms of the cohomology ring of a closure
of S7(p). One of the significant intermediate steps is to extract the leading-
order terms from the section @bg - 1 Ay =0, the estimate on v,,; given above
easily leads to a sufficiently good estimate on ﬂgil_yw; see [I] and [Z2]. In
such a case, one can also extract the first-order term from 7('2:1_5’11,“, which
suffices for the computation in [I]. A power-series expansion for ﬂgiiéuv is
given in [Z2], where terms of up to third degree are used. With the choice of

metrics in [Z2], the term ﬂgil_ﬁw,, vanishes. The remaining term is shown
to be secondary for a good choice of the obstruction bundle setup.

Proof of Theorem 3.29. Let d,e>0 be as in Lemma 3.28 and its proof.
We take gog ., o be the section descendant from the G'7-equivariant section

gbg,ty. Denote by U} the open set Ux of Lemma 3.28. By Corollary 4.22,

there exists a neighborhood Uk of K in C’&N)(E; u) such that

Ms () N Uk

is contained in /\;ltV(U}(,(S;,u). The neighborhood Uk can always be cho-

sen to contain all the zeros of the section &t,, of the bundle HI‘(i’l over
Ms (1)U . By Corollary 3.26, My 4, » (1)U is precisely the oriented
zero set of the section v,. Since the map

OS5l — Mu (Ug, 85 18), v — A1 (2P (91, (1)),
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is an orientation-preserving diffeomorphism by Lemma 3.28, it induces a
sign-preserving bijection between the zero set of ¢, on My, (U, d; 1), and
the zero set of the section

~ 7 ~ * 0,1
(7,00 PsPlsls ) Wt € T (FOSs|ic; (G710 L5 Plepls ) TITOY).
By equation (3.17), under the canonical identification
(w7 ICE = T2 — M(Ug:, ),
the section (ﬁft,/y}l)*&tl, corresponds to the section 1y, given by

(319) Y (b(U)) = tV|uU - éuv - ﬁg:i_nv,tu - Nv,tupvnv,tu
= Wg’,lf (tV’uv - 5“1} - ﬁg:inv,tu - Nu,tupvnv,ty)
0 A ~0,1
= Trv:l— (tVU7§1),tu — Ouyy — ﬂ-U:—}—n’U,tV - NUPvnv,ty)~

The second equality above is automatic, since ¢, (b(v)) eIl'% (v); the third
follows from the definition of N, in Subsection 3.6. The bounds on the
terms vy, ¢, 4,5 Moty NoPuto e also follow from Subsection 3.6. By definition
of T%! in Subsection 3.4 and equation (3.19), under the canonical identifi-
cation

YT = mp T — FOT;

Ul
the section 71y, corresponds to the section 174, described in the state-
ment of the theorem.

The next proposition describes a special case of the above theorem. It
is obtained by fixing a metric g on ¥ and going through the construction
analogous to that in Subsection 3.6 and then modification for constraints as
above. The sign statement below follows from the fact that the (L2, g, gy )-
projection ker(Dy,,, —TtL,, ., ) — ker Dy, is an isomorphism for all 7 €
[0,1], t sufficiently small, and b€ My, 4, \« (1) sufficiently close to K.

Proposition 3.30. Suppose N\e Ho(V;Z), T = (E, [N], {0};0, )\) is a (V,J)-
regular bubble type,
velO (SxV; AV T S@ny TV)

is any section, and p is a T -regular N-tuple of submanifolds of V' of total
codimension

codim g1 = 2({c1(V, J), A} + (dime V) (1 — g(5)) + |N|).
Then Mt (p) is a discrete set and for every finite subset K of S(u), there
exist a neighborhood Uk of K in CE’/‘\?N)(Z; wn), €0, and for each t€(0,€) a
sign-preserving bijection between K and My 4, z(1) Uk .
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3.9. Gluing Maps for Spaces Z/_I(TO ) (1) and Orientations. We now con-
sider the case T = (52, M, I;j,)) is a regular bubble type. However, most
of the analysis in this subsection applies to any regular bubble type 7. Let

1 be a generic M-tuple of submanifolds in V, as defined below. If T = L] I
keK
is the decomposition of I into rooted trees and {7;} are the corresponding

simple types derived from 7, the product gluing map,
(:YTk)keK: HFY;W% - HM<Tk>’
keK keK

may not map the total space of the bundle over Ug) ) (p) into U <(3)> (). In this

subsection, we remedy this deficiency of the product gluing map. We also
show that all the spaces Z/_{g—))
logical orbifolds and the gluing maps defined below preserve orientations.
Definition 3.31. If 7 is a (V, J)-regular bubble type, M-tuple y of oriented
submanifolds of V' is 7 -regular if the manifolds {Ml leM-—M } intersect
transversally in V' and

ToamV & D Tu, a0V =1m dev], + Im devyey |y + Topy () 1
leMnM leM-M

+ @ Ty, (i) M
leMnM

(1) and U7y () are naturally oriented topo-

for all b:(‘SQ,Ma Iz, (.j:y)au)EBT(:u)‘
Let T, 7y, K, i1, and b be as above. Denote by
by, = (SQ,Mka;l‘!jk, (7, y) | ulr,)

the corresponding 7i-bubble map; see Subsection 2.5. Let /\/'b“’T be the
(L?,b)-orthogonal complement of

KT = {(g, Wi ) €KV T &5, (i) +dug, |y w) ST Vie M N M,

&i(00) €Tuvy () 1 ViGI—f}
leM—M

in @ Ky, Tx. Denote by N#T — Br(u) and N*T — Z/IQ@ () the corre-
keK
sponding vector bundles. Let

NEBr = NPT & (C e R)E — Br(p),
N1UP = N'T © (CoR) — U (u);

FOT = PFOT — By, FT=@FL —Uuy.
keK keK
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The last two vector bundles carry norms induced from the norms on F(O7;,
while we define norms on the first two by

‘(b? g, (C7T))| = Ha”b,CO + ‘(C, 7")|7
if ce NI'T € @ Ky, Tp and (¢, 7) € (COR)X. If § is sufficiently small, define
keK

P N'Br s — H M(T(? by

keK
(0. (cr) = ((eari) - HY(00)) e € [ MY,

keK
where H(T,(Z) is as at the end of Subsection 3.2 and (cg, 7)) denotes the ac-
tion of a neighborhood of

0 CxR=CxRx{0} c CxRxR

described in Subsection 3.1. Since é‘} is (A(T)KG'T)—equivariant, it descends
to a Gr-equivariant map
: (0)
QZ)%' NHZ/{T75 — H M’]}g.
keK
Let @4 : Ty E' T — FT be a G-equivariant vector-bundle map covering

the map ¢/ such that ®7 is the identity over Z/I(TO ) (11). Denote by &% the
lift of ®5 to N*Brs. Let (I)!%,k and qﬂ%k be kth components of ®4 and ¢,
respectively.

Lemma 3.32. With assumptions and notation as above, there exist (.A(T)K
GT) -invariant functions §,C € C*®(Br(p); RY) and an (A(T)x GT)- equi-
variant section

P e (FOTs w0 7N Br ),

such that ‘Lﬁ‘%(v)‘ < C(bv)]v]% and

FT; — Z;{é%(u), v — (:YTk ((I)/;,k‘/)l%(v)))kel(’

is a homeomorphism onto an open neighborhood ofug)) (1) in L?g% (1). Fur-

thermore, the restriction of this map to F"75 is an orientation-preserving
diffeomorphism onto an open subset of Uf% ().
Proof. Denote by N7u the normal bundle of
Xr(p) = {xKGVK: Thy =Thy € 1 Vkl,kQEK,leM—M} X H I
leMnM

C VExy MO,
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Let Nrp = NX7ru®(CaR)E. Since the Gr-action does not change any
evaluation maps and the constraints are in general position, the differential
of the map

Uyt [] MY — VE x VIOV (€ x R)X,
keK
W p = ((evz; (b)) ke (€vi(b))ensri (Y7, 5, (06)hex),

where W 5 (by) € C X R is as in Subsection 3.2, induces an isomorphism
ik

between J\/’f By and Nyp. This isomorphism is orientation-preserving by
definition of orientations. Thus,

P NFBrs — H Mg%)
keK

is an orientation-preserving diffeomorphism onto an open neighborhood of
Br(p) in ] ngk), provided § € C°(B7(u); R™) is sufficiently small. By
keK

the same argument as in Subsection 3.8, for any simple bubble type 7", the
map

iro: YT — My = Hir

is an orientation-preserving diffeomorphism onto an open subset of Mz
provided § € C*°(Mz;RT) is sufficiently small. Along with Corollary 4.23,
this implies that the product map

H%'k: HF77¢,6—> HMU@

keK keK keK

is a homeomorphism onto an open neighborhood of [[ My, in [] M(%)
keK keK
and its restriction to the preimage of [] M1,y is an orientation-preserving
keK
diffeomorphism. The lemma now follows by applying an argument similar

to the proof of Lemma 3.28 to the functions

h(v) = \IJ'LM ((ZJ%(O‘? (C7 7’))), FL(U) = EO(U) = \Il’T,]\;[((:yk(I)g,k(U))keK)’

where we write v= (U, (c,r), v), with (a, (c, r)) eNFEBr and ve FOT. Since

Br(w) is generally not precompact in [] M(Ti), we end up with
keK

5,C € C*(Br(u);R™),

instead of §, C € R*. Another difference is that % is not necessarily smooth
with respect to the standard smooth structure on N*B7®F(©7T. However,
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we can put a smooth structure on the total space such that the compos-
ite maps

N#Brsd FOT — FOT R, v — 4 (v)
Uh—>"l}h‘$, thk, keK,

are smooth, whenever § € C*(Br(u); R") is sufficiently small. Then by
Corollary 4.5, his C?, which is sufficient for the arguments of Subsection 3.7.
Finally, in the given case h is defined on all of (/\/ LBraFOT ) 5 and thus

the second condition on iLt in Subsection 3.7 is redundant.

Suppose 7 is a bubble type and p is an M-tuple of constraints in gen-
eral position. By Lemma 3.32, there exist G3-invariant functions ¢,C €

C> (U7(9 )(1);RT) and a G*—-equivariant section
7€ (FTamirN'Uyy)
such that [/ (v)| < C’(bv)\vﬁ and
W FT — U (1), 34 w) = (7 (@ 1045 (1)) yeper

is a homeomorphism onto a neighborhood of Ug) ) (1) in Z;{é%(u), which is an

orientation-preserving diffeomorphism on a dense open subset of the domain.
If 77 is another regular bubble type such that (7)=(7") and u is 7'-regular,
it follows that

ST A T R (FT)) — AT (L (FT))

is a homeomorphism provided ¢’ € C* (Z/{(TO,) (1); R™) is sufficiently small. Fur-
thermore, by the above it is orientation-preserving on a dense open subset
of its domain. It follows that 7%_1%‘—, is an orientation-preserving homeo-
morphism everywhere. We thus obtain

Theorem 3.33. Let T*=(S?,M,I*;j,\*) be a basic bubble type and p an
M -tuple of constraints such that u is T -reqular for every bubble type T <T*.
(1) The spaces Z;I(O*)( ) and Uz (1) are oriented topological orbifolds.
(2) Suppose T < T*, ¢4 « NPTz — Z/{(T) is a Gr+-equivariant identi-

fication of neighborhoods of L{T ( ) in NPT and in Z/{(T), and @ :
mrur FT — FT is a lift of ¢ such that (I)T|u(°> =1. Then there

exist Gr~-invariant functions 6,C € C* (Z/lg))( ),R*) and a G-
equivariant continuous orientation-preserving identification,

T — U (),
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of neighborhoods of L{y) (1) in FT and in ' (1), which is smooth
on FOT5 — Uz~ (1). Furthermore, for every v € FTg, there exists
o(v) eNHT such that

lo(v)

1
b* < C(b*)"[}|? and U:Y';]L'(U) = expv,ub,oq@% g’ua

(o(v))
where O (o(v)) = [V, V],
. 1
for some &, eF(ub/ o qq#(o(v))) with ||€y]|co < C(by)|v|?.

Remark. The descriptive statement (2) of Theorem 3.33 is used in [Z2] for
local excess-intersection type of computations on the spaces Uz= ().

4. Technical Issues

4.1. Continuity of the Gluing Map. Let 7 = (S, M, I;j,\) be a simple
regular bubble type and H a nonempty subset of I. Suppose v, € FOT;
and the sequence vy, converges to v* € FH)T;. In this subsection, we show
that 47 (vg) converges to 7 (v*) in the Gromov topology. Our main interest
is the case S =52

It is sufficient to assume that 7 (vg) = m(v*) if h ¢ H. In particular,
b=b, =b,,. Denote by T=T(H) the bubble type of b(v*). For each k,
define

O, = (b(v"), (Uk)) € Fb((og*)'f
as follows. If he H, put
igh=min{i<h:if W€l & i<h'<h, " ¢H}.
Since [ is a rooted tree, igh is well-defined. Let
Ug,h = H Uk, b -
igh<h'<h
Since vy — v*, U — 0 for all h € H. Furthermore, by construction
Yo, =25, and g, =@qu*0gqg, . In particular, u,, =u,*oqg, .
For any he H and § >0, let
Ansk = doe ({(ns 2): 1o (2) <O} U{(B, 2): 457 (2)| <6}) C By,
he = Qo ({(ns 2) s 1o(2) <O} U{(hy 2): a5 (2)| <6}) C Bor,
S5 =S — | 455
heH
It is convenient to make the following definitions. If ;€ LP(vy), the sequence

{nk} converges to n* € LP(v*) if qvkl*nk converges to n* in the LP-norm on
all precompact open subsets of . and

(41) 6@0k1i_n>10|’77kHUk7Lp(Ah,6,k) =0 VheH.
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If & € LY (vg), the sequence {&} converges to £* € LF(v*) if & oqgk1 converges
to £* in the LY-norm on all precompact open subsets of X¥. and

In (4.1) and (4.2), we use the modified Sobolev norms.

Lemma 4.1. There exist C,d € C* (Mg(—));R+) such that for any sequence
{vr, e FOT5} converging to v* as above and £ €T (v*)

[700,~ (€ 0 a5, | < CO) ok =0 [[[Ello p.1-

vg,p, 1 —

Proof. Note that I'_(vg) = {f‘o 0o, : & € F(v*)}. Thus, the difference
45, Tv*,— — Ty, — (g, arises entirely from the difference between the metrics
45, 9v+ and gy, . By construction, the two metrics differ only on the annuli
1 for h€ H. Thus, the claim follows from (2) of Lemma 3.5.
h,2|vg b2,k
Lemma 4.2. If n;, converges to n*, then P, ni, converges to P,«n*.

Proof. (1) Let {ex}, {0x} CR™T be sequences converging to zero such that

(4.3) ||77*||U*7LP(A;L%) < €k; ||P“*77*||“*7L€(AZ,51€) < €k,
kli_r)noo ||nk”“k7LP(Ah,6k*,k) < €k
for all he H. For every k* >0, choose Ni» such that for all k> N«

(44) gz, me — 0’|

,U*7Lp(23k*) S EL* and annvk’LP(Ah,ék*,k) S €l .

for all he H. It can be assumed that Z\Uk—v*]% <Op+, €+ whenever k> Npx.
For any k> Ny, let 7« € LP(v*) be given by

— 1%~
e = 3 90 Tk, on X§
’ 0, outside of Egk*.

Then {7k kllorp < (7] vy p- Let
D ki = a5, Po i i € LY (vg).-
Then by Lemma 3.16 and the first assumptions of (4.3) and (4.4),

(4.5) Hqg;*Pk*,knk — Pyen'|

) < || Po g e — Py

< CO)||w e — 1]

u*,Lf(Egk v*,p,1

v*,p
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Since ||dgs,||co < C(b), by (4.3) and the first assumption of (4.4) for all
heH,

(4.6) Hﬁk*vknkHvk,Lf(Ah’gk*‘k) < C(b)|| Py ik~

U*7LIIJ(AZ,5I€* )

<c([Pon

vﬂp,l)

v IR (47, ) T || Pos e o = Poen’”|
S C/(b)ek*.

(2) We now show that P k1 is close to Py, By Lemmas 3.16 and 4.1,
47)  |[Pre e — Poymiel,, 1

< C(b)(Hkapk*,knk — k|

< C(b)(HDykpk*,knk = i

Since Dyx Py« ), = T+ and gg, is holomorphic outside of the annuli
Ap by k>

(4.8) kapk*,knk =Nk on Xy, — U An g k5
heH

+ “ﬂvk,fpk*,knkuvmp’l)

Vk»,P

+ [k = 0" ko)

Uk,P

By equation (4.6),
(49) || Do, P s, 1o < CO) || P semell, 1

< C'(b)exs.

An,syx k) Ap, gy k)

Thus, from equations (4.7)-(4.9) and the second assumption of (4.4), we
conclude that for all k> Ny«

(4.10) (| Pros e — kankHvk,p,l < C®)eps (1+ |10 [lo*p) -

Since qugleco <C(b) on X}, by equations (4.5), (4.6), and (4.10),

(411) Hqgkl*Puknk - Pv*n* ,U*’Lif(zg ) S C(b)ﬁk* (1 + HT/*HU*,P)7
k*

(4.12) <CM)ers (1 + |0 |lo+p) VhEH.

HPUknkH'Uklef(Ah,&k*,k)
By equations (4.11) and (4.12), P, n converges to P,=n*.

Lemma 4.3. There ezist C, (56000(/\/1%9);1@‘) such that for all v* € FH)T;
and he H,

Py Bt < O(byr).

gv*vcl(A:hg(bv*))

Proof. For each he€ H, this lemma is obtained by pasting
P« Oty and P« Oty

A0 M B0 0y Aps* 0N B0
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onto ¥y, . ., and Xy . j via a cutoff function. We then use the usual elliptic
estimates and Sobolev inequalities on ¥, . ,, and ¥ ., along with

< C(bp)|0*|.

HPU*SUU* v*,p,1 —

The bound obtained in this way is actually C'(b,»)|v* ]P

Corollary 4.4. There exist C,0 € C’OO(M(T);R+) such that for any sequence
v € FOT5 converging to v € FHT; as above,

< C()ox—v|7;

gz, o = Mo+ (s

2|vg—v¥|

1/2)

1
||77vkHvk,LP(Ah,zlvk_u*ll/Q’k)S C(b)|lvy—v*|r VheH.

Proof. We put
1 ~ 1
Ok = 2|vp—v*|2 and e = (2|8l co+C(b))|vr—v*| 7,
where C is the function given by Lemma 4.3. Let

1 = —Buye, Y = —Quye — Ny Pe™  m>0;

7],(;)) = —Ouy,, n,(cmﬂ) = —Ouy, — NUkPUkn,gm) m>0.

By Lemma 4.3 and the explicit description of 5qvk in Lemma 2.2, €, 0,
7 and 17,(60) satisfy (4.3) and (4.4). Suppose e,im) is such that e,(cm), Ok,
n(™) and n,(gm) satisfy (4.3) and (4.4). Since the map gz, is holomorphic on
qgkl(Egk), by (4.11), (4.12), the estimates in the proof of Lemma 3.18 and

the derivation of equation (3.11) in [Z1],
quk *Ny, P, kn,(c m _ N, U*n(m)

v, LR (S}, )

- “Nv*quI*Pykn,im) — Nu*Pmn(m)\

v LR (S}, )

vt LP(S5,) + Hkanl(cm)‘

q;kl* vknl(cm) - Pv*n(m)

<C(b (qul*kanl(c )‘

U*,mz;k))

vt LP(53,)
< C'B) (™ + [vg]7) e,

1
Hva Uk”l(cm)Hvk,LP(Ahyékﬂk) SC(b)lvk\PHkank )Hyk, P (Ao, k)

1
< C'(b) vy 7™,
Thus, we can take

D — ) L0 (B () 4 g ) e,
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1
This sequence is bounded as long as |vg|? is sufficiently small (depending
only on b). Since 7, is the limit in the (v*, p)-norm of the sequence ("™ and

Ty, s the limit in the (v, p)-norm of the sequence n,gm), the claim follows.

Corollary 4.5. If T is a simple reqular bubble type, there exist R*-valued
smooth functions §,C' on M such that for any sequence {uvy EFQ)’]:;} con-
verging to v* € FH T, 5(vi) converges to 7(v*) with respect to the Gromov
topology. Furthermore,

dy (ev(7(v")),ev(5(uvr))) < C(bos)|vp—v*|7 if § =52
dy (evi(3(1")), evi(3(vg))) < Clbye)Jug—v*|» v ieM:
‘\I’<T>,0('~V(U’€)) = Uy 5 (F(07))] < Clby)op—v*|r  if S=S2

Proof. 1t is sufficient to consider the case 7, (vg) = mp(v*) for all h ¢ H if
v* € FET5. In such a case, ¢s, maps the marked points of 3, to the
marked points of ¥« and u,, =u,*0q,,. By construction,

Uvy, = CXPb,,x s, Py oy, Uy, = €XPyp, oy, Lo o=

v*

By Corollary 4.5 and the proof of Lemma 4.2,

1
(4'13) qugkl*kanvk - PU*"?U* u* LP(Z* ) S C(bv*)\vk — U*‘P;
1 2\vk7v*\1/2
1
ol
(4.14) Hkanvk||“k’L117(Ah,2\U,€_U*\1/2,;9 < C(by)|vg — v*|P VheH.
Let (x €T'(X*; 0,+) be given by
XDy, . i, Ck = Uuy © @iy s [Ckllco < inj gvip,. -
By equation (4.13) and the proof of (2) of Lemma 3.5,
(4.15) ”Ck”CO(E;%_U*‘Iﬂ) < C(bor) |Gk IR )

< ' (by ) og — v*]7.
On the other hand, by (4.14) and by the same argument as in (3) of the

proof of Lemma 5.12, the variations of P,«n,~ on AZ,lek—v*ll/Q and P, 1y,

*
on Ah,2|vk—v*\1/2,k

tion (5.33); observe that an argument similar to the proof Lemma 4.3 shows

are bounded C(bv)|vk—v*|%. This can be seen from equa-

that we can take ¢ to be any small number bigger than 2|vk—v*|%. Equa-
tion (4.15) and the small variation on the annuli imply that

1
sup. dy (i (45, (2)). i, (7)) < Clbo)ox 7]
FAS Ve

It follows that 47 (vg) converges to 47 (v*) in the Gromov topology. The
estimate on the evaluation maps is immediate from the above bound. The
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last estimate follows from equations (4.13) and (4.14), along with a Sobolev
estimate on a neighborhood of co €%, . 5 which implies that the C'-norm of

(k there is bounded by C'(by~)

1
J— *|p‘

4.2. Injectivity of the Gluing Map. The goal of this subsection is to
prove that the gluing maps of (3.15) and (3.16) are injective, as long as
0eC Oo(Mg-”;Rﬂ is sufficiently small. We start by showing local injectivity
on the subspaces FHT; of F7;5, where H is a subset of I.

If 7 is regular, we are only interested in the case t=0. If 7 is semireg-
ular, we only consider the case H = (). We use the same notation as in
Subsection 3.4. If |||, is sufficiently small, define (s 4, € [y, 1) by

€XDb, i, 10 (oot = Uz, HQ:W,tVHbU,CO < inj gvp.

Lemma 4.6. There exist 9, CEC”(MQ;R‘*‘) such that for all ve FU Ty,
where H=0 if T is semireqular, and w e T, FH’]:;(b )
HS Nwtu w£ Nvtzngvp_ )HwH Hf” 0,1 fOT allger(uv) with
1€l]o,p,1 <0(by) and te[0,1];
(2) HSwww +RLE— Ty ifH L S COu)l@lolléllopr for all § €T (uy);
(3) [|SPoRan— P, © CON@lullillog for all €T uy).

v,p,1 —

Proof. Claim (1) follows from (2) of Lemma 3.6 and Riemannian geometry
estimates such as in [Z1]. Claim (2) is a consequence of (5) of Lemma 3.6
and (b) of Definition 3.11. Finally, (3) is obtained from (1), (2), Defini-
tions 3.11 and 3.13, and Lemmas 3.6 and 3.16 as follows. Writing A, P for
SewPoRy — P, etc.,

Ay P = P,y Doty Ay P4ty Se P Re
= Pynt))y DDy P— (Pymy . Dy—1) Ay . 4 S P Reo
= Pk Dt = (Pl Be D+ (Pl Dy = 1) Do) S Pa e
= — P, Dy S, Re
— (P} DD+ (P Dy = 1) A, 4 oo P R ).

Corollary 4.7. There exist 0, CEC“(M%Q);R+) such that for all
tel0;0(by)],  veFUDT;,
where H=0 if T is semiregular, and wETUFH’]:;(bU),

Cbo) Hlwllo < IS twllops + Y lwn(@)lg, + Y lwi(@)lg,

heH leM
< Cbo)|w]lo-
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Furthermore, ||Sxém .t — §U7tl,Hv,p’1 < C(by) (t+ |U|I%) | ||o.

Proof. The first claim of the lemma is immediate from the second and (1)
of Lemma 3.6. On the other hand, by construction in Subsection 3.6,

gw,tzl = thV - Pwéuw - PwNw,tllgw,tu-

Thus, if t and |v| are sufficiently small (depending on b,), the second claim
follows from Lemmas 3.6, 4.6, Corollary 3.19, and equation (3.11).

Corollary 4.8. If T is a simple bubble type and K is an open subset of Mt
with compact closure, there exists 6 >0 such that for any t€10,46], the map

Irav: F'T5|k — CRon(S:V),  Arw(v) = bu(v),
is a differentiable embedding.

Proof. We first deduce from Corollary 4.7 that Y7 4, is injective if ¢ is suffi-
ciently small. Suppose not, i.e., there exist sequences v, vy € F w’]}\ x such
that
vy —beK, v, — b eK, and by, (vy) =bs (v},).

It follows that b="¥', after possibly modifying the sequence {vy } the action
of an element of (A(7)xG7). If for some k, v}, = v(wg) with [y,
sufficiently small, then by Corollary 4.7, v} = vj. Otherwise, the difference
between ¢,, and Gy 18 uniformly bounded below outside of the preimage of
the zeroth component and the necks A,, ,. Thus, the bubble maps b(vy)
and b(vy,) are far apart unless b has an automorphism. In the latter case, v,
can be replaced by an equivalent element of F?7;. In the former case, Uy,
and ﬂv;v cannot be the same because

1 1
HPUWUMVHCO < C(t + ]’Uk\r') < (C'6r and
1,1
1Py g 0| o < C (8 + [0 ]7) 87
Thus, Y7 4, is injective on F 75|k provided § is sufficiently small (depending
on K). The smoothness of 74 follows from the smooth dependence of

solutions of equation (3.12) on the parameters. Finally, the differential of
77 tv is nondegenerate by Corollary 4.7.

Corollary 4.9. If T is reqular, there exists § € C®° (Mr;R™1) such that for
all m, the map

jre |J FP'% — | Mray, A7) = b(v),
|H|=m |H|=m

18 injective.
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Proof. The same argument as in the proof of Corollary 4.8 shows that map
Jr: FH Ty — Hrmy
is an embedding if § is sufficiently small. It remains to see that %9) (v) #

g- fyg))( ") for any g€ Gy gy whenever [v] # [v']. For each v € FH)T5 and

i€ H, we construct (c;(v),r;(v)) €CxR such that
(c(v),r()) -7 (v) € My,
We define ¢;(v) € C and r;(v) €R by
U((ci(v),0) i) + Y du(T(H)) (zn(v) + ci(v))

th(v)=1
+ Z (yl(v)+0i(U))=0;
Ji(v)=t
TO) ((ci(v), ri(v)) - twi) + Y du(T(H))B((1 +ri(v))|an(v) + ei(v)])
tp(v)=1
+ 3 B0+ 7)) (v )—i—cl-(v)\):%_
Ji(v)=t

Since the metric g, ; for i >0 agrees with the standard metric on S? on a
neighborhood of the south pole and ¥z ;(b,) =0, by Corollary 4.7 for any
weT,FAT with ||w||, sufficiently small,

(4.16) lei(@) = €i(v)] < Cbw) ][],
ri(@) = ri(w)| < Ol 1]l
Let b(v) = (c(v),r(v)) -b(v). Write

b(v) = (S, M, HU{0}; 2(v), (j(v), ), @v)-
If |||, is sufficiently small, define ( €T'(7,) by

€XDb,,, @ gw = U, ||6w||bv700 < inj gy, -
Similarly, for h € H and I € M, define wy(w) € T;, ()20, () and wy(w) €
T X0 5, (v) bY
€XPy,, 7, (v) Wn(@) = Tn(@), |Wp(@)| = |wp(@)lg, <inj(ge, zn(v));
€XPy, 5 (v) D1(@) = Gi(@),  [wi(@)] = [01(@)]g, < inj(gv,yi(v)).
Then by equation (4.16) and Corollary 4.7,
(4.17) C" (b)) M@l < S llvpr + D lon(@)| + > [@n(w)

heH leM
< C(bo)llwllo-
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It follows that the map
0 _
FH’]:;—>M(T()H), v — b(v),

is a local embedding. By the same argument as in the proof of Lemma 4.8,
we can conclude that this map is injective as long as 6 € COO(M(;—));R*) is
sufficiently small. Since this map is G (x)-equivariant by construction, it
follows that the induced map on the quotient, i.e., the map of Corollary 4.9,
is injective.

Corollary 4.10. If S =52, there exists 6 € C>®° (M;RT) such that the map

1: F%\MT — M)
1s injective. Furthermore, the restriction

i FUT| p, — My
s a differentiable embedding.

In order to adjust the gluing procedure in the presence of constraints,
below we state the analogue of Corollary 4.7 for wGICbUTCTvF@T. It is
obtained in the same way as Corollary 4.7, except the analogue of Lemma 4.6
would make use of Lemma 3.8, instead of Lemma 3.6, and of (b-ii), instead
of (b-i), of Definitions 3.11 and 3.13. We also use (3) of Lemma 3.5.

Corollary 4.11. There exist 0,C € C"O(M(TO);RJF) such that for all t €
[0;8(by,)], ve FDT5, and @ € Kb, T5(b,,)

Cbo) 1wl < o wllops + Y [wi(@)lg, < Cby)||=]l-
leM

St — oty co < Cbo) (t4[0]7) ]

4.3. The Basic Gluing Map and the Space of Balanced Maps. Our
next goal is to show that the gluing map of Subsection 3.6 is surjective in
the appropriate sense. More precisely, if 7 is a regular bubble type, we
show that the image of 47 contains a neighborhood of Mz in /\;l<7—>. Ift7
is a semiregular, we show that all elements in My, 4, » that are close to any
given compact subset of M7 are in the image of the gluing map ¥z, if ¢
is sufficiently small. The major difficulty in doing this is the following. If
v € FT, a small change in the singular points of b, may lead to a very large
change in the map u,,. This is precisely the reason we used the norm ||w]||,
on T, FHT instead of just ||| in Subsection 3.4. In order to deal with
this issue, we need Corollary 4.13, which is proved in this subsection. We
continue to assume that 7 is a simple bubble type.

Recall that H7 is the set of tuples b = (S, M, I;x, (j,y),u) such that

uy, (21,) =up(00) for all he I and du;=0 for all i€ 1. Furthermore, M(TO) is

Furthermore,
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the subset of H7 consisting of the tuples b such that W, (b)=0 for all he I.
It is convenient to make the following definitions. If H is a subset of I and
€>0, let
MP) ={b= (8, M, I;z, (j,y),u) : du;=0 Viel;
dy (wy,(zn), un(00)) <e Yhe I;
(U7 (b)|<eVhel-H}.

Lemma 4.12. There exist §,C € C™® (ng); R*) with the following property.
Suppose b*GMgQ), e<o(b*), be M(T}Q is such that d(b*,b) < 6(b*), and
v=(b,v}) GFb(H)’]:;(b*). Then there exist
be MY, and ©=(bo;) € KT

such that

(1) d(b,b) <C(b*)e and o, —vp)p < C(b*)e|lvply for all hel;

(2) if qu(2) €XT4s Ton (qu) 22\%\% for all hel—H such that v, =i and

‘qgl(qu)‘ 22]1)1-]% ifiel—H, then dp(qu(2), qa(2)) < 6(b*)e.
Proof. (1) Let b= (S, M, I;z, (j,y),u). If 6 is sufficiently small, by Proposi-
tion 3.3, we can choose §; €I'(u;) such that [|&][y, . o1 < C(b")e and
V= (S,M,I;z,(j,y),v) € Hr,

where u; =exp,,. &. The C Lbound on &; and the assumption be Mgl—q 2 imply

that [Tz, ()| <C'(b*)e for all he [—H.
(2) We now define o/ = (S,M,I;3,(j,7),d) € Hy and 0/ = (l;’,ﬁ}) as
follows. Suppose i* €I and for all i € I with i > i*, h € I with ¢, =i, and
le M with j;=1, we have constructed
i) (ci,r;) €CxR such that |(¢;, ;)] < C(b%)e;
(ii) @},,9; € X, such that |r, ,(2})] < C(b*)e and |py,7;| < C(b*)e;
(ili) 0;, € C such that |0, —vp| < C(b*)e|vyl;
(iv) if x; €52, &; €S2, such that |ry;(Z;)| < C(b*)e|vil;
(v) if 2; € S?, v; €C such that |v;—v;| < C(b*)el|vy],
such that
(I1) if i ¢ H, Ur;(0) =0 where @} = (¢;,7;) - ul;

!/
77
(12) if ©7,,=5% 2€X7,,, and | ¢z, G (z,,0,) (2 | < §|ﬁh|% for some he I—H,
then

JO
N O EUAL R

h, (@5 (930,50 (2) = Gh@n,on) (G (2)) 5
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where ¢; (1, .,), etc., are the maps defined in Subsection 2.2.

Note that while we have not defined ' completely yet, (I1) is still a well-
defined statement. The function U7 ; depends only the ith bubble compo-

nent of &', which has already been constructed by the induction assumptions.

If i* € H, we take ¢;» =0 and 7+ =0. If i*€I—H, let (ci=,1ix) €CXR be
given by

U((cx,0 Z dn(T)(Zn+cix) + Z (yitcir) =05
Lp=1* Ji=*
\11(3)((02* i) Z dp(T 1+ri*)]§:h+ci*])
Lp=1*
1
+ 2 Btreluter]) = 5.
qi=i
If € is sufficiently small, by the proof of Lemma 3.3 such (¢;+,7+) € CxR
exists and satisfies |c;«|, |ri<| <C(b*)e. For all h € I with ¢, =¢* and € M
with j;=1¢*, put
=1 4rp) (@n+cix), =0 +re)op,  G=04r) (Y +cn);

Tijx = Tjx — Ci=V5, Ujx = (1 + ?”i*)ilvi if  x+ €52

Continuing in this way, for all i€ I, he I with v, =i, and [ € M with j; =1,
we obtain elements (i)-(v) satisfying (I1),(I2). Let u = uo If I e M and
=0, take §; =y,

(3) If S =52, let (@}, Ty) = (Zn, 0n) if 0, =0, b=V, and 0 =0". By the
inductive construction, b and © satisfy the requirements of the lemma. In
fact, b e ./\/lgl-qg If S=23%, we could extend the above construction to the
principal component ¥ as we did for S = S? if ¢z were defined using the
metric g, 5 on >, which may differ slightly from 9y o This problem is fixed
below.

(4) If le M and j;= 0, we take §;=1v; as before. For all hel with o, =0,
let 2, €%, v),€T3,%, and Oy: B 1 (0; C) — C be such that

2‘vh‘b

(251) dp (zn, 3p) < C(b%)e|vnl,
1

(342) for all z€ By(wp, 2vp|?),

5 — |vnls] < C(0%)elvnlp;

Pb,h

Up,

¢l§,hz
Up,

(£33) Oy, is holomorphic, ©5(0)=0, ©}(0)=0, and [|©}||co < C(b*)|v|%.

o (%))

= (1+rh){ch+ "
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Note that even though we have not defined b completely yet, (Xg1) and
(X42) are still well-defined statements, since the metric g; ; on ¥ depends

only on the singular points {Zp: ¢p :0} on Y. Existence of such &y, 0y, and
Oy, follows from Corollary 5.5, provided 9 is sufficiently small.

If ;=0 and j; =1, let (i, 71) :qwq;%(i,yl). The map gz ; is well-defined
even though © has not been defined completely yet. By (X52),

Dp, 7, Do, i (y1v3)

Vi

(4.18) G = qoaq,, (u) = = (T+r){ei+u+6i(w)}

Since g = (1+7:)(yi+ei), [ii—5;| < C(0°)|v[?e by (£43).
Suppose hel, v, €1, and for every ¢ €1 with i <h and j€ M with j;=1,
we have defined

3 ~ . T:. %, if 4;,=0;
T, € X7, € X1, v; € ! . R
PR ST W= ST : {C, if 1 0;

¢ € C, @i:B2\ |7%(O;(C)—>(C
'Uib

such that

(S1) Iyl < CO7oPe i 150 and by, il < CE)oPes
(32) [[8il5 — [vils] < C@®)elviles
(33) |éi — cil < C0")[vle;
1
(X4) for all z€ X such that rp;q,,,(2) < 2[v;|Z,

¢~ 'q~, iZ ; 2 ; A
b,sz L _ (1 + ri) {@ + (Zsb,zq?,bl + @Z’((pb,zq?,bl )}

(% (% (%

($5) ©; is holomorphic, ©;(0)=0, ©(0)=0, and [|©/c0 < C(b*)|v|?%e.

If he H, we take &, =2}, U, =0, =0, gy =19, if jy=h, é, =c¢, =0, and
®,(2)=0. If h¢ H, let

(Lha jh) = qﬁ,th;jh (ha fh)
By an argument similar to (4.18), from (¥4) we obtain

(4.19) Zn = (1+7r,){c, +Zn+ 06, (zsn)}.
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Since &}, = (14 7,,)(Tn+cy,), (4.19), (£3), and (X5) imply the first part of
(X1) with ¢=h. Furthermore, by assumption (¥4),

(4.20)
G500 (2) = o, (2) — T
— ¢B,Lhc{ﬁ’“h (Z) — &
Uy,
P, o, (7 P, o, (2
:(1+7’Lh){< Lh ULh()_xh)‘f‘(@Lh( Lh ’ULh( ))_@Lh(l'h))}-
vy, vy,
Since ©,, is holomorphic, and
Db,y Qo (2)
% — Tn = G nqu,, (2) + chon,
Lh

we can rewrite (4.20) as
(4.21) ¢B,h%»th (z) = (1 + T‘Lh) (1 + ah)vh
. {éh + (z)b,th,Lh (Z) + @h(¢b,hQU,Lh (Z)>} :

Up, Uh
where the complex numbers ay, ¢, € C and the holomorphic function

©,: B 1(0,C) — C

2lvp|”2
are given by
d
ap = _GLh (Z) )
(4.22) dz s
(1 + ah)éh — o+ @Lh (:L‘h) - @Lh (:L‘h - Ch'Uh)7
Up,
O, (vnz + xp) —vp20;, (21) — Oy, (1)
4.23 Op(z) = — - e
2 o) T+
By (4.23), ©,(0) =0 and ©)(0) =0. By our assumptions on ©,,, (4.22),
and (4.23),
(4.24) jan] < CO)|vPela,,| < C'(0)|v]e
(4.25) e — enl < C(6%) (elan| + o] " ol e|cnvn]) < C'()|vf%e,
(4.26) 18hllco < C(6*)[on| ™ ol*elvnl® < C'(6)[vf%e.

We now take

op = (1+ap)dy, = (L+ap)(L+7,) (1 +ry) " op.
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It follows from (4.24)-(4.26) that the induction hypotheses (¥2)-(X5) with
i1=h are satisfied. If j;=h, let
(h, 1) = qo.nay 1, (hs w2)-

By the same argument as in the case ¢, =0 above, (£3)-(35) of the i = ¢,
case imply that the second part of (X1) with i =~h is satisfied. Continuing
in this way, we obtain tuples

B:(E,M,I;Zi',(j,g),a/), éch? ﬁ:(gaﬁf)a
satisfying (£1)-(X5). Since ¥ € Mg{{(}, by (X1) be M(THe) if 0 is sufficiently
small. Finally, (£1)-(X5) along with (I1) and (I2) show that b and © satisfy
the two requirements of the lemma.
Corollary 4.13. If T is a simple bubble type, there exist R* -valued smooth
functions §,C on /\/lg(—)) with the following property. Suppose b* € Mg(—)),
e<o(b*), bEMg{i) is such that

d(b*,b)<6(b*)  and  v=(b,v;)€ FN Ty
Then there exist
lN)GMg—{{O) and o=(b, vj) € 7
such that
(1) d(b,b) < C(b*)e and |op, —vp| < C(b*)e|vy| for all heT;
(2) if qu(2) €7y, rbyh(qu) 23\%\% for all he I—H such that v, =i and
|05 (au2)| = 3Jvil2 if i T—H, then dy(qu(2), o(2)) < €.
Proof. It S = S2, the tuples b and © constructed in the first half of the

proof of Lemma 4.12 satisfy the requirements of the corollary. In fact,
dp (qu(2),q5(2)) = 0 if z is as in (2) above. If S =X, let
G |
hell|-H

If C(b*)d(b*) is sufficiently small, by repeated applications of Lemma 4.12,
we can replace the tuples b and v by ¥’ EM(THg) and v' = (V/, v’I) e FH)T guch
that

(1) d(b,b') < C'(b*)e and |v}, —vn| < C'(b*)e|up|p for all he I;

(2) if qu(2) € S74, ro(quz) > %|vh|% for all h e I —H such that 1, =i and

_ 1... =
‘qsl(qu)‘ >2v;|2 if i€ I—H, then dy(qu(2),q5(2)) < 26(b)e.

Applying the construction of the first half of the proof of Lemma 4.12 to the

tuples b’ and v/, we obtain tuples I;EM(TO) and 0= (b, oy EFZ)(H)T such that

db',b) < C(b*)E and |ty — v)| < C(0")é|v)|y Yh e 1.
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Then if z is as in the requirement (2) of the corollary,
-1
dy (q(2),05(2) < COE | T il | <€
hel—H

if ¢ is sufficiently small. Thus, the tuples b and © satisfy both requirements
of the corollary.

4.4. Gromov Convergence and the LP-norm of the Differential. Let
b, = (S, M, I;x, (5, yx), uk) be a sequence of smooth maps converging to

bt = (8, M, 1% 2%, (5%, y"), u') € MY
with respect to the Gromov topology such that guk g =trv with {x — 0 and

3uk7h =0 if hel. We assume that 7* is a simple bubble type. In the next
subsection, it is proved that by lies in the image of the gluing map Y7 ,,
for some k. In this subsection, we show the differentials of duy; satisfy a
certain condition which holds for all bubble maps in the image of Y74, ,.
By definition of convergence, for all k£ sufficiently large, we can choose

(a) curves C = (S, M, I*; 2, (j*,y*)) with klim x) , = xy, for all hel*,
—00 ’
and
(b) vectors (vg) € Fc(g) with 16|vglg, < rc,gp, such that klim lug] = 0,
—00

Clug) = (S, M, I; xy, (jk,y(vk))), and
lim  sup dy(up(qu,(2)),up, (2)) =0,

k—00 ZEEC(Uk)
k‘h—>rnoo quy, (jk,lv yk,l) = (.71*7 yl*) vie M7
where vy = (Cg, (vk);.) and g, denotes the standard metric on X¢, if
S=52.
Let
. 2. : 2.
b — gbx%’h, if zj , €58% e Tl o if 2, , € 8%
’ ¢gb,67 if 27, , €3 ’ if 2., € 5.

Let g,, be the metric on 3, =%, defined as in Subsection 3.3, using the
metric g, 5 on X if S=3.

/ T o
Lk,n’ Ib,60Tk,n’

For any element in the image J7 4, that lies near b*, the modified (L?, g,,, )-
norm of du, is bounded above by a constant dependent only on b*. Fur-
thermore, as v — 0 and the size of the necks is reduced, the modified
(LP, gy)-norm of diu, on such necks tends to zero. The modified (L?, g,)-
norm is bounded above by the usual (L%, g,)-norm times some constant
dependent only on b*. In this subsection, we show that the (L??, g,, )-norm
of duy, is uniformly bounded and tends to zero on the “necks.” Instead of
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using our usual cutoff function 3, we will use the family of cutoff functions
provided by the following lemma. The proof can be found in [MS, pl66].
The statement below is somewhat sharper than in [MS], but the proof in
[MS] suffices.

Lemma 4.14. For every € > 0, there exists a smooth function [0, 1]-valued
function B. on R such that

A 17 if712i1; ) 2 2 1/e
ﬁem:{o’ e LR <se e < ¢

Given r > 0, we denote by @677« the cutoff function defined by Bw(t) =
Be(r_%t).

We now define nearly holomorphic maps f;; € C*(X¢, ;; V). In order
to simplify computations, we fix a finite family of J-invariant metrics on V
such that for some fixed £ >0 and for every g € V' there exists a metric gy, in
this family such that (Bgqu (q,€),J, gqu) is isomorphic to a ball in C™. Since
V' is compact and the family of metrics is finite, all estimates below that
depend on a particular metric gy, will involve bounds dependent only on V.
We denote by exp, the exponential map of (the Levi-Civita connection of)
the metric gy, and by By(e) the gy 4-geodesic ball about ¢ of radius e. If
0>0and hel*—1I, let

(4.27) B;{’k(cS) ={(¢},2) €Xcyr  Thoh(h, 2) <6},
B,:k(d) = {(h,z) €Sy n: \qgl(z)] <4}
Choose a sequence ¢, € RT converging to zero. Let
-1
Ty = <2 > |du2‘kHb*,02) €-
1el*

By taking a subsequence if necessary, it can be assumed that

(4.28) |tk‘ < €, dy (ub* (qvk (z)),ubk (Z)) < e VZGEbk,
2p 1
o n (U Thop) <y €k UpplE < T

Let gp=uj (o0) and
- N 1 L/ -1 1
Ay = B (loenlz ) = B (7w lowald ).
By (4.28),

1 1
(5, (B (7 [0p.n17) € By (C(0")e).
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Thus, we can define fk h EC‘X’( ks thV) by
XPap,,an fk R\Z) = Upy, (q ' th )7 |§Zh(z)‘gv,qh <&
(4.29) "
XDy, qn Srn(2) = U, (qvk, (‘hv Py h("“’k 1)) |§k,h(z>‘gv,qh <&
provided k is sufficiently large (depending on b*). Let glfh €T,V be given by
— 1
(4.30) & = —— &k
b Area(Aih) AL, ki

where the area and the integral are computed using the metric b+ .z On
Epeuz and gy p on Xpe . For each i € I, we define fi; € C°(Zp ;5 V) as

1
follows. If heI*—1 is such that ¢ =i and ry ,(2) < |vg |5, we put
i(2) = ex0g, 4, LG+ B ety () (6102) = ) }

1
ey We put

Jri2) = exPg, g, {60+ Byt (05 D) (G4(2) = &) |-

In all other cases, we set

Ifie I*—1I and |q5 ' (2)| < |vgs

fri(2) = up, (a5, (4, 2)).
Let ;. ;€'(u]) be given by
exPye yr Goi = fiis 1 Chille.co < inj gvipe.

Lemma 4.15. There exists C >0 such that for all k sufficiently large and
1el”,

1
<k illbco < Cew,  N0fkillgye 20 < Ceg” (ldfuillgy o0 +1)-
Proof. The first statement is clear from (4.28) and the construction of fj ;
1
above. Suppose z€Xy-;. If 2 ¢ B:k(\vkﬁ]lf*) for all h € I*—1 and z &
1
B; . (lokilg.) if i€ I* 1, then
(431) ‘5fk,i|gb*,i,z < Oty < Cre.
Suppose zE[le with h€I*—1I. Since the metric gpn 4, is flat near gy,
(4.32) gf’“}z = deprthIh 5{5;,}1 + BEkJ%,h\b* (Tk,h(‘)) (glj,h - 5_lj,h) }Z‘
It follows from (4.32) that

(4.33) 0fnilgye 1,2 < C(

1 _ _
Jafd oy e =G 181

[V, nlps” Th,n (2
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By Lemma 4.14 and Poincare Lemma (see Lemma 2.6 in [Z1] applied with
1

r=|vp k|2 and 2p instead of p), and the last assumption in (4.28),
1
1 I,
| IBEk’I”k,h‘;«%T’k,h( ‘ékh gkh‘ « 4, L2 ( A+ L)

—p=Ll 2p-2 1 1/p -

< [vkplpe 7 €2 okl "0l b ol At ) I&in = &ll co
b* >
-1 9 2p—2
<C|Uk’h|b* 217 2p€k|7./kh|b* H fthgb* L2P(A+ )
! 2_ +

<C¢’ ||d5k,hHgb*,i,L2p(A;’ ) < p 1dfi.nllg,. . 2p

The last two equations give

(4.34) 10fxilg,. . Ly, SO ( Gy 1:2D - €k> '

The same estimate applies to Héf;“H if 1 € I*—1. Here the

gb*,i,sz(A;k)
exponent of z—f in (4.28) is crucial:
(4.35)
2 2 —1 242p—2
[ gk 2”91:* L20(AT) < /tkp‘y o dqvk’L gy |Ukz’ (1 + 32221 drdf
[vg, ilb_*% STSe% ‘”i‘b_*%

-

_a 1
Since fy; is constant on B,J{k (e k \vhh]bz*) for h € I* —I with «j =4 and on

<or e ) < o

1 1
B (e k \v;“|§*) if te I*—1, the second claim is proved.

Corollary 4.16. There exists C' >0 such that for all k sufficiently large,

1

dek,ngb*,i,QP <C and ”C-]/C,i“gb*,i,2p71 < Celip'

Proof. By the quadratic expansion of 5u;_« Cl/m’ as in Subsection 3.6,

(4.36) Dy Cri + N Chi = 5u;.* Chin
where

_ 1
(4.37) Hau;" Cllc,z‘Hgb*,z‘:?P < Celip (dek,ngb*,zw?P + 1)

by Lemma 4.15 and

(4.38)  [INgurChillgpe o20 < CliGkillcollSr illgys 2p1 < CerllChillgye 201,
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by Proposition 2.11 in [Z1] and Lemma 4.15. Thus, by standard elliptic
estimates for up+ and (4.36)-(4.38),

(4-39) HCl/m| I i,2D,1 < C(HDb*yuiC]/C,ngb*,i)Qp + HCI/m|

1
< O (1Ckillgye 20,1 + dfkillgye 20 + 1)
On the other hand, since fi; = expjy- Cois
(4‘40) dek,ngb*,i,Qp < C(”du;‘kngb*,i,% + HC]/i:,iHQb*,i72p71)'
If € is sufficiently small, the claim follows from equations (4.39) and (4.40).

Corollary 4.17. There exists C'>0 such that for all k sufficiently large,
hel*, and 6 >0,

gb*,i72p)

2= 1

Proof. If he I, the statement is immediate from Corollary 4.16; so we assume
heI*—I. The metric g, on q,'(B;,(6)) differs by a bounded factor from
the metric q;")]w iz G i Thus,
(4.41)
-1
Hdubk ||gUkVL2p(q’U_kl(Bitk(5))) S CHd(fk o) qvk’b;;)

|

1
e 220 (B4 OB 1))

= Ol|dfi;

1
i 2 (B 0B (o))

< Cdek,L;‘l

gb*ybz,LQP(B;k(é))'
Since f, . =OXDpe ¢ (,’C,L;, by Corollary 4.16,
(4.42)
dekvbzHgb*7LZ,L2p(B}tk(6)) < C(”‘i“f;
< C”(éé + 6%)
The claim for B;’k(é) follows from (4.41) and (4.42). The metric g, on

o, (By,,(0)) differs by a bounded factor from the metric which is the pull-
back of the metric g+, by the map

!/
gb*,vaLQP(B}tk(a)) + HCk’LZ‘ gb*,b;72p71)

(¢k,hqvk,L;(2))

z— qn| ——2—).

Vk,h

Thus, similarly to the above,

@A) Wl (o0 < C1Wtl (50

(4.44) ldf,n

1 1
gb*,thzp(B};k(é)) < C((SF + 62p)'
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The claim for By, (6) follows from (4.43) and (4.44).

4.5. Surjectivity of the Gluing Map. We continue with the notation
of Subsection 4.4. In this subsection, for k sufficiently large, we use Corol-
lary 4.13 to construct

O = (bg, (B4)7.) € FOT;

and (j, € T'(ug,) such that by, is very close to b in ./\/l(TO), Ckllop1 15 small,
and up, =exp;, (k- We then look at the elements of FO)T5 near o, to find
¥, and ¢, €Ty () such that uy, =expy (. If T is semiregular, we consider
only the case / AZQ; if 7 is regular, we assume t=0.
Let H=ICI*. If >0 and i€ I*, put
Sis = {(i,2) €Spe it 1y (3, 2) <O VhET* —H s.t. 1, =1,
g5t (2)| >4 ifz'ef*—H}.
In addition to (4.28), we can assume that our sequence satisfies
(4.45) il o, ) < e
Let b, = (S, M, I*;x), (5%, y*),u*) By the second assumption in (4.28),
d(b*,b,) < Cep = be MPD,, |

since b* € M(T(]z, where C' > 0 depends only on b*. By the last assumption
of (4.28), |U;€|b;c < Ce. Thus, if € >0 is sufficiently small, by Corollary 4.13,
there exist
gk S Mg{{) and U = (Bk, (ﬁk)f*) S F(H)T*

such that

(1) d(b, 13) < C'e¢i, and |0 p, — v p| < C'eglvg plp for all hel*

(2) if qu,, (2) €XT5 45 Tox 1y (qvkz) Z3|Uk,h|% for all he I*—H such that Lty =1

and ‘qglqvk(z)‘ 23|vk,i|% ifiel*—H, then db(qvk(z),q@k(z)) < €.

It then follows from the second and third assumptions of (4.28) that there

exist C, € D(ugy ), Whn € Loy (o) Sopn f0r h € H, and gy € Ty 5,) 5,5, for
l€ M such that

eXPgy Ck = Uby,  ©XPgo ay(5) Ohh = Thhy  XPgy o (5) Okl = Yl
1<k
Lemma 4.18. There exists C >0 such that for all k,

b, [ Bkl gs, w51 [Pkt gy s (o0) < Cé-

1

ICkllopa < Ceg”.
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Proof. By (4.45), (1), and (2), kang’Cl < Ce¢i outside of the necks

A= g7 (B;;h(rk) U B,;h(rk)).

On the other hand, ||dug,/5, co <C by Lemma 3.5 and

1 1 1
ldus, o, 1o, ) < Ce +r0) < C'e?

by Corollary 4.17. The three estimates imply the claim.

Suppose I =0 and thus H=0. If k is sufficiently large and w € T, FOT*
is such that 2||w||s, <d(b*), where § is as in Lemmas 3.6 and 4.6, let

Bk(w) = Etu (ﬁk(w)) = (Sv M, {0}» ) (67 g(w))v ﬂw,tu)

be the tuple defined as in Subsections 3.4 and 3.6. Let () € (i 4,) and
W () € Ty () S, for 1€ M Dbe given by

eXDy () S (@) = Up,,  and XDy, i () Vk1(T) = Ykl
and  [[Ge()lpe o, |[Dh1 () g, () < 2C
We need to find w such that frw,_g:k(w) =0 and y;(@) =y, or equivalently
(4.46) Sefw Cr(w) =0 and  Sgiy(w) =0,

where S5y (w) denotes the parallel transport of wy (@) back to y;(T)
along the g,-geodesic

8 — €XPy, (¢,) SWi ().

Lemma 4.19. There exists C >0 such that for all k sufficiently large and
w, @ €Ts FOT* with 2||w||s, <d(b*),

Seoite,~Ch(®@) = oG + NO (G, @) = o, + N (w0),
Setbp,i(@) = by + N (g, @) — wy(w) + ND(w) VieM,
where C is as in Subsection 3.4 and N and NO satisfy
(4.47) [N Gy ) = NO (G )|
’N(l)(w’ﬂ,k’l) _N® (w/, ng’l)‘

Opy2 < C||Ck||f)k72||w - w,H’Dk;

~ / .
9oy, 91 (Tk) < C”wk,nguk,yl(Dk)Hw - w ||171w

INO(@) = NO(@)[|s,,2 < C (Ilwlley, + Io0"ll5) 1w — @ [ls,

INO (@) - N (") <C(l@ls. + 1= l5:) = = ='lls,.

9oy 91 (O) —

for allle M.
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Proof. This lemma follows from a pointwise Riemannian geometry estimate
on SuCr(w) — (( — Cw) and the fact that all statements in Lemmas 3.6
and 4.6 can be written in a form similar to (4.47), e.g., for all £ € I'(0y,)

stﬁw,wag_ Sw/ﬁ-w’,wa’f |£||Uk,

The latter fact can be seen from the two lemmas and the definitions of R
and Sz in Subsection 3.4.

502 < Cllw — @'l 2

Lemma 4.20. There ezist C,d € COO(M%(—],Z,Rﬂ such that for allve FUH) T
and w € T, F T with |w||s, <5(b),
Iz llv.2 < CO) |70, ~Ceollo.2-
Proof. Tt can be seen directly from the definitions that
[¢ellv2 < (1 + C(bv)|v|) |70, ~Cazlv,2-
The claim then follows from the proof of (2b) of Lemma 3.12.

Corollary 4.21. There exist a neighborhood U of b* in ME,O} and §,€ >0
such that for all ve FOTH |y, € €T_(v) with ||€]lu2<d, and wy € Ty, ()04,
for 1€ M with |wilg, . () <9, the system of equations

fo—Co— NOV(w)=¢,  w(w) - ND(w) =w, VieM,
has a (unique) solution w € T, FOT with |||, <e.
Proof. By Lemmas 3.6 and 4.20,

C il < [1Fotlloz + 3 [(@lgo e < Cliwlo-
leM
whenever b, lies near b*. Thus, the claim follows from (4.47) by the usual
contraction-principle argument.

Corollary 4.22. Let T*= (S, M, I*;j* \*) be a simple bubble type. If T*
is regular, the map

Y+ F']:;* — M(T*)
contains a neighborhood of Mz« in /\/l . If T is semireqular, H=0, and
k is sufficiently large, there exists UkEF( )’T* such that by =47+ t,,(0).

Proof. The second statement is immediate from Lemmas 4.18 and 4.19 and
Corollary 4.21. If 7* is regular, what we have shown is that the image
of Y7+ contains a neighborhood of M7+ in M z+y U Mz«. Furthermore,
there exists a sequence of neighborhoods U; DUs D... of b* in /\;l<7*> such
that U, ={[b*]}. If [by] € M7 is a sequence of bubble maps converging
to [b*] € M7=, it can be assumed that [b;] € Ux. By the above statement
applied to 7, we can choose sequences

{{brr]} C M7y = M7
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such that for each fixed k the sequence {[by.|} converges to [b]. Since Uy
is an open neighborhood of [by], it can be assumed that [by,] € Uy, for all r.
By the above, the image of 7| FT;, contains Uy N M7+ if k is sufficiently
large. Thus, for all r there exists v, EF’Z:;*/2 such that Y7+ (vg,) = [bk,]. Let
U € F'I5* be the limit of the sequence vy, with k fixed. Then, by continuity
of the map 47+, see Corollary 4.5,

A1+ () = T@m Y1+ (V) = 7111_1}1100[1);“"] = [bk]

Thus, the image of 47+ contains a neighborhood of Mz~ in ./\;l<7*>.
Corollary 4.23. If T* = (S, M, I*;j*,\*) is a simple regular bubble type,
the map

Ar+: FI5 — ./\;l<7—*>
is a homeomorphism onto an open neighborhood of Mz~ in ./\;l<7*> provided
§€C® (Mg« RY) is sufficiently small.

Proof. By Corollaries 4.5, 4.10, 4.22, the map 7+ : FIJ — /\;l<7—*> is a
continuous bijection onto a neighborhood of M7+ in M(T*>. In addition,
the proof of Corollary 4.22 shows that 47+ is an open map.

5. Appendix

5.1. Properties of Smooth Families of Metrics on . Let m be a
positive integer and
N = {ar:x[m] rxpeX, xpF oy if h7él}.

Suppose {g,: x € X} is a smooth family of metrics on 3 such that for any
T =2y, €N the metric g, is flat on a neighborhood of zp, in X for all h€ [m].
If © =2, € Rand vET,3, let

TzN = @ Twhza ‘U’ﬂf - ’/U‘ngy'

he[m)|
If w=wp,,) €T,N, let |w| denote ) |wp|,. Define x(w)€X™ by
he[m]
z(w) = (x1(w), ..., 2p(w)) = (expy, 4 W1,...,€XPy 4 W)

We denote by ¢, the map ¢4, , and by B, (y, d) the set By, (y,d) described
in Subsection 1.3. If §: R— R, let

TRs = {(z,w): zeXN; we TR, |w|,<d(z)}.

Lemma 5.1. There exist 6 € C°(N;R") and a smooth families of holomor-
phic maps

{Ph,(ew): {2€ Belan, 0(x))} — I | (x,w) €TRs},
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such that each map pp (z.w) 15 @ (g, Gu(w))-iS0metry,

(5.1) b,y 1) Br() o ()P (w.0) (2) = D2 (2),
and dg, (2, Pz (2)) < 20w, Vz € By (zh,6()).

In particular, both sides of (5.1) are defined.

Proof. We choose ¢ such that if weT,R and |w|<4(z), then z(w)eX and
the metric g, (., is flat on B, (J:h, 25(x)). This choice of § insures that both
sides of (5.1) are defined. Equation (5.1) is equivalent to

(52) ¢x(w),xh(w)ﬁh,(1,w) (Z) = dexpgz,xh ‘wh(bx,zh (Z)

= Qpzp(w)? T deXpgy, 4, ‘whwh,
since the metric g, is flat on B, (xh, 25(:5)). This equation defines the re-
quired map py, (z,w)- Since the metrics g, and g,(,, are flat on B, (ach, 25(3:)),

the maps ¢, 4, (w)2 and ¢z ()2, (w) are holomorphic, and thus py, (., is holo-
morphic. Taking the differential of (5.2), we obtain

(53) d(rbx(w),mh(w)}

Since ¢z(w),$h(w) and ¢:v,:ch(w) are (gw(w)agw(w))_ and (gxagm)_isometriesa re-
spectively, on By (z,26(z)), it follows that Dh,(,w) 18 @ (92, Gu(w))-iSOmetry
on By (z,25(z)). By (5.2),

Ph,(z,w) (%) © dﬁh,(w,w) ‘z = dqsx:wh(w) ’z‘

(54) dgz (Zaﬁh,(m,w) (Z)) < |wh‘:r: + ’(¢m(w),xh(w) - ¢m,xh(w))ﬁh,(m,w) (Z)’x
< |wple + C(2)|w|d(z),

since the family of metrics is smooth. If C(z)d(x) <1, the remaining claim
of the lemma follows from (5.4).

Lemma 5.2. There exist §,Cj, € C®°(X;R™"), where k is a positive integer,
ap € C®(TNs; C), and smooth families of maps

{Ouwpn: {veTy,X: v <(z)} — Ty, T | (z,w) €TR}

such that every map O, is holomorphic,

Oun(0)=0, 6, ,0)=0, [0%)[lco <Cr(@)lw|, lan(w)| <Co(z)wl

w,h
and
(5.5) APa,21 4, (1) WP () 00 () |, (Pw) 21, %)
= (1 + ah(w))¢x,xhz + @w,h (QZ)x,xhz)-
for all z€ By (xp,6(x)) In particular, both sides of (5.5) are defined.



=

532 A. ZINGER

Proof. We choose ¢ such that if we T, R and |w|<4§(z), then z(w) €N and
the metric g, (., is flat on B, (a;h, 45(3:)). This choice of § insures that both
side of (5.5) are defined. If w and z are as in the statement of the lemma, by
the flatness of the metric g,(,) near xp,, C-linearity of the differential of the
exponential map near zero, and the smoothness of the family of the metrics

(5:6)  dbaay |y, 1) D) on()] 4, (Pr(w)enz) = (1+ an(w)) (Su(w) e, 2)

for some aj, € C°(TRs;C) such that ay(0) = 0. Note that if g,(,) = ga,
ap(w) =0, since the metric g, is flat on B, (zp, |w|). The map

{vel,, X: v, <26(x)} — T2, v— gbx(w)’mhqb;’ihv -,

is holomorphic since ¢ (y) s, and ¢y, are, and vanishes at 0. Thus,

(57) gbx(w),xh(b;,lzhv = (1 + bh(U)))’U + G)w,h(v)v

for some by, (w) € C and holomorphic function ©,, 5 such that

O, (0), Oy 1, (0) = 0.

Equation (5.5) follows from (5.6) and (5.7). Smoothness of by, and ©. 5, in w
follows from the smoothness of the family of the metrics. The bounds on ay,

and the derivatives of ©,,; follow from their smoothness and compactness
of the fibers of

{weT,R: |w|<d(x)} — N
Lemma 5.3. There exist §,C € C®°(N;RT) and smooth families of maps
Np: {(z,w): zeR; (z,w)eTRs} — TN
such that |Np(w,wp) |z < C(x)|w||wy| and
(5.8) APa,21 |, () (D) 20, () ) = —wh + Na(w, wp).
In particular, the left-hand side of (5.8) is defined.

Proof. We take § as in Lemma 5.2. Then, the left-hand side of (5.8) is
defined and

(5.9)
dgbw,l‘h‘ (¢ac (w),zp (w) l‘h) - d‘bx xh‘rh(w (qu zp(w )l’h)

+ d¢x,xh ‘ {(¢x (w),xp (w ) (d)x Jzp (w )}

= —wy, + Nh(w, wh),

where N(-,-) is some smooth function of both variables, that vanishes if
either input is zero. Equation (5.8) is thus proved, while the bound on N}, is
obtained from its smoothness and compactness of the fibers as in the proof
of Lemma 5.2.
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Lemma 5.4. There exists § € C°(X;RT) such that for all
zeR, veT,N s.t. [v|<d(x) and  c=cpy €C™ s..tlc||v[ < (),

there ezists w € TW with |wp|e < 2|cp|lvn|e such that for all z €
Bx(:ch,4(5(x)%),

(510) d¢x,xh ’ (¢m(w),xh(w)z) = (1-|—Oéh (’UJ)) (Chvh+¢x7xh Z)+@w,h(¢ﬂc7$hz)v

where ap(w) and Oy are as in Lemma 5.2. In particular, both sides
of (5.10) are defined.

zp (w)

Proof. We start by choosing § so that 83 > is smaller that the function & of
1
3

Lemmas 5.2 and 5.3. By flatness of the metric g,(,) on B(zp,8(z)2) for
w e TR with |w|<d(z)

(511) d):r(w),xh(w)z = d¢x(w),xh(w) ‘xhd):p(w),zhz + (z)x(w),mh(w)xh

for any z € B(xh,45(x)%). Taking dqﬁm,xh}xh(
applying Lemmas 5.2 and 5.3, we obtain

(512) quI?xh ‘Ih(w) (¢x(w)7xh(w)z) = (1 + ah(w))d)xvxhz + @wvh (¢x,xhz)
— wp, + Np(w, wp).

) of both sides of (5.11) and

Thus, we need to solve the equations
(5.13) —wp, + Np(w,wp) = (1 + ah(w))chvh.
Let Up,(w) = Np(w, wp) — (1+ap(w))cpvp. If [w| < 2|ep]|vp|, then by Lem-
mas 5.2 and 5.3,
(5.14) ¥ (w)| < C(x)lellv](2le][v] + 1) < 2lellv],
¥ (w) = ¥(w')] < C(x)lel[v|lw —w'| < %Iw — ',

provided 4C(x)d(x) < 1. In such a case, ¥ is a contracting operator, and
thus (5.13) has a unique solution w € TN with |w| < 2|¢||v]. The estimate
|wp | < 2|ep||v| follows directly from (5.13) if d(x) is sufficiently small.

Corollary 5.5. There exist §,Cyr € C°(N;RT), where k is a positive integer,
such that for any x€R, v €T,N with |v| <(v), c=cly €C™ with [c| <d(x),
and T =1, ER™ with |r| < L, there exists €N and 9 € TEN such that
(1) @€ By (an, 2len|lvnl), |2 — 1| < Ci(z)|c|lv],
|19n]z = [vale| < C1(@)(lellv] + [ral) lvnl;
(2) for any z € By (wp,40(x)'/?),

(5.15) M =1+ Th){ch + —¢m’mhz + Ouerh (dhj,xhz) }’
Uh Uh Vp,
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where Oy crpn 45 a holomorphic function, varying smoothly with the
parameters, such that

k _
Ouern(0) =0, O, (0)=0, [6") ,llco < Crl@)lellv]fvnl*L.

v,c,r,h v,c

Proof. Let § be as in Lemma 5.4. Given v and ¢ as in the statement of the
lemma, let w e T, N be the element provided by Lemma 5.4. Take

zp = zp(w), op = (1+ Th)fl (1 + @h(w))dfﬁaz;h’wh”h'

The estimates in (1) are immediate from Lemma 5.4, provided ¢ is suffi-
ciently small. The inequalities in (2) arise from the smooth dependence of
w on z, v, and ¢ in Lemma 5.4, and the fact that w is zero if either v=0 or
c=0.

5.2. Sobolev Inequalities for the Metrics g,. In this subsection, we
prove (3) of Lemma 3.5. The reason this estimate holds is that (X, gy)
can be written as a union of the surfaces (X, ;, g») with small disks missing

and annuli (/le h» 9v) that are uniformly equivalent to annuli in R? with the

smaller radius less than half of the larger.
Suppose 7 = (S, M, I;j,\) is a bubble type and

v = (b’ Uf) = ((S’ M’ I;CC, (jvy)’u))vf) S F(O)']:g

For any hel and i€, put

Ay = a5, ({0 2) €Dn 0 @07 (00) ol <man(2) < fonlf )
ALy =ay,, ({(éh,Z)GEbu,Lhi |Uh|§ Srb,h(z)S%T(bv)});
Sui = 54 ({20 € Spyi5 mon(2) 207 (bo) if 1y =
45" (2)] > 67 (by) ifz‘>0}).
Let Auh denote /Nl;h u /Nlih
Lemma 5.6. For any p > 2, there exists Cp € C’OO(Mg—));R) such that for
any ve FOT; and hel,
£ € De(AupsufTV) = [l€llco < Cp(bo)l|€ll gy p.1-

Proof. By construction of the metric g, go| ; . is the pullback of the met-

ric gy, On qu,, (A, ) by the map ¢,,. Furthermore, the metric g,,, on

A ] . 2
qU(AU’h) differs from the standard metric on the annulus B267 (bo).Jonld

by factors bounded by C(b,,). Since ||duy||g, p < Cp(by) by (1) of Lemma 3.5,
the claim follows from Proposition 3.7 in [Z1].
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Proposition 5.7. For any p> 2, there exists Cp, € C* (M(TO);R) such that
for allve FOT;,

[€llco < Cp(bo)[€llg,,p1 for all £€T(uy).
Proof. (1) Note that gy|s, , is the pull-back of the metric gy, ; on gui(Suv.:)
by the map ¢, ;. Thus, by Proposition 3.7 in [Z1], if £€T'.(Sy ; u;TV),
[€][co = [|€ 0 QU,Z'HCO < Cp(Hduv © ‘Iv,ngbv,i,p)”g o QU,ngbu,i,p,l
= Cp(bv)nggu,p,b

since £ vanishes outside of S, ;.

(2) We now define a partition of unity subordinate to {.S, ;, flv’h: 1€l he
I}. Put

+ (2) = 1- ﬂé%(bv) (Tbv,h(QU,Lh (Z)))a if QU,L;L(Z) € Xbyun
1, otherwise;

_ - 1 _ﬂég—(bu)(}Q,gqu(z) )7 lf quh(z)ezbvvh;
Non(2) = .
' 1, otherwise;

io(2) = 1= [ [ mon()ma(2),
hel
Note that dnfh is supported in flf p- It follows from the definition of g,
that
ldnsllgo.cr = 14015, © i g, ., o1 < Clbo).
Thus, if £€T'(uy) by (1) and Lemma 5.6,
I€llco <Y Nlllcogs, )+ X Imgamiallco

el hef

< Cp(bo) | [17€llgup1 + Z ||77;h77:7h§||gu,p,1
hel

< Cpbo) | 1€l gumpr + 22 Ny uminllgn.cr 1€llge o
hel

< Cp(bo)[1€llg., p.1-

5.3. Elliptic Estimates for the Metrics g,,. This subsection contains the
proof of (4) of Lemma 3.5, the main elliptic estimate for the operators D,
and the modified Sobolev norms. This estimate does not hold for the stan-
dard Sobolev norms. The argument is essentially the same as in [LT], but
we do include all of the details, based on [Z1], and state a sharper estimate.
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Let 7, v, Zlv,hzfl;huflj’h, and S, ; be as in Subsection 5.2. If tn, =0, the
metric g, ; is flat on Bbv,h((s’f(bv)%)- Thus, for any h € I, we can choose con-
formal polar coordinates (r,6) on flmh such that 7(z) =1, (qubh(z)). Since
gU‘Au,h is the pullback of the metric g, on gy, (Ays) by the map g, ,

2C(by,)
I

(5.16) gv = {(1 = B, (2r)) + ﬁh,h(r)} (dr2 + r2d92)

on flv,h. Similarly, since py, = puv..;, ©Qu ..y,
(5.17) po =12+ onl” h| on A, .

Lemma 5.8. For all p>1, there exists CPGC’OO(Mg-));R) such that for all
veFOTs, hel, and SEFC(AU#;UZTV)

(/A pZTWb”fF) < Cp(00) (1 Doéllvp + [1€llo,p)-

Proof. (1) Let €; and ey denote (257—(bv))_1]vh| and 247 (b,), respectively.
Note that the integral on the left-hand side in the statement of the lemma
is conformally invariant. With respect to the metric dr?+4r2d6?,

D LD
Dokl gy = |76+ ¢

Y

(r,0)
where 2 I and 7 denote covariant differentiation with respect to the con-

nection Vb and the norms are taken with respect to the metric gy, on V.
Thus,

_p=2
(5.18) ol = /A oo [V

< HDUSHW—2/2W/EQ _,,_ 5 J = §>drd0

Since V% J =0, using integration by parts twice, we obtain

(5.19) / %/va v 25,J%§>drd9
/%/62 S @d—g J§>drd9

o res  p
_/ / P;T d daf; £>_<R<Ur7ue)§,J§>)drd9

21 peo _p; ! (r
= [T (e - AR B ge)
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+ (Ro, (ur, ug)E, J£>) drd®,

where u, and ug denote d%uv and d%uv, respectively, and Ry, is the curvature
tensor of the connection V. Since

D D D D
by (5.19) and (1) of Lemma 3.5,
D D

~5Ep(r) [*T/ D
/q e ()

(2) By Poincare Lemma, see Proposition 2.5 in [Z1], for every circle with

r fixed,
| /Qﬂ (De.6)db| < /0 d9+0<gbv>{( / Juol2as) ( / “lepas)
Bg‘zda)%}.

(5.21) +(/O |u9\d0>(/027r|§|2d«9)%</027r

Since ‘Z%—E:g‘ <2r~! on flv,h, by Holder’s inequality and the first part of
Lemma 3.5,

1 [ =2
(5.22) 1 / o7
2 o

21
(5.20)

< !p—2\
<%

+C(bo)IENI7 -

D

2T %
-1 d9> < 2d9>
gl / €

rdr

—
O\..
S
3
<

QU
>
N——
[

1
_p=2 D 2\ 2
p 2|
v,p (/I‘av’hpv r d9§ ) .
Similarly,
1 22217y (1) (/277—2 2 )(/27r 2 )
5.23 - r~“|ugl°db do ) rdrd0
G2 g [ | (o tean ) ([ e
2

(v)
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Combining equations (5.21)-(5.23), we obtain
2

(5.24) %/vapp pg,grg /2F<%£,J§>d9dr
<[ A D " rards + o) (112, + elhar).
Note that
(5.25) / W/EQ e ‘ 95’ rdrdf
=5 Joo " g e e) - 2l
< 22 v cypul2,

for any € > 0. Combining equations (5.18), (5.20), (5.24) and (5.25), we
obtain

p—2
a,QL < W(l—l—e)a% + (C(bu) + Cﬁ) (HDUgH?%P +1€

150+ € lupan)-

Since

‘p%l <1, the claim follows by choosing e sufficiently small.

Lemma 5.9. For all p>1, there ewists CpeCOO(./\/l(TO);R) such that for all
veFOT;, hel, and € € To(Ayp|utTV)

1
_p=2 2
1V°€llgp < Cop(b0) | 1DwEllop + 1€ llop + (/A po |V£|2>
v,h
Proof. Choose a sequence
(50 >0 > 5N+1 > 0 such that 50 = €9, 5N+1 = €1,

For each [=1,..., N—1, let g; denote the metric

2\ 1 ~ ~
= ((5[2 + 1);2’ > gy On A = {(T, 0) EAU,h: 5l+2 <r< 5171}.
l

Let py :512+’Uh|25f2 and denote by A; the annulus
{(7‘, G)EAU,}L: (5[_,.1 STS(sl}

The pullback of the metric ¢; on A; to the annulus
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by the map (r, ) — (&;r, 0) differs from the Eucledian metric by a conformal
factor bounded by C'(b,), since

1—(1)0 < {(1 = By (0r7))

< 200,

2
|| + [vp| L0772

2 ”Uh’2 -3
+/8|uh|(5l7”) <5l + 52 ) 0
l

whenever r€ (3, 3) and 6§, € (|vp|,1). Thus, by Proposition 3.10 in [Z1],
(5.26) 1€l zoan < € (1Dullg o + 19" €Ny 1o

ligdul,, 1)

or equivalently

p—2
(5:27) V"€l o) < C(IDuEl g, 1oy + lor ™ 9™€l 20a

Hligdul,, 1)

Since p“p—(lr) € [8—11,81] when r € [0;42,0;-1], (5.27) is equivalent to

1

; v _p=2 3
( rvw) scpm(( mDUap) +< [ oo |vbv512)
A Ay Ay
el i )

The claim follows by summing up the last inequality over all [ and using (1)
of Lemma 3.5.

Remark. The above proof does not quite apply to the two outermost an-
nuli A7 and Ay. However, since £ is compactly supported in Av,ha the proof
of Proposition 3.10 in [Z1] can be applied to A; with A;UA, replacing A;
to (5.26), and similarly for Ay. Alternatively, for the purposes of proving
Proposition 5.11 below, it is sufficient to prove Lemma 5.9 and Corollary 5.10
for ¢ that vanish on Ay and Ay.

Corollary 5.10. For all p>1, there exists CPGCOO(M(TO);R) such that for
al ve FOT;, hel, and fEFC(AUﬁ; u*TV)

€llvp1 < Cp(bo) (1 DwElluop + [IE]lv.p)-

Proof. This corollary follows immediately from Lemmas 5.10 and 5.10.

Proposition 5.11. For all p>1, there exists C), € C“X’(Mg(—]);]R) such that
for allve FOT;,

I€]lp.1 < Cp(bu) (1 Dwg

vp tllEllvp)  VEET (w).
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Proof. This proposition follows from Corollary 5.10 and Proposition 3.12
in [Z1] by taking a partition of unity as in the proof of Proposition 5.7.

5.4. Fiber-Uniform Inverse for the Operator D,.

Lemma 5.12. Let {v},} be a sequence in F(O)T5 that converges to b* eMgQ).

Suppose &, € T'(uy,,) is such that ||€x||v,p1 <1 for all k, while || Dy, &kl vg,p
tends to 0 as k — oo for some p > 2. Then a subsequence of {&} CV-
converges §* €' _(b*). Furthermore, |||y, co converges to ||£* ||y« co.

Proof. (1) Write b* = (S, M, I;x*, (7, y*),u) and
Vg = (bkka) = ((Sa M, I; zg, (]7 yk)v uk‘)a (vk’)f)

For each i€1 and 6 >0, put

o= {z€%;: oo n(2) =6 Vhel; g5t (2)|>4 if i>0}.
For i € I and all k sufficiently large (depending on §), define Cm,ffm- in
D(uls:,) by

XDy (=) Chii (2) = oy (4, (2)), 1Chiilloe oo < inj gvipe;

My ¢ () ki (2) = Ek(an, (2)).

Since [|V?" (iillp-.co < C for k sufficiently large, (1) of Lemma 3.5 and by
Corollary 2.3 in [Z1],

(5.28) 1€k illb= o1 < (1 + )18k logpt + €xll€rlluy 00,
Db 1,k illb p < (1 + €k Do illogp + €l c0,

where e, — 0 as k — o0o. Since [|& v, pa1 <1, (2) of Lemma 3.5 applied
to (5.28),

(5.29) 1€k illor p1 < (1 + &) [|Ekllogp1 + €k,
1Dk illor p < (1 + )1 Doy Ekllogp + €

where €, — 0 as k—— 00. Sobolev’s embedding theorem then implies that
§},; converges to a vector field & €I'(u;[s, ) in the C%-norm on the compact

subsets of X, ;. Furthermore, [|{*

1€, llb-,co < (X + ) 1Skl c0 < C.

(2) We will now show that Dy- ,:£ =0 weakly, i.e., ((§, Dj. ,«n))p =0
for any n€T%!(u}). We have

630 U Dp e = Jim [ (€ Df
7,6

b c0 < 00, since

. . ! *

= lim lim (€1 i Dy s e
0—0 k—o00 S5 ’ T

i,
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since .ffm — & in the C%norm on S, 5. By integration by parts,

< C/ |€5.il1m
as: s

< C'l& il collnllpr cod.

b p—0as k——o0 on Sf5 and ||} ;[lp+.co <C, by (5.30)

(5.31) | [ i Divsi = [ oo
S S7s

Since || Dy« u,+&; ;
and (5.31),

(&, D)) =0 ¥pel™!(u)).

(3) Since Dpry2&F = 0 weakly on S; and Dys .+ is an elliptic operator,
it follows that & is smooth and Dbgu;{;‘ = 0. It will now be shown that
s (2})=&(00) for all he ], ie., €= €D(b*). For each hel, let Ap 5, C S
denote the small cylinder connecting q;kl(S;‘; 5) and g, 1(S* » 5). Let >0 be
any small number. Choose small § > 0 such that wup (B n(c0,26)) and
u;, (Bps .z (x5,26)) lie in Bps(uj,(00), €). Then we can write

U (2) = XPpe (@) W+ (2), [T+ (2)] <inj gvpes  &(2) =1L, & (2)
for z € By (00, 0) U Bps x (27, 6). Similarly, put

gh( ) = b* s ( z)gh( z) and gb*h( )= Hb*lﬂb*( )gjh (2)

for z in By p(00,d) and in By, (27,,9), respectively. We can also assume
that ¢ is so small that | — & (o) p and “th =& (z},)],- do not exceed €
on By« j(00,d) and on By« ,, (z7,6), respectively. Choose large k* such that
all k> k*

* /
16" = &klleogs; jusr, ) <€

It can be assumed that uy(Ap2s) lies in By« (u*(x7,); 2¢) for k> k*. Thus,
we can write

up(2) = eXPpe (o) W(2), [Tk (2)]p- < inj gvpe;  &i(2) = H;fﬂk(z)ék(Z)

if z€ Ap 5. Pick points z; and 22, one on each component of the boundary
of Ah,é,k' Then

(5.32)  |&(00) — &, (a7)

b < 2(€+ |6 (g0, (1)) = &, (g0, (22))] )
<4+ | n(qu (21) = &y (quy (22))

< Cle+ |&(21) — &r(22)
+ Gkl cocsy us:, ) lI€

y

b*

b*,CO(Ap,s, k))

Since Ay, s, is uniformly equivalent to the union of two annuli with the larger
radius bounded above by ¢ and the smaller radius less than half of the larger,
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by Lemma 3.1 in [Z1] and Holder’s inequality,
(5.33) €k (21) — Er(22)],. < Cl&k(z1) — f_k(zz)‘bk

2(p=2)

<C'6 > ||dgk””k7Lp(Ah,5,k)'
By Corollary 2.3 in [Z1] and Proposition 5.11,

(5.34) €k llog, Lo (ans.) < N8kllvpt + Ndtw, v, pllEklluy,co < C-
Combining equations (5.32)-(5.34), we obtain
(5.35)  |gh(c0) — &, (=)

Since the last term in (5.35) tends to zero as k — oo and € and ¢ can be
chosen to be arbitrarily small, it follows &;(co) =& (7).

2(p—2)

p SCe+0 + HCkHb*,CO(S;yéquhyé))-

Proposition 5.13. For any simple bubble type T, there exist RY-valued
smooth functions C,§ on Mg—)) such that for all ve FOT; if T is regular
and ve FOT; if T is semiregular,

1€llupt < Cp(bo)[Duéllop — VEETL(v) and VEET,(v).

Proof. If not, we can choose a sequence vy € F(O7T;, converging to some
bE/\/l(j(-)) and vector fields &, €Ty (vg,) (or & €T, (vg)) such that

||£k||vk,p,1 =1 and lim ||DUk£HUk»P =0.
k—s 00

If &, € T (vy,), note that {T'_(vy,)} CO-converges to V=T_(b). If &, €4 (vy,),
by Definition 3.11, a subsequence of {I'_(v;)} C%converges to a subspace
V C LY(b) such that m,_: V—T_(b) is an isomorphism. In either case, by
the first statement of Lemma 5.12, a subsequence of {£,} CY-converges to
a vector field £*€T'_(b). By the second statement of Lemma 5.12, £* must
be orthogonal V, since & €'y (vg) (or & € Ty (vg)). Thus, £&*=0. On the
other hand, by Proposition 5.11, there exists € >0 such that ||&||,, > € for
all k sufficiently large. However, by Lemma 5.12, |||, co — 0, which is a
contradiction.
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