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ENUMERATIVE VS. SYMPLECTIC INVARIANTS

AND OBSTRUCTION BUNDLES

Aleksey Zinger

We describe in detail a gluing construction for pseudoholo-

morphic maps in symplectic geometry, including in the pres-

ence of an obstruction bundle. The main motivation is to

try to compare the symplectic and enumerative invariants of

algebraic manifolds. These descriptions can also be used to

enumerate rational curves with high-order degeneracies of lo-

cal nature in projective spaces.
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1. Introduction

1.1. Background and Motivation. Suppose (Σ, j) is a nonsingular Rie-
mann surface of genus g ≥ 2 and (V, J, ω) is a Kahler manifold of complex
dimension n. If λ ∈ H2(V ; Z), denote by HΣ,λ(V ) the set of simple (J, j)-
holomorphic maps u from Σ to V such that u∗[Σ]=λ. Let µ=(µ1, . . . , µN )
be an N -tuple of proper oriented submanifolds of V such that

(1.1) codim µ ≡
l=N∑

l=1

codim µl = 2
(
〈c1(V, J), λ〉 − n(g − 1) + N

)
.

For many Kahler manifolds (V, J, ω) and choice of constraints µ, the cardi-
nality of the set

(1.2) HΣ,λ(µ) ≡
{

(Σ; y1, . . . , yN ; u) : u∈HΣ,λ(V );

yl∈Σ, u(yl)∈µl ∀l = 1, . . . , N
}

is finite and depends only on the homology classes of µ1, . . . , µN . The car-
dinality |HΣ,λ(µ)| of the set HΣ,λ(µ) is then an enumerative invariant of the
complex manifold (V, J). Such numbers for algebraic manifolds (V, J), e.g.,
the complex projective spaces P

n, have been of great interest in algebraic
geometry for a long time.

If (V, ω, J) is a semipositive symplectic manifold, the symplectic invariant
of (V, ω),

RTg,λ(; µ) ≡ RTg,λ(; µ1, . . . , µN )
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of [RT], is a well-defined integer. Due to the two composition laws of [RT],
this symplectic invariant is often more readily computable than the enu-
merative invariant |HΣ,λ(µ)|. In fact, all such symplectic invariants of P

n

are easily computable. It is also shown in Section 10 of [RT] that the ap-
propriately defined genus-zero enumerative invariants of P

n agree with the
corresponding symplectic invariants. On the other hand, even for P

2 and
for genus one, the two invariants are no longer equal. In [I], the difference

RT1,λ(µ1; µ2, . . . , µN ) − |HΣ,λ(µ)|
is computed for genus-one surfaces Σ and all projective spaces using an
obstruction-bundle approach, first introduced by [T] in a very different set-
ting. In [Z2], the difference

RT2,λ(; µ) − |HΣ,λ(µ)|
is computed for genus-two surfaces Σ for P

2 and P
3 using a similar ap-

proach. Both differences are linear combinations of genus-zero enumerative
invariants.

The purpose of this paper is to describe in detail a gluing construction
for pseudoholomorphic maps which is suitable for analyzing relationships
between symplectic and enumerative invariants of Kahler, or more generally
almost Kahler, manifolds. In particular, this paper supplies the most tech-
nical portion of the justification needed for the main analytic setups in [I]
and [Z2]. The explicit nature of the gluing construction can yield useful esti-
mates for obstructions to smoothing pseudoholomorphic maps from singular
domains and for the behavior of derivatives of pseudoholomorphic maps un-
der gluing; see Subsection 4.1 and Theorem 2.8 in [Z2]. Such estimates are
used in an essential way in [I] and [Z2].

The power series expansions of Theorem 2.8 and Proposition 4.4 in [Z2],
and their analogues in other genera, are useful in both enumerative geome-
try and Gromov-Witten theory. For example, Theorem 2.8 of [Z2] is used
in [Z3] to describe a method for solving a large class of enumerative problems
involving rational curves in P

n. On the other hand, a genus-one analogue
of Proposition 4.4 in [Z2] is used in [Z4] to describe the ”main compo-

nent” M0
1,k(V, λ) of the moduli space M1,k(V, λ) of genus-one stable maps

into V . This main component is a closed subset of M1,k(V, λ) and contains

the subspace M0
1,k(V, λ) of M1,k(V, λ) consisting of stable J-holomorphic

maps with smooth domains. If J is sufficiently regular, M0
1,k(V, λ) is the

closure of M0
1,k(V, λ) and carries a fundamental class.

The author is grateful to T. Mrowka for pointing out the paper [I], en-
couraging the author to work out all of the analytic issues arising in [I], and
sharing some of his expertise in applications of global analysis over countless
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hours of conversations. The author would also like to thank G. Tian, for first
introducing him to Gromov’s symplectic invariants and helping him under-
stand [LT], and the referee, for corrections and suggestions on the original
version of this paper.

1.2. Summary. In this subsection, we first recall the definition of Gromov-
Witten fixed-complex structure invariants for a semi-positive almost Kahler
manifold (V, J, ω). We then outline the rest of the paper and roughly de-
scribe the statements of the two main theorems.

If Σ and V are as in the previous subsection, we denote by

πΣ, πV : Σ×V −→ Σ, V

the two projection maps. Let

Λ0,1π∗
ΣT ∗Σ⊗π∗

V TV −→ Σ×V

be the bundle of (J, j)-antilinear homomorphisms from π∗
ΣTΣ to π∗

V TV . If

ν ∈ Γ
(
Σ×V ; Λ0,1π∗

ΣT ∗Σ⊗π∗
V TV

)
,

we denote by MΣ,ν,λ the set of all smooth maps u from Σ to P
n such that

u∗[Σ] = λ and ∂̄u|z = ν|(z,u(z)) ∀ z∈Σ.

If µ is an N -tuple of constraints as above, put

MΣ,ν,λ(µ) =
{
(Σ; y1, . . . , yN ; u) : u∈MΣ,ν,λ;

yl∈Σ, u(yl)∈µl ∀l = 1, . . . , N
}
.

If (V, ω, J) is semipositive, for generic choices of ν and µ, MΣ,ν,λ is a smooth
finite-dimensional oriented manifold, and MΣ,ν,λ(µ) is a zero-dimensional

finite submanifold of MΣ,ν,λ×ΣN , whose signed cardinality depends only
the homology classes of µ1, . . . , µN ; see Section 1 of [RT]. The symplectic
invariant RTg,λ(; µ) is the signed cardinality of the set MΣ,ν,λ(µ).

If ‖νi‖C0 −→0 and (Σ; y
i
; ui)∈MΣ,νi,λ(µ), a subsequence of {(Σ; y

i
, ui)}∞i=1

must converge in the Gromov topology to one of the following:

(1) an element of HΣ,λ(µ);
(2) (Σ⊤; y; u), where Σ⊤ is a bubble tree of S2’s attached to Σ with marked

points y1, . . . , yN , and u : Σ⊤−→V is a holomorphic map such that
u(yl)∈µl for l = 1, . . . , N , and

(2a) u|Σ is simple and the tree contains at least one S2;
(2b) u|Σ is multiply-covered;
(2c) u|Σ is constant and the tree contains at least one S2.

This convergence statement says that for all t sufficiently small, every
element of MΣ,tν,λ(µ) lies near one of the spaces described by (1)-(2c).
In many practical applications it is easy to show that there is a bijection
between the elements of HΣ,λ(µ) and the nearby elements of MΣ,tν,λ(µ); see
Proposition 3.30. This is the case for all projective spaces, provided λ is a
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sufficiently high multiple of the line. In [I] and [Z2], Cases (2a) and (2b) do
not occur, but they may have to be considered when dealing with higher-
dimensional projective spaces or higher genera. If the signed cardinality of
MΣ,tν,λ(µ) is RTg,λ(; µ) for all t>0 sufficiently small, the number of elements
of MΣ,tν,λ(µ) that lie near the spaces described by (2) is thus exactly

CRg,λ(µ) ≡ RTg,λ(; µ)−|HΣ,λ(µ)|.
The goal of this paper is to describe CRg,λ(µ) in terms of the spaces of holo-
morphic maps themselves, which can be viewed as an enumerative object,
rather than a symplectic one. We do need to assume that certain spaces of
holomorphic maps are smooth, but they do not need to have the expected
dimension.

While there is a very good understanding of what constitutes a stable
map, there is little in a way of commonly accepted notation for stable maps
and various spaces of stable maps. In Section 2, we recall the definition of
bubble or stable maps as well as set up analytically convenient notation.
Our notation for bubble maps evolved from that of D. McDuff’s lectures
at Harvard. In Subsection 2.4, we restate the definition of the Gromov
topology on the set of all bubble maps in our notation. In Subsection 2.5,
we define various spaces MT and UT of bubble maps and bundles of gluing
parameters FT over MT and FT over UT .

As is typical in symplectic geometry, our gluing construction has two
steps: pregluing and perturbation. The pregluing step is usually carried out
in the target space V . In this paper, we work with the domains to construct
an approximately holomorphic map. Indeed, given a pseudoholomorphic
map b=(Σb, ub) in MT (or UT ) and a gluing parameter υ∈FbT (or υ∈FbT )
for b, we construct a Riemann surface Συ and a nearly holomorphic map

qυ : Συ −→ Σb;

see Subsection 2.2. We then take the approximately holomorphic map cor-
responding to υ to be

b(υ) =
(
Συ, uυ ≡ ub◦qυ

)
.

This explicit construction at the pregluing step leads to the estimates of
Theorem 2.8 and Proposition 4.4 in [Z2].

For the second step of a typical gluing construction, one needs to define
a family of spaces Γ̃+(υ) of admissible perturbations of b(υ) and sometimes

a family of obstruction bundles Γ0,1
− (υ), which together will be called an

obstruction bundle setup. The former space should be a maximal subspace
of all perturbations Γ(υ) of b(υ) on which a certain operator Dυ is fiberwise
uniformly invertible, i.e., the norm of its inverse may depend on b, but not
on υ∈FbT . The obstruction bundle Γ0,1

− (υ) should be the complement of the

image of Dυ on Γ̃+(υ) in the target space of Dυ and should be isomorphic
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to the cokernel Γ0,1
− (b) of a certain operator Db. It may appear there are

obvious choices for Γ̃+(υ) and Γ0,1
− (υ), i.e., the high eigenspaces of D∗

υDυ

and the low eigenspaces of DυD∗
υ. These spaces, however, are not an option

for an obstruction bundle setup. The usual difficulty with the second step
of gluing constructions in symplectic geometry is that the operator D∗

υDυ

has eigenvalues that tend to zero as the gluing parameter tends to zero, but
then disappear as the gluing parameter hits zero. This is not really dealt
with in [I], but there are now several standard approaches to this problem.
We use the modified Sobolev norms of [LT], redefined in Subsection 3.3 in
the notation of Section 2, and describe the requirements for an obstruction
bundle setup in Subsection 3.5.

The main goal of Section 3 is to describe the number of elements of
MΣ,tν,λ(µ) lying near the stable maps of type (2) in terms of objects intrinsic
to the space of such maps. Given a sufficiently regular stratum S(µ)⊂MT

of stable maps of type (2), Theorem 3.29 describes the number of elements
of MΣ,tν,λ(µ) lying near S(µ) as the number of zeros of a map between two
vector bundles over S(µ). The target vector bundle is the obstruction, or

cokernel, bundle Γ0,1
− . The domain vector bundle is the direct sum of the

bundle FT of gluing parameters with the normal bundle of S in MT . In
Section 4 of [Z2], we use convenient choices of an obstruction bundle setup
to approximate all such bundle maps by much simpler polynomial bundle
maps. The latter maps involve derivatives of rational maps into P

n.
We also give a local description of spaces of stable rational maps into V

under certain regularity assumptions, i.e., in the unobstructed cases. By
Theorem 3.33, the normal bundle of a stratum UT in such a space is FT .
This is still the case if generic constraints µ are imposed on the stable maps.
This is a known fact in symplectic, as well algebraic, geometry. However,
the explicit nature of the identification maps that appear in the statement
of Theorem 3.33 is used to obtain the estimates of Theorem 2.8 in [Z2] for
the behavior of derivatives of pseudoholomorphic maps.

Section 4 contains proofs of continuity, injectivity, and surjectivity of the
gluing maps. These are usually omitted in the literature, but in the given
case one has to choose the obstruction bundle setup carefully to ensure that
these properties of the gluing map actually hold. In particular, Section 4
contains what [LT] may mean by “asymptotic analysis near the nodes,”
which they omit. The appendix deals with even more technical details of
the analysis.

We note that the gluing construction described in this paper deals only
with attaching rational bubble components to a smooth principal compo-
nent. However, it can be generalized to allow singular principle components.

1.3. Fundamental Notation. In this subsection, we collect the most fre-
quently used combinatorial and analytic notation.
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Definition 1.1.

(1) A finite partially ordered set I is a linearly ordered set if for all i1, i2, h∈I
such that i1, i2 <h, either i1≤ i2 or i2≤ i1.

(2) A linearly ordered set I is a rooted tree if I has a unique minimal
element, i.e., there exists 0̂∈I such that 0̂≤h for all h∈I.

(3) If I and I ′ are linearly ordered sets, bijection φ : I −→ I ′ is an iso-
morphism of linearly ordered sets if for all h, i∈ I, i<h if and only if
φ(i)<φ(h).

A linearly ordered set can be represented by an oriented graph. In Fig-
ure 1, the dots denote the elements of I. The arrows specify the partial
ordering of the linearly ordered set I. By definition, there is at most one
outgoing edge at each vertex. A linearly ordered set I is a rooted tree if and
only if its graph is connected. The minimal element, or root, 0̂ of a rooted
tree I is the unique vertex of the graph associated to I that has no outgoing
edges.

k1 k2 0̂

ιh

h

Figure 1. A Linearly Ordered Tree and A Rooted Tree.

If I is a linearly ordered set, we denote the subset of the non-minimal ele-
ments of I by Î, i.e.,

Î =
{
h∈I : i<h for some i∈I

}
.

This is the collection of the vertices of the graph corresponding to I that
have an outgoing edge. For every h∈ Î, the set {i∈ I : i<h} has a unique
maximal element ιh, i.e.,

ιh < h and i ≤ ιh for all i∈I s.t. i<h.

The vertex ιh is the endpoint of the unique edge leaving h. For reasons
clarified in Subsection 2.1, ι : Î −→ I will be called the attaching map of I.
It is clear from Definition 1.1 that I has a unique splitting

I =
⊔

k∈K

Ik

such that Ik⊂I is a rooted tree and k is a minimal element of I. The rooted
trees Ik are the connected components of the graph corresponding to I. The
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attaching map of I restricts to the attaching map of each Ik, which will still
be denoted by ι.

Let I be a rooted tree. We denote the unique minimal element of I by
0̂I , or simply by 0̂ if there is no ambiguity. If I∗, I∗, and I∗ are rooted trees,

we will write Î∗, Î∗, and Î∗ for Î∗, Î∗, and Î∗, respectively; here ∗ denotes
any string of symbols. If i∈I, let

DiI = {h∈I : h>i}, D̄iI = DiI ∪ {i}.
The subset DiI of I consists of all vertices of I that are “upstream” from
i. Every rooted tree I has a number of subsets that are rooted trees; the
subsets D̄iI are one example. If H is a subset of I, the set

I(H) ≡
{
i∈I : i 6>h ∀h∈H

}

is also a rooted tree. If i∈I, denote I({i}) by I(i). If H is a subset of Î, let

IH =
{
i∈I : i 6≥h ∀h∈H

}
, I(H) = H ∪ {0̂I}.

If h∈ Î, denote I{h} by Ih.
If M1 and M2 are two sets, let M1⊔M2 be the disjoint union of M1 and M2.

Finally, if N is a nonnegative integer, let [N ]={1, . . . , N}.
We now introduce some analytic notation. Let β : R−→ [0, 1] be a smooth

function such that

(1.3) β(t) =

{
0, if t≤1;

1, if t≥2,
and β′(t) > 0 if t∈(1, 2).

If r>0, let βr∈C∞(R; R) be given by βr(t) = β
(
r−

1
2 t

)
. Note that

(1.4) supp(βr) =
[
r

1
2 , 2r

1
2
]
, ‖β′

r‖C0 ≤ Cβr−
1
2 , and ‖β′′

r ‖C0 ≤ Cβr−1.

Throughout the paper, β and βr will refer to these smooth cutoff functions.
Let qN , qS : C−→S2 ⊂R

3 be the stereographic projections mapping the
origin in C to the north and south poles, respectively. Explicitly,

(1.5) qN (z) =

(
2z

1+|z|2 ,
1−|z|2
1+|z|2

)
∈ C×R, qS(z) =

(
2z

1+|z|2 ,
−1+|z|2
1+|z|2

)
.

Denote the south pole of S2, i.e., the point (0, 0,−1)∈R
3, by ∞. We identify

C with S2−{∞} via the map qN . If x ∈S2−{∞}, we define the corresponding
inverse exponential map

(1.6) φx : S2−{∞} −→ C by φxz = z − x ≡ q−1
N (z) − q−1

N (x).

Note that this map is a biholomorphism. If g is a Riemannian metric on
Riemann surface (Σ, j) of positive genus, x ∈ Σ and v ∈ TxΣ, we write
expg,x v∈Σ for the exponential of v defined with respect to the Levi-Civita
connection of g. Let injgx denote the corresponding injectivity radius at x



ENUMERATIVE VS. SYMPLECTIC INVARIANTS 453

and dg the distance function. If x∈Σ, we define the corresponding inverse
exponential map

φg,x :
{
z∈Σ: dg(x, z)< injgx

}
−→ TxΣ by(1.7)

expg,x φg,xz = z, |φg,xz|g,x < injgx.

Note that if g is flat on a neighborhood U of x in Σ, then φg,x|U is holomor-
phic.

Let gV be the Kahler metric of (V, J, ω). Denote the corresponding Levi-
Civita connection, exponential map, and distance function by ∇V , expV

and dV , respectively. For every λ∈H2(V ; Z), let |λ|=〈ω, λ〉. The number
|λ| is the gV -energy of any element of HΣ,λ; see Chapter 1 in [MS]. By
rescaling ω, it can be assumed that |λ| ≥ 1, whenever λ 6= 0 and HS2,λ 6=∅.
If g is any Kahler metric on (V, J), denote the corresponding Levi-Civita
connection, exponential map, distance function, injectivity radius, and the
parallel transport along the geodesic for X∈TV by ∇g, expg, dg, injg, and
Πg,X , respectively. If q∈V and δ∈R, let

Bg(q, δ) =
{
q′∈V : dg(q, q

′)≤δ
}
.

In our construction, we allow g vary in a smooth family. Without causing
any additional difficulty in the gluing construction, consideration of such
families simplifies computations in specific cases such as in [Z2]. If (S, j) is
a smooth Riemann surface and u ∈ C∞(S; V ), put

Γ(u) = Γ(S; u∗TV ), Γ1(u) = Γ(S; T ∗S⊗u∗TV );

Γ0,1(u) = Γ(S; Λ0,1T ∗S⊗u∗TV ), ∂̄u =
1

2

(
du + J ◦ du ◦ j

)
∈ Γ0,1(u).

We denote by DV and Dg the linearizations of ∂̄-operator with respect to
the metrics gV and g on V , respectively. Since both metrics are Kahler, DV

and Dg commute with J ; see [Z1].
It should be mentioned that it is not essential for the main gluing con-

struction described in this paper that (V, J, g) is Kahler or even symplectic.
If (V, J, g) is not Kahler, we would need to choose an orientation on certain
spaces of holomorphic maps and take the induced orientation on the coker-
nel bundle; see Subsection 3.2. Dropping the Kahler assumption would have
almost no effect on the analysis, but would slightly complicate the notation.

2. Spaces of Bubble Maps

2.1. Bubble Trees. Let S be either the Riemann sphere S2 or a smooth
Riemann surface Σ of genus at least 2. Allowing the genus-one case would
lead to somewhat more complicated notation, but would have no effect on
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the analysis done in Section 3. We put

S∗ =

{
S−{∞}, if S =S2;

S, if S =Σ.

Definition 2.1. A bubble tree based on S is a tuple ⊤=(S, I; x), where

(a) I is a rooted tree and x : Î−→S∪S2 is a map;
(b) xh∈S∗ if ιh =0̂ and xh∈S2−{∞} otherwise;
(c) if h1 6=h2 and ιh1 = ιh2 , xh1 6=xh2 .

Given a bubble tree ⊤ as above, let Σ⊤ be the nodal complex curve

Σ⊤ =



(
{0̂}×S

)
⊔

⊔

h∈Î

(
{h}×S2

)



/
∼, where (h,∞)∼(ιh, xh) ∀h∈ Î .

In other words, the algebraically irreducible components of Σ⊤ are indexed
by the set I. The point (h,∞) on the component

Σ⊤,h ≡ {h}×S2

is attached to the point (ιh, xh) on the component Σ⊤,ιh , where

Σ⊤,0̂ = {0̂}×S.

We will call the component Σ⊤,0̂ corresponding to the root 0̂ of I the prin-

cipal component of ⊤ or Σ⊤. For each i∈ Î, Σ⊤,i will be called the ith bubble
component of ⊤ or Σ⊤ or simply a bubble component. Let Σ∗

⊤,i and Σ∗
⊤

denote the open subsets of smooth points of Σ⊤,i and Σ⊤, respectively, i.e.,

Σ∗
⊤,i =

{
Σ⊤,i − {(i,∞)} − {(i, xh) : ιh = i}, if i∈ Î;

S − {(0̂, xh) : ιh =0̂}, if i=0̂;
Σ∗
⊤ =

⋃

i∈I

Σ∗
⊤,i.

The complement of Σ∗
⊤ in Σ⊤ is the set of the singular points or nodes of Σ⊤.

If i∈I and h∈ Î, we put

⊤(i) =
(
S, I(i); x|Î(i)

)
and ⊤h =

(
S, Ih; x|Îh

)
.

These tuples are again bubble trees based on S. The complex curve Σ⊤(i)

is obtained from Σ⊤ by dropping all bubble components descendant from
the ith bubble component. The curve Σ⊤h is obtained by dropping the hth
bubble component along with all bubble components descendant from it.

If S =S2 and h∈ Î, we denote the inverse exponential map φxh
defined in

(1.6) by φ⊤,h. If z∈Σ⊤,i, put

(2.1) r⊤,h(z) =

{
|φ⊤,hz| , if i= ιh and z 6=∞;

100, otherwise.
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If δ>0, let B⊤,h(δ)={z∈Σ⊤ : r⊤,h(z)<δ}. We set

(2.2) r⊤ = min
h∈Î

(∣∣q−1
S (xh)

∣∣, min
{
r⊤,h(ιl, xl) : l 6=h

})
.

The positive number r⊤ measures the separation of the nodes of Σ⊤ pairwise
and from the point (0̂,∞) of the principal component Σ⊤,0̂. This point will
be a special marked point.

If S =Σ and h∈ Î is such that ιh∈ Î, we again let φ⊤,h denote the inverse
exponential map φxh

of (1.6) and define r⊤,h and B⊤,h(δ) as above. If g is

a Riemannian metric on Σ, ιh =0̂, and z∈Σ⊤,i, put

(2.3) r⊤,g,h(z) =

{
dg(xh, z), if i=0̂;

100, otherwise.

We denote by φ⊤,g,h the inverse exponential map φg,xh
of (1.7) and by

B⊤,g,h(δ) the ball Bg(xh, δ). We set

r⊤g = min

(
min
ιh=0̂

{
r⊤,g,h(ιl, xl) : l 6=h

}
,(2.4)

min
ιh 6=0̂

(∣∣q−1
S (xh)

∣∣, min{r⊤,h(ιl, xl) : l 6=h}
))

.

The positive number r⊤g measures the separation of the nodes of Σ⊤. We
say g is a ⊤-admissible Riemannian metric on Σ if there exists δ > 0 such
that for all h∈ Î with ιh =0̂, the metric g is flat on B⊤,g,h(δ).

2.2. The Basic Gluing Construction. In this subsection, we describe a
gluing construction on bubble trees, which is the basis of all the other gluing
constructions in this paper. Lemma 2.2 plays a very important role in the
next section and in the explicit computations of [Z2].

Let ⊤=(S, I; x) be a bubble tree. If h∈ Î, put

(2.5) F
(0)
h,⊤ =

{
C, if xh∈S2;

Txh
Σ, if xh∈Σ,

F
(0)
⊤ =

⊕

h∈Î

F
(0)
h,⊤.

If S =S2, for any δ>0, put

F
(0)
⊤,δ =




υ=(⊤, vÎ) : vÎ ∈F
(0)
⊤ , |υ| ≡

∑

h∈Î

|vh| < δ




 .

Let δ⊤∈(0, 1) be such that 8δ
1
2
⊤<r⊤. If S =Σ and g is an admissible metric

on Σ, put

F
(0)
⊤,g,δ =




υ=(⊤, vÎ) : vÎ ∈F
(0)
⊤ , |υ|g ≡

∑

ih=0̂

|vh|g +
∑

ih 6=0̂

|vh| < δ




 ,
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where |vh|g = |vh|g,xh
. Let δ⊤g ∈ (0, 1) be such that 8(δ⊤g)

1
2 < r⊤g and the

metric g is flat on Bg

(
xh, 4(δ⊤g)

1
2

)
for all h∈ Î with ιh =0̂.

For each υ∈F
(0)
⊤,δ⊤

if S =S2 and υ∈F
(0)
⊤,δ⊤g if S =Σ, we will construct a

bubble tree ⊤(υ) and a smooth map

qυ : Σ⊤(υ) −→ Σ⊤.

The Riemann surface Σ⊤(υ) is obtained from Σ⊤ by replacing the attaching
node of the bubble Σ⊤,h by a thin neck whenever vh 6=0. The map qυ simply
pinches all these necks. Alternatively, the map qυ can be described as a
stretching of small neighborhoods of the points (ιh, xh) in Σ⊤,ιh around the
bubbles Σ⊤,h.

First, for every h∈ Î and vh∈F
(0)
⊤,h with

|vh|∈(0, δ) if xh∈S2 and |vh|g∈(0, δ) if xh∈Σ,

we define local stretching maps

qh,(xh,vh) : Σ⊤(ιh) −→ Σ⊤(h) if xh∈S2 and

qg,h,(xh,vh) : Σ⊤(ιh) −→ Σ⊤(h) if xh∈Σ.

These maps will stretch a small neighborhood of the point (ιh, xh) in Σ⊤,ιh

around the bubble Σ⊤,h, which is attached to Σ⊤(ιh) at (ιh, xh). If xh∈S2,
let

p−h,(xh,vh) : B⊤,h(2δ
1
2
⊤) −→ C∪{∞} and

p+
h,(xh,vh) : B⊤,h(2δ

1
2
⊤) −→ Txh

S2

be the maps given by

p−h,(xh,vh)(z) =
(
1 − β|vh|(2|φ⊤,hz|)

)( vh

φ⊤,hz

)
and

p+
h,(xh,vh)(z) = β|vh|(|φ⊤,hz|)(φ⊤,hz).

We note that

(2.6)

(
1

p−h,(xh,vh)(z)

)
=

φ⊤,hz

vh
∀z∈B⊤,h

(
|vh|

1
2 /2

)
.

Define qh,(xh,vh) : Σ⊤h −→Σ⊤(h) by

(2.7) qh,(xh,vh)(z) =






(
h, qS(p−h,(xh,vh)(z))

)
, if r⊤,h(z)≤|vh|

1
2 ;

(
ιh, φ−1

⊤,hp+
h,(xh,vh)(z)

)
, if |vh|

1
2 ≤r⊤,h(z)≤2|vh|

1
2 ;

z, otherwise.

This map wraps the ball B⊤,h(|vh|
1
2 ) around the sphere Σ⊤,h. It stretches

the ball B⊤,h(|vh|
1
2 /2) by the factor of 1/vh, as can be seen from (2.6). The
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map qh,(xh,vh) is smooth everywhere and is a diffeomorphism, outside of the

circle r⊤,h(z)= |vh|
1
2 in Σ⊤,ιh .

If xh∈Σ and thus vh∈Txh
Σ, similarly to the above, let

p−g,h,vh
: B⊤,g,h(2δ

1
2 ) −→ C∪{∞} and

p+
g,h,vh

: B⊤,g,h(2δ
1
2 ) −→ Txh

Σ

be the maps given by

p−g,h,vh
(z) =

(
1 − β|vh|g(2|φ⊤,g,hz|g)

)( vh

φ⊤,g,hz

)
and(2.8)

p+
g,h,vh

(z) = β|vh|g(|φ⊤,g,hz|g)(φ⊤,g,hz).

Note that the ratio vh/φ⊤,g,hz is well-defined as an extended complex num-
ber, since Txh

Σ is one-dimensional and vh 6=0. We define

qg,h,vh
: Σ⊤h −→ Σ⊤(h)

by

(2.9) qg,h,vh
(z) =






(
h, qS(p−g,h,vh

(z))
)
, if r⊤,g,h(z)≤|vh|

1
2 ;(

ιh, φ−1
g,⊤,hp+

g,h,vh
(z))

)
, if |vh|

1
2 ≤r⊤,g,h(z)≤2|vh|

1
2 ;

z, otherwise.

Similarly to the case xh ∈ S2, qg,h,vh
is smooth and is a diffeomorphism,

except on the circle r⊤,g,h(z)= |vh|
1
2
g in Σ⊤,ih .

If S = S2, for every h ∈ I and υ ∈ F
(0)
⊤,δ, we now define a bubble tree

⊤h(υ) and a smooth map qυ,h : Σ⊤h(υ) −→Σ⊤(h) . Choose an ordering of I

consistent with its partial ordering. If h=0̂, we take

Ih(υ) = {0̂}, ⊤h(υ)=
(
S, Ih(υ);

)
, and qυ,h = IdS .

Suppose h 6=0̂ and

⊤h−1(υ) =
(
S, Îh−1(υ); xh(υ)

)

with Ih−1(υ)⊂I. If vh =0, put

Ih(υ) = Ih−1(υ) ∪ {h},
(
ιh,l(υ), xh,l(υ)

)
=

{(
ιh−1,l(υ), xh−1,l(υ)

)
, if l∈Ih−1(υ);

q−1
υ,ιh

(ιh, xh), otherwise.

Let qυ,h|Σ⊤h−1(υ)
=qυ,h−1 and qυ,h(h, z)=(h, z). If vh 6=0, let

Ih(υ) = Ih−1(υ),
(
ιh,l(υ), xh,l(υ)

)
=

(
ιh−1,l(υ), xh−1,l(υ)

)
.
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We take qυ,h =qh,(xh,vh)◦qυ,h−1. Inductively this procedure defines a bubble
tree ⊤(υ)=⊤h∗(υ) based on S and a smooth map

qυ =qυ,h∗ : Σ⊤(υ) −→ Σ⊤,

where h∗ is the largest element of I. This map is a diffeomorphism outside of
|I−I(υ)| disjoint circles. The resulting bubble tree and map are independent
of the choice of the extension of the partial ordering. While the domains
of the maps qυ,h do depend on such a choice, whenever we make use of the
maps qυ,h below, the result will also be independent of the choice. If S =Σ,

for every h∈I and υ∈F
(0)
⊤,g,δ, we define bubble tree ⊤g,h(υ) and maps

qg,υ,h : Σ⊤g,h(υ) −→ Σ⊤(h)

similarly to the above, but replacing qh,(xh,vh) by qg,h,vh
whenever ιh = 0̂.

We let ⊤g(υ) =⊤g,h∗(υ) and qg,υ =qg,υ,h∗ . As before, qg,υ is smooth and a
diffeomorphism outside of |I−I(υ)| disjoint circles.

If S =S2 and vh 6=0, put

A+
υ,h = q−1

υ,ιh

({
z∈Σ⊤,ιh : |vh|

1
2 ≤r⊤,h(z)≤2|vh|

1
2
})

;(2.10)

A−
υ,h = q−1

υ,ιh

({
z∈Σ⊤,ιh :

1

2
|vh|

1
2 ≤r⊤,h(z)≤|vh|

1
2

})
.

Note that A±
υ,h⊂Σ⊤(υ),i∗h(υ), where

i∗h(υ) = min
{
i∈I : i<h and vh′ 6=0 if i<h′<h

}
= max

{
i∈I(υ) : i<h

}
.

If S =Σ and vh 6=0, we similarly define

A+
g,υ,h = q−1

g,υ,ιh

({
z∈Σ⊤,ιh : |vh|

1
2
g ≤r⊤,g,h(z)≤2|vh|

1
2
g

})
;(2.11)

A−
g,υ,h = q−1

g,υ,ιh

({
z∈Σ⊤,ιh :

1

2
|vh|

1
2
g ≤r⊤,g,h(z)≤|vh|

1
2
g

})
,

where |vh|g and r⊤,g,h denote |vh| and r⊤,h if ιh∈ Î.

Lemma 2.2. If S = S2, the map qυ is holomorphic outside of the annuli
A±

υ,h with vh 6=0. For such h and for all z∈qυ,ιh(A−
υ,h),

‖dqh,(xh,vh)‖C0(qυ,ιh
(A±

υ,h)) ≤ C;

∂̄
(
qυ◦q−1

υ,ιh

)∣∣
z

= −2|vh|−
1
2

( vh

φ⊤,hz

)
dqS

∣∣
ph,(xh,vh)z

◦ ∂β
∣∣
2|vh|

− 1
2 φ⊤,hz

◦ dφ⊤,h

∣∣
z
,

where the norm is computed with respect to the standard metric on S2, and
β is a viewed as a function on C via the standard norm on C. If S =Σ, the
map qg,υ is holomorphic outside of the annuli A±

g,υ,h with vh 6=0. For such h
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and for all z∈qg,υ,ιh(A−
υ,h),

‖dqg,h,vh
‖C0(qg,υ,ιh

(A±
g,υ,h)) ≤ Cg if ιh =0̂;

‖dqh,(xh,vh)‖C0(qg,υ,ιh
(A±

g,υ,h)) ≤ C if ιh 6=0̂;

∂̄
(
qg,υ◦q−1

g,υ,ιh

)∣∣
z
= −2|vh|−

1
2

( vh

φ⊤,hz

)
dqS

∣∣
ph,(xh,vh)z

◦∂β
∣∣
2|vh|

− 1
2 φ⊤,hz

◦dφ⊤,h

∣∣
z
,

where we regard β as a function on Txh
Σ via the metric g and denote φg,⊤,h

by φ⊤,h if ιh =0̂.

Proof. The first statement in each of the two cases is immediate from the
construction. The estimates on the differential of qh,(xh,vh) and qg,h,vh

follow

from (1.4). Suppose S =Σ, ιh =0̂, vh 6=0, and z∈A−
g,υ,h. Since qg,υ = qg,υ,ιh

on A−
g,υ,h and qS is anti-holomorphic, from (2.8) and (2.9) we obtain

∂̄qg,υ

∣∣
z

= dqS

∣∣
pg,h,(xh,vh)z

◦ ∂pg,h,(xh,vh)

∣∣
z

= −2|vh|
− 1

2
g

( vh

φ⊤,g,hz

)
dqS

∣∣
pg,h,(xh,vh)z

◦ ∂β
∣∣
2|vh|

− 1
2

g φ⊤,g,hz
◦ dφ⊤,g,h

∣∣
z
.

The other cases are proved similarly, since

qg,υ ◦ q−1
g,υ,ιh

= qh,(xh,vh) on qg,υ,ιh(A−
g,υ,h)

and a similar statement holds in the case S =S2.

2.3. Curves with Marked Points.

Definition 2.3.

(1) If M is a finite set, a curve with M -marked points based on S is a tuple

C =
(
S, M, I; x, (j, y)

)
, where

(a) ⊤C ≡
(
S, I; x

)
is a bubble tree based on S, and j : M −→ I and

y : M −→S∪S2 are maps;
(b) (jl, yl)∈Σ∗

⊤C ,jl
and yl 6=∞ for all l∈M ;

(c) for all l1, l2∈M with l1 6= l2 and jl1 =jl2 , yl1 6=yl2 .
(2) The curve C is stable if

∣∣{h : ιh = i}
∣∣ +

∣∣{l : jl = i}
∣∣ ≥ 2

for all i∈ Î if S =Σ and all i∈I if S =S2.

Via the construction in Subsection 2.1, such a tuple C corresponds to a
complex curve ΣC ≡Σ⊤C

with marked points {(jl, yl)}l∈M . For each i ∈ I,
we denote by ΣC,i and Σ∗

C,i the surfaces Σ⊤C ,i and Σ∗
⊤C ,i, respectively.
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With notation as above, for every h ∈ Î, let F
(0)
h,C and F

(0)
C denote the

spaces F
(0)
h,⊤C

and F
(0)
⊤C

, respectively. If S =S2, put

rC = min
(
r⊤C

, min
l∈M

(∣∣q−1
S yl

∣∣,

min{r⊤C ,h(jl, yl) : h∈ Î}, min{|φ−1
yl

yh| : h 6= l, jh =jl}
))

.

This positive number measures the minimum pairwise separation between
all special points of ΣC , including the point (0̂,∞). Let δC ∈ (0, 1) be such
that

16(|I| + |M |)δ
1
2
C < rC .

If υ=(C, vÎ) with vÎ ∈F
(0)
C and |υ|<δC, we now construct a curve C(υ) with

M -marked points as follows. Let

⊤(υ) =
(
S, I(υ); x(υ)

)
and qυ : Σ⊤(υ) −→ ΣC

be the bubble tree and the smooth map defined in Subsection 2.2. Then we
take

C(υ) =
(
S, M, I(υ); x(υ), (j(υ), y(υ))

)
,

where (jl(υ), yl(υ))∈Σ⊤(υ),jl(υ) is defined by

qυ(jl(υ), yl(υ)) = (jl, yl).

Similarly, if S =Σ and g is an admissible Riemannian metric on Σ, put

rCg = min
(
r⊤C

g, min
jl=0̂

(
min
ιh=0̂

{r⊤C ,g,h(jl, yl)}, min{|φ−1
g,yl

yh|g : h 6= l, jh =0̂}
)
,

min
jl 6=0̂

(∣∣q−1
S yl

∣∣, min
ιh 6=0

{r⊤C ,h(jl, yl)}, min{|φ−1
yl

yh| : h 6= l, jh =jl}
))

.

Let δCg∈(0, 1) be such that

16(|I|+|M |)(δCg)
1
2 < rCg

and g is flat in Bg

(
xh, 8(δCg)

1
2

)
for all h ∈ Î with ιh = 0̂. If υ ∈ F

(0)
C and

|υ|g <δCg, we construct the curve Cg(υ) with M -marked points in the same
way as above, but replacing qυ and ⊤(υ) by qg,υ and ⊤g(υ).

Definition 2.4. An isomorphism of curves with M -marked points

C =
(
S, M, I; x, (j, y)

)
and C′ =

(
S, M, I ′; x′, (j′, y′)

)

is a tuple of maps,

φ0 : I −→ I ′, φ1,0̂ : S −→ S, φ1,h : S2 −→ S2 for h∈I, where

(a) φ0 is an isomorphism of the linearly ordered sets I and I ′ and φ0(jl)=j′l
for all l∈M ;

(b) φ1,i is a biholomorphic map for all i∈I and φ1,0̂ is the identity map if
S =Σ;
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(c) φ1,i(∞)=∞ for all i∈I if S =S2 and for all i∈ Î if S =Σ;

(d) φ1,ιh(xh)=x′
φ0(h) for h∈ Î and φ1,jl

(yl)=y′l for all l∈M .

Such a set of maps corresponds to a continuous map

φ : ΣC −→ ΣC′

that maps the lth marked point (jl, yl) on ΣC to the lth marked point (j′l, y
′
l)

on ΣC′ and is biholomorphic on each component of ΣC . If S = S2, φ also
takes the special marked point (0̂,∞) on ΣC,0̂ to the special marked point

(0̂,∞) on ΣC′,0̂. Note that if C is stable, C has no nontrivial automorphisms.

Let [C] denote the equivalence class of C in the set of all curves based on
S with marked points. Denote by MS,M the set of all equivalence classes of

stable curves based on S with M -marked points. If S = S2, MS,M can be

identified with the moduli space M0,|M |+1 of all stable rational curves with

|M |+1 marked points, or more canonically with the space M0,M⊔{0̂} of all

stable rational curves with the marked points labeled by the set M ⊔{0̂}.
If S = Σ has genus bigger than two and is generic, MS,M is the closed

subset of Mg,M consisting of all stable curves of genus g with M -marked
points that have a fixed complex structure on the principal component. If
S has genus two, MS,M is a double cover of the corresponding set for g=2,
since any smooth genus-two curve has a holomorphic automorphism of order
two; see [GH, p. 254]. The reason we require that φ1,0̂ =IdΣ is that the

symplectic invariant of [RT] disregards the automorphisms of Σ.

2.4. Bubble Maps.

Definition 2.5.

(1) A V -valued bubble map is a tuple b=
(
S, M, I; x, (j, y), u

)
, where

(a) I is a linearly ordered set, which is a rooted tree if S =Σ;
(b) u : I−→C∞(S; V )∪C∞(S2; V ) is a map;
(c) if I =

⊔
k∈K

Ik is the splitting of I into rooted trees, then M =
⊔

k∈K

Mk

for some subsets Mk of M such that Ck =
(
S, Mk, Ik; x|Îk

, (j, y)|Mk

)

is an Mk-marked curve based on S;
(d) uh∈C∞(S; V ) if h∈I−Î, uh∈C∞(S2; V ) if h∈ Î is a smooth map,

and uh(∞)=uιh(xh) for all h∈ Î;

(e) for all i∈ Î if S =Σ and i∈I if S =S2,

∣∣{h∈ Î : ιh = i}
∣∣ +

∣∣{l∈M : jl = i}
∣∣ < 2 =⇒ ui∗[S

2] 6= 0 ∈ H2(V ; Z).

(2) The bubble map b is simple if I is a rooted tree; b is J-holomorphic if
∂̄Jui =0 for all i∈I.
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With notation as in Definition 2.5, every bubble map b corresponds to a
continuous map

ub : Σb ≡
⊔

k∈K

ΣCk
−→ V,

which is smooth on the components of ΣCk
. If i∈Ik, the restriction of ub to

Σb,i ≡ ΣCk,i

is of course ui. If h∈ Îk, we put

F
(0)
h,b = F

(0)
h,Ck

.

Similarly, let

F
(0)
b =

⊕

k∈K

F
(0)
Ck

, Σ∗
b =

⋃

k∈K

Σ∗
Ck

⊂ Σb, Σ∗
b,i = Σ∗

Ck,i ⊂ Σb,i.

If b is simple, denote by ⊤b the bubble tree ⊤Ck
for the unique element k∈K.

Definition 2.6. An isomorphism of V -valued bubble maps

b =
(
S, M, I; x, (j, y), u

)
and b′ =

(
S, M, I ′; x′, (j′, y′), u′

)

is a tuple of maps

φ0 : I−→I ′, φ1,i : S−→S for i∈I−Î , φ1,i : S2−→S2 for i∈ Î , where

(a) φ0 is an isomorphism of the linearly ordered sets I and I ′ such that
φ0(jl)=j′l for all l∈M ;

(b) φ1,i is a biholomorphic map for all i ∈ I and is the identity map if

S = Σ and i 6∈ Î;
(c) φ1,i(∞)=∞ for all i∈I if S =S2 and for all i∈ Î if S =Σ;

(d) φ1,ιh(xh)=x′
φ0(h) for all h∈ Î and φ1,jl

(yl)=y′l for all l∈M ;

(e) u′
φ0(i) ◦ φ1,i = ui for all i∈I.

Such a set of maps corresponds to a continuous map

φ : Σb −→ Σb′

that maps the marked points of b to the marked points of b′, intertwines
the maps ub : Σb −→ V and ub′ : Σb′ −→ V , and is biholomorphic on each
component Σb,i of Σb. If S =S2, φ also takes the special marked point (0̂,∞)

on ΣC,0̂ to the special marked point (0̂,∞) on ΣC′,0̂.
Let Gb denote the group of automorphisms of the bubble map b. This

group is necessarily finite by the stability condition (e) of Definition 2.5. If
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λ∈H2(V ; Z), let

C̄∞
(λ;M)(S; V ) =

{
b =

(
S, M, I; x, (j, y), u

)
is V -valued bubble map:

∑

i∈I

ui∗[Σb,i] = λ

}/
∼;

C∞
(λ;M)(S; V ) =

{
b =

(
S, {0̂}; , (0̂, y), u0̂

)
is V -valued bubble map:

u0̂∗[S]=λ
}/

∼,

where the equivalence relation is given by isomorphisms of V -valued bubble
maps. If µ=µM is an M -tuple of submanifolds of V , let

C̄∞
(λ;M)(S; µ)=

{
b=

[
S, M, I; x, (j, y), u

]
∈ C̄∞

(λ;M)(S; V ): ujl
(yl)∈µl ∀l∈M

}
,

C∞
(λ;M)(S; µ)=

{
b=

[
S, M, {0̂}; , (0̂, y), u0̂

]
∈C∞

(λ;M)(S; V ): u0̂(yl)∈µl ∀l∈M
}
.

A topology on C̄∞
(λ;M)(S; V ) and its subsets C∞

(λ;M)(S; V ), C̄∞
(λ;M)(S; µ), and

C∞
(λ;M)(S; µ) is defined below.

Definition 2.7. Suppose

b∗=
(
S, M, I∗; x∗, (j∗, y∗), u∗

)
and bk =

(
S, M, Ik; xk, (jk, yk), uk

)

be simple bubble maps. If S = S2, the sequence {bk} converges to b∗ if for
all k sufficiently large one can choose

(i) M -marked curves Ck =
(
S, M, I∗; x′

k, (j
∗, y∗)

)
, and

(ii) elements (vk)Î∗ ∈F
(0)
Ck

with 16|vk|<r2
Ck

, such that with υk =(Ck, (vk)Î∗),

(a) lim
k−→∞

x′
k,h = x∗

h for all h∈ Î, and lim
k−→∞

|υk| = 0;

(b) C(υk) =
(
S, M, Ik; xk, (jk, y(υk))

)
,

lim
k−→∞

qυk
(jk,l, yk,l) = (j∗l , y∗l ) ∀l∈M, and

lim
k−→∞

sup
z∈ΣC(υk)

dV (ub∗(qυk
(z)), ubk

(z)) = 0.

If S =Σ, convergence is defined in the same way, but |vk| and C(υk) are re-
placed by |vk|g and Cg(υk), respectively, for a ⊤b∗-admissible metric g on Σ.

This notion of convergence is independent of the choice of an admissible
metric on Σ. Definition 2.7 induces a topology on the space C̄∞

(λ;M)(S; V ),

which will be referred to as the Gromov topology.

Remark. It is often appropriate to strengthen the last condition in (b)
above to Lp

1-convergence, for p>2, with additional conditions on the behav-
ior near the nodes. However, this is not necessary for the purposes of [I]
and [Z2], for example.
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2.5. Strata of Bubble Maps. In this subsection, we introduce the notion
of a bubble type. We then define various spaces of holomorphic bubble maps
indexed by bubble types and vector bundles over them.

Definition 2.8.

(1) A bubble type is a tuple T =
(
S, M, I; j, λ

)
such that

(a) I is a linearly ordered set, and j : M −→ I and λ : I −→H2(V ; Z)
are maps;

(b) for all i∈ Î if S =Σ and all i∈I if S =S2,

λi 6=0 if
∣∣{h : ιh = i}|+|{l : jl = i}

∣∣ < 2;

(2) Bubble type T is simple if I is a rooted tree; T is basic if Î = ∅.
(3) Two bubble types T =

(
S, M, I; j, λ

)
and T ′ =

(
S, M, I ′; j′, λ′

)
are

equivalent if there exists an isomorphism of linearly ordered sets φ0 :
I−→I ′ such that φ0(jl)=j′l for all l∈M and λ′

φ0(i) =λi for all i∈I.

(4) If T ∗ =
(
S, M, I∗; j∗, λ∗

)
and T =

(
S, M, I; j, λ

)
are two bubble types,

T ∗<T if I⊂I∗,

jl = max
{
i∈I : i≤j∗l

}
∀l∈M and λi =

∑

i=max{i′∈I:i′≤h}

λ∗
h ∀i∈I.

(5) If T =
(
S, M, I; j, λ

)
is a bubble type, a T -bubble map is a bubble map

b=
(
S, M, I; x, (j, y), u

)
such that ui∗[Σb,i]=λi ∈ H2(V ; Z) for all i∈I.

The splitting of I into rooted trees Ik induces a splitting of T into simple
bubble types

Tk =
(
S, Mk, Ik; jk, λk

)
,

where jk and λk are the restrictions of j and λ to Mk and Ik, respectively.
Similarly, each T -bubble map b corresponds to a K-tuple of bubble maps
bK =(bk)k∈K , where bk is a Tk-bubble map.

We denote the equivalence class of the bubble type T by [T ] and the group
of automorphisms of T that fix all minimal elements of I by A(T ). This
group acts naturally on the set of all T -bubble maps. The partial ordering
on the set of bubble types induces a partial ordering on the set of their
equivalence classes. If b and b′ are T - and T ′-bubble maps, respectively,
such that [b] = [b′], then [T ] = [T ′]. Furthermore, if {bk} is a sequence of
T -bubble maps, b∗ is T ∗-bubble map, and [bk] converges to [b∗] with respect
to the Gromov topology, then [T ∗]≤ [T ].

Let T =
(
S, M, I; j, λ

)
be a bubble type. We denote by 〈T 〉 the basic

bubble type such that 〈T 〉≥T . It can be described explicitly as follows.
Let I =

⊔
k∈K

Ik be the splitting of I into rooted trees and M =
⊔

k∈K

Mk the

corresponding splitting of M ; see Definition 2.5. It can be assumed that
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K =I−Î and k is the unique minimum element of Ik. For every k∈K and
l∈Mk, let

λ′
k =

∑

i∈Ik

λi, j′l = k.

Then 〈T 〉=
(
S, M, K; j′, λ′

)
.

Suppose T =
(
S, M, I; j, λ

)
is a simple bubble type. If H is a subset of Î,

we define bubble type T (H)=
(
S, M, H⊔{0̂}; j′, λ′

)
by

j′l = max
{
i∈H⊔{0̂} : i≤jl

}
and

λ′
i =

∑

i∗H≤h≤i

λh with i∗H = max
{
i∗∈H⊔0̂ : i∗≤ i

}
.

Then T (H) is again a bubble type. The bubble type T (H) is the bubble
type obtained by gluing T -bubble maps with the parameter vÎ such that
vh =0 if and only if h∈H; see the next section.

Given a bubble type T =(S, M, I; j, λ), let d(T ) : I−→R be given by

(2.12) di(T ) = |λi| +
∣∣{l∈M : jl = i}

∣∣ +
∑

ιh=i

dh(T ) ∀i∈I.

Since I is a linearly ordered set, the numbers di(T ) are uniquely defined
by (2.12). If

b =
(
S, M, I; x, (j, y), u

)

is a T -bubble map, b is T -balanced if for all i∈ Î

(B1)
∫

C
|dui ◦ qN |2z +

∑
ιh=i

dh(T )xh +
∑
jl=i

yl = 0;

(B2)
∫

C
|dui ◦ qN |2β(|z|) +

∑
ιh=i

dh(T )β(|xh|) +
∑
jl=i

β(|yl|) = 1
2 .

The integrals above are computed with respect to the metric gV on V . Recall
that we consider C to be a subset of S2 via the map qN . Thus, xh and yl

can be viewed as complex numbers, as done above. If S = S2 and b is as
above, b is completely T -balanced (or cb) if (B1) and (B2) hold for all i∈I.

Denote by HT the set of all holomorphic T -bubble maps. Let

PSL
(0)
2 =

{
g∈PSL2 : g(∞)=∞

}
, GT =

∏

h∈Î

PSL
(0)
2 .

The group GT acts on HT by reparametrizations. In other words, if

b =
(
S, M, I; x, (j, y), u

)
∈ HT and g = gÎ ∈ GT ,
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then gb =
(
S, M, I; gx, (j, gy), (gu)

)
is defined by

(gx)h =

{
gιhxh, if ιh∈ Î;

xh, if ιh 6∈ Î;
(gy)l =

{
gjl

yl, if jl∈ Î;

yl, if jl 6∈ Î;

(gu)i =

{
gi · ui, if i∈ Î;

ui, if i 6∈ Î ,

where for any map f : S2−→V and g∈PSL2, we define

g · f : S2 −→ V by {g · f}(z) = f(g−1z).

Let M(0)
T ⊂HT denote the subset of T -balanced holomorphic maps and

GT ≡
∏

h∈Î

S1 ⊂ GT ,

Since every element of GT is a map on I, A(T ) acts naturally on GT . The

semi-direct product A(T )⋉GT acts on M(0)
T and all the stabilizers are finite.

Denote the quotient by MT , and let

MT =
⋃

T ′≤T

MT ′ .

If A(T ) = {1}, corresponding to the quotient MT = M(0)
T /GT , we obtain

|Î| line (orbi)-bundles

{LhT −→ MT : h∈ Î},
that carry natural norms:

|[b, ch]| = |ch| if b∈M(0)
T and ch∈C.

If A(T ) 6={1}, the fiber products and connect sums of the above line bundles

taken over each orbit of A(T ) are well-defined. Let F
(0)
h T −→M(0)

T be the

bundle with the fiber F
(0)
h,b at b∈M(0)

T , i.e.,

F
(0)
h T =

{
M(0)

T ×C, if xh∈S2;

π∗
hTΣ, if xh∈Σ,

where πh(b) = xh,

with notation as above. The action of GT on M(0)
T lifts to an action on each

bundle F
(0)
h T by

g · (b, vh) =

{(
g · b, gιhg−1

h vh

)
, if ιh∈ Î;(

g · b, g−1
h vh

)
, if ιh 6∈ Î .

Here and in the rest of the paper, we identify S1 with the unit complex
numbers in the usual way. Let FhT be the line orbi-bundle over MT given by

FhT = F
(0)
h T

/
GT .
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This bundle has a natural norm unless ιh =0̂ and S =Σ. In such a case, any
metric g on Σ induces a norm on FhT . Let

F (0)T =
⊕

h∈Î

F
(0)
h T , F

(0)
b T = F (0)T

∣∣
b
; FT =

⊕

h∈Î

FhT , F
(0)
[b] T =F (0)T

∣∣
[b]

.

Note that if T ∗<T , there is a natural splitting
(
A(T ∗)⋉GT ∗

)
= A(T ) ⋉

(
GT ×G

)
,

with G determined by T and T ∗. Thus, GT acts on M(0)
T ∗ and the line

bundles F
(0)
h T ∗, while GT ∗ acts on M(0)

T and F
(0)
h T .

If S =S2, let

BT =
{
b=

(
S, M, I; x, (j, y), u

)
∈HT : b is cb; ui1(∞)=ui2(∞) ∀i1, i2∈I−Î

}
.

Denote by U (0)
T ⊂MT the quotient BT /

(
A(T )⋉GT

)
. The group

G∗
T ≡

∏

i∈I−Î

S1

acts on U (0)
T and MT as follows. If

[b] =
[
(S2, M, I; x, (j, y), u)

]
∈ MT and g = (gi)i∈I−Î ∈G∗

T ,

define g[b]=
[
(S2, M, I; gx, (j, gy), gu)

]
by

(gx)h =

{
xh, if ιh∈ Î;

gιhxh, if ιh 6∈ Î;
(gy)l =

{
yl, if jl∈I;

gjl
yl, if jl 6∈ Î;

(gu)i =

{
ui, if i∈ Î;

gi · ui, if i 6∈ Î .

As in the previous paragraph, all stabilizers are finite. Furthermore, this

GT ∗-action on MT naturally lifts to an action on M(0)
T and along with the

GT -action on M(0)
T induces an action of G̃T ≡G∗

T ×GT on M(0)
T as well as

on F
(0)
h T by

(g∗, g) · (b, vh) =

{(
(g∗, g) · b, gιhg−1

h vh

)
, if ιh∈ Î;(

(g∗, g) · b, g∗ιhg−1
h vh), if ιh 6∈ Î .

Note that G∗
T ′ =G∗

T whenever T ′≤T . Let

UT = U (0)
T /G∗

T , U (0)
T =

⋃

T ′≤T

U (0)
T ′ , UT =

⋃

T ′≤T

UT ′ .

With respect to the Gromov topology, the space ovU (0)
T is Hausdorff and

compact; see [RT]. Furthermore, G∗
T acts continuously on U (0)

T ′ as can be
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easily seen from Definition 2.7. If follows that ŪT is also Hausdorff and
compact in the quotient topology. Denote by

{
LiT −→ŪT : i∈I−Î

}

the line orbi-bundles corresponding to the quotient ŪT = Ū (0)
T /G∗

T . Let

FhT =
(
F

(0)
h T

∣∣
BT

)
/G̃T −→ UT , Fh,[b]T = FhT

∣∣
[b]

;

FT =
⊕

h∈Î

FhT , F[b]T = FT
∣∣
[b]

.

The line bundles FhT have natural norms, defined as in the previous para-
graph.

If T =(S, M, I; j, λ) is a bubble type and

b =
(
S, M, I; x, (j, y), u

)

is a T -bubble map, for any l∈M , let evl : HT −→V be the map given by

evl

(
(S, M, I; x, (j, y), u)

)
= ujl

(yl).

This map descends to the quotients defined above and induces continuous

maps on the spaces MT , U (0)
T , and UT . If µ=µM is an M -tuple of subman-

ifolds in V , put

HT (µ) =
{
b∈HT : evl(b)∈µl ∀l∈M

}
.

Define spaces M(0)
T (µ), MT (µ), MT (µ), etc. similarly. If S =S2, we define

another evaluation map,

ev: BT −→ V by ev
(
(S2, M, I; x, (j, y), u)

)
= u0̂(∞),

where 0̂ is any minimal element of I. This map induces continuous maps on

the spaces Ū (0)
T and ŪT . If µ=µM̃ is an M̃ -tuple of constraints, let

UT (µ) =
{
b∈UT : evl(b)∈µl ∀l∈M̃ ∩ M, ev(b)∈µl ∀l∈M̃−M

}

and define U (0)
T (µ), etc. similarly.

3. The Gluing Construction and the Obstruction Bundle

3.1. Summary and Notation. We now present a gluing construction on
the spaces MT (µ) such that HT is a smooth manifold with the tangent
bundle isomorphic to the kernel of the linearization of the ∂̄-operator, as de-
fined below. The space HT is well-known to be smooth if the linearization
of the ∂̄-operator is surjective; see Chapter 3 in [MS]. However, surjectiv-
ity of the linearization is not a necessary condition; see [Z2] for examples.
In fact, there are two main cases of primary interest to us. The first is
when T =

(
S2, M, I; j, λ) and the linearization of the ∂̄-operator is indeed

surjective. In this case, we give an analytic description of a neighborhood of
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UT (µ) in Ū〈T 〉(µ) for a generic set of constraints µ. The second case is when

T =
(
Σ, M, I; j, λ) and the cokernels of the linearization of the ∂̄-operator

form a vector bundle over HT , which will be the analogue of Taubes’s ob-
struction bundle of [T] in the gluing construction below. Using the same
analysis as in the first case, we describe any sufficiently nice element of
C∞

(λ;M)(Σ; µ) lying near MT (µ), where λ=
∑

λi. The elements of MΣ,tν,λ(µ)

lying near MT (µ) will correspond to the zero set of a certain section of the
obstruction bundle.

For our gluing construction, we fix a smooth family {gV,b : b∈MT } of
Kahler metrics on (V, J). We assume that this family is

(
A(T ) ⋉ GT

)
-

invariant if S = Σ and
(
A(T )⋉G̃T

)
-invariant if S = S2. If b∈MT , X, Y ∈

TqV , and u : (D, j)−→V is a smooth map from a one-dimensional complex
manifold, let

expb,q X = expgb,q
X, ∇b = ∇gb , Πb,XY = Πgb,XY, Db,u = Dgb,u;

see Subsection 1.3 for more details. If S =Σ, we also choose a smooth family

{gT ,x : x=(x){h:ιh=0̂}; xh∈Σ; xh1 6=xh2 if h1 6=h2}
of Riemannian metrics on Σ such that each metric gT ,x is flat on a neigh-

borhood of xh in Σ for all h∈ Î with ιh = 0̂. Existence of such a family of
metrics is shown in [FO]. If

b =
(
Σ, M, I; x, (j, y), u

)
∈HT ,

let gb,0̂ denote the metric gT ,(x){h:ιh=0̂}
on Σ. If i ∈ Î, we write gb,i for the

standard metric on S2. Similarly, if S =S2, for all i∈I, we write gb,i for the
standard metric on S2.

If b=
(
S, M, I; x, (j, y), u

)
∈HT , let

Γ′(b) =
⊕

i∈I

Γ(ui); Γ(b) = Γ(ub) =
{
ξI ∈Γ′(b) : ξh(∞)=ξιh(xh) ∀h∈ Î

}
;

Γ1(b) = Γ1(ub) =
⊕

i∈I

Γ1(ui); Γ0,1(b) = Γ0,1(ub) =
⊕

i∈I

Γ0,1(ui).

Define Db : Γ(b)−→Γ0,1(b) by
(
DbξI

)
i
= Db,uiξi ∀i∈I.

We denote the kernel of the operator Db on Γ(b) by Γ−(b). If ξ ∈Γ(ui) or
ξ∈Γ1(ui), let ‖ξ‖b,Ck and ‖ξ‖b,2 denote the Ck- and L2-norms of ξ computed
with respect to the metrics gV,b on V and gb,i on Σb,i. If ξ = ξI ∈ Γ′(b) or
ξ∈Γ1(b), put

‖ξ‖b,Ck =
∑

i∈I

‖ξi‖b,Ck , ‖ξ‖b,2 =
∑

i∈I

‖ξi‖b,2.

Let πb,− : Γ(b) −→ Γ−(b) be the (L2, b)-orthogonal projection map.
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The space PbT of perturbations of a bubble map b is the collection of
tuples σ=(ξÎ ; wÎ⊔M ), where

ξi∈Γ(ui) ∀i∈I, wh∈F
(0)
h,b ∀h∈ Î , wl ∈

{
C, if l∈M & Σb,jl

=S2;

Tyl
Σ, if l∈M & Σb,jl

=Σ.

If σ is sufficiently small, we define expb σ=
(
S, M, I; x(σ), (j, y(σ)), uσ

)
by

xh(σ) =

{
xh+wh, if Σb,ih =S2;

expgb,0̂,xh
wh, if Σb,ih =Σ;

yl(σ) =

{
yl+wl, if Σb,jl

=S2;

expgb,0̂,yl
wl, if Σb,jl

=Σ;
and uσ,i =expb,ui

ξi.

If z ∈ Σ, let |v|b = |v|gb,0̂,x. For consistency, if v ∈ C, let |v|b = |v|. Along

with the (L2, b)-norm on the vector fields defined above, we obtain an inner-
product on the space of tuples σ as above.

In order to get a good description of the spaces M(0)
T as submanifolds of

HT , we describe an action of an open subset of 0 in
(
C⊕R⊕R

)Î
on bubble

maps and distinguished elements σ
(k)
(b,i)∈PbT that correspond to this action.

If

(c, r, θ)=(c, r, θ)Î ∈
(
C×R×R

)Î

and b is a bubble map as above, we define

(c, r, θ) · b =
(
S, M, I; (c, r, θ)x, (j, (c, r, θ)y), (c, r, θ)u

)

by setting
(
(c, r, θ)x

)
h

= eiθιh (1+rιh)(xh+cιh),
(
(c, r, θ)y

)
l
= eiθjl (1+rjl

)(yl+cjl
),

(
(c, r, θ)u

)
i

(
qN (z)

)
= ui

(
qN

(
(1+ri)

−1e−iθiz−ci

))
.

If (c, r, θ) is sufficiently small, (c, r, θ) ·b is again a bubble map, i.e., the maps
into V still agree at the nodes, and the nodes and the marked points are
still all distinct. In fact, the values of the maps at the nodes or the marked
points do not change, i.e.,

(
(c, r, θ)u

)
ιh

(
((c, r, θ)x)h

)
=uιh(xh),

(
(c, r, θ)u

)
h
(∞)=uh(∞),

and
(
(c, r, θ)u

)
jl

(
((c, r, θ)y)l

)
=ujl

(yl).

Furthermore, if b∈HT , (c, r, θ) ·b∈HT . If b is of type T , the above describes
the action of a neighborhood of the identity in GT on the space of stable
maps of type T . The action by C corresponds to the translations of C,
by the first R-component to dilations about the origin, and by the last R-

component to rotations about the origin. If S =S2 and (c, r, θ)∈
(
C×R×R

)I

is sufficiently small, we define (c, r, θ) · b similarly.
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If u∈C∞(S2; V ), define ξ
(1)
u , . . . , ξ

(4)
u ∈Γ(u) by:

ξ(1)
u (qN (z)) = −d(u ◦ qN )

∣∣∣
z

∂

∂s
, ξ(2)

u (qN (z)) = −d(u ◦ qN )
∣∣∣
z

∂

∂t

ξ(3)
u (qN (z)) = −d(u ◦ qN )

∣∣∣
z

(
s

∂

∂s
+ t

∂

∂t

)
= −rd(u ◦ qN )

∣∣∣
z

∂

∂r
,

ξ(4)
u (qN (z)) = d(u ◦ qN )

∣∣∣
z

(
t

∂

∂s
− s

∂

∂t

)
= −d(u ◦ qN )

∣∣∣
z

∂

∂θ
.

where we write z = s+ it ∈ C and r =
√

s2+t2. These vector fields ex-
tend smoothly by zero over the south pole. For any x ∈ S2 −{∞}, let

w
(1)
x , . . . , w

(4)
x ∈C be given by

w(1)
x = 1, w(2)

x = i, w(3)
x = x, w(4)

x = ix.

If b is a bubble map as above, k=1, . . . , 4, i∗∈ Î if S =Σ and i∗∈I if S =S2,
let

σ
(k)
(b,i∗) =

(
(ξ

(k)
(b,i∗))I , (w

(k)
(b,i∗))Î⊔M

)

be given by

ξ
(k)
(b,i∗),i =

{
ξ
(k)
ui , if i= i∗;

0, if i 6= i∗;
w

(k)
(b,i∗),h =

{
w

(k)
xh , ιh = i∗;

0, ιh 6= i∗;

w
(k)
(b,i∗),l =

{
w

(k)
yl , jl = i∗;

0, jl 6= i∗.

The tuples σ
(k)
(b,i∗) correspond to the infinitesimal action of GT on the space

of stable maps of type T .
Finally, if X is any space, F −→X a normed vector bundle, and δ : X−→R

is any function, let

Fδ =
{
(b, v)∈F : |v|b <δ(b)

}
.

Similarly, if Ω is a subset of F , let Ωδ =Fδ ∩ Ω. If υ =(b, v)∈F , denote by
bυ the image of υ under the bundle projection map, i.e., b in this case.

3.2. The Basic Setup. In this subsection, we describe our assumptions on
the smooth structure of HT and state some of their implications.

Definition 3.1. Bubble type T =(S2, M, I; j, λ) is (V, J)-regular if for all

b =
(
S, M, I; x, (j, y), u

)
∈ HT ,

(a) Db,ui : Γ(ui)−→Γ0,1(ui) is onto for all i∈I;
(b) kerDb,ui −→Tui(∞)V , ξ−→ξ(∞), is onto for all i∈I.

Definition 3.2. Simple bubble type T =(S, M, I; j, λ) is (V, J)-semiregular
if
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(a) the space H(S,∅,{0̂};,λ0̂) is a complex manifold, and there exist

δ, C ∈ C∞(H(S,∅,{0̂};,λ0̂); R
+)

and for each element b=(S, ∅, {0̂}; , u0̂) of H(S,∅,{0̂};,λ0̂) a map

hT ,0̂;b :
{
ξ∈ker DgV ,b : ‖ξ‖gV ,C0 <δ(b)

}
−→ Γ(u0̂)

such that

‖hT ,0̂;b(ξ)‖gV ,b≤C(b)‖ξ‖2
gV ,C0 and

∥∥hT ,0̂;b(ξ) − hT ,0̂;b(ξ
′)
∥∥

gV ,C0 ≤C(b)
∥∥ξ−ξ′

∥∥
gV ,C0 ,

for all ξ, ξ′∈kerDgV ,b with ‖ξ‖gV ,C0 , ‖ξ′‖gV ,C0 < δ(b) and the map

HT ,0̂;b :
{
ξ∈ker DgV ,b : ‖ξ‖gV ,C0 <δ(b)

}
−→H(S,∅,{0̂};,λ0̂),

ξ −→ expgV ,u0̂

(
ξ+hT ,0̂;b(ξ)

)
,

is an orientation-preserving diffeomorphism onto an open neighbor-
hood of b in H(S,∅,{0̂};,λ0̂). Furthermore, the family of maps {HT ,0̂;b :

b∈H(S,∅,{0̂};,λ0̂)} is smooth.

(b) For all b=
(
S, M, I; x, (j, y), u

)
∈HT

(b-i) Db,uh
: Γ(uh)−→Γ0,1(uh) is onto for all h∈ Î;

(b-ii) kerDb,uh
−→Tuh(∞)V , ξ−→ξ(∞), is onto for all h∈ Î.

Remarks.

(1) All conditions in both definitions above are independent of the choice
of metric on V .

(2) Condition (a) of Definition 3.2 says that H(S,∅,{0̂};,λ0̂) is a smooth man-

ifold modeled on kerDb for b∈H(S,∅,{0̂};,λ0̂), as would be the case if

Db : Γ(ub) −→ Γ0,1(ub)

were surjective.
(3) The conditions of Definitions 3.1 and 3.2 insure that HT is a smooth

manifold; see Proposition 3.3 below. However, (b) of Definition 3.1
and (b-ii) of Definition 3.2 are somewhat stronger than necessary to
show that HT is smooth. They allow us to obtain the second part
of (1) in Proposition 3.3, which is used in the proof of surjectivity of
the gluing map; see Subsection 4.3. These two conditions hold for all
complex homogeneous manifolds; see Section 10 in [RT].

Note that if T is semiregular, the homotopy invariance of the index implies
that the vector spaces

Γ0,1
− (b) ≡ cokerDb ≈ ker D∗

b ⊂ Γ0,1(b), b ∈ HT ,
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form a vector bundle over HT . Here D∗
b denotes the formal adjoint of Db

with respect to a metric g on S; it is a J-linear operator. The space kerD∗
b is

independent of a conformal choice of the metric g. The bundle Γ0,1
− −→HT

will be called the T -cokernel bundle. It is
(
A(T )⋉GT

)
-equivariant, and thus

descends to a bundle Γ0,1
− −→MT , which will be the analogue of Taubes’s

obstruction in our gluing setting.
Let T =

(
S, M, I; j, λ

)
be a bubble type. If b =

(
S, M, I; x, (j, y), u

)
∈

HT , put

KbT =
{

σ=(ξ, wÎ⊔M )∈PbT : ξi∈ker(Db,ui) ∀i∈I;

〈σ, σ
(k)
(b,h)〉=0 ∀h∈ Î , k∈ [4];

ξh(∞)=ξιh(xh)+duιh

∣∣
xh

wh ∀h∈ Î
}

.

If σ=(ξ, wÎ⊔M ) ∈ KbT , let

‖σ‖b,Ck = ‖ξ‖b,Ck +
∑

h∈Î

|wh|b +
∑

l∈M

|wl|b.

We take the default norm on KbT to be given by ‖ · ‖b,C0 . If b is as above,

b′ =
(
S, M, I; x′, (j, y′), u

)
,

and δ>0, we say d(b, b′)<δ if there exists σ∈PbT such that expb σ=b′ and
‖σ‖b,C0 ≤δ.

Proposition 3.3.

(1) If T = (S, M, I; j, λ) is a regular or semiregular bubble type, HT is

a complex manifold and there exist ǫT , CT ∈ C∞(M(0)
T ; R+) with the

following property. If b∗∈HT and

b =
(
S, M, I; x, (j, y), u

)
is s.t. d(b∗, b) < ǫT (b∗) and ∂̄ui = 0 ∀i∈I,

there exist ξi∈Γ(ui) for i∈ Î such that

‖ξi‖gV ,C0 ≤ CT (b∗)
∑

h∈Î

dV

(
uιh(xh), uh(∞)

)
and

b′ = (S, M, I; x, (j, y), u′) ∈ HT ,

where u′
0̂
=u0̂ and u′

i =expgV ,ui
ξi if i∈ Î.

(2) The space M(0)
T is a smooth oriented manifold on which the group GT

acts smoothly. The maps

ev: M(0)
T −→ V, ev

(
S, M, I; x, (j, y), u

)
= u0̂(∞),

evl : M(0)
T −→ V, evl

(
S, M, I; x, (j, y), u

)
= ujl

(yl),

dui|z : M(0)
T −→ T ∗ΣT ,i⊗u∗

i TV, dui|z
(
S, M, I; x, (j, y), u

)
= dui|z,
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are smooth. In particular, ui −→‖dui‖b,C0 defines a continuous func-

tion on M(0)
T .

(3) There exist δT , CT ∈C∞(M(0)
T ; R+) and smooth maps

hT ,b = h
(1)
T ,b ⊕ h

(2)
T ,b : KbTδT (b) −→ Γ′(b) ⊕

(
C ⊕ R

)Î
,

such that
∥∥hT ,b(σ)

∥∥
b,C0 ≤ CT (b)‖σ‖2

b,C0,

∥∥hT ,b(σ) − hT ,b(σ
′)
∥∥

b,C0 ≤ CT (b)
(
‖σ‖b,C0 + ‖σ′‖b,C0

)
‖σ−σ′‖b,C0 ,

and each map

H
(0)
T ,b :

{
(σ, θ)∈KbTδT (b)×R

Î : |θ|<π
}
−→ M(0)

T ,

H
(0)
T ,b(b, σ, θ) =

(
h

(2)
T ,b(σ), θ

)
· expb

(
σ+h

(1)
T ,b(σ)

)
,

is orientation-preserving diffeomorphism onto an open neighborhood

of b in M(0)
T .

Proof. (1) Let

Ti = (ΣT ,i, {l : jl = i}+{h : ιh = i}, {0̂}; 0̂, λi).

By (a) of Definition 3.1, and (a) and (b-i) of Definition 3.2, HTi is a complex
manifold for all i∈I. Let

△Î
V =




(q, q)Î ∈
∏

Î

(V ×V ) : qh∈V




 .

The submanifold △Î
V is the Î-product of the diagonal in V ×V . Since V is

oriented, so is the normal bundle of △Î
V . Claim (1) of the proposition follows

by applying the Implicit Function Theorem, (b) of Definition 3.1 and (b-ii)
of Definition 3.2 to the smooth map

evÎ :
∏

i∈I

HTi −→
∏

Î

(V ×V ),

evh

(
(S, M, I; x, (j, y), u)

)
=

(
uh(∞), uιh(xh)

)
.

Note that HT =ev−1

Î

(
△Î

V

)
.

(2) For any u∈C∞(S2; V ), define Ψ̃u∈C, Ψ(3)u∈R, and Ψu∈C×R by

Ψu =
(
Ψ̃u, Ψ(3)u

)
=

(∫

C

|du ◦ qN |2z,

∫

C

|du ◦ qN |2β(|z|) − 1

2

)
,
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where the integrals are computed using the metric gV . For i∗ ∈ Î if S = Σ
and i∗∈I if S =S2, we define maps

ΨT ,i∗ :
∏

i∈I

HTi −→ C×R by

ΨT ,i∗
(
S, M, I; x, (j, y), u

)
=

(
Ψ̃ui∗+

∑

ιh=i∗

dh(T )xh+
∑

jl=i∗

yl,

Ψ(3)ui∗+
∑

ιh=i∗

dh(T )β(|xh|)+
∑

jl=i∗

β(|yl|)
)

.

These maps ΨT ,i∗ are smooth, since the smooth structure on all HTi is

described similarly to (a) of Definition 3.2. Furthermore, if b∈M(0)
T , i∗∈ Î,

and k∗ = 1, 2, 3, since ΨT ,i(b)=0 for all i and β′ does not change sign, by
Lemma 3.4,

dΨ
(k∗)
T ,i∗

∣∣∣
b
σ

(k)
(b,i)






= 0, if i 6= i∗;

6= 0, if i= i∗, k=k∗;

= 0, if k 6=k∗ 6=3,

where k = 1, 2, 3. By (b) of Definition 3.1 and (b-ii) of Definition 3.2, it
follows that the map

∏

i∈I

HTi −→
(
C×R

)Î ×
∏

Î

(V ×V ), b −→
((

ΨT ,i(b)
)
i∈Î

, evÎ(b)
)
,

is transversal to the submanifold {0}×△Î
V . The preimage of this submanifold

is precisely the space M(0)
T . Thus, M(0)

T is a smooth oriented manifold by
the Implicit Function Theorem.

Lemma 3.4. For any k∈ [4] and u∈C∞(S2; V ), ξ(k)(∞)=0. Furthermore,

Ψ̃
(
(c, r, θ) · u

)
= (1+r)

(
Ψ̃u + c‖du‖2

2

)
∀(c, r)∈C×R;(3.1)

d

dr
Ψ(3)

(
(0, r, θ) · u

)∣∣∣
r=0

=

∫

C

|d(u◦qN )|2β′(|z|)|z|,(3.2)

where (c, r) · u is defined as in Section 3.1. Finally, Duξ
(k)
u =0 if ∂̄u=0.

Proof. The first and last statements are immediate. We use the change of
variables

z −→ (1+r)−1z − c

to prove (3.1):
∫

C

∣∣d
(
((c, r) · u) ◦ qN

)∣∣2z =

∫

C

(1+r)−2
∣∣d(u ◦ qN )

∣∣2
(1+r)−1z−c

z

= (1+r)

∫

C

∣∣d
(
u ◦ qN )

∣∣2(z+c) = (1+r)
(
Ψ̃u + c‖du‖2

2

)
,
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Similarly,

d

dr

∫

C

∣∣d
(
(r · u) ◦ qN

)∣∣2β(|z|)
∣∣∣
r=0

=
d

dr

∫

C

∣∣d(u ◦ qN )
∣∣2β

(
(1+r)|z|

)∣∣∣
r=0

=

∫

C

∣∣d(u ◦ qN )
∣∣2β′

(
|z|

)
|z|.

The lemma is now proved, since the action by the θ-component does not
change Ψ̃.

If T =(S2, M, I; j, λ) is a regular bubble type, with notation as above, let

K̃bT =
{
σ = (ξI , wM+Î)∈KbT : 〈σ, σk

(b,0̂)
〉=0 ∀k∈ [4],

ξi1(∞)=ξi1(∞) ∀i1, i2∈I−Î
}
.

By (b) of Definition 3.1 and the same argument as in the proof of Proposi-

tion 3.3, we can construct smooth maps h
(1)
T ,b×h

(2)
T ,b : K̃bTδ(b)−→Γ′(b)×(C×R)I

such that each map

H
(0)
T ,b :

{
(b, σ, θ)∈KbT̃δ(b)×R

I : |θ|<π
}
−→ BT ,

H
(0)
T ,b(σ, θ) =

(
h

(2)
T ,b(σ), θ

)
· expb

(
σ+h

(1)
T ,b(σ)

)
,

is orientation-preserving diffeomorphism onto an open neighborhood of b
in BT .

3.3. Construction of Nearly Holomorphic Bubble Maps. Let

T = (S, M, I; j, λ)

be a simple bubble type. In this subsection, for all

b ∈ M(0)
T and υ=(b, vÎ)

with vÎ ∈ F
(0)
b T sufficiently small, we construct a bubble map b(υ) with

domain Συ, where Συ is as in Subsection 2.2. The map ub(υ) will be just
the composite ub ◦ qυ. We then define a Riemannian metric gυ,i and a
nonnegative function ρυ,i on each component Συ,i of Συ. The metrics will
be such that the C0-norm of the differential of qυ is bounded independently
of vÎ . The nonnegative functions are used to modify the Sobolev norms, in
such a way that the norm of the inverse of the operator Db(υ) on certain
subspaces of Γ(b(υ)) is bounded independently of vÎ .

By Proposition 3.3, M(0)
T is a smooth manifold. If S =S2, let

δT ∈ C∞(M(0)
T ; R+)

be an A(T )⋉G̃T -invariant function such that δT (b) < r⊤b
for all b∈M(0)

T .
If S =Σ, let

δT ∈ C∞(M(0)
T ; R+)
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be an A(T )⋉GT -invariant function such that for all

b =
(
Σ, M, I; x, (j, y), u

)
∈ M(0)

T ,

(A1) 4δT is smaller than the function δ of Lemma 5.1;
(A2) 4δT (b)<rCb

gb,0̂.

In both cases, it can be assumed that δT does not exceed 1
4 .

If H is a subset of Î, put

F (H)T =
{
υ=(b, vÎ)∈F (0)T : vh =0 if and if h∈H

}
,

FHT =
{
υ=[b, vÎ ]∈FT : vh =0 if and if h∈H

}
.

For any υ = (b, vÎ)∈F (0)T , let |υ| denote |υ|gb
if S = Σ. From now on, we

assume that δ∈C∞(M(0)
T ; R+) is an A(T )⋉GT -invariant function if S =Σ

and an A(T )⋉G̃T -invariant function if S =S2 such that 8δ
1
2 ≤δT . If

υ =
(
bυ, vÎ

)
=

(
(S, M, I; x, (j, y), u), vÎ

)
∈ F (0)Tδ,

let qυ : Συ−→Σbυ be the smooth map defined in Subsection 2.2 for

υ =
(
C, vÎ

)
=

(
(S, M, I; x, (j, y)), vÎ

)
,

using the metric gbυ ,0̂ on Σ if S = Σ. Let uυ =ubυ◦qυ and b(υ)=
(
C(υ), uυ

)
.

We now define a Riemannian metric gυ,i on Συ,i for each i ∈ I(υ) ⊂ I.
Along the way, we construct a metric gυ,i on Σbυ ,i for each i∈ I. Suppose

i∈I and for all h∈ Î such that ιh = i, we have constructed a metric gυ,h on

Σbυ ,h. For each h∈ Î such that ιh = i and vh 6=0, let g̃υ,i,h denote the metric

on Bbυ ,h

(
2δ(bυ)

1
2

)
which is the pullback of the metric gυ,h by the map

z −→ qN

(φbυ ,h

vh

)
, where φbυ ,h =

{
φ⊤bυ ,h, if xh∈S2;

φ⊤bυ ,gb,h, if xh∈Σ.

This metric is conformal with the original metric gbυ ,i on Σbυ ,i, because the
maps φb,h are holomorphic on the set {rb,h ≤ δT (b)} and the metric gυ,h

is conformal with the standard metric on C. Thus, there exists a smooth
positive function λυ,i,h such that g̃υ,i,h =λ2

υ,i,hgbυ ,i. Let λυ,i∈C∞(Σbυ ,i; R
+)

be given by

λυ,i(z)=

{
λυ,i,h(z)+β|vh|

(
rbυ ,h(z)

)(
1−λυ,i,h(z)

)
, if ιh = i, rbυ ,h(z)≤2|vh|

1
2 ;

1, if rbυ ,h(z)≥2|vh|
1
2 ∀h∈ Î .

Since I is a rooted tree, this procedure defines metrics gυ,i for each i∈I(υ).
In addition, we define a smooth nonnegative function ρυ,i on Συ,i for each

i∈ I(υ). As in the previous paragraph, along the way we define a function

ρυ,i for each i∈ I. Suppose i∈ I and for all h∈ Î such that ιh = i, we have
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constructed a smooth function ρυ,h on Σbυ ,h. Suppose h ∈ Î is such that
ιh = i and z∈Σbυ ,i. If vh 6=0 and

|z|h≡rbυ,h(z) < δT (bυ),

we put

ρυ,i(z) = ρυ,h(qh,vh
z) + β

(δT (bυ)|z|h
|vh|

) {(
|z|2h +

|vh|2
|z|2h

)
− ρυ,h(qh,vh

z)

}
,

where qh,vh
is defined as in Section 2.3, using the metric gbυ ,0̂ on Σ if S =Σ.

If vh 6=0 and δT (bυ)≤|z|h≤2δT (bυ), we set

ρυ,i(z) =
(
|z|2h +

|vh|2
|z|2h

)
+ β

( |z|h
δT (bυ)

) {
1 −

(
|z|2h +

|vh|2
|z|2h

)}
.

If vh =0 and |z|h≤2δT (bυ), let

ρυ,i(z) = |z|2h + β
( |z|h

δT (bυ)

){
1 − |z|2h

}
.

If |z|h ≥ 2δT (bυ) for all h∈ Î with ιh = i and vi 6= 0 if i > 0, set ρυ,i(z) = 1.
Otherwise, let

ρυ,i(z) = |q−1
S (z)|2 + β

(
δT (bυ)|q−1

S (z)|
){

1 − |q−1
S (z)|2

}
.

This construction defines nonnegative functions ρυ,i on Συ,i for all i∈I(υ).
We finally define norms on the spaces Γ(uυ) and Γ1(uυ). If ηi∈Γ1(uυ,i),

put

(3.3) 2‖ηi‖υ,p;i =

(∫

Συ,i

|ηi|p
) 1

p

+

(∫

Συ,i

ρ
− p−2

p

υ,i |ηi|2
) 1

2

,

where |ηi| and the integrals are computed with respect to the metric gυ,i on
Συ,i and gV,bυ on V . Denote by ‖ηi‖υ,C0;i the C0-norm of ηi with respect to

these metrics. If η=ηI(υ)∈Γ1(uυ), let

‖η‖υ,p =
∑

i∈I(υ)

‖ηi‖υ,p;i, ‖η‖υ,C0 =
∑

i∈I(υ)

‖ηi‖υ,C0;i.

Similarly, for any ξi∈Γ(uυ,i), put

2‖ξi‖υ,p;i =

(∫

Συ,i

|ξi|p
) 1

p

+

(∫

Συ,i

ρ
− p−2

p

υ,i |ξi|2
) 1

2

;(3.4)

‖ξ‖υ,p,1;i = ‖ξi‖υ,p;i + ‖∇ξi‖υ,p;i,

where we again use the metrics gυ,i on Συ,i and gV,bυ on V as in (3.3). Denote
by ‖ξi‖υ,C0;i the C0-norm of ξi with respect to the metric gV,bυ on V . If
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ξ=ξI(υ)∈Γ(uυ), let

‖ξ‖υ,p =
∑

i∈I(υ)

‖ξi‖υ,p;i, ‖ξ‖υ,p,1 =
∑

i∈I(υ)

‖ξi‖υ,p,1;i,

‖ξ‖υ,C0 =
∑

i∈I(υ)

‖ξi‖υ,C0;i.

Note that even though the functions ρ
− p−2

p

υ,i have poles at the singular points
of Συ, all smooth one-forms and vector fields have finite norms defined by
(3.3) and (3.4), respectively, since p−2

p <1. We denote by Lp
1(υ) the comple-

tion of Γ(uυ) with respect to the (υ, p, 1)-norm and by Lp(υ) the completion
of Γ0,1(uυ) with respect to the (υ, p)-norm. Finally, let

Dυ : Γ(uυ) −→ Γ0,1(uυ)

denote the linearization of the ∂̄-operator at uυ with respect to the metric
gV,bυ on V .

Lemma 3.5. If T is a simple bubble type and p > 2, there exist δ, C ∈
C∞(M(0)

T ; R+) such that for all υ∈F (0)Tδ,

(1) ‖duυ‖υ,C0 ≤ C(bυ) and ‖∂̄uυ‖υ,p ≤ C(bυ)|υ|
1
p ;

(2) ‖Dυξ‖υ,p ≤ C(bυ)‖ξ‖υ,p,1 for all ξ∈Γ(uυ);
(3) ‖ξ‖υ,C0 ≤ C(bυ)‖ξ‖υ,p,1 for all ξ∈Γ(uυ);

(4) ‖ξ‖υ,p,1 ≤ C(bυ)
(
‖Dυξ‖υ,p+‖ξ‖υ,p

)
for all ξ∈Γ(uυ).

Proof. If h∈I−I(υ) and S =S2, let A±
υ,h be the annulus as in Subsection 2.2.

If S = Σ, let A±
υ,h denote A±

gbυ ,υ,h. By definition of the norms, qυ is an

isometry outside of such annuli, and by Lemma 2.2 the C0-norm of dqυ

is bounded on such annuli independently of vÎ . Thus, the first part of (1)
follows from (2) of Proposition 3.3. Since ρυ≥|vh| on Aυ,h, the second part of
(1) follows from Lemma 2.2. Statement (2) of the lemma is immediate from
the definition of the norms. The last two claims are proved in the appendix;
see Propositions 5.7 and 5.11. In fact, the C0-norm of ξ is bounded by the
usual Lp

1-norm of ξ.

3.4. Scale of Variations. In Subsection 3.6, we consider perturbations of
the bubble maps {b(υ)} in directions “away” from the space of such bubble
maps. More precisely, we look at replacing uυ by expbυ ,uυ

ξ with ξ lying in

a certain subspace of Lp
1(υ) complementary to “the tangent space” of the

space of maps {b(υ)}. If T is regular, one obvious candidate for such a
subspace is the (L2, υ)-orthogonal complement of the kernel of Dυ. While
the construction in Subsection 3.6 would go through, we would run into
significant difficulty showing injectivity and surjectivity of the gluing map;
see Subsections 4.2 and 4.5. In this subsection, we start by describing a
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choice of the complementary subspace which will work for the purposes of
Subsections 3.6, 4.2, and 4.5. We then describe norms on the tangent spaces
to FT and the properties of our setup that are sufficient to show injectivity
and surjectivity of the gluing map.

Suppose υ=
(
(S, M, I; x, (j, y), u), v

)
∈F (0)Tδ, where T is a simple bubble

type as before. For any ξ∈Γ(bυ), define Rυξ∈Lp
1(υ) by

{Rυξ}(z) = ξ(qυ(z)).

Note that Rυξ is smooth outside of the |I−I(υ)| circles mapped by qυ to
the nodes of Συb

and is continuous everywhere, since Γ(bυ) is the set of
smooth vector fields on the components of Σbυ that agree at the nodes. It
follows that Rυξ is indeed of class Lp

1. Let Γ−(υ) be the image of ker(Dbυ)
under the map Rυ. This space models the “tangent bundle” to the space
of maps {b(υ)}. Denote by Γ+(υ) its (L2, gυ)-orthogonal complement in
Lp

1(υ). Let πυ,− and πυ,+ be the (L2, gυ)-orthogonal projections onto Γ−(υ)
and Γ+(υ), respectively.

With H⊂ Î and υ∈F (H)Tδ, let

TυFHT =
{
̟=(ξ, wÎ⊔M , θÎ , rÎ−H) : (ξ, wÎ⊔M )∈KbυT ; θh, rh∈R

}
;

T̃υFHT =
{
(ξ, wÎ⊔M , θÎ , rÎ−H)∈TυFHT : wh =0 ∀h∈H

}
.

Given ̟ as above, put

‖̟‖ = ‖ξ‖bυ ,C0 +
∑

h∈Î

|wh|bυ +
∑

l∈M

|wl|bυ +
∑

h∈Î

|θh| +
∑

h∈Î−H

|rh|.

If δT and H
(0)
T ,bυ

are as in Proposition 3.3 and ‖̟‖<δT (bυ), put

b̟ ≡
(
S, M, I; x(̟), (j, y(̟)), u(̟)

)
= H

(0)
T ,bυ

(
ξ, wÎ⊔M ; θÎ

)
∈ M(0)

T ,

vh(̟) =





(1 + rh)

{
vh, if xh∈S2;

dφ−1
bυ ,h|φbυ,hxh(̟)vh, if xh∈Σ;

if h 6∈H;

0, if h∈H;

υ(̟) ≡
(
b̟, (v(̟))Î

)
.

Then υ(̟)∈F (H)T2δ if ‖̟‖<δ(bυ) for some δ∈C∞(M(0)
T ; R+) sufficiently

small. If H =∅, TυFHT = T̃υFHT models the tangent space of [υ] in FHT .
If H 6= ∅, the bundle FHT and the construction in the previous subsection
lift to a bundle HFT over

MH
T ≡ M(0)

T

/{
gÎ ∈GT : gh =1 ∀g∈H}.

Then TυFHT models the tangent space of [υ] in HFT . On the other hand,

T̃υFHT models the tangent space of [υ] in the restriction of HFT to the
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subspace
{[

b′=(S, M, I; x′, (j, y′), u)
]
∈MH

T : x′
h =xh ∀h∈H

}
.

The reason for defining subspaces T̃υFHT is that if x′
h 6=xh for some h′∈H,

b(υ) and b(υ′) do not have the same singular points for all υ ∈F
(H)
b T and

υ∈F
(H)
b′ T . Since the perturbation construction of Subsection 3.6 does not

change the singular points of b(υ) and b(υ′), the resulting bubble maps b̃(υ)

and b̃(υ′) will necessarily be different.
We now define norms on TυFHT , which make the estimates in Lemma 3.6

dependent only on bυ. If h∈ Î−H, let

w′
h = φbυ ,hqυ(̟),ιh

(
q−1
υ,ιh

(ιh, xh)
)
∈ F

(0)
h,bυ

if qυ(̟),ιh

(
q−1
υ,ιh

(ιh, xh)
)
∈ Σbυ ,ιh .

In such a case, let

‖̟‖υ,h =

∣∣∣∣
w′

h + wh

vh

∣∣∣∣ .

Otherwise, put ‖̟‖υ,h =1. Let ‖̟‖υ =‖̟‖+
∑

h∈Î−H

‖̟‖υ,h.

In order to simplify notation, we replace υ(̟) by ̟ whenever there is no
ambiguity. If ‖̟‖υ is sufficiently small, define ζ̟∈Γ′(uυ) by

expbυ ,uυ
ζ̟ = u̟, ‖ζ̟‖bυ ,C0 < inj gV,bυ .

Similarly, l∈M , define wl(̟)∈Tyl(υ)Συ,jl(υ) by

expgυ ,yl(υ) wl(̟) = yl

(
υ(̟)

)
, |wl(̟)| ≡ |wl(̟)|gυ < injyl(υ)gυ.

If ̟∈ T̃FH
υ T and ξ∈Γ(uυ), let R̟ξ∈Γ(u̟) be the vector field given by

R̟ξ(z) = Πbυ ,ζ̟(z)ξ(z).

Note that since b(υ) and b(̟) have the same singular points whenever ̟∈
T̃FH

υ T , Πbυ,ζ̟ does indeed map Γ(uυ) to Γ(u̟). If η ∈ Γ1(uυ), we define
R̟η∈Γ1(u̟) similarly. Let S̟ denote the inverse of R̟.

Lemma 3.6. There exist δ, C∈C∞(M(0)
T ; R+) such that for all υ∈F (H)Tδ

and ̟∈ T̃υFHTδ,

(1) C(bυ)−1‖̟‖υ ≤ ‖ζ̟‖υ,p,1 +
∑

l∈M

|wl(̟)|gυ ≤ C(bυ)‖̟‖υ;

(2)
∥∥gV,b̟

gV,bυ
− 1

∥∥
C3 ≤ C(bυ)‖̟‖,

∥∥g̟

gυ
− 1

∥∥
C0 ≤ C(bυ)‖̟‖υ, and

∥∥ρ̟

ρυ
−

1
∥∥

C0 ≤ C(bυ)‖̟‖υ;

(3)
∥∥S̟du̟−duυ

∥∥
υ,p

≤ C(bυ)‖̟‖υ,
∥∥S̟∂̄u̟−∂̄uυ

∥∥
υ,p

≤ C(bυ)|υ|
1
p ‖̟‖υ;

(4)
∥∥S̟ν − ν

∥∥
υ,p

≤ C(bυ)
∥∥̟‖υ;

(5)
∥∥S̟D̟R̟ξ−Dυξ

∥∥
υ,p

≤C(bυ)‖̟‖υ‖ξ‖υ,p,1 and∥∥S̟π̟,±R̟ξ−πυ,±ξ
∥∥

υ,p,1
≤C(bυ)‖̟‖υ‖ξ‖υ,p,1 for all ξ∈Γ(uυ).
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Proof. The first statement of (2) is clear. Proofs of (1), the last two claims
of (2), (3), and the last claim of (5) are direct, though lengthy, computations,
all of the same nature. The statement of (4) is immediate from (1). The
first claim of (5) follows from (2) and basic Riemannian geometry estimates
as in [Z1].

Remark. The second claim in (5) above is proved by choosing an orthonor-

mal basis {ξb,i} for the kernel of Db for b lying near bυ in M(0)
T , so that each

ξb,i varies smoothly with b. Then the claim follows immediately from an esti-
mate on S̟Rυ(̟)ξb̟,i − Rυξb,i, since the projection maps can be expressed
in terms of inner-products with ξb,i. Note that if we had defined Γ−(υ) to
be the kernel of Dυ in the case T is regular, this claim, if true, would have
been much harder to prove because of the presence of small eigenvalues of
D∗

υDυ; see Subsection 3.6 for more details.

If υ ∈F (0)Tδ, (Συ, gυ) can be viewed as a connected sum of the surfaces

{(ΣT ,i, gbυ,i)} with very thin necks. If ̟ ∈KbυT ⊂ TυF ∅T is as above and

|wh| ≥ 2|vh|
1
2 , the maps uυ : Σ −→ V and u̟ : Σ−→V are very far apart

in the C0-norm even if ‖̟‖ is small. However, we can still compare the
two maps and the various objects of Lemma 3.6, appropriately defined, on
the corresponding direct summands. If the gluing map of Subsection 3.6 is
defined only on F (∅)Tδ, and not on FTδ, we need to be able to do such com-
parisons in order to adjust the gluing map in the presence of constraints µ;
see Subsection 3.8.

In order to state an analogue of Lemma 3.6 with ‖̟‖υ for ̟∈ T̟̃FHT
replaced by ‖̟‖ for

̟ ∈ KbυT ⊂ T̟̃F ∅T ,

for each ̟∈KbυTδ(b), with δ sufficiently small, we construct a smooth map
q̟̃ : (Συ, gυ)−→(Σ̟, g̟), which is almost an isometry. The map will depend

only on the elements wh∈F
(0)
b,h . The structure of the construction is similar

to the construction of the map qυ in Subsection 2.2. For each h ∈ Î with
ιh = 0̂, let p̃h,̟ : Bbυ ,h

(
4δT (bυ)

)
−→ Σ be the (holomorphic) (gbυ ,0̂, gb̟,0̂)-

isometry provided by Lemma 5.1. We define q̃h,̟ : Σ−→Σ by setting

q̃h,̟(z) = φ−1
bυ ,h

{
φbυ ,hp̃h,̟(z)+βδ2

T (bυ)

(
rbυ ,h(z)

)(
φbυ ,h(z)−φbυ ,hp̃h,̟(z)

)}

if rbυ ,h(z)≤ 2δT (bυ) and taking q̃h,̟(z) = z otherwise. If h ∈ Î and ιh 6= 0̂,
define

q̃h,(xh,wh) : Σb,ιh −→Σb,ιh

by setting

q̃h,̟(z) = φ−1
bυ ,h

{
φbυ ,h(z) + wh − βδ2

T (bυ)

(
rbυ,h(z)

)
wh

}
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if rbυ ,h(z) ≤ 2δT (bυ) and taking q̃h,̟(z) = z otherwise. Let q̟̃,0̂ = IdΣ. If

h∈ Î and q̟̃,ιh : Σ−→Σ has been constructed, let

q̟̃,h(z) =

{
q−1
̟,ιh

(
p̃h,̟(z)

(
q̟,ιh(q̟̃,ιh(z))

))
, if rbυ,h,h

(
q̟,ιh(z)

)
≤2δT (bυ);

q̟̃,ιh(z), if rbυ,h,h

(
q̟,ιh(z)

)
≥2δT (bυ).

Going through all of I, we obtain a map q̟̃ : Σ −→ Σ, which shifts the
connect-summands of (Σ, gυ) to the connect-summands of (Σ, g̟). The
important properties of such maps q̟̃ as summarized below.

Lemma 3.7. There exist δ, C∈C∞(M(0)
T ; R) and a smooth family of maps

{
q̟̃ : Σ−→Σ | ̟∈KbυTδ(bυ)⊂TυF (∅)

υ T , υ∈F
(∅)
bυ

Tδ(bυ)

}
, such that

(1) q̃0 =IdΣ and qυ =q̟◦q̟̃ on Σ∗
bυ ,i =Σ∗

b̟,i outside of the annuli

A̟ = q̃−1
̟,ιh

q−1
̟,ιh

({
z∈Σbυ,ιh: δT (bυ)≤rb,h(z)≤2δT (bυ)}

)
,

which contain no marked points of b(υ) or b(̟).

(2)
∣∣∣ q̃∗̟g̟

gυ
− q̃∗

̟′g̟′

gυ

∣∣∣ ≤ C(bυ)‖̟−̟′‖ for all ̟, ̟′ ∈ KbυTδ(bυ).

These maps q̟ allow us to compare operators on vector fields and one-
forms on (Συ, uυ) and (Σ̟, u̟) whenever ‖̟‖ is sufficiently small. Define
ζ ′̟∈Γ(uυ) by

expbυ ,uυ
ζ ′̟ = u̟ ◦ q̟̃, ‖ζ ′̟‖bυ ,C0 ≤ inj gbυ .

For ξ∈Γ(uυ), let R′
̟ξ∈Γ(u̟) be given by

{R′
̟ξ}(z) = Πbυ,ζ′̟(q̃−1

̟ (z))ξ
(
q̃−1
̟ (z)

)
.

Similarly, for any η∈Γ0,1(uυ), let R′
̟η∈Γ0,1(u̟) be given by

{R′
̟η}

∣∣
z

= Πbυ ,ζ′̟(q̃−1
̟ (z)) ◦ η

∣∣
q̃−1
̟ (z)

◦ ∂q̃−1
̟

∣∣
z
.

Denote by S′
̟ the inverse of R′

̟. Similarly to Lemma 3.6, we have

Lemma 3.8. There exist δ, C ∈C∞(M(0)
T ; R+) such that for all υ∈F (∅)Tδ

and ̟∈KbυT ⊂ T̃υF ∅Tδ,

(1) C(bυ)−1‖̟‖ ≤ ‖ζ ′̟‖υ,p,1 +
∑

l∈M

|wl(̟)|gυ ≤ C(bυ)‖̟‖;

(2)
∥∥S′

̟du̟ − duυ

∥∥
υ,p

≤ C(bυ)‖̟‖,
∥∥S′

̟∂̄u̟ − ∂̄uυ

∥∥
υ,p

≤ C(bυ)|υ|
1
p ‖̟‖;

(3)
∥∥S′

̟ν − ν
∥∥

υ,p
≤ C(bυ)

∥∥̟‖;
(4)

∥∥S′
̟D̟R′

̟ξ − Dυξ
∥∥

υ,p
≤C(bυ)‖̟‖‖ξ‖υ,p,1 and∥∥S′

̟π̟,±R′
̟ξ − πυ,±ξ

∥∥
υ,p,1

≤C(bυ)‖̟‖‖ξ‖υ,p,1 for all ξ∈Γ(uυ).
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3.5. Obstruction Bundle Setup. In the next subsection, we look for so-
lutions of the equation

∂̄ expbυ ,uυ
ξ = tν

with ξ lying in a fixed complement of Γ−(υ). If t is sufficiently small, we are
able to solve this equation up to an element of a vector bundle of the same
rank as the dimension of Γ−(bυ), called obstruction bundle. This element is
the obstruction to solving the equation. There are choices to be made for
this obstruction bundle as well as for the subspace complementary to Γ−(υ).
We describe in this subsection what conditions these choices must satisfy for
the gluing construction to work properly.

If b∗=
(
S, M, I; x∗, (j, y∗), u∗

)
∈M(0)

T and

b =
(
S, M, I; x, (j, y), uI

)
=HT ,b∗(σ, θ)

for some σ∈Kb∗T and θ∈R
Î , let ξb∗,b =ξb∗,b,I ∈Γ′(b) be given by

expb∗,u∗
i
ξb∗,b,i = ui,

∥∥ξb∗,b,i

∥∥
C0 < inj gV,b∗ .

Let Πb∗,b =Πb∗,ξb∗,b
.

Definition 3.9. Suppose b∗=
(
S, M, I; x∗, (j, y∗), u∗

)
,

bk =
(
S, M, I; xk, (j, yk), uk

)
∈ M(0)

T ,

and υk = (bk, vk) ∈ F (0)T are such that the sequences {bk} and {|υk|bk
}

converge to b∗∈M(0)
T and 0∈R, respectively.

(a) The sequence {ξk∈Lp
1(uυk

)} C0-converges to ξ∗∈Γ′(b∗) if

(a-i) the sequence
{
Π−1

b∗,bk
(ξk ◦q−1

υk
)
}

C0-converges to ξ∗ on compact sub-

sets of Σ∗
b∗ ;

(a-ii) there exists C >0 such that ‖ξk‖υk,p,1 <C for all k.
(b) The sequence of subspaces {Vk ⊂ Γ(uυk

)} C0-converges to subspace
V ∗ ⊂ Γ(b∗) if there exists a sequence of bases

{
{ξk,i}i=N

i=1 ⊂ Vk

}
such

that
(b-i) for each i fixed, the sequence {ξk,i} C0-converges to some ξ∗i ∈V ∗;
(b-ii) the set {ξ∗i } has cardinality N and is a basis for V ∗.

Lemma 3.10. If the sequence {υk} ⊂ F (0)T converges to b∗ ∈ M(0)
T and

the sequences {ξk ∈ Lp
1(υk)} and {ξ̃k ∈ Lp

1(υk)} converge to ξ∗ ∈ Γ′(b∗) and

ξ̃∗∈Γ′(b∗), respectively,

lim
k−→∞

〈〈ξk, ξ̃k〉〉υk,2 = 〈〈ξ∗, ξ̃∗〉〉υ∗,2.

Proof. If υk −→ b∗, the metrics gV,bυk
on V and gbυk

,i on ΣT ,i C0-converge

to gV,b∗ and gb∗,i, respectively. On the other hand, by (a-ii) of Definition 3.9
and (2) of Lemma 3.5, there exists C >0 such that

‖ξk‖υk,C0 , ‖ξ̃k‖υk,C0 < C ∀k.
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Thus, the claim follows from (a-i) of Definition 3.9.

Definition 3.11. Suppose Ω is an open subset of F (∅)T such that b(υ) is
defined for all υ∈Ω. An

(
A(T )⋉GT

)
-invariant smooth complex subbundle

Γ̃−−→Ω of the Banach bundle Lp
1−→Ω is a tangent-space model over Ω if

(a) for every sequence {υk}⊂Ω converging to b∗∈M(0)
T , a subsequence of

{Γ̃−(υk)} C0-converges to a subspace V ∗⊂Γ(b) such that πb,− : V ∗−→
Γ−(b∗) is an isomorphism;

(b) if π̄υ,− : Lp
1(υ) −→ Γ̃−(υ) is the (L2, υ)-orthogonal projection, there

exist δ, C∈C∞(M(0)
T ; R+) such that for all υ∈Ωδ and all ξ∈Γ(uυ),

(b-i)
∥∥S̟ π̟̄,− R̟ ξ − π̄υ,− ξ

∥∥
υ,2

≤ C (bυ)‖̟‖υ ‖ξ‖υ, p, 1 for all ̟ ∈
TυF (∅)Tδ(bν);

(b-ii)
∥∥S′

̟π̟̄,−R′
̟ξ − π̄υ,−ξ

∥∥
υ,2

≤ C(bυ)‖̟‖‖ξ‖υ,p,1 for all ̟ ∈KbυT ⊂
TυF (∅)Tδ(bν).

One example of a tangent-space model is {Γ−(υ) : υ ∈ F (∅)Tδ}. In such
a case, the limit V ∗ in (a) of Definition 3.11 is Γ−(b∗) and thus depends
only on b∗, and not on the sequence {υk}. However, for computational
reasons, it is sometimes advantageous to work with other choices. With the
choices in [Z2], the limit V ∗ in (a) of Definition 3.11 usually depends on the
sequence.

The following lemma collects some of the implications of (a) of Defini-
tion 3.11. Condition (b) is needed in Subsections 4.2 and 4.5. For any
tangent space model over Ω and υ ∈ Ω, we denote the (L2, υ)-orthogonal

complement of Γ̃−(υ) by Γ̃+(υ). Write Γ̃0,1
+ (υ) for the image of Γ̃+(υ) under

the operator D̃υ.

Lemma 3.12. Let Γ̃− −→ Ω be a tangent-space model. Then there exist

C, δ∈C∞(M(0)
T ; R) such that for all υ∈Ωδ

(1a) ‖ξ‖υ,p,1 ≤ C(bυ)‖ξ‖υ,2 for all ξ∈ Γ̃−(υ);
(1b) ‖π̄υ,−ξ‖υ,p,1 ≤ C(bυ)‖ξ‖υ,p,1 for all ξ∈Γ(uυ);

(2a) Lp
1(υ) = Γ−(υ) ⊕ Γ̃+(υ);

(2b) if π̃− and π̃+ are the projection maps corresponding to the above de-
composition,

‖π̃υ,±ξ‖υ,p,1 ≤ C(bυ)‖ξ‖υ,p,1 ∀ξ∈Γ(uυ).

Proof. (1) Suppose there exists a sequence {υk∈Ω} converging to b∗∈M(0)
T

and a sequence {ξk∈ Γ̃−(υk)} such that ‖ξk‖υk,p,1 = 1, while ‖ξ‖υk,2 −→ 0.
Since ‖ξk‖υk,p,1 = 1, by (2) of Lemma 3.16 and (a) of Definition 3.11, a
subsequence of {ξk} C0-converges to some nonzero ξ∗ ∈ Γ(b∗). However,
since ‖ξk‖υk,2 −→ 0, ‖ξ∗‖b∗,2 = 0 by Lemma 3.10. This is a contradiction,
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and thus (1a) holds. Claim (1b) is an immediate consequence of (1a) and (2)
of Lemma 3.16.

(2) Claim (2a) is equivalent to saying that no nonzero element of Γ̃−(υ)

is orthogonal to Γ−(υ). So, suppose υk −→ b∗ ∈M(0)
T and {ξk ∈ Γ̃−(υk)} is

such that ξk is orthogonal to Γ−(υ) and ‖ξk‖υk,p,1 =1. Since ξk∈ Γ̃−(υk) and
‖ξk‖υk,p,1 = 1, by (a) of Definition 3.11, a subsequence of {ξk} converges
to some nonzero ξ∗ ∈ Γ(b∗). By Lemma 3.10, ξ∗ is orthogonal to Γ−(υ).
However, this contradicts the second part of (a) of Definition 3.11.

(3) Due to (1b), Claim (2b) is equivalent to saying that there exist C, δ∈
C∞(MT ; R) such that

‖ξ‖υ,p,1 ≤ C(bυ)‖π̄υ,−ξ‖υ,p,1 ∀υ∈Ωδ and ξ∈Γ−(υ).

Suppose there exists a sequence {υk}⊂Ω converging to some b∗∈M(0)
T and

a sequence {ξk∈Γ−(υk)} such that ‖π̄υk,−ξk‖υk,2 −→0, while ‖ξk‖υk,p,1 =1.

By Definition 3.11, a subsequence of {Γ̃−(υk)} converges to a subspace V ⊂
Γ(b). On the other hand, a subsequence of {ξk} C0-converges to a nonzero
element ξ∗∈Γ−(b∗), which must be orthogonal to V by Lemma 3.10. This
contradicts the second part of (1) of Definition 3.11.

Definition 3.13. Suppose Ω is an open subset of F (∅)T such that b(υ) is
defined for all υ ∈Ω. An

(
A(T )⋉GT

)
-invariant smooth complex subbun-

dle Γ0,1
− (υ) −→ Ω of the Banach bundle Lp −→ Ω with the same rank as

Γ0,1
− −→M(0)

T is an obstruction bundle if

(a) there exists C∈C∞(M(0)
T ; R) such that

‖η‖υ,p ≤ C(bυ)‖η‖2 and ‖D∗
υη‖υ,1 ≤ C(bυ)|υ|

1
p ∀υ∈Ω, η∈Γ0,1

− (υ);

(b) if π0,1
υ,− : Lp(υ) −→ Γ0,1

− (υ) is the (L2, υ)-orthogonal projection, there

exists δ∈C∞(M(0)
T ; R+) such that for all υ∈Ωδ and all η∈Γ0,1(uυ),

(b-i)
∥∥S̟ π0,1

̟,− R̟ η − π0,1
υ,− η

∥∥
υ, 2

≤ C (bυ) ‖̟‖υ ‖ξ‖υ, p for all ̟ ∈
TυF (∅)Tδ(bν);

(b-ii)
∥∥S′

̟π0,1
̟,−R′

̟η − π0,1
υ,−η

∥∥
υ,2

≤ C(bυ)‖̟‖‖ξ‖υ,p for all ̟ ∈ KbυT ⊂
TυF (∅)Tδ(bν).

Such an obstruction bundle is related to the cokernel bundle Γ0,1
− −→M(0)

T .

However, if Î 6=∅, the low eigenspaces of DυD∗
υ are too large to form an

obstruction bundle; see Remark below. Examples of bundles that satisfy
Definition 3.13 can be found in [Z2]. Given such an obstruction bundle, we

denote by π0,1
υ,+ the (L2, υ)-orthogonal projection onto Γ0,1

+ (υ), the (L2, υ)-

orthogonal complement of Γ0,1
− (υ). The following lemma is clear from (a) of

Definition 3.13.



ENUMERATIVE VS. SYMPLECTIC INVARIANTS 487

Lemma 3.14. If Γ0,1
− −→ Ω is an obstruction bundle, there exists C ∈

C∞(MT ; R) such that

‖π0,1
υ,±η‖υ,p ≤ C(bυ)‖η‖υ,p ∀υ∈Ω, η∈Γ0,1(uυ).

Definition 3.15. If T is a semiregular bubble type, an obstruction bundle
setup for (V, J, T ) is a tuple (δ, Γ̃−, Γ0,1

− , R), where

(a) δ∈C∞(M(0)
T ; R+) is

(
A(T )⋉GT

)
-invariant and b(υ) is defined for all

υ∈F (0)Tδ;
(b) Γ̃−−→ F (∅)Tδ and Γ0,1

− −→ F (∅)Tδ are a tangent-space model and an
obstruction bundle, respectively;

(c) R : π∗Γ0,1
− −→Γ0,1

− is a smooth oriented
(
A(T )⋉GT

)
-equivariant bun-

dle isomorphism over F (0)Tδ, where π : F (0)Tδ−→M(0)
T is the bundle

projection map.

For the rest of the paper, we fix such an obstruction bundle setup. How-
ever, whenever we refer to δ∈C∞(MT ; R+), we will mean any function
smaller than the function δ in Definition 3.15. The following lemma states
some of the consequences of our setup that are crucial for the construction
of the next subsection. If T is a regular bubble type, we take Γ̃−(υ) and

Γ0,1
− (υ) to be Γ−(υ) and {0}, respectively, and define the other bundles and

the projection maps in the same way.

Lemma 3.16. If T is a simple bubble type, there exist δ, C∈C∞(M(0)
T ; R+)

such that for any υ∈F (0)Tδ if T is regular and any υ ∈ F (∅)Tδ if T is
semiregular,

(1) ‖ξ‖υ,p,1 ≤ C(bυ)‖Dυξ‖υ,p for all ξ∈Γ+(υ) and all ξ∈ Γ̃+(υ);

(2) ‖π0,1
υ,−η‖υ,p ≤ C(bυ)|υ|

1
p ‖η‖υ,p for all η∈ Γ̃0,1

+ (υ);

(3) π0,1
υ,+ : Γ̃0,1

+ (υ) −→ Γ0,1
+ (υ) is an isomorphism with the norm of the

inverse bounded by C(bυ).

Proof. (1) The first statement of the lemma is proved in the appendix; see
Proposition 5.13. It is consequence of (2) and (4) of Lemma 3.5 and of (a) of
Definition 3.11. The second claim is immediate from (a) of Definition 3.13
and the first claim.

(2) Let W be the (L2, gυ)-orthogonal complement of π0,1
υ,+(Γ̃0,1

+ (υ)) in

Γ0,1
+ (υ). The second claim implies that

(3.5) Lp(υ) =
(
Γ0,1
− (υ) ⊕ W

)
⊕ Γ̃0,1

+ (υ).
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Since Γ̃0,1
+ (υ) is the image of Γ̃+(υ) under Dυ, with respect to the decompo-

sitions (3.5) and Lp
1(υ) = Γ−(υ) ⊕ Γ̃+(υ),

Dυ =

∣∣∣∣∣
D

(−−)
υ 0

D
(+−)
υ D

(++)
υ

∣∣∣∣∣ .

Since D
(++)
υ is an isomorphism by (1) of the lemma,

ind Dυ = ind D(−−)
υ = dim Γ−(υ) −

(
dim Γ0,1

− (υ) + dimW
)

(3.6)

=
(
dim Γ−(bυ) − dim Γ0,1

− (bυ)
)

+ dim W = ind Dbυ − dimW.

On the other hand, by the Index Theorem, with n=dimC V ,

ind Dυ = 2




∑

h∈Î(υ)

(
〈c1(V, J), λi(υ)〉 − n(g(ΣT ,i) − 1)

)
− n

(
|Î(υ)| − 1

)




(3.7)

= 2




∑

h∈Î(υ)

〈c1(V, J), λi〉 − n(g(S) − 1)



 = ind Dbυ .

By equations (3.6) and (3.7), W = {0}, and the last claim of the lemma
follows from the second one.

Remark. It is essential for claim (1) of Lemma 3.16 that p>2. The operator

D∗
υDυ has at least |Î|(dimV ) eigenvalues that tend to 0 as |υ| −→ 0. The

corresponding eigenfunctions converge to vector fields on the components of
Σb that do not agree at the nodes. If T is semiregular, the operator Dbυ has

cokernel Γ0,1
− (b). In such a case, the number of low eigenvalues of D∗

υDυ,

including 0, is (dim Γ0,1
− (b)) + |Î|(dim V ).

Let π̃0,1
υ,+ : Γ0,1

+ (υ) −→ Γ̃0,1
+ (υ) denote the inverse of π0,1

υ,+ : Γ̃0,1
+ (υ) −→

Γ0,1
+ (υ). We extend π̃0,1

υ,+ to all of Lp(υ) by taking it to be π̃0,1
υ,+ ◦ π0,1

υ,+. If

η∈ Γ̃0,1
+ (υ), let Pυη∈ Γ̃+(υ) be the unique element such that DυPυη = η. We

extend Pυ to all of Lp(υ) by taking it to be Pυ ◦ π̃0,1
υ,+. From Lemma 3.16,

we immediately obtain

Corollary 3.17. If T is a simple bubble type, there exist δ, C ∈
C∞(M(0)

T ; R+) such that for all υ∈F (0)Tδ if T is regular and υ∈F (∅)Tδ

if T is semiregular,

(1) ‖π̃0,1
υ,+η‖υ,p ≤ C(bυ)‖η‖υ,p for all η∈Γ0,1(υ);

(2) ‖Pυη‖υ,p,1 ≤ C(bυ)‖η‖υ,p for all η∈Γ0,1(υ).
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3.6. The Gluing Map. In this subsection, we look for small vector fields
ξ ∈ Γ̃+(υ) such that expbυ ,uυ

ξ is holomorphic if T is regular and lies in
MΣ,tν,λ if T is semiregular. In Subsection 4.5, we show that all holomorphic

maps if T is regular and all maps in MΣ,tν,λ×ΣM if T is semiregular that lie
near MT with respect to the Gromov topology can be obtained in this way.

If ξ∈Γ(uυ), define expυ ξ : Συ−→V and ∂̄υξ∈Γ0,1(uυ) by

{expυ ξ}(z) = expbυ ,uυ(z) ξ(z), {∂̄υξ}|z = Π−1
bυ ,ξ(z) ◦ ∂̄{expυ ξ}

∣∣
z
.

If S =Σ and ν∈Γ(Σ; Λ0,1π∗
ΣT ∗Σ⊗π∗

V TV ), let νυ,ξ∈Γ0,1(uυ) be given by

νυ,ξ|z = Π−1
bυ ,ξ(z) ◦ ν|(z,{expυ ξ}z).

Then,

(3.8) ∂̄{expυ ξ}(·) = tν|(·,{expυ ξ}(·)) ⇐⇒ ∂̄υξ = tνυ,ξ.

Write

(3.9) ∂̄υξ = ∂̄uυ + Dυξ + Nυξ and νυ,ξ|z = ν|(z,uυ(z)) + Lν,υξ|z.
Then the second equation in (3.8) is equivalent to

(3.10) Dυξ + Nυ,tνξ = tν − ∂̄uυ,

and by Proposition 2.11 in [Z1] and (1) of Lemma 3.5, there exist C∂̄ , δ ∈
C∞(M(0)

T ; R+) such that for any υ∈F (0)Tδ and ξ1, ξ2∈Γ(uυ),

(3.11) ‖Nυ,tνξ1−Nυ,tνξ2‖υ,p ≤ C∂̄(bυ)
(
‖ξ1‖υ,p,1 +‖ξ2‖υ,p,1 +t

)
‖ξ1−ξ2‖υ,p,1.

If T is semiregular, the term ν will be fixed, and we will be looking for
solutions of (3.10) with t > 0 very small for υ ∈F (∅)Tδ. If T is regular, we

will consider (3.10) with t=0 and υ∈F (0)Tδ. In both cases, we will consider

only solutions ξ of (3.10) that lie in the subspace Γ̃+(υ) of Lp
1(υ), since the

subspace Γ−(υ) corresponds to moving along the image of the pregluing
map υ−→b(υ).

Vector field ξ=Pυη with η∈Γ0,1
+ (υ) solves equation (3.10) if and only if

η + π0,1
υ,+Nυ,tνPυη = π0,1

υ,+

(
tν − ∂̄uυ

)
(3.12)

and π0,1
υ,−

(
tν − ∂̄uυ − π̃0,1

υ,+η − Nυ,tνPυη
)

= 0.(3.13)

Denote the map η−→π0,1
υ,+Nυ,tνPυη by N+

υ,tν . By Corollary 3.17 and equa-

tion (3.11), there exist C̃∂̄ , δ∈C∞(M(0)
T ; R+) such that for any υ∈F (0)Tδ if

T is regular and υ∈F (∅)Tδ if T is semiregular,

(3.14) ‖N+
υ,tνη1 − N+

υ,tνη2‖υ,p ≤ C̃∂̄(bυ)
(
‖η1‖υ,p + ‖η2‖υ,p + t

)
‖η1−η2‖υ,p

for all η1, η2∈Γ0,1
+ (υ) such that ‖η1‖υ,p, ‖η2‖υ,p≤δ(b).
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Lemma 3.18. There exist ǫ, δ∈C∞(M(0)
T ; R+) such that for all υ∈F (0)Tδ

and t=0 if T is regular, υ∈F (∅)Tδ and t∈ [0; δ(bυ)] if T is semiregular, and

α∈Γ0,1
+ (υ) with ‖α‖υ,p <ǫ(bυ), the equation

η + N+
υ,tνη = α

has a unique solution ηα in Γ0,1
+ (υ) such that ‖ηα‖υ,p≤2ǫ(bυ). Furthermore,

such a solution satisfies ‖ηα‖υ,p≤2‖α‖υ,p.

Proof. Put ǫ(b)=(6C̃∂̄(b))−1, where C̃∂̄ is as in (3.14). Define

Ψα : {η∈Γ0,1
+ (υ) : ‖η‖υ,p ≤ 2‖α‖υ,p} −→ Γ0,1

+ (υ)

by Ψα(η) = α−N+
υ,tνη. By equation (3.14),

‖Ψα(η)‖υ,p ≤ ‖α‖υ,p + C̃∂̄(bυ)
(
‖η‖υ,p + t

)
‖η‖υ,p ≤ 2‖α‖υ,p;

‖Ψα(η1) − Ψα(η2)‖υ,p ≤ C̃∂̄(bυ)(‖η1‖υ,p + ‖η2‖υ,p + t)‖η1−η2‖υ,p

≤ 5

6
‖η1−η2‖υ,p.

It follows that Ψα is a contracting operator, and thus has a unique fixed
point ηα, i.e.,

ηα + N+
υ,tνηα = α, and ‖ηα‖υ,p ≤ 2‖α‖υ,p.

The uniqueness claim follows immediately by taking the difference of the
corresponding equations.

Corollary 3.19. If T is a simple bubble type, there exist R
+-valued smooth

functions δ, ǫ, C on M(0)
T such that for all υ∈F (0)Tδ and t=0 if T is regular

and υ ∈ F (∅)Tδ and t ∈ [0; δ(bυ)] if T is semiregular, there exists a unique
ηυ,tν ∈Γ0,1(υ) such that ηυ,tν satisfies equation (3.12) and ‖ηυ,tν‖υ,p ≤ ǫ(bυ).
Furthermore,

‖ηυ,tν‖υ,p ≤ C(bυ)
(
t + |υ|

1
p
)
.

Proof. This corollary follows from Lemmas 3.18 and 3.5.

We now put ξυ,tν = Pυηυ,tν and ũυ,tν = expυ ξυ,tν . Replacing uυ in b(υ)

by ũυ,tν , we obtain a new bubble map that will be called b̃tν(υ). If T
is regular (and thus t = 0), we will write ũυ and b̃(υ) for ũυ,0 and b̃0(υ),
respectively. We can assume that the functions δ, ǫ and C of Corollary 3.19
are

(
A(T )⋉G̃T

)
-invariant if S =S2 and

(
A(T )⋉GT

)
-invariant if S =Σ. For

T regular, we have thus constructed a gluing map

γ̃
(0)
T : F (0)Tδ −→ M̄〈T 〉, υ −→ b̃(υ).

Since this map is
(
A(T )⋉GT

)
-invariant, as can be seen from the construc-

tion, γ̃
(0)
T induces a map on the quotient

(3.15) γ̃T : FTδ −→ M̄〈T 〉.
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By the smooth dependence of solutions of (3.12), the restrictions

γ̃
(0)
T : F (H)Tδ −→ M(0)

T (H)

are smooth. However, continuity of γ̃T on all of FTδ is not immediate. In the
next section, we show the map γ̃T is a homeomorphism onto a neighborhood
of MT in M̄〈T 〉.

If T is semiregular and t>0, we have constructed a map

γ̃
(0)
T ,tν : F (∅)Tδ

∣∣
ǫ−1(−t,t)

−→ C∞
(λ;M)(Σ; V ),

which again is
(
A(T )⋉GT

)
-invariant and thus descends to a map

(3.16) γ̃T ,tν : F ∅Tδ

∣∣
ǫ−1(−t,t)/(A(T )⋉GT )

−→ C∞
(λ;M)(Σ; V ).

The map ub̃tν(υ) lies in MΣ,tν,λ if and only if equation (3.13) is satisfied, i.e.,

(3.17) RυψT ,tν(υ) ≡ tν − ∂̄uυ − π̃0,1
υ,+ηυ,tν − Nυ,tνPυηυ,tν = 0 ∈ Γ0,1

− (υ),

since ηυ,tν satisfies equation (3.12).

3.7. An Implicit Function Theorem. In this subsection, we prove a
refined version of the Implicit Function Theorem. It will be used in the rest
of this section to modify the gluing maps of Subsection 3.6 for the spaces
MT (µ), UT (µ), etc.

Let S be a smooth oriented manifold, and NS, N µ, and F oriented
Riemannian vector bundles over S. We denote by b, (b, ~n), (b, σ), and (b, v)
general elements of S, NS, N µ, and F , respectively. If Ω is any subset of
F and δ>0, let

Ω(δ) =
{
(b, ~n, v)∈NS ⊕ F : (b, v)∈Ω; |~n|, |v|<δ

}
.

Let U be an open neighborhood of S in NS⊕N µ⊕F and h : U −→ R
k a

smooth map such that

h(b, ~n, σ, v) = h(b, ~n, σ, 0), h|S = 0, and

d(h : N µ
b −→R

n)(b,0) : N µ
b −→ R

k

is an orientation-preserving isomorphism for all b∈S. Let Ũ be a subset of
U such that Ũ is the fiber product along S of an open neighborhood of S in
NS⊕N µ and an open subset Ω of F . Suppose δS >0, C∈C∞(S; R+), and

h̃t : Ũ −→R
k is a family of smooth functions with t∈ [0, δS ] such that

∣∣h̃t − h
∣∣
(b,~n,σ,v)

,
∣∣∣
∂h̃t

∂σ
− ∂h

∂σ

∣∣∣
(b,~n,σ,v)

≤ C(b)
(
|v|

1
p + t

)

∀t∈(0, δS), (b, ~n, σ, v)∈ Ũ ,

where ∂h
∂σ denotes the differential of h along the fibers of N µ.
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Lemma 3.20. Let B be an open ball about 0 ∈ R
k. If f : B −→ R

k is a
smooth function and

k
∣∣Df |z − Df |0

∣∣ <
∣∣(Df |0)−1

∣∣−1 ∀z∈B,

then f is injective on B.

Proof. Let fi denote the ith component of f . By the Mean Value Theorem,
for all x, y∈B, there exists zi(x, y)∈B such that

∣∣fi(x) − fi(y)
∣∣ =

∣∣Dfi|zi(x,y)

∣∣|x − y|.
Adding up these equations over all i, we obtain

i=k∑

i=1

∣∣fi(x) − fi(y)
∣∣ ≥

i=k∑

i=1

∣∣Dfi|0
∣∣|x − y| − k sup

z∈B

∣∣Df |z − Df |0
∣∣|x − y|

≥
(∣∣(Df |0)−1

∣∣−1 − k sup
z∈B

∣∣Df |z − Df |0
∣∣
)
|x − y|.

Lemma 3.21. For every precompact subset K of S, there exists ǫ>0 such
that for all t∈(0, ǫ) and (b, ~n, v)∈Ω(ǫ)|K , the map

{
(b, σ)∈N µ : |σ|<ǫ

}
−→ h̃t(b, ~n, σ, v)

is defined and injective, and its differential defines an orientation-preserving
isomorphism between N µ

b and R
k.

Proof. The map above is defined as long as
{
(b, ~n, σ, v)∈NS ⊕N µ

b ⊕ F : b∈K, (b, ~n, v)∈Ω(ǫ), |σ|<ǫ
}
⊂ Ũ .

Since K is precompact, existence of δ>0 such that the last inclusion holds
is trivial. The other two statements follow from the third property of h and
the second property of h̃t (see above); Lemma 3.20 is needed to prove the

injectivity. Note that the variation of ∂h̃t
∂σ over K can be bounded from the

variation ∂h
∂σ and the second property of h̃t.

Lemma 3.22. For every precompact subset K of S and ǫ > 0 sufficiently
small, there exists δ>0 such that for all t∈ (0, δ) and (b, ~n, v)∈Ω(δ)|K , the
image of the map

{(b, σ)∈N µ : |σ|<ǫ} −→ h̃t(b, ~n, σ, v)

contains 0 ∈ R
k.

Proof. We assume ǫ > 0 does not exceed the number provided by Lemma
3.21. Then by precompactness of K and the proof of Lemma 3.21,

(3.18) ε ≡ min

{
|h(b, ~n, σ, v)| : (b, ~n, v)∈Ωǫ|K, (b, σ)∈N µ, |σ|= 1

2
ǫ

}
> 0.
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Since for each (b, ~n, v) ∈ Ω(ǫ)|K , the image of the map

{(b, σ)∈N µ : |σ| < ǫ} −→ h(b, ~n, σ, v)

contains a neighborhood of 0 in R
k and h̃t is continuous, the claim follows

from the first property of h̃t along with equation (3.18).

Corollary 3.23. For every precompact open subset K of S, there exist
δ, C >0 with the following property. For all t∈ (0, δ), there exists a smooth
section

ϕt ∈ Γ
(
Ω(δ)|K ; π∗N µ

)
,

where π : Ω(δ)|K −→K is the bundle projection map, such that

Ω(δ)|K −→ h̃−1
t (0), (b, ~n, v) −→

(
b, ~n, ϕt(b, ~n, v), v

)
,

is an orientation-preserving diffeomorphism. Furthermore,

∣∣ϕt(b, ~n, v)
∣∣ ≤ C

(
|v|

1
p + t + |~n|

)
∀(b, ~n, v)∈Ω(δ)|K .

Finally, if G is a group that acts on the space S and bundles NS, N µ, and
F , and preserves h, h̃t, Ω, and K, then ϕt is G-equivariant.

Proof. With ǫ as provided by Lemma 3.21, let δ > 0 be as provided by
Lemma 3.22. Then,

Ft :
{
(b, ~n, σ, v) : (b, ~n, v)∈Ω(δ)|K , |σ|<ǫ

}
−→ Ω(δ)×R

k,

Ft(b, ~n, σ, v) =
(
b, ~n, v, h̃t(b, ~n, v)

)
,

is a diffeomorphism onto an open subset W of the target space. The inverse
of Ft must have the form

F−1
t (b, ~n, v, σ̃) =

(
b, ~n, φt(b, ~n, v, σ̃), v

)

for some smooth function φt. By Lemma 3.22, Ω(δ)|K×{0} ⊂ W . Thus,

ϕt∈Γ
(
Ω(δ)|K ; π∗N µ

)
, ϕt(b, ~n, v) = φt(b, ~n, v, 0),

is a well-defined section, and by definition of φt,

Ω(δ)|K −→ h̃−1
t (0), (b, ~n, v) −→

(
b, ~n, ϕt(b, ~n, v), v

)
,

is a diffeomorphism. It is orientation-preserving by Lemma 3.21. The esti-
mate on ϕt follows from the three properties of h, the first property of h̃t,
and the proof of Lemma 3.20. The final statement of the lemma is clear,
since our construction commutes with the G-action.
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3.8. The Orientation of MΣ,tν,λ(µ) and the Gluing Map. At this
point, our treatments of regular and semiregular cases diverge. In this sub-
section, we assume that T = (Σ, [N ], I; j, λ) is a semiregular bubble type
and µ is an N -tuple of constraints in general position as defined below. Let
λ=

∑
λi as before. We recall how each element of MΣ,tν,λ(µ) is assigned a

sign and then specialize to the elements b̃tν(υ)∈MΣ,tν,λ(µ). We conclude
this subsection with Theorem 3.29 that describes the elements of MΣ,tν,λ(µ)
lying near the space MT (µ).

Definition 3.24.

(1) Section

ν ∈ Γ0,1(Σ×V ; Λ0,1
J,jπ

∗
ΣT ∗Σ⊗π∗

V TV )

is λ-regular if for all t∈(0, 1) and u∈MΣ,tν,λ, the operator

(DV,u−∇V
· ν) : Γ(u) −→ Γ0,1(u)

is surjective.
(2) If ν is λ-regular, N -tuple µ of oriented submanifolds of V is ν-regular

if for all t∈(0, 1),
⊕

l∈[N ]

Tu0̂(yl)V = Im dev[N ]

∣∣
b
+

⊕

l∈[N ]

Tu0̂(yl)µl

∀ b=(Σ, [N ], {0̂}; , (0̂, y), u0̂) ∈ MΣ,tν,λ(µ),

where

dev[N ]

∣∣
b
: ker

(
DV,u0̂

−∇V
· ν

)
⊕

⊕

l∈[N ]

Tyl
Σ−→

⊕

l∈[N ]

Tu0̂(yl)V,

devl

∣∣
b

(
ξ, w[N ]

)
=ξ(yl)+du0̂

∣∣
yl

wl.

(3) If T is a (V, J)-semiregular bubble type, tuple µ of oriented submani-
folds of V is T -regular if

⊕

l∈[N ]

Tujl
(yl)V = Im dev[N ]

∣∣
b
+

⊕

l∈[N ]

Tujl
(yl)µl

∀ b=(Σ, [N ], I; x, (j, y), u)∈HT (µ),

where

dev[N ]

∣∣
b
: KbT −→

⊕

l∈[N ]

Tujl
(yl)V,

devl

∣∣
b

(
ξI , wÎ⊔[N ]

)
= ξjl

(yl) + dujl

∣∣
yl

wl.

(4) If T is a (V, J)-semiregular bubble type, S⊂MT is a smooth subman-

ifold, and S̃ ⊂M(0)
T is the preimage of S under the quotient projection
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map, N -tuple µ of oriented submanifolds of V is S-regular if
⊕

l∈[N ]

Tujl
(yl)V = dev[N ]

∣∣
b

(
KbT ∩ TbS̃

)
+

⊕

l∈[N ]

Tujl
(yl)µl

∀ b∈S̃(µ) ≡ S̃ ∩M(0)
T (µ).

Note that all four definitions above are independent of the choice of met-
rics on V . Throughout this subsection, we assume that ν is λ-regular, T is
semiregular, and µ is ν- and T -regular.

The space MΣ,tν,λ consists of the maps u : Σ−→V such that

∂̄u|z = tν(z, u(z)) z∈Σ.

Thus, the tangent space at u can be described as

TuMΣ,tν,λ =
{
ξ∈Γ(Σ; u∗TV ) : DV,uξ−tLν,uξ = 0

}
,

where Lν,uξ is defined by

{Lν,uξ}(z) = ∇V
ξ(z)ν

∣∣
(z,u(z))

.

The operator DV,u− tLν,u is independent of the choice of the connection
along MΣ,tν,λ and by assumption has no cokernel if t∈(0, 1). An orienta-

tion on MΣ,tν,λ is determined by an orientation of the bundle Λtop
R

TMΣ,tν,λ

over MΣ,tν,λ, which is the determinant line bundle of the elliptic opera-
tor DV,u−tLν,u. Since Lν,u has order zero, the operator DV,u−tLν,u is homo-

topic through elliptic operators to the operator DV,u. Thus, Λtop
R

TMΣ,tν,λ

is homotopic to

det
(
DV,u

)
=

(
Λtop

R
(ker DV,u)

)
⊗

(
Λtop

R
(coker DV,u)

)
;

see [LM]. Since DV,u commutes with J , kerDV,u and coker DV,u are both
complex vector spaces and thus have natural orientations, which induce an
orientation on the determinant line bundle of DV,u and via a homotopy
of operators on the determinant bundle of DV,u − tLν,u. It follows that

MΣ,tν,λ×ΣN is naturally oriented. If µ is a ν-regular tuple of submanifold
of V of total codimension

codim µ = dimMΣ,tν,λ×ΣN = ind DV,u + 2|N |

= 2
(
〈c1(V, J), λ〉 + (dimC V )

(
1 − g(Σ)

)
+ |N |

)
,

the differential of the map

ev[N ] : MΣ,tν,λ×ΣN −→
∏

l∈[N ]

V, (Σ, [N ], {0̂}; , (0̂, y), u0̂) −→
(
u0̂(yl)

)
l∈[N ]

,

i.e., dev[N ] as defined in (2) of Definition 3.24, induces an isomorphism

between TMΣ,tν,λ⊕TΣN and the normal bundle of µ in V N at each point
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of MΣ,tν,λ(µ). Here we identify the N -tuple µ with the submanifold
∏

l∈[N ]

µl ⊂
∏

l∈[N ]

V ≡ V N .

Since the normal bundle of µ is oriented, the evaluation map also induces
an orientation on TMΣ,tν,λ ⊕TΣN along MΣ,tν,λ(µ). Each element b ∈
MΣ,tν,λ(µ) is assigned a plus sign or is positively oriented if the two orien-
tations agree, and a minus sign otherwise.

For any υ∈F (∅)T such that qυ is defined, let

Lν,υ : Γ(uυ) −→ Γ0,1(uυ)

be given by

{Lν,υξ}(z) = ∇bυ

ξ(z)ν
∣∣
(z,f(z))

.

Denote by Γ0,1
t,+(υ) the image of Γ+(υ) under the map Dυ−tLν,υ.

Lemma 3.25. For any compact subset K of M(0)
T , there exist δ, C >0 such

that for all υ∈F (∅)Tδ|K and t∈(0, δ),

(1) ‖ξ‖υ,p,1 ≤ C‖Dυξ − tLν,υξ‖υ,p for all ξ∈Γ+(υ);

(2) Lp(υ) = Γ0,1
t,+(υ) ⊕ Γ0,1

− (υ);

(3) if D−−
υ,t and L−−

ν,υ,t are the (−,−)-components of Dυ and Lν,υ with

respect to the decompositions Lp
1(υ) = Γ+(υ) ⊕ Γ−(υ) and Lp(υ) =

Γ0,1
t,+(υ) ⊕ Γ0,1

− (υ), then

πυ,− : ker
{
Dυ − tLν,υ : Lp

1(υ)−→Lp(υ)
}

−→ ker
{
D−−

υ,t − tL−−
ν,υ,t : Γ−(υ)−→Γ0,1

− (υ)
}

is an orientation-preserving isomorphism, provided one of the two op-
erators is surjective.

Proof. (1) The first claim is immediate from (1) of Lemma 3.16 and (2) of
Lemma 3.5. The second is obtained by the same argument as in the proof
of (3) of Lemma 3.16.

(2) By construction, πυ,− is an isomorphism of the two kernels of the
lemma. In particular, Dυ−tLν,υ is surjective if and only if D−−

υ,t −tL−−
ν,υ,t is.

Define

Φτ : Lp
1(υ) ⊕ Γ0,1

− (υ) −→ Lp(υ) and Ψτ : Γ−(υ) ⊕ Γ0,1
− (υ) −→ Γ0,1

− (υ)

by

Φτ (ξ, η) = Dυξ + τtLν,υξ + η and Ψτ (ξ, η) = τ
(
D−−

υ,t + tL−−
ν,υ,t

)
ξ + η.

The first map is surjective for all τ ∈ [0, 1] by (2) of the lemma, while the sur-
jectivity of the second map is immediate from the definition. Furthermore,
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the maps

φτ : ker Φτ −→ Γ−(υ), φτ (ξ, η) = πυ,−ξ, and

ψτ : kerΨτ −→ Γ−(υ), ψτ (ξ, η) = ξ,

are isomorphisms such that

ψ−1
1 φ1(ξ, 0) = πυ,−ξ, if φ1(ξ, η) = ψ1(ξ

′, η′), η = η′;

and ψ−1
0 φ0J = Jψ−1

0 φ0.

It follows that πυ,− is an orientation-preserving map between the two kernels
of the lemma.

If K is a precompact open subset of MT and δ >0 is such that b̃tν(υ) is

defined for all υ∈F ∅Tδ|K and t∈(0, δ), let M(K, δ) and M̃tν(K, δ) denote

the images of F ∅Tδ|K under the maps γT and γ̃T ,tν , respectively. Both maps
are continuous and injective; see Subsection 4.2. The smooth structure of
FT induces smooth structures on M(K, δ) and M̃tν(K, δ), with the tangent
bundles described by

Tb(υ)M(K, δ) =

{
ζ ′̟ =

d

dτ
ζτ̟

∣∣
τ=0

: ̟∈TυFT
}
⊕

⊕

l∈[N ]

Tyl(υ)Σ;

Tb̃tν(υ)M̃tν(K, δ) =

{
ζ̃ ′̟ =

d

dτ
ζ̃τ̟

∣∣
τ=0

: ̟∈TυFT
}
⊕

⊕

l∈[N ]

Tyl(υ)Σ,

where TυFT denotes TυF ∅T ; see Subsection 3.4. It is easy to see that
̟ −→ ζ ′̟ is nearly complex linear and πυ,− is almost the identity on the
first component of Tb(υ)M(K, δ); both error terms are bounded by CK |υ|.
Furthermore, by (1) of Lemma 3.6 and Corollary 4.7, ̟−→ ζ̃ ′̟ also nearly
computes with the complex structures and Πbυ ,ξυ,tνπυ,−Π−1

bυ ,ξυ,tν
is almost the

identity on the first component of Tb̃tν(υ)M̃tν(K, δ); in the given case, the

error terms are bounded by CK

(
t+|υ|

1
p
)
. Thus, the orientations of M(K, δ)

and M̃tν(K, δ) induced by the natural orientation of FT agree with the
orientations induced from the natural orientation on Γ−(υ)⊕ ⊕

l∈[N ]

Tyl(υ)Σ via

the maps πυ,− ⊕ id and πυ,−Π−1
bυ ,ξυ,tν

⊕id, respectively.

By the construction in Subsection 3.6,

ψ̃tν : M̃tν(K, δ) −→ Γ0,1, υ −→ tν|ũυ,tν − ∂̄ũυ,tν ∈ Γ0,1(ũυ,tν),

determines a section of the bundle ΠΓ0,1
− over M̃tν(K, δ), given by

ΠΓ0,1
− (b̃tν(υ)) = Πbυ ,ξυ,tνΓ0,1

− (υ).

Note that the zero set of this section is precisely the space

(MΣ,tν,λ×ΣN ) ∩ M̃tν(K, δ).
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A linearization of this section is given by

∇ζ̃′̟
(tν − ∂̄ũυ,tν) ≡ Πbυ ,ξυ,tνπ0,1

υ,t,−∇υ
πυ,−Π−1

bυ,ξυ,tν
ζ̃′̟

Π−1
bυ,ξυ,tν

(tν − ∂̄ũυ,tν)

= −Πbυ,ξυ,tν

(
D−−

υ,t − tL−−
υ,ν,t

)
πυ,−Π−1

bυ ,ξυ,tν
ζ̃ ′̟,

where

π0,1
υ,t,− : Lp(υ) = Γ0,1

+,t(υ) ⊕ Γ0,1
− (υ) −→ Γ0,1

− (υ)

is the projection map.

Corollary 3.26. For any compact subset K of M(0)
T , there exists δ>0 such

that for all t∈ (0, δ), the orientation of (MΣ,tν,λ×ΣN ) ∩ M̃tν(K, δ) as the

zero set of the section ψ̃tν agrees with its natural orientation.

Proof. Suppose b̃tν(υ)∈ (MΣ,tν,λ×ΣN ) ∩ M̃tν(K, δ). Since we can use any
connection in ũ∗

υ,tνTV to define the natural orientation on Tũυ,tνMΣ,tν,λ, we
can write

{
Dũυ,tν − tLν,ũυ,tν

}
ξ = Πbυ ,ξυ,tν

{
Dυ − tLν,υ

}
Π−1

bυ ,ξυ,tν
ξ ∀ξ∈Γ(ũυ,t).

Thus, by Lemma 3.25, πυ,− ◦Π−1
bυ ,ξυ,tν

⊕ id induces an orientation-preserving

isomorphism

Tb̃tν(υ)MΣ,tν,λ⊕
⊕

l∈[N ]

Tyl(υ)Σ −→ ker(D−−
υ,t −L−−

ν,υ,t)⊕
⊕

l∈[N ]

Tyl(υ)Σ,

with the natural orientations on the two spaces. By the preceding paragraph,
the same is true for the zero set of ψ̃tν .

If µ is an N -tuple of constraints as above, let

M(K, δ; µ) =
{
b(υ)∈M(K, δ) : ev[N ](b(υ))∈µ

}
,

M̃tν(K, δ; µ) =
{
b̃tν(υ)∈M̃tν(K, δ) : ev[N ](b̃tν(υ))∈µ

}
.

Then M(K, δ; µ) and M̃tν(K, δ; µ) are smooth manifolds. In fact, the
smoothness of M(K, δ; µ) is immediate from the smoothness of FT |MT (µ),
which is a consequence of T -regularity of µ. On the other hand, the smooth-
ness of M̃tν(K, δ; µ) follows from Lemma 3.28 below. Furthermore, since µ

is ν-regular, the section ψ̃tν is transversal to zero in ΠΓ0,1
− over M̃tν(K, δ; µ).

By Corollary 3.26, the sign of b̃tν(υ)∈MΣ,tν,λ(µ) defined at the beginning

of this subsection is its sign as an element of the zero set of the section ψ̃tν

of ΠΓ0,1
− over M̃tν(K, δ; µ).

If b=
(
Σ, [N ], I; x, (j, y), u

)
∈M(0)

T (µ), let

Kµ
b T =

{(
ξ, wÎ⊔[N ]

)
∈KbT : ξjl

(yl) + dujl
|yl

wl∈Tujl
(yl)µl ∀l∈ [N ]

}
.
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Denote by N µ
b T the (L2, b)-orthogonal complement of Kµ

b T in KbT . Note
that by (3) of Definition 3.24,

⊕

l∈[N ]

Tujl
(yl)V = dev[N ]

∣∣
b

(
N µ

b T
)
⊕

⊕

l∈[N ]

Tujl
(yl)µl.

We denote by Ñ µT the bundle over M(0)
T (µ) with fibers N µ

b T and by
N µT −→ MT (µ) its quotient by the natural GT -action.

Suppose S ⊂ MT is a smooth oriented submanifold such that µ is S-

regular. Denote by S̃ ⊂M(0)
T the preimage of S under the quotient projection

map. Let

NS −→ S and NS̃ −→ S̃
be the normal bundles. Choose an

(
A(T )⋉GT

)
-equivariant orientation-

preserving identification φ̃S : NS̃δ−→M(0)
T of neighborhoods of S̃ in NS̃

and M(0)
T . Let

Φ̃S : π∗
NS̃

F (0)T −→ F (0)T
be an

(
A(T )⋉GT

)
-equivariant vector-bundle isomorphism covering φ̃S such

that Φ̃S is the identity on S̃. Let

φS : NSδ −→ MT and ΦS : π∗
NSFT −→ FT

be the maps induced by φ̃S and Φ̃S , respectively. Put

S(µ) = S ∩MT (µ), S̃(µ) = S̃ ∩M(0)
T (µ).

Since µ is S-regular, we can choose an
(
A(T )⋉GT

)
-equivariant orientation-

preserving identification φ̃µ
S : Ñ µTδ|S̃(µ)−→S̃. Let

Φ̃µ
S : π∗

ÑµT

(
NS̃ ⊕ F (0)T

)
−→ NS̃ ⊕ F (0)T

be a
(
A(T ) ⋉ GT

)
-equivariant splitting-preserving vector-bundle isomor-

phism covering φ̃µ
S such that Φ̃µ

S is the identity on S̃(µ). Denote by

φµ
S : N µTδ|S(µ) −→ S̃ and Φµ

S : π∗
NµT

(
NS ⊕ FT

)
−→ NS ⊕ FT

the maps induced by φ̃µ
S and Φ̃µ

S , respectively.

Definition 3.27. With notation as above and in Subsection 3.4, (ΦS , Φµ
S)

is a regularization of S(µ) if for all b∈ S̃(µ), ~n∈NbS̃δ(b), and σ ∈ Ñ µ
b Tδ(b),

there exists ̟(~n, σ)∈Kφ̃S(b,~n)T such that

Φ̃SΦ̃µ
S(b, σ;~n, v) =

{
Φ̃S(b, ~n; v)

}(
̟(~n, σ)

)
∀ v∈F

(0)
b T .

Note that if µ is S-regular, S(µ) admits a normalization. In fact, we can
start with any choice of ΦS and Φµ

S

∣∣
π∗
NµT NS

as in the preceding paragraph,

and then choose Φµ
S

∣∣
π∗
NµT FT

so that the triple satisfies the requirements of
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the definition. In applications of Theorem 3.29 in [Z2], the exact choice of
Φµ
S does not matter, but that of ΦS does play a role.
For the purposes of Theorem 3.29, we assume that ΦS and Φµ

S also encode

the lifts of φS and φµ
S to the bundles π∗

NSΓ0,1
− −→S and π∗

NµT Γ0,1
− −→S(µ),

respectively. Put

F (0)S = NS̃ ⊕ F (0)T , F (∅)S =
{
(b, ~n, v)∈F (0)S : v∈F

(∅)
b T

}
;

FS = NS ⊕ FT , F ∅S =
{
[b, ~n, v]∈F (0)S : [b, v]∈F ∅

b T
}
.

Lemma 3.28. For any
(
A(T )⋉GT

)
-invariant precompact open subset K

of S̃(µ), there exist an open neighborhood UK of K in M(0)
T and δ, C > 0

with the following property. If t∈(0, δ), there exists a smooth
(
A(T )⋉GT

)
-

equivariant section

ϕ̃µ
S,tν ∈ Γ

(
F (∅)Sδ|K ; π∗

F (0)SÑ
µT

)
,

such that
∥∥ϕ̃µ

S,tν(υ)‖bυ ,C0 ≤ C
(
t+|υ|

1
p
)

for all υ∈F (∅)Sδ|K and

F ∅Sδ|K −→ M̃tν(UK , δ; µ), [b, ~n, v] −→ γ̃T ,tν

(
Φ̃S

(
Φ̃µ
S ϕ̃µ

S,tν

(
b, ~n, v)

))
,

is an orientation-preserving diffeomorphism.

Proof. Since µ is a regular value of ev[N ]|S and K is precompact, there exists
δ>0 such that the map

{
(b, ~n, v, σ)∈F (0)S⊕Ñ µT

∣∣
K

: |~n|, ‖σ‖b,C0 <δ
}
−→ F (0)T ,

(b, ~n, v, σ) −→ Φ̃SΦ̃µ
S(b, σ;~n, v),

is an
(
A(T )⋉GT

)
-equivariant orientation-preserving diffeomorphism onto

its image. Thus, if δ > 0 is sufficiently small, there exists C > 0 such that,
with notation as in Definition 3.27,

C−1‖σ−σ′‖b,C0 ≤
∥∥̟(~n, σ) − ̟(~n, σ′)

∥∥
b,C0 ≤ C‖σ−σ′‖b,C0

∀ b∈S̃(µ), ~n∈NbS̃δ, σ, σ′∈Ñ µ
b T .

Then by Corollary 4.11 and definition of S′
̟ in Subsection 3.4,

∣∣∣dV

(
φ̃SΦ̃µ

S(b, σ;~n), γ̃T ,tν

(
Φ̃SΦ̃µ

S(b, σ;~n, v)
))

− dV

(
φ̃SΦ̃µ

S(b, σ′;~n), γ̃T ,tν

(
Φ̃SΦ̃µ

S(b, σ′;~n, v)
))∣∣∣ ≤ C

(
t+|v|

1
p
)
‖σ−σ′‖b,C0

∀ t∈(0, δ), b∈S̃(µ), ~n∈NbS̃δ, σ, σ′∈Ñ µ
b T , v∈F

(∅)
b Tδ.

On a neighborhood of ev[N ](b)∈µ, we can identify the normal bundle of µ

in V N gV -isometrically with the trivial hermitian bundle of the same rank.
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Let π denote the projection onto the fiber. Since µ is S-regular,

‖σ − σ′‖b,C0 ≤ C
∣∣πev[N ]

(
φ̃SΦ̃µ

S(b, σ;~n)
)
− πev[N ]

(
φ̃SΦ̃µ

S(b, σ′;~n)
)∣∣

∀b∈S̃(µ), ~n∈NbS̃δ, σ, σ′∈Ñ µ
b T .

Thus, we can apply Corollary 3.23 to

h = π ◦ ev[N ] ◦ φ̃S ◦ Φ̃µ
S and h̃t = π ◦ ev[N ] ◦ γ̃T ,tν ◦ Φ̃S ◦ Φ̃µ

S .

We obtain δ, ǫ > 0 and for each t ∈ (0, δ) a section ϕ̃µ
S,tν with the claimed

bound such that the map

F (∅)Sδ|K −→
{

(b, ~n, v, σ) : ‖σ‖b,C0 <ǫ, ev[N ]γ̃T ,tν

(
Φ̃S

(
Φ̃µ
S(b, ~n; σ, v)

))
∈µ

}
,

(
b, ~n, v

)
−→

(
b, ~n, v, ϕ̃µ

S,tν(b, ~n, v)
)
,

is an orientation-preserving diffeomorphism. Since

{
[b, ~n, v, σ] : [b, ~n, v]∈F ∅Sδ, ‖σ‖b,C0 < ǫ

}
−→ M̃tν(UK , δ),

[b, ~n, σ, v] −→ γ̃T ,tν

(
Φ̃S

(
Φ̃µ
S(b, ~n; σ, v)

))
,

is orientation-preserving by the discussion above and our assumptions on
φ̃S , the claim follows. Above

UK = φ̃S

(
Φ̃µ
S

({
(b, ~n, σ)∈NS̃⊕Ñ µT |K : ‖~n‖b,C0 <ǫ, ‖σ‖b,C0 <ǫ

}))
.

Theorem 3.29. Suppose λ ∈ H2(V ; Z), T =
(
Σ, [N ], I; j, λ

)
is a (V, J)-

semiregular bubble type, with
∑
i∈I

λi = λ and cokernel bundle Γ0,1
− −→MT ,

and (Γ̃−, Γ0,1
− , R) is an obstruction bundle setup. Let S ⊂MT be a smooth

oriented submanifold,

ν∈Γ0,1(Σ×V ; Λ0,1
J,jπ

∗
ΣT ∗Σ⊗π∗

V TV )

a λ-regular section, µ a ν-, T -, and S-regular N -tuple of submanifolds of V
of total codimension

codim µ = 2
(
〈c1(V, J), λ〉 + (dimC V )

(
1 − g(S)

)
+ |N |

)
,

and (ΦS , Φµ
S) is regularization of S(µ). Then for every precompact open

subset K of S(µ), there exist a neighborhood UK of K in C̄∞
(λ;N)(Σ; µ) and

δ, ǫ, C > 0 with the following property. For every t ∈ (0, ǫ), there exist a
section

ϕµ
S,tν ∈ Γ

(
F ∅Sδ|K ; π∗

FSN µT
)
, with

∥∥ϕµ
S,tν(υ)

∥∥
bυ ,C0 ≤ C

(
t + |υ|

1
p
)
,
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and a sign-preserving bijection between MΣ,tν,λ(µ)∩UK and the zero set of
the section ψµ

S,tν defined by

ψµ
S,tν ∈ Γ

(
F ∅Sδ|K ; π∗

FSΓ0,1
−

)
,

Φµ
S

(
ϕµ
S,tν(υ); ψµ

S,tν(υ)
)

= ψS,tν

(
Φµ
S(ϕµ

S,tν(υ))
)
;

ψS,tν ∈ Γ
(
F ∅Sδ

∣∣
S∩UK

; π∗
FSΓ0,1

−

)
,

ΦS

(
υ; ψS,tν(υ)

)
= ψT ,tν

(
ΦS(υ)

)
;

ψT ,tν ∈ Γ
(
F ∅Tδ

∣∣
MT ∩UK

; π∗
FT Γ0,1

−

)
,

RυψT ,tν(υ) = π0,1
υ,−

(
tνυ,t−∂̄(ubυ ◦qυ)−Dυξυ,tν − η̃υ,tν

)
,

for some νυ,t, η̃υ,tν ∈ Γ0,1(uυ) and ξυ,tν ∈ Γ̃+(υ), dependent smoothly on υ,
such that

∥∥νυ,t − ν
∥∥

υ,2
≤ C

(
t + |υ|

1
p
)
,

∥∥ξυ,tν

∥∥
υ,p,1

≤ C
(
t + |υ|

1
p
)
,

and
∥∥η̃υ,tν

∥∥
υ,p

≤ C
(
t + |υ|

1
p
)2

.

Furthermore, if z∈Σ and (Bbυ(uυ(z), Cδ), J, gV,bυ) is isometric to a ball in
C

n, then η̃υ,tν(z) = 0.

Remark. In specific applications, the main goal would be to express the
number of zeros of ψµ

S,tν in terms of the cohomology ring of a closure

of ST (µ). One of the significant intermediate steps is to extract the leading-
order terms from the section ψµ

S,tν . If λ0̂ =0, the estimate on νυ,t given above

easily leads to a sufficiently good estimate on π0,1
υ,−νυ,t; see [I] and [Z2]. In

such a case, one can also extract the first-order term from π0,1
υ,−∂̄uυ, which

suffices for the computation in [I]. A power-series expansion for π0,1
υ,−∂̄uυ is

given in [Z2], where terms of up to third degree are used. With the choice of

metrics in [Z2], the term π0,1
υ,−η̃υ,tν vanishes. The remaining term is shown

to be secondary for a good choice of the obstruction bundle setup.

Proof of Theorem 3.29. Let δ, ǫ > 0 be as in Lemma 3.28 and its proof.
We take ϕµ

S,tν to be the section descendant from the GT -equivariant section

ϕ̃µ
S,tν . Denote by U ′

K the open set UK of Lemma 3.28. By Corollary 4.22,

there exists a neighborhood UK of K in C̄∞
(λ;N)(Σ; µ) such that

MΣ,tν,λ(µ) ∩ UK

is contained in M̃tν(U
′
K , δ; µ). The neighborhood UK can always be cho-

sen to contain all the zeros of the section ψ̃tν of the bundle ΠΓ0,1
− over

MΣ,tν,λ(µ)∩UK . By Corollary 3.26, MΣ,tν,λ(µ)∩UK is precisely the oriented

zero set of the section ψ̃tν . Since the map

F ∅Sδ|K −→ M̃tν(U
′
K , δ; µ), υ −→ γ̃T ,tν

(
ΦSΦµ

S

(
ϕµ
S,tν(υ)

))
,
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is an orientation-preserving diffeomorphism by Lemma 3.28, it induces a
sign-preserving bijection between the zero set of ψ̃tν on M̃tν(U

′
K , δ; µ), and

the zero set of the section

(γ̃T ,tνΦSΦµ
Sϕµ

S,tν)
∗ψ̃tν ∈ Γ

(
F ∅Sδ|K ; (γ̃T ,tνΦSΦµ

Sϕµ
S,tν)

∗ΠΓ0,1
−

)
.

By equation (3.17), under the canonical identification

(γ̃T ,tνγ
−1
T )∗ΠΓ0,1

− = Γ0,1
− −→ M(U ′

K , δ),

the section (γ̃T ,tνγ
−1
T )∗ψ̃tν corresponds to the section ψtν given by

ψtν

(
b(υ)

)
= tν|uυ − ∂̄uυ − π̃0,1

υ,+ηυ,tν − Nυ,tνPυηυ,tν(3.19)

= π0,1
υ,−

(
tν|uυ − ∂̄uυ − π̃0,1

υ,+ηυ,tν − Nυ,tνPυηυ,tν

)

= π0,1
υ,−

(
tνυ,ξυ,tν − ∂̄uυ − π̃0,1

υ,+ηυ,tν − NυPυηυ,tν

)
.

The second equality above is automatic, since ψtν

(
b(υ)

)
∈Γ0,1

− (υ); the third
follows from the definition of Nυ,tν in Subsection 3.6. The bounds on the
terms νυ,ξυ,tν , ηυ,tν , NυPυηυ,tν also follow from Subsection 3.6. By definition

of Γ0,1
− in Subsection 3.4 and equation (3.19), under the canonical identifi-

cation

γ∗
T Γ0,1

− = π∗
FT Γ0,1

− −→ F ∅Tδ

∣∣
U ′

K
,

the section γ∗
T ψtν corresponds to the section ψT ,tν , described in the state-

ment of the theorem.

The next proposition describes a special case of the above theorem. It
is obtained by fixing a metric g on Σ and going through the construction
analogous to that in Subsection 3.6 and then modification for constraints as
above. The sign statement below follows from the fact that the (L2, g, gV )-
projection ker(DV,ub

−τtLν,ub
)−→kerDV,ub

is an isomorphism for all τ ∈
[0, 1], t sufficiently small, and b∈MΣ,tν,λ∗(µ) sufficiently close to K.

Proposition 3.30. Suppose λ∈H2(V ; Z), T =
(
Σ, [N ], {0̂}; 0̂, λ

)
is a (V, J)-

regular bubble type,

ν∈Γ0,1(Σ×V ; Λ0,1
J,jπ

∗
ΣT ∗Σ⊗π∗

V TV )

is any section, and µ is a T -regular N -tuple of submanifolds of V of total
codimension

codim µ = 2
(
〈c1(V, J), λ〉 + (dimC V )

(
1 − g(S)

)
+ |N |

)
.

Then MT (µ) is a discrete set and for every finite subset K of S(µ), there
exist a neighborhood UK of K in C̄∞

(λ;N)(Σ; µ), ǫ>0, and for each t∈(0, ǫ) a

sign-preserving bijection between K and MΣ,tν,λ(µ)∩UK .
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3.9. Gluing Maps for Spaces Ū (0)
T (µ) and Orientations. We now con-

sider the case T = (S2, M, I; j, λ) is a regular bubble type. However, most
of the analysis in this subsection applies to any regular bubble type T . Let
µ be a generic M̃ -tuple of submanifolds in V , as defined below. If I =

⊔
k∈K

Ik

is the decomposition of I into rooted trees and {Tk} are the corresponding
simple types derived from T , the product gluing map,

(
γ̃Tk

)
k∈K

:
∏

k∈K

FTk,δk
−→

∏

k∈K

M̄〈Tk〉,

may not map the total space of the bundle over U (0)
T (µ) into Ū (0)

〈T 〉(µ). In this

subsection, we remedy this deficiency of the product gluing map. We also

show that all the spaces Ū (0)
〈T 〉(µ) and Ū〈T 〉(µ) are naturally oriented topo-

logical orbifolds and the gluing maps defined below preserve orientations.

Definition 3.31. If T is a (V, J)-regular bubble type, M̃ -tuple µ of oriented

submanifolds of V is T -regular if the manifolds
{
µl : l ∈ M̃−M

}
intersect

transversally in V and

Tev(b)V ⊕
⊕

l∈M̃∩M

Tujl
(yl)V = Im dev

∣∣
b
+ Im devM̃∩M

∣∣
b
+ Tev(b)

⋂

l∈M̃−M

µl

+
⊕

l∈M̃∩M

Tujl
(yl)µl

for all b=(S2, M, I; x, (j, y), u)∈BT (µ).

Let T , Tk, K, µ, and b be as above. Denote by

bk =
(
S2, Mk, Ik; x|Îk

, (j, y)|Mk
, u|Ik

)

the corresponding Tk-bubble map; see Subsection 2.5. Let N µ
b T be the

(L2, b)-orthogonal complement of

K̃µ
b T =

{
(ξ, wÎ⊔M )∈K̃bT : ξjl

(yl)+dujl
|yl

wl∈Tujl
(yl)µl ∀l∈M̃ ∩ M,

ξi(∞)∈Tev(b)

⋂

l∈M̃−M

µl ∀i∈I−Î

}

in
⊕

k∈K

Kbk
Tk. Denote by Ñ µT −→ BT (µ) and N µT −→ U (0)

T (µ) the corre-

sponding vector bundles. Let

N µBT = Ñ µT ⊕ (C ⊕ R)K −→ BT (µ),

N µU (0)
T = N µT ⊕ (C ⊕ R)K −→ U (0)

T (µ);

F (0)T =
⊕

k∈K

F (0)Tk −→ BT , FT =
⊕

k∈K

FTk −→ U (0)
T .
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The last two vector bundles carry norms induced from the norms on F (0)Tk,
while we define norms on the first two by

∣∣(b, σ, (c, r)
)∣∣ = ‖σ‖b,C0 + |(c, r)|,

if σ∈N µ
b T ⊂ ⊕

k∈K

K̃bk
Tk and (c, r)∈(C⊕R)K . If δ is sufficiently small, define

φ̃µ
T : N µBT ,δ −→

∏

k∈K

M(0)
Tk

by

φ̃µ
T

(
σ, (c, r)

)
=

(
(ck, rk) · H(0)

Tk
(σk)

)
k∈K

∈
∏

k∈K

M(0)
Tk

,

where H
(0)
Tk

is as at the end of Subsection 3.2 and (ck, rk)· denotes the ac-
tion of a neighborhood of

0 ∈ C×R = C×R×{0} ⊂ C×R×R

described in Subsection 3.1. Since φ̃µ
T is

(
A(T )⋉G̃T

)
-equivariant, it descends

to a G∗
T -equivariant map

φµ
T : N µU (0)

T ,δ −→
∏

k∈K

MTk
.

Let Φµ
T : π∗

NµUT
FT −→FT be a G∗

T -equivariant vector-bundle map covering

the map φµ
T such that Φµ

T is the identity over U (0)
T (µ). Denote by Φ̃µ

T the

lift of Φµ
T to N µBT ,δ. Let Φµ

T ,k and Φ̃µ
T ,k be kth components of Φµ

T and Φ̃µ
T ,

respectively.

Lemma 3.32. With assumptions and notation as above, there exist
(
A(T )⋉

G̃T

)
-invariant functions δ, C ∈C∞(BT (µ); R+) and an

(
A(T )⋉G̃T

)
- equi-

variant section

ϕ̃µ
T ∈Γ

(
F (0)Tδ; π

∗
F (0)T N

µBT ,δ

)
,

such that
∣∣ϕ̃µ

T (υ)
∣∣ ≤ C(bυ)|υ|

1
p and

FTδ −→ Ū (0)
〈T 〉(µ), υ −→

(
γ̃Tk

(
Φµ
T ,kϕ

µ
T (υ)

))
k∈K

,

is a homeomorphism onto an open neighborhood of U (0)
T (µ) in Ū (0)

〈T 〉(µ). Fur-

thermore, the restriction of this map to F ∅Tδ is an orientation-preserving

diffeomorphism onto an open subset of U (0)
〈T 〉(µ).

Proof. Denote by NT µ the normal bundle of

XT (µ) ≡
{
xK ∈V K: xk1 =xk2 ∈µl ∀k1, k2∈K, l∈M̃−M

}
×

∏

l∈M̃∩M

µl

⊂ V K×V M̃∩M .



506 A. ZINGER

Let ÑT µ = NXT µ⊕(C⊕R)K . Since the G̃T -action does not change any
evaluation maps and the constraints are in general position, the differential
of the map

ΨT ,M̃ :
∏

k∈K

M(0)
Tk

−→ V K × V M̃∩M × (C × R)K ,

ΨT ,M̃ =
(
(evTk

(bk))k∈K ; (evl(b))l∈M∩M̃ ; (ΨTk,0̂Ik
(bk))k∈K

)
,

where ΨTk,0̂Ik
(bk)∈C × R is as in Subsection 3.2, induces an isomorphism

between N µ
b BT and ÑT µ. This isomorphism is orientation-preserving by

definition of orientations. Thus,

φ̃µ
T : N µBT ,δ −→

∏

k∈K

M(0)
Tk

is an orientation-preserving diffeomorphism onto an open neighborhood of

BT (µ) in
∏

k∈K

M(0)
Tk

, provided δ ∈ C∞(BT (µ); R+) is sufficiently small. By

the same argument as in Subsection 3.8, for any simple bubble type T ′, the
map

γ̃T ′ : F ∅T ′
δ −→ M〈T ′〉 = H〈T ′〉

is an orientation-preserving diffeomorphism onto an open subset of M〈T ′〉

provided δ∈C∞(MT ′ ; R+) is sufficiently small. Along with Corollary 4.23,
this implies that the product map

∏

k∈K

γ̃Tk
:

∏

k∈K

FTk,δ −→
∏

k∈K

M̄〈Tk〉

is a homeomorphism onto an open neighborhood of
∏

k∈K

MTk
in

∏
k∈K

M̄〈Tk〉

and its restriction to the preimage of
∏

k∈K

M〈Tk〉 is an orientation-preserving

diffeomorphism. The lemma now follows by applying an argument similar
to the proof of Lemma 3.28 to the functions

h(υ) = ΨT ,M̃

(
φ̃µ
T

(
σ, (c, r)

))
, h̃(υ) = h̃0(υ) = ΨT ,M̃

((
γ̃kΦ

µ
T ,k(υ)

)
k∈K

)
,

where we write υ=
(
σ, (c, r), v

)
, with

(
σ, (c, r)

)
∈N µBT and v∈F (0)T . Since

BT (µ) is generally not precompact in
∏

k∈K

M(0)
Tk

, we end up with

δ, C ∈ C∞(BT (µ); R+),

instead of δ, C∈R
+. Another difference is that h̃ is not necessarily smooth

with respect to the standard smooth structure on N µBT ⊕F (0)T . However,
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we can put a smooth structure on the total space such that the compos-
ite maps

N µBT ,δ ⊕ F (0)T −→ F (0)T −→ R, υ −→ Φ̃µ
T (υ)

vh −→ |vh|
1
3p , h∈ Îk, k∈K,

are smooth, whenever δ ∈ C∞(BT (µ); R+) is sufficiently small. Then by

Corollary 4.5, h̃ is C2, which is sufficient for the arguments of Subsection 3.7.
Finally, in the given case h̃ is defined on all of

(
N µBT ⊕F (0)T

)
δ

and thus

the second condition on h̃t in Subsection 3.7 is redundant.

Suppose T is a bubble type and µ is an M̃ -tuple of constraints in gen-
eral position. By Lemma 3.32, there exist G∗

T -invariant functions δ, C ∈
C∞(U (0)

T (µ); R+) and a G∗
T -equivariant section

ϕµ
T ∈

(
FTµ; π∗

FT N µU (0)
T ,δ

)

such that
∣∣ϕµ

T (υ)
∣∣ ≤ C(bυ)|υ|

1
p and

γ̃µ
T : FTδ −→ Ū (0)

〈T 〉(µ), γ̃µ
T (υ) =

(
γ̃Tk

(
Φµ
T ,kϕ

µ
T (υ)

))
k∈K

,

is a homeomorphism onto a neighborhood of U (0)
T (µ) in Ū (0)

〈T 〉(µ), which is an

orientation-preserving diffeomorphism on a dense open subset of the domain.
If T ′ is another regular bubble type such that 〈T 〉=〈T ′〉 and µ is T ′-regular,
it follows that

γ̃µ −1
T γ̃µ

T ′ : γ̃µ −1
T ′

(
γ̃µ
T (FTδ)

)
−→ γ̃µ −1

T

(
γ̃µ
T ′(FT ′

δ′)
)

is a homeomorphism provided δ′∈C∞(U (0)
T ′ (µ); R+) is sufficiently small. Fur-

thermore, by the above it is orientation-preserving on a dense open subset
of its domain. It follows that γ̃µ−1

T γ̃µ
T ′ is an orientation-preserving homeo-

morphism everywhere. We thus obtain

Theorem 3.33. Let T ∗ =(S2, M, I∗; j, λ∗) be a basic bubble type and µ an

M̃ -tuple of constraints such that µ is T -regular for every bubble type T ≤T ∗.

(1) The spaces Ū (0)
T ∗ (µ) and ŪT ∗(µ) are oriented topological orbifolds.

(2) Suppose T < T ∗, φµ
T : N µTδ̃ −→ U (0)

T is a GT ∗-equivariant identi-

fication of neighborhoods of U (0)
T (µ) in N µT and in U (0)

T , and Φµ
T :

π∗
NµT FT −→ FT is a lift of φµ

T such that Φµ
T |U(0)

T (µ)
=1. Then there

exist GT ∗-invariant functions δ, C ∈ C∞
(
U (0)
T (µ); R+

)
and a GT ∗-

equivariant continuous orientation-preserving identification,

γ̃µ
T : FTδ −→ Ū (0)

T ∗ (µ),
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of neighborhoods of U (0)
T (µ) in FT and in Ū (0)

T ∗ (µ), which is smooth

on F ∅Tδ −→ UT ∗(µ). Furthermore, for every υ ∈ FTδ, there exists
σ(υ)∈N µT such that

‖σ(υ)‖b∗ ≤ C(b∗)|υ|
1
p and uγ̃µ

T (υ) = expV,ub′◦qΦ
µ
T

(σ(υ))
ξυ,

where Φµ
T (σ(υ)) ≡ [b′, v′],

for some ξυ∈Γ
(
ub′ ◦ qΦµ

T (σ(υ))

)
with ‖ξυ‖C0 ≤ C(bυ)|υ|

1
p .

Remark. The descriptive statement (2) of Theorem 3.33 is used in [Z2] for
local excess-intersection type of computations on the spaces ŪT ∗(µ).

4. Technical Issues

4.1. Continuity of the Gluing Map. Let T =(S, M, I; j, λ) be a simple

regular bubble type and H a nonempty subset of Î. Suppose υk ∈ F (∅)Tδ

and the sequence υk converges to υ∗∈F (H)Tδ. In this subsection, we show
that γ̃T (υk) converges to γ̃T (υ∗) in the Gromov topology. Our main interest
is the case S =S2.

It is sufficient to assume that πh(υk) = πh(υ∗) if h 6∈ H. In particular,

b ≡ bυ∗ = bυk
. Denote by T̃ =T (H) the bubble type of b(υ∗). For each k,

define
υ̃k =

(
b̃(υ∗), (ṽk)H

)
∈ F

(0)
b(υ∗)T̃

as follows. If h∈H, put

iHh = min
{
i<h : if h′∈I & i<h′<h, h′ 6∈H

}
.

Since I is a rooted tree, iHh is well-defined. Let

ṽk,h =
∏

iHh<h′≤h

vk,h′ .

Since υk −→ υ∗, υ̃k,h −→ 0 for all h ∈ H. Furthermore, by construction
Συk

=Συ̃k
and qυk

=qυ∗◦qυ̃k
. In particular, uυk

=uυ∗◦qυ̃k
.

For any h∈H and δ>0, let

Ah,δ,k = q−1
υk

({
(ιh, z) : rb,h(z)≤δ

}
∪

{
(h, z) : |q−1

S (z)|≤δ
})

⊂ Συk
,

A∗
h,δ = q−1

υ∗

({
(ιh, z) : rb,h(z)≤δ

}
∪

{
(h, z) : |q−1

S (z)|≤δ
})

⊂ Συ∗ ,

Σ∗
δ = Συ∗ −

⋃

h∈H

A∗
h,δ.

It is convenient to make the following definitions. If ηk∈Lp(υk), the sequence
{ηk} converges to η∗∈Lp(υ∗) if q−1∗

υ̃k
ηk converges to η∗ in the Lp-norm on

all precompact open subsets of Σ∗
υ∗ and

(4.1) lim
δ−→0

lim
k−→0

‖ηk‖υk,Lp(Ah,δ,k) = 0 ∀h∈H.
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If ξk∈Lp
1(υk), the sequence {ξk} converges to ξ∗∈Lp

1(υ
∗) if ξk◦q−1

υ̃k
converges

to ξ∗ in the Lp
1-norm on all precompact open subsets of Σ∗

υ∗ and

(4.2) lim
δ−→0

lim
k−→0

‖ξk‖υk,Lp
1(Ah,δ,k) = 0 ∀h∈H.

In (4.1) and (4.2), we use the modified Sobolev norms.

Lemma 4.1. There exist C, δ∈C∞
(
M(0)

T ; R+
)

such that for any sequence

{υk∈F (∅)Tδ} converging to υ∗ as above and ξ∈Γ+(υ∗)

∥∥πυk,−(ξ ◦ qυ̃k
)
∥∥

υk,p,1
≤ C(b)|υk−υ∗|‖ξ‖υ∗,p,1.

Proof. Note that Γ−(υk) =
{
ξ− ◦ qυ̃k

: ξ− ∈ Γ(υ∗)
}
. Thus, the difference

q∗υ̃k
πυ∗,−−πυk,−q∗υ̃k

arises entirely from the difference between the metrics
q∗υ̃k

gυ∗ and gυk
. By construction, the two metrics differ only on the annuli

A
h,2|vk,h|

1
2 ,k

for h∈H. Thus, the claim follows from (2) of Lemma 3.5.

Lemma 4.2. If ηk converges to η∗, then Pυk
ηk converges to Pυ∗η∗.

Proof. (1) Let {ǫk}, {δk}⊂R
+ be sequences converging to zero such that

‖η∗‖υ∗,Lp(A∗
h,δk

) ≤ ǫk; ‖Pυ∗η∗‖υ∗,Lp
1(A∗

h,δk
) ≤ ǫk,(4.3)

lim
k−→∞

‖ηk‖υk,Lp(Ah,δk∗ ,k) < ǫk

for all h∈H. For every k∗>0, choose Nk∗ such that for all k>Nk∗

(4.4)
∥∥q−1∗

υ̃k
ηk − η∗

∥∥
υ∗,Lp(Σ∗

δk∗
)
≤ ǫk∗ and ‖ηk‖υk,Lp(Ah,δk∗ ,k) ≤ ǫk∗ .

for all h∈H. It can be assumed that 2|υk−υ∗| 12 ≤δk∗ , ǫk∗ whenever k>Nk∗ .
For any k>Nk∗ , let η̃k∗,k∈Lp(υ∗) be given by

η̃k∗,k =

{
q−1∗
υ̃k

η̃k, on Σ∗
δk∗

;

0, outside of Σ∗
δk∗

.

Then ‖η̃k∗,k‖υ∗,p ≤ ‖ηk‖υk,p. Let

P̃k∗,kηk = q∗υ̃k
Pυ∗ η̃k∗,k ∈ Lp

1(υk).

Then by Lemma 3.16 and the first assumptions of (4.3) and (4.4),

∥∥q−1∗
υ̃k

P̃k∗,kηk − Pυ∗η∗
∥∥

υ∗,Lp
1(Σ∗

δk∗
)
≤

∥∥Pυ∗ η̃k∗,k − Pυ∗η∗
∥∥

υ∗,p,1
(4.5)

≤ C(b)
∥∥η̃k∗,k − η∗

∥∥
υ∗,p

≤ 2C(b)ǫk∗ .
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Since ‖dqυ̃k
‖C0 ≤ C(b), by (4.3) and the first assumption of (4.4) for all

h∈H,
∥∥P̃k∗,kηk

∥∥
υk,Lp

1(Ah,δk∗ ,k)
≤ C(b)

∥∥Pυ∗ η̃k∗,k

∥∥
υ∗,Lp

1(A∗
h,δk∗

)
(4.6)

≤ C(b)
(∥∥Pυ∗η∗

∥∥
υ∗,Lp

1(A∗
h,δk∗

)
+

∥∥Pυ∗ η̃k∗,k − Pυ∗η∗
∥∥

υ∗,p,1

)

≤ C ′(b)ǫk∗ .

(2) We now show that P̃k∗,kηk is close to Pυk
ηk. By Lemmas 3.16 and 4.1,

∥∥P̃k∗,kηk − Pυk
ηk

∥∥
υk,p,1

(4.7)

≤ C(b)
(∥∥Dυk

P̃k∗,kηk − ηk

∥∥
υk,p

+
∥∥πυk,−P̃k∗,kηk

∥∥
υk,p,1

)

≤ C(b)
(∥∥Dυk

P̃k∗,kηk − ηk

∥∥
υk,p

+ |υk − υ∗|‖ηk‖υk,p

)
.

Since Dυ∗Pυ∗ η̃k∗,k = η̃k∗,k and qυ̃k
is holomorphic outside of the annuli

Ah,δk∗ ,k,

(4.8) Dυk
P̃k∗,kηk = ηk on Συk

−
⋃

h∈H

Ah,δk∗ ,k;

By equation (4.6),
∥∥Dυk

P̃k∗,kηk

∥∥
υk,Lp(Ah,δk∗ ,k)

≤ C(b)
∥∥P̃k∗,kηk

∥∥
υk,Lp

1(Ah,δk∗ ,k)
(4.9)

≤ C ′(b)ǫk∗ .

Thus, from equations (4.7)-(4.9) and the second assumption of (4.4), we
conclude that for all k>Nk∗

(4.10)
∥∥P̃k∗,kηk − Pυk

ηk

∥∥
υk,p,1

≤ C(b)ǫk∗ (1 + ‖η∗‖υ∗,p) .

Since ‖dq−1
υ̃k

‖C0 ≤C(b) on Σ∗
δk∗

, by equations (4.5), (4.6), and (4.10),
∥∥q−1∗

υ̃k
Pυk

ηk − Pυ∗η∗
∥∥

υ∗,Lp
1(Σ∗

δk∗
)
≤ C(b)ǫk∗

(
1 + ‖η∗‖υ∗,p

)
;(4.11)

∥∥Pυk
ηk

∥∥
υk,Lp

1(Ah,δk∗ ,k)
≤ C(b)ǫk∗

(
1 + ‖η∗‖υ∗,p

)
∀h∈H.(4.12)

By equations (4.11) and (4.12), Pυk
ηk converges to Pυ∗η∗.

Lemma 4.3. There exist C̃, δ∈C∞(M(0)
T ; R+) such that for all υ∗∈F (H)Tδ

and h∈H, ∥∥Pυ∗ ∂̄uυ∗

∥∥
gυ∗ ,C1(A∗

h,δ(bυ∗ )
)
≤ C̃(bυ∗).

Proof. For each h∈H, this lemma is obtained by pasting

Pυ∗ ∂̄uυ∗

∣∣
Ah,δ(b∗

υ∗ )∩Συ∗,ιh

and Pυ∗ ∂̄uυ∗

∣∣
Ah,δ(b∗

υ∗ )∩Συ∗,h
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onto Σbυ∗ ,ιh and Σbυ∗ ,h via a cutoff function. We then use the usual elliptic
estimates and Sobolev inequalities on Σbυ∗ ,ιh and Σbυ∗ ,h along with

∥∥Pυ∗ ∂̄uυ∗

∥∥
υ∗,p,1

≤ C(bυ∗)|υ∗|
1
p .

The bound obtained in this way is actually C(bυ∗)|υ∗|
1
p .

Corollary 4.4. There exist C, δ∈C∞(M(0)
T ; R+) such that for any sequence

υk∈F (∅)Tδ converging to υ∗∈F (H)Tδ as above,
∥∥q−1∗

υ̃k
ηυk

− ηυ∗

∥∥
υ∗,Lp(Σ∗

2|υk−υ∗|1/2
)
≤ C(b)|υk−υ∗|

1
p ;

‖ηυk
‖υk,Lp(A

h,2|υk−υ∗|1/2,k
) ≤ C(b)|υk−υ∗|

1
p ∀h∈H.

Proof. We put

δk = 2|υk−υ∗| 12 and ǫk = (2‖β′‖C0 +C̃(b))|υk−υ∗|
1
p ,

where C̃ is the function given by Lemma 4.3. Let

η(0) = −∂̄uυ∗ , η(m+1) = −∂̄uυ∗ − Nυ∗Pυ∗η(m) m≥0;

η
(0)
k = −∂̄uυk

, η
(m+1)
k = −∂̄uυk

− Nυk
Pυk

η
(m)
k m≥0.

By Lemma 4.3 and the explicit description of ∂̄qυk
in Lemma 2.2, ǫk, δk,

η(0), and η
(0)
k satisfy (4.3) and (4.4). Suppose ǫ

(m)
k is such that ǫ

(m)
k , δk,

η(m), and η
(m)
k satisfy (4.3) and (4.4). Since the map qυ̃k

is holomorphic on

q−1
υ̃k

(Σ∗
δk

), by (4.11), (4.12), the estimates in the proof of Lemma 3.18 and

the derivation of equation (3.11) in [Z1],
∥∥q−1∗

υk
Nυk

Pυk
η

(m)
k − Nυ∗Pυ∗η(m)

∥∥
υ∗,Lp(Σ∗

δk
)

=
∥∥Nυ∗q−1∗

υk
Pυk

η
(m)
k − Nυ∗Pυ∗η(m)

∥∥
υ∗,Lp(Σ∗

δk
)

≤ C(b)
(∥∥q−1∗

υk
Pυk

η
(m)
k

∥∥
υ∗,Lp(Σ∗

δk
)
+

∥∥Pυk
η

(m)
k

∥∥
υ∗,Lp(Σ∗

δk
)

)

×
∥∥∥q−1∗

υk
Pυk

η
(m)
k − Pυ∗η(m)

∥∥∥
υ∗,Lp(Σ∗

δk
)

≤ C ′(b)
(
ǫ
(m)
k∗ + |υk|

1
p
)
ǫ
(m)
k∗ ;

∥∥Nυk
Pυk

η
(m)
k

∥∥
υk,Lp(Ah,δk,k)

≤ C(b)|υk|
1
p
∥∥Pυk

η
(m)
k

∥∥
υk,Lp

1(Ah,δk,k)

≤ C ′(b)|υk|
1
p ǫ

(m)
k∗ .

Thus, we can take

ǫ
(m+1)
k = ǫ

(m)
k +C ′(b)

(
ǫ
(m)
k∗ +|υk|

1
p
)
ǫ
(m)
k∗ .
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This sequence is bounded as long as |υk|
1
p is sufficiently small (depending

only on b). Since ηυ∗ is the limit in the (υ∗, p)-norm of the sequence η(m) and

ηυk
is the limit in the (υk, p)-norm of the sequence η

(m)
k , the claim follows.

Corollary 4.5. If T is a simple regular bubble type, there exist R
+-valued

smooth functions δ, C on MT such that for any sequence {υk ∈F ∅Tδ} con-
verging to υ∗ ∈FHTδ, γ̃(υk) converges to γ̃(υ∗) with respect to the Gromov
topology. Furthermore,

dV

(
ev(γ̃(υ∗)), ev(γ̃(υk))

)
≤ C(bυ∗)|υk−υ∗|

1
p if S =S2;

dV

(
evl(γ̃(υ∗)), evl(γ̃(υk))

)
≤ C(bυ∗)|υk−υ∗|

1
p ∀ l∈M ;

∣∣∣Ψ〈T 〉,0̂

(
γ̃(υk)

)
− ΨT (υ∗),0̂

(
γ̃(υ∗)

)∣∣∣ ≤ C(bυ∗)|υk−υ∗|
1
p if S =S2.

Proof. It is sufficient to consider the case πh(υk) = πh(υ∗) for all h 6∈ H if

υ∗ ∈ F (H)Tδ. In such a case, qυ̃k
maps the marked points of Συk

to the
marked points of Συ∗ and uυk

=uυ∗◦qυk
. By construction,

ũυk
= expbυ∗ ,uυk

Pυk
ηυk

, ũυk
= expbυ∗ ,uυ∗ Pυ∗ηυ∗ .

By Corollary 4.5 and the proof of Lemma 4.2,
∥∥q−1∗

υ̃k
Pυk

ηυk
− Pυ∗ηυ∗

∥∥
υ∗,Lp

1(Σ∗

2|υk−υ∗|1/2
)
≤ C(bυ∗)|υk − υ∗|

1
p ;(4.13)

‖Pυk
ηυk

‖υk,Lp
1(A

h,2|υk−υ∗|1/2,k
) ≤ C(bυ∗)|υk − υ∗|

1
p ∀h∈H.(4.14)

Let ζk∈Γ(Σ∗; ũυ∗) be given by

expbυ∗ ,ũυ∗ ζk = ũυk
◦ qυ̃k

, ‖ζk‖C0 < inj gV,bυ∗ .

By equation (4.13) and the proof of (2) of Lemma 3.5,

‖ζk‖C0(Σ∗

2|υk−υ∗|1/2
) ≤ C(bυ∗)‖ζk‖υ∗,Lp

1(Σ∗

2|υk−υ∗|1/2
)(4.15)

≤ C ′(bυ∗)|υk − υ∗|
1
p .

On the other hand, by (4.14) and by the same argument as in (3) of the
proof of Lemma 5.12, the variations of Pυ∗ηυ∗ on A∗

h,2|υk−υ∗|1/2 and Pυk
ηυk

on A∗
h,2|υk−υ∗|1/2,k

are bounded C(bυ)|υk−υ∗|
1
p . This can be seen from equa-

tion (5.33); observe that an argument similar to the proof Lemma 4.3 shows

that we can take δ to be any small number bigger than 2|υk−υ∗| 12 . Equa-
tion (4.15) and the small variation on the annuli imply that

sup
z∈Συk

dV

(
ũυ∗(qυ̃k

(z)), ũυk
(z)

)
≤ C(bυ∗)|υk − υ∗|

1
p .

It follows that γ̃T (υk) converges to γ̃T (υ∗) in the Gromov topology. The
estimate on the evaluation maps is immediate from the above bound. The
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last estimate follows from equations (4.13) and (4.14), along with a Sobolev
estimate on a neighborhood of ∞∈Συ∗,0̂ which implies that the C1-norm of

ζk there is bounded by C(bυ∗)|υk−υ∗|
1
p .

4.2. Injectivity of the Gluing Map. The goal of this subsection is to
prove that the gluing maps of (3.15) and (3.16) are injective, as long as

δ∈C∞(M(0)
T ; R+) is sufficiently small. We start by showing local injectivity

on the subspaces FHTδ of FTδ, where H is a subset of Î.
If T is regular, we are only interested in the case t = 0. If T is semireg-

ular, we only consider the case H = ∅. We use the same notation as in
Subsection 3.4. If ‖̟‖υ is sufficiently small, define ζ̟̃,tν ∈Γ(ũυ,tν) by

expbυ ,ũυ,tν
ζ̟̃,tν = u̟,tν , ‖ζ̟̃,tν‖bυ ,C0 < inj gV,b.

Lemma 4.6. There exist δ, C∈C∞(M(0)
T ; R+) such that for all υ∈F (H)Tδ,

where H =∅ if T is semiregular, and ̟∈ T̃υFHTδ(bυ),

(1)
∥∥S̟N̟,tνR̟ξ−Nυ,tνξ

∥∥
υ,p

≤C(bυ)‖̟‖υ‖ξ‖2
υ,p,1 for all ξ ∈Γ(uυ) with

‖ξ‖υ,p,1≤δ(bυ) and t∈ [0, 1];
(2)

∥∥S̟π̟̃,±R̟ξ − π̃υ,±ξ
∥∥

υ,p,1
≤ C(bυ)‖̟‖υ‖ξ‖υ,p,1 for all ξ∈Γ(uυ);

(3)
∥∥S̟P̟R̟η − Pυη

∥∥
υ,p,1

≤ C(bυ)‖̟‖υ‖η‖υ,p for all ξ∈Γ0,1(uυ).

Proof. Claim (1) follows from (2) of Lemma 3.6 and Riemannian geometry
estimates such as in [Z1]. Claim (2) is a consequence of (5) of Lemma 3.6
and (b) of Definition 3.11. Finally, (3) is obtained from (1), (2), Defini-
tions 3.11 and 3.13, and Lemmas 3.6 and 3.16 as follows. Writing △̟P for
S̟P̟R̟ − Pυ, etc.,

△̟ P = Pυπ0,1
υ,+Dυπ̃υ,+△̟P +π̃υ,−S̟P̟R̟

= Pυπ0,1
υ,+Dυ△̟P−

(
Pυπ0,1

υ,+Dυ−1
)
△̟ π̃·,+S̟P̟R̟

= Pυπ0,1
υ,+△̟ π̃0,1

·,+ −
(
Pυπ0,1

υ,+△̟D +
(
Pυπ0,1

υ,+Dυ − 1
)
△̟ π̃·,+

)
S̟P̟R̟

= −Pυ△̟π0,1
·,+S̟π̃0,1

̟,+R̟

−
(
Pυπ0,1

υ,+△̟D +
(
Pυπ0,1

υ,+Dυ − 1
)
△̟ π̟̃,+S̟P̟R̟

)
.

Corollary 4.7. There exist δ, C∈C∞(M(0)
T ; R+) such that for all

t∈ [0; δ(bυ)], υ∈F (H)Tδ,

where H =∅ if T is semiregular, and ̟∈ T̃υFHTδ(bυ),

C(bυ)−1‖̟‖υ ≤ ‖ζ̟̃,tν‖υ,p,1 +
∑

h∈H

|wh(̟)|gυ +
∑

l∈M

|wl(̟)|gυ

≤ C(bυ)‖̟‖υ.
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Furthermore,
∥∥S̟ξ̟,tν − ξυ,tν

∥∥
υ,p,1

≤ C(bυ)
(
t + |υ|

1
p
)
‖̟‖υ.

Proof. The first claim of the lemma is immediate from the second and (1)
of Lemma 3.6. On the other hand, by construction in Subsection 3.6,

ξ̟,tν = tP̟ν − P̟∂̄u̟ − P̟N̟,tνξ̟,tν .

Thus, if t and |υ| are sufficiently small (depending on bυ), the second claim
follows from Lemmas 3.6, 4.6, Corollary 3.19, and equation (3.11).

Corollary 4.8. If T is a simple bubble type and K is an open subset of MT

with compact closure, there exists δ>0 such that for any t∈ [0, δ], the map

γ̃T ,tν : F ∅Tδ|K −→ C∞
(λ;M)(S; V ), γ̃T ,tν(υ) = b̃tν(υ),

is a differentiable embedding.

Proof. We first deduce from Corollary 4.7 that γ̃T ,tν is injective if δ is suffi-

ciently small. Suppose not, i.e., there exist sequences υk, υk′ ∈F ∅Tδ|K such
that

υk−→b∈K̄, υ′
k −→ b′∈K̄, and b̃tν(υk)= b̃tν(υ

′
k).

It follows that b=b′, after possibly modifying the sequence {υk′} the action
of an element of

(
A(T )⋉GT

)
. If for some k, υ′

k = υk(̟k) with ‖̟k‖υk

sufficiently small, then by Corollary 4.7, υ′
k = υk. Otherwise, the difference

between qυk
and qυ′

k
is uniformly bounded below outside of the preimage of

the zeroth component and the necks Aυk,h. Thus, the bubble maps b(υk)
and b(υ′

k) are far apart unless b has an automorphism. In the latter case, υ′
k

can be replaced by an equivalent element of F ∅Tδ. In the former case, ũυk

and ũυ′
k

cannot be the same because

∥∥Pυk
ηυk,tν

∥∥
C0 ≤ C

(
t + |υk|

1
p
)
≤ C ′δ

1
p and

∥∥Pυ′
k
ηυ′

k,tν

∥∥
C0 ≤ C

(
t + |υ′

k|
1
p
)
δ

1
p .

Thus, γ̃T ,tν is injective on F ∅Tδ|K provided δ is sufficiently small (depending
on K). The smoothness of γ̃T ,tν follows from the smooth dependence of
solutions of equation (3.12) on the parameters. Finally, the differential of
γ̃T ,tν is nondegenerate by Corollary 4.7.

Corollary 4.9. If T is regular, there exists δ∈C∞ (MT ; R+) such that for
all m, the map

γ̃T :
⋃

|H|=m

FHTδ −→
⋃

|H|=m

MT (H), γ̃T (υ) = b̃(υ),

is injective.
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Proof. The same argument as in the proof of Corollary 4.8 shows that map

γ̃T : FHTδ −→ HT (H)

is an embedding if δ is sufficiently small. It remains to see that γ̃
(0)
T (υ) 6=

g · γ̃(0)
T (υ′) for any g∈GT (H) whenever [υ] 6= [υ′]. For each υ ∈ F (H)Tδ and

i∈H, we construct
(
ci(υ), ri(υ)

)
∈C×R such that

(
c(υ), r(υ)

)
· γ̃(0)

T (υ) ∈ M(0)
T (H).

We define ci(υ)∈C and ri(υ)∈R by

Ψ̃
(
(ci(υ), 0) · ũυ,i

)
+

∑

ιh(υ)=i

dh

(
T (H)

)(
xh(υ) + ci(υ)

)

+
∑

jl(υ)=i

(
yl(υ) + ci(υ)

)
= 0;

Ψ(3)
(
(ci(υ), ri(υ)) · ũυ,i

)
+

∑

ιh(υ)=i

dh

(
T (H)

)
β
(
(1 + ri(υ))|xh(υ) + ci(υ)|

)

+
∑

jl(υ)=i

β
(
(1 + ri(υ))|yl(υ) + ci(υ)|

)
=

1

2
.

Since the metric gυ,i for i > 0 agrees with the standard metric on S2 on a
neighborhood of the south pole and ΨT ,i(bυ) = 0, by Corollary 4.7 for any
̟∈TυFHT with ‖̟‖υ sufficiently small,

∣∣ci(̟) − ci(υ)
∣∣ ≤ C(bυ)|υ|

1
p ‖̟‖υ,(4.16)

∣∣ri(̟) − ri(υ)
∣∣ ≤ C(bυ)|υ|

1
p ‖̟‖υ.

Let b̄(υ)=
(
c(υ), r(υ)

)
· b̃(υ). Write

b̄(υ) =
(
S, M, H∪{0̂}; x̄(υ), (j(υ), ȳ), ūυ

)
.

If ‖̟‖υ is sufficiently small, define ζ̟̄∈Γ(ūυ) by

expbυ ,ūυ
ζ̟̄ = u̟, ‖ζ̟̄‖bυ ,C0 < inj gV,bυ .

Similarly, for h ∈ H and l ∈ M , define w̄h(̟) ∈ Tx̄h(υ)Συ,ιh(υ) and w̄l(̟) ∈
Tȳl

Συ,jl(υ) by

expgυ ,x̄h(υ) w̄h(̟) = x̄h(̟), |w̄h(̟)| ≡ |w̄h(̟)|gυ < inj(gυ, xh(υ));

expgυ ,ȳl(υ) w̄l(̟) = ȳl(̟), |w̄l(̟)| ≡ |w̄l(̟)|gυ < inj(gυ, yl(υ)).

Then by equation (4.16) and Corollary 4.7,

C ′′(bυ)−1‖̟‖υ ≤ ‖ζ̟̄‖υ,p,1 +
∑

h∈H

|w̄h(̟)| +
∑

l∈M

|w̄l(̟)|(4.17)

≤ C(bυ)‖̟‖υ.
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It follows that the map

FHTδ −→ M(0)
T (H), υ −→ b̄(υ),

is a local embedding. By the same argument as in the proof of Lemma 4.8,

we can conclude that this map is injective as long as δ ∈C∞(M(0)
T ; R+) is

sufficiently small. Since this map is GT (H)-equivariant by construction, it
follows that the induced map on the quotient, i.e., the map of Corollary 4.9,
is injective.

Corollary 4.10. If S =S2, there exists δ∈C∞ (MT ; R+) such that the map

γ̃T : FTδ

∣∣
MT

−→ M̄〈T 〉

is injective. Furthermore, the restriction

γ̃T : F ∅Tδ

∣∣
MT

−→ M〈T 〉

is a differentiable embedding.

In order to adjust the gluing procedure in the presence of constraints,
below we state the analogue of Corollary 4.7 for ̟∈KbυT ⊂TυF ∅T . It is
obtained in the same way as Corollary 4.7, except the analogue of Lemma 4.6
would make use of Lemma 3.8, instead of Lemma 3.6, and of (b-ii), instead
of (b-i), of Definitions 3.11 and 3.13. We also use (3) of Lemma 3.5.

Corollary 4.11. There exist δ, C ∈ C∞(M(0)
T ; R+) such that for all t ∈

[0; δ(bυ)], υ∈F (∅)Tδ, and ̟∈KbυTδ(bυ),

C(bυ)−1‖̟‖ ≤ ‖ζ̟̃,tν‖υ,p,1 +
∑

l∈M

|wl(̟)|gυ ≤ C(bυ)‖̟‖.

Furthermore,
∥∥S′

̟ξ̟,tν − ξυ,tν

∥∥
υ,C0 ≤ C(bυ)

(
t+|υ|

1
p
)
‖̟‖.

4.3. The Basic Gluing Map and the Space of Balanced Maps. Our
next goal is to show that the gluing map of Subsection 3.6 is surjective in
the appropriate sense. More precisely, if T is a regular bubble type, we
show that the image of γ̃T contains a neighborhood of MT in M̄〈T 〉. If T
is a semiregular, we show that all elements in MΣ,tν,λ that are close to any
given compact subset of MT are in the image of the gluing map γ̃T ,tν if t
is sufficiently small. The major difficulty in doing this is the following. If
υ∈FT , a small change in the singular points of bυ may lead to a very large
change in the map uυ. This is precisely the reason we used the norm ‖̟‖υ

on TυFHT instead of just ‖̟‖ in Subsection 3.4. In order to deal with
this issue, we need Corollary 4.13, which is proved in this subsection. We
continue to assume that T is a simple bubble type.

Recall that HT is the set of tuples b =
(
S, M, I; x, (j, y), u

)
such that

uιh(xh)=uh(∞) for all h∈ Î and ∂̄ui =0 for all i∈I. Furthermore, M(0)
T is
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the subset of HT consisting of the tuples b such that ΨT ,h(b)=0 for all h∈ Î.

It is convenient to make the following definitions. If H is a subset of Î and
ǫ≥0, let

M(H)
T ,ǫ =

{
b=

(
S, M, I; x, (j, y), u

)
: ∂̄ui =0 ∀i∈I;

dV

(
uιh(xh), uh(∞)

)
≤ǫ ∀h∈ Î;

∣∣ΨT ,h(b)
∣∣≤ǫ ∀h∈ Î−H

}
.

Lemma 4.12. There exist δ, C∈C∞
(
M(0)

T ; R+
)

with the following property.

Suppose b∗∈M(0)
T , ǫ < δ(b∗), b ∈ M(H)

T ,ǫ is such that d(b∗, b) ≤ δ(b∗), and

υ=(b, vÎ)∈F
(H)
b Tδ(b∗). Then there exist

b̃ ∈ M(H)
T ,ǫ2

and υ̃ =
(
b̃, ṽÎ

)
∈ F

(H)

b̃
T

such that

(1) d(b, b̃)≤C(b∗)ǫ and |ṽh−vh|b ≤ C(b∗)ǫ|vh|b for all h∈ Î;

(2) if qυ(z)∈ΣT ,i, rb,h

(
qυz

)
≥2|vh|

1
2 for all h∈ Î−H such that ιh = i and∣∣q−1

S (qυz)
∣∣≥2|vi|

1
2 if i ∈ Î − H, then db

(
qυ(z), qυ̃(z)

)
≤ δ(b∗)ǫ.

Proof. (1) Let b=
(
S, M, I; x, (j, y), u

)
. If δ is sufficiently small, by Proposi-

tion 3.3, we can choose ξi∈Γ(ui) such that ‖ξi‖gb,i,C1 ≤ C(b∗)ǫ and

b′ ≡
(
S, M, I; x, (j, y), u′

)
∈ HT ,

where u′
i =expui

ξi. The C1-bound on ξi and the assumption b∈M(H)
T ,ǫ imply

that |ΨT ,h(b′)|≤C ′(b∗)ǫ for all h∈ Î−H.

(2) We now define b̃′ ≡
(
S, M, I; x̃′, (j, ỹ′), ũ′

)
∈ HT and υ̃′ = (b̃′, ṽ′

Î
) as

follows. Suppose i∗∈I and for all i ∈ Î with i > i∗, h ∈ Î with ιh = i, and
l∈M with jl = i, we have constructed

(i) (ci, ri)∈C×R such that |(ci, ri)| ≤ C(b∗)ǫ;
(ii) x̃′

h, ỹ′l∈ΣT ,i such that |rb,h(x̃′
h)| ≤ C(b∗)ǫ and |φyl

ỹ′l| ≤ C(b∗)ǫ;
(iii) ṽ′h∈C such that |ṽ′h−vh| ≤ C(b∗)ǫ|vh|;
(iv) if xi∈S2, x̄i∈S2, such that |rb,i(x̄i)| ≤ C(b∗)ǫ|vi|;
(v) if xi∈S2, v̄i∈C such that |v̄i−vi| ≤ C(b∗)ǫ|vi|,

such that

(I1) if i 6∈H, ΨT ,i(b̃
′)=0 where ũ′

i = (ci, ri) · u′
i;

(I2) if ΣT ,ιi =S2, z∈ΣT ,ιi , and
∣∣φx̄h

qi,(xi,vi)(z)
∣∣ ≤ 2

3 |v̄h|
1
2 for some h∈ Î−H,

then ∣∣∣φx̃′
h
qi,(x̄i,v̄i)(z)

∣∣∣ ≤ |ṽ′h|
1
2 and

qh,(x̃′
h,ṽ′

h)

(
qi,(x̄i,v̄i)(z)

)
= qh,(x̄h,v̄h)

(
qi,(xi,vi)(z)

)
,
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where qi,(xi,vi), etc., are the maps defined in Subsection 2.2.

Note that while we have not defined b̃′ completely yet, (I1) is still a well-
defined statement. The function ΨT ,i depends only the ith bubble compo-

nent of b̃′, which has already been constructed by the induction assumptions.

If i∗∈H, we take ci∗ =0 and ri∗ =0. If i∗∈ Î−H, let (ci∗ , ri∗)∈C×R be
given by

Ψ̃
(
(ci∗ , 0)u′

i∗
)

+
∑

ιh=i∗

dh(T )(x̄h+ci∗) +
∑

jl=i∗

(yl+ci∗) = 0;

Ψ(3)
(
(ci∗ , ri∗)u

′
i∗

)
+

∑

ιh=i∗

dh(T )β
(
(1+ri∗)|x̄h+ci∗ |

)

+
∑

jl=i∗

β
(
(1+ri∗)|yl+ci∗ |

)
=

1

2
.

If ǫ is sufficiently small, by the proof of Lemma 3.3 such (ci∗ , ri∗) ∈ C×R

exists and satisfies |ci∗ |, |ri∗ |≤C(b∗)ǫ. For all h∈ Î with ιh = i∗ and l ∈M
with jl = i∗, put

x̃′
h = (1 + ri∗) (x̄h + ci∗) , ṽ′h = (1 + ri∗)v̄h, ỹ′l = (1 + ri∗) (yl + ci∗) ;

x̄i∗ = xi∗ − ci∗vi, v̄i∗ = (1 + ri∗)
−1vi if xi∗ ∈S2.

Continuing in this way, for all i∈ Î, h∈ Î with ιh = i, and l∈M with jl = i,
we obtain elements (i)-(v) satisfying (I1),(I2). Let ũ′

0̂
= u′

0̂
. If l ∈ M and

jl =0̂, take ỹ′l =yl.

(3) If S = S2, let (x̃′
h, ṽ′h) = (x̄h, v̄h) if ιh = 0̂, b̃ = b̃′, and υ̃ = υ̃′. By the

inductive construction, b̃ and υ̃ satisfy the requirements of the lemma. In

fact, b̃ ∈ M(H)
T ,0 . If S = Σ, we could extend the above construction to the

principal component Σ as we did for S = S2 if qυ̃′ were defined using the
metric gb,0̂ on Σ, which may differ slightly from gb̃′,0̂. This problem is fixed

below.

(4) If l∈M and jl =0̂, we take ỹl =yl as before. For all h∈ Î with ιh =0̂,
let x̃h∈Σ, ṽh∈Tx̃h

Σ, and Θh : B
2|vh|

− 1
2

b

(0; C)−→C be such that

(Σ0̂1) db (xh, x̃h) ≤ C(b∗)ǫ|vh|,
∣∣|ṽh|b̃ − |vh|b

∣∣ ≤ C(b∗)ǫ|vh|b;
(Σ0̂2) for all z∈Bb

(
xh, 2|vh|

1
2
b

)
,

φb̃,hz

ṽh
=

(
1 + rh

){
ch +

φb,hz

vh
+ Θh

(φb,hz

vh

)}
;

(Σ0̂3) Θh is holomorphic, Θh(0)=0, Θ′
h(0)=0, and ‖Θ′′

h‖C0 ≤ C(b∗)|υ|2ǫ.
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Note that even though we have not defined b̃ completely yet, (Σ0̂1) and
(Σ0̂2) are still well-defined statements, since the metric gb̃,0̂ on Σ depends

only on the singular points {x̃h : ιh =0̂} on Σ. Existence of such x̃h, ṽh, and
Θh follows from Corollary 5.5, provided δ is sufficiently small.

If ιi = 0̂ and jl = i, let (i, ỹl) = qυ̃,iq
−1
υ,i (i, yl). The map qυ̃,i is well-defined

even though υ̃ has not been defined completely yet. By (Σ0̂2),

(4.18) ỹl = qυ̃,iq
−1
υ,i (yl) =

φb̃,x̃i
φ−1

b,xi
(ylvi)

ṽi
=

(
1 + ri

){
ci + yl + Θi(yl)

}
.

Since ỹ′l =(1+ri)(yl+ci), |ỹl−ỹ′l| ≤ C(b∗)|υ|2ǫ by (Σ0̂3).

Suppose h∈ Î, ιh∈ Î, and for every i∈ Î with i<h and j∈M with jl = i,
we have defined

x̃i ∈ ΣT ,ιi , ỹl ∈ ΣT ,i, ṽi ∈
{

Tx̃iΣ, if ιi =0̂;

C, if ιi 6=0̂;

c̃i ∈ C, Θi : B
2|vi|

− 1
2

b

(0; C) −→ C

such that

(Σ1) |φb̃′,ix̃i|b̃′ ≤ C(b∗)|υ|2ǫ if ιi 6=0̂ and |φb̃′,ỹ′
l
ỹl|b̃′ ≤ C(b∗)|υ|2ǫ;

(Σ2)
∣∣|ṽi|b̃ − |vi|b

∣∣ ≤ C(b∗)ǫ|vi|b;
(Σ3) |c̃i − ci| ≤ C(b∗)|υ|2ǫ;
(Σ4) for all z∈Σ such that rb,iqυ,ιi(z) ≤ 2|vi|

1
2
b ,

φb̃,iqυ̃,ιiz

ṽi
=

(
1 + ri

) {
c̃i +

φb,iqυ,ιiz

vi
+ Θi

(φb,iqυ,ιiz

vi

)}

(Σ5) Θi is holomorphic, Θi(0)=0, Θ′
i(0)=0, and ‖Θ′′

i ‖C0 ≤ C(b∗)|υ|2ǫ.
If h ∈ H, we take x̃h = x̃′

h, ṽh = ṽ′h = 0, ỹl = ỹ′l if jl = h, c̃h = ch = 0, and
Φh(z)=0. If h 6∈H, let

(ιh, x̃h) = qυ̃,ιhq−1
υ,ιh

(h, x̄h).

By an argument similar to (4.18), from (Σ4) we obtain

(4.19) x̃h =
(
1 + rιh

){
c̃ιh + x̄h + Θιh(x̄h)

}
.
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Since x̃′
h = (1+ rιh)(x̄h+cιh), (4.19), (Σ3), and (Σ5) imply the first part of

(Σ1) with i=h. Furthermore, by assumption (Σ4),

φb̃,hqυ̃,ιh(z) = qυ̃,ιh(z) − x̃h

(4.20)

=
φb̃,ιh

qυ̃,ιιh
(z)

ṽιh

− x̃h

=
(
1 + rιh

){(φb,ιhqυ,ιιh
(z)

vιh

− x̄h

)
+

(
Θιh

(φb,ιhqυ,ιιh
(z)

vιh

)
− Θιh

(
x̄h

))}
.

Since Θιh is holomorphic, and

φb,ιhqυ,ιιh
(z)

vιh

− x̄h = φb,hqυ,ιh(z) + chvh,

we can rewrite (4.20) as

φb̃,hqυ̃,ιh(z) =
(
1 + rιh

)(
1 + ah

)
vh(4.21)

·
{

c̃h +
φb,hqυ,ιh(z)

vh
+ Θh

(φb,hqυ,ιh(z)

vh

)}
,

where the complex numbers ah, c̃h∈C and the holomorphic function

Θh : B
2|vh|

− 1
2
(0, C) −→ C

are given by

ah =
d

dz
Θιh(z)

∣∣∣
z=xh

,

(
1 + ah

)
c̃h = ch +

Θιh (xh) − Θιh (xh − chvh)

vh
,

(4.22)

Θh(z) =
Θιh (vhz + xh) − vhzΘ′

ιh
(xh) − Θιh (xh)

(1 + ah)vh
.(4.23)

By (4.23), Θh(0) = 0 and Θ′
h(0) = 0. By our assumptions on Θιh , (4.22),

and (4.23),

|ah| ≤ C(b∗)|υ|2ǫ|xιh | ≤ C ′(b∗)|υ|2ǫ;(4.24)

|c̃h − ch| ≤ C(b∗)
(
ǫ|ah| + |vh|−1|υ|2ǫ|chvh|

)
≤ C ′(b∗)|υ|2ǫ,(4.25)

‖Θ′′
h‖C0 ≤ C(b∗)|vh|−1|υ|2ǫ|vh|2 ≤ C ′(b∗)|υ|2ǫ.(4.26)

We now take

ṽh = (1 + ah)ṽ′h = (1 + ah)(1 + rιh)(1 + rh)−1vh.
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It follows from (4.24)-(4.26) that the induction hypotheses (Σ2)-(Σ5) with
i=h are satisfied. If jl =h, let

(h, ỹl) = qυ̃,hq−1
υ,h(h, yl).

By the same argument as in the case ιh = 0̂ above, (Σ3)-(Σ5) of the i = ιh
case imply that the second part of (Σ1) with i = h is satisfied. Continuing
in this way, we obtain tuples

b̃ =
(
Σ, M, I; x̃, (j, ỹ), ũ′

)
, c̃ = cÎ , υ̃ =

(
b̃, ṽÎ

)
,

satisfying (Σ1)-(Σ5). Since b̃′ ∈M(H)
T ,0 , by (Σ1) b̃∈M(H)

T ,ǫ if δ is sufficiently

small. Finally, (Σ1)-(Σ5) along with (I1) and (I2) show that b̃ and υ̃ satisfy
the two requirements of the lemma.

Corollary 4.13. If T is a simple bubble type, there exist R
+-valued smooth

functions δ, C on M(0)
T with the following property. Suppose b∗ ∈ M(0)

T ,

ǫ<δ(b∗), b∈M(H)
T ,ǫ is such that

d(b∗, b)≤δ(b∗) and υ=(b, vÎ)∈F
(H)
b Tδ(b∗).

Then there exist

b̃∈M(H)
T ,0 and υ̃=(b̃, ṽÎ) ∈ F

(H)

b̃
T

such that

(1) d(b, b̃) ≤ C(b∗)ǫ and |ṽh−vh| ≤ C(b∗)ǫ|vh| for all h∈ Î;

(2) if qυ(z)∈ΣT ,i, rb,h

(
qυz

)
≥3|vh|

1
2 for all h∈ Î−H such that ιh = i and∣∣q−1

S (qυz)
∣∣≥3|vi|

1
2 if i∈ Î−H, then db

(
qυ(z), qυ̃(z)

)
≤ ǫ.

Proof. If S = S2, the tuples b̃ and υ̃ constructed in the first half of the
proof of Lemma 4.12 satisfy the requirements of the corollary. In fact,
db (qυ(z), qυ̃(z)) = 0 if z is as in (2) above. If S = Σ, let

ǫ̃ = ǫ2
∏

h∈[I]−H

|vh|2b > 0.

If C(b∗)δ(b∗) is sufficiently small, by repeated applications of Lemma 4.12,

we can replace the tuples b and υ by b′∈M(H)
T ,ǫ̃ and υ′=(b′, v′

Î
)∈F (H)T such

that

(1) d(b, b′) ≤ C ′(b∗)ǫ and |v′h−vh| ≤ C ′(b∗)ǫ|vh|b for all h∈ Î;

(2) if qυ(z)∈ΣT ,i, rb,h

(
qυz

)
≥ 5

2 |vh|
1
2 for all h∈ Î−H such that ιh = i and∣∣q−1

S (qυz)
∣∣≥ 5

2 |vi|
1
2 if i∈ Î−H, then db

(
qυ(z), qυ̃(z)

)
≤ 2δ(b)ǫ.

Applying the construction of the first half of the proof of Lemma 4.12 to the

tuples b′ and υ′, we obtain tuples b̃∈M(0)
T and υ̃=(b̃, ṽÎ)∈F

(H)

b̃
T such that

d(b′, b̃) ≤ C(b∗)ǫ̃ and |ṽh − v′h| ≤ C(b∗)ǫ̃|v′h|b′ ∀h ∈ Î .
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Then if z is as in the requirement (2) of the corollary,

db′
(
qυ′(z), qυ̃(z)

)
≤ C(b∗)ǫ̃




∏

h∈Î−H

|v′h|




−1

≤ ǫ2

if δ is sufficiently small. Thus, the tuples b̃ and υ̃ satisfy both requirements
of the corollary.

4.4. Gromov Convergence and the Lp-norm of the Differential. Let
bk =

(
S, M, I; x, (j, yk), uk

)
be a sequence of smooth maps converging to

b∗ =
(
S, M, I∗; x∗, (j∗, y∗), u∗

)
∈ M(0)

T ∗

with respect to the Gromov topology such that ∂̄uk,0̂ = tkν with tk−→0 and

∂̄uk,h =0 if h∈ Î. We assume that T ∗ is a simple bubble type. In the next
subsection, it is proved that bk lies in the image of the gluing map γ̃T ,tkν

for some k. In this subsection, we show the differentials of duk,i satisfy a
certain condition which holds for all bubble maps in the image of γ̃T ,tkν .

By definition of convergence, for all k sufficiently large, we can choose

(a) curves Ck =
(
S, M, I∗; x′

k, (j
∗, y∗)

)
with lim

k−→∞
x′

k,h = x∗
h for all h∈ Î∗,

and
(b) vectors (vk) ∈ F

(0)
Ck

with 16|vk|gb
≤ rCk

gb, such that lim
k−→∞

|υk| = 0,

C(υk) =
(
S, M, I; xk, (jk, y(υk))

)
, and

lim
k−→∞

sup
z∈ΣC(υk)

dV (ub∗(qυk
(z)), ubk

(z)) = 0,

lim
k−→∞

qυk
(jk,l, yk,l) = (j∗l , y∗l ) ∀l∈M,

where υk = (Ck, (vk)Î∗) and gb denotes the standard metric on ΣCk
if

S =S2.

Let

φk,h =

{
φx′

k,h
, if x′

k,h∈S2;

φgb,0̂,x′
k,h

, if x′
k,h∈Σ;

rk,h =

{
rx′

k,h
, if x′

k,h∈S2;

rgb,0̂,x′
k,h

, if x′
k,h∈Σ.

Let gυk
be the metric on Σbk

= Συk
defined as in Subsection 3.3, using the

metric gb,0̂ on Σ if S =Σ.

For any element in the image γ̃T ,tν that lies near b∗, the modified (Lp, gυk
)-

norm of dũυ is bounded above by a constant dependent only on b∗. Fur-
thermore, as υ −→ 0 and the size of the necks is reduced, the modified
(Lp, gυ)-norm of dũυ on such necks tends to zero. The modified (Lp, gυ)-
norm is bounded above by the usual (L2p, gυ)-norm times some constant
dependent only on b∗. In this subsection, we show that the (L2p, gυk

)-norm
of dubk

is uniformly bounded and tends to zero on the “necks.” Instead of
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using our usual cutoff function β, we will use the family of cutoff functions
provided by the following lemma. The proof can be found in [MS, p166].
The statement below is somewhat sharper than in [MS], but the proof in
[MS] suffices.

Lemma 4.14. For every ǫ > 0, there exists a smooth function [0, 1]-valued

function β̃ǫ on R such that

β̃ǫ(r) =

{
1, if r≥1;

0, if r≤e−1/ǫ;

∫

C

|β̃′
ǫ(r)|2rdrdθ ≤ 8ǫ, ‖dβ̃ǫ‖C0 ≤ e1/ǫ.

Given r > 0, we denote by β̃ǫ,r the cutoff function defined by β̃ǫ,r(t) =

β̃ǫ(r
− 1

2 t).
We now define nearly holomorphic maps fk,i ∈ C∞(ΣCk,i; V ). In order

to simplify computations, we fix a finite family of J-invariant metrics on V
such that for some fixed ε>0 and for every q∈V there exists a metric gV,q in
this family such that

(
BgV,q(q, ε), J, gV,q

)
is isomorphic to a ball in C

n. Since
V is compact and the family of metrics is finite, all estimates below that
depend on a particular metric gV,q will involve bounds dependent only on V .
We denote by expq the exponential map of (the Levi-Civita connection of)
the metric gV,q and by Bq(ǫ) the gV,q-geodesic ball about q of radius ǫ. If
δ>0 and h∈I∗−I, let

B+
h,k(δ) =

{
(ι∗h, z)∈ΣCk,ι∗h

: rk,h(ι∗h, z)≤δ
}
,(4.27)

B−
h,k(δ) =

{
(h, z)∈ΣCk,h : |q−1

S (z)| ≤δ
}
.

Choose a sequence ǫk∈R
+ converging to zero. Let

rk =

(
2

∑

i∈I∗

‖du∗
i ‖b∗,C2

)−1

ǫk.

By taking a subsequence if necessary, it can be assumed that

|tk| ≤ ǫk, dV

(
ub∗(qυk

(z)), ubk
(z)

)
≤ ǫk ∀z∈Σbk

,(4.28)

rb∗,h(ι∗h, x′
k,h) ≤ rk, e

2p
ǫk |vk,h|

1
2
b∗ ≤ rk.

Let qh =u∗
h(∞) and

Ã±
h,k = B±

h,k

(
|vk,h|

1
2
b∗

)
− B±

h,k

(
e
− 1

ǫk |vk,h|
1
2
b∗

)
.

By (4.28),

ubk

(
q−1
υk

(
B±

h,k(e
1

ǫk |vk,h|
1
2
b )

))
⊂ Bqh

(C(b∗)ǫk) .
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Thus, we can define ξ±k,h∈C∞
(
Ã±

h,k; Tqh
V

)
by

(4.29)
expqh,qh

ξ+
k,h(z) = ubk

(
q−1
υk,ι∗h

(ι∗h, z)
)
, |ξ+

k,h(z)|gV,qh
<ε;

expqh,qh
ξ−k,h(z) = ubk

(
q−1
υk,ι∗h

(
ι∗h, φ−1

k,h(zvk,h)
))

, |ξ−k,h(z)|gV,qh
<ε,

provided k is sufficiently large (depending on b∗). Let ξ̄±k,h∈Tqh
V be given by

(4.30) ξ̄±k,h =
1

Area(Ã±
k,h)

∫

Ã±
k,h

ξ±k,h,

where the area and the integral are computed using the metric gb∗,ι∗h
on

Σb∗,ι∗h
and gb∗,h on Σb∗,h. For each i ∈ I∗, we define fk,i ∈ C∞(Σb∗,i; V ) as

follows. If h∈I∗−I is such that ι∗h = i and rk,h(z)≤|vk,h|
1
2
b∗ , we put

fk,i(z) = expqh,qh

{
ξ̄+
k,h + β̃ǫk,|vk,h|b∗

(
rk,h(z)

)(
ξ+
k,h(z) − ξ̄+

k,h

)}
.

If i∈I∗−I and |q−1
S (z)|≤|vk,i|

1
2
b∗ , we put

fk,i(z) = expqi,qi

{
ξ̄−k,i + β̃ǫk,|vk,i|b∗

(
|q−1

S (z)|
)(

ξ−k,i(z) − ξ̄−k,i

)}
.

In all other cases, we set

fk,i(z) = ubk

(
q−1
υk

(i, z)
)
.

Let ζ ′k,i∈Γ(u∗
i ) be given by

expb∗,u∗
i
ζ ′k,i = fk,i, ‖ζ ′k,i‖b∗,C0 < inj gV,b∗ .

Lemma 4.15. There exists C > 0 such that for all k sufficiently large and
i∈I∗,

‖ζ ′k,i‖b∗,C0 ≤ Cǫk, ‖∂̄fk,i‖gb∗,i,2p ≤ Cǫ
1
2p

k

(
‖dfk,i‖gb∗,i,2p + 1

)
.

Proof. The first statement is clear from (4.28) and the construction of fk,i

above. Suppose z∈Σb∗,i. If z 6∈ B+
h,k

(
|vk,h|

1
2
b∗

)
for all h ∈ I∗− I and z 6∈

B−
i,k

(
|vk,i|

1
2
b∗

)
if i∈I∗−I, then

(4.31) |∂̄fk,i|gb∗,i,z ≤ Cνtk ≤ Cνǫk.

Suppose z∈Ã+
h,k with h∈I∗−I. Since the metric gPn,qh

is flat near qh,

(4.32) ∂̄fk,i

∣∣
z

= d expqh,qh
∂̄
{

ξ̄+
k,h + β̃ǫk,|vk,h|b∗ (rk,h(·))

(
ξ+
k,h − ξ̄+

k,h

)}

z
.

It follows from (4.32) that

(4.33) |∂̄fk,i|gb∗,i,z ≤ C
(
|vk,h|

− 1
2

b∗ |dβ̃ǫ|
|vk,h|

− 1
2

b∗
rk,h(z)

∣∣ξ+
k,h − ξ̄+

k,h

∣∣
z
+

∣∣∂̄ξ+
k,h

∣∣
z

)
.
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By Lemma 4.14 and Poincare Lemma (see Lemma 2.6 in [Z1] applied with

r= |vh,k|
1
2
b∗ and 2p instead of p), and the last assumption in (4.28),

∥∥∥|vk,h|
− 1

2
b∗ |dβ̃ǫk

|
|vk,h|

− 1
2

b∗
rk,h(·)

∣∣ξ+
k,h − ξ̄+

k,h

∣∣
∥∥∥

gb∗,i,L
2p(Ã+

h,k)

≤ |vk,h|
− p−1

2p

b∗ e
2p−2
2p·ǫk

∥∥∥|vk,h|
− 1

2
b∗ |dβ̃ǫk

|
|vk,h|

− 1
2

b∗
rk,h(·)

∥∥∥
1/p

gb∗,i,L
2(Ã+

h,k)

∥∥ξ+
k,h − ξ̄+

k,h

∥∥
b∗,C0

≤ C|vk,h|
− p−1

2p

b∗ e
2p−2
2p·ǫk |vk,h|

2p−2
2p

b∗

∥∥dξ+
k,h

∥∥
gb∗,i,L

2p(Ã+
h,k)

≤ C ′ǫ
1
2p

k

∥∥dξ+
k,h

∥∥
gb∗,i,L

2p(Ã+
h,k)

≤ C ′ǫ
1
2p

k ‖dfk,h‖gb∗,i,2p .

The last two equations give

(4.34) ‖∂̄fk,i‖gb∗,i,L
2p(Ã+

h,k) ≤ C

(
ǫ

1
2p

k

∥∥∥df+
k,h

∥∥∥
gb∗,i,2p

+ ǫk

)
.

The same estimate applies to
∥∥∂̄fk,i

∥∥
gb∗,i,L

2p(Ã−
i,k)

if i ∈ I∗− I. Here the

exponent of 2p
ǫk

in (4.28) is crucial:

‖∂̄ξ−k,i‖
2p

gb∗,i,L
2p(Ã−

i,k)
≤

∫

|vk,i|
− 1

2
b∗

≤r≤e
1

ǫk |vi|
− 1

2
b∗

t2p
k |ν ◦ dq−1

υk,ι∗i
|2p
gb∗,ι∗

i

|vk,i|2p
b∗ (1 + r2)2p−2rdrdθ

(4.35)

≤ Ct2p
k |vk,i|2p

b∗

(
|vk,i|−

1
2 e

1
ǫk

)4p−2 ≤ Ct2p
k .

Since fk,i is constant on B+
h,k

(
e
− 1

ǫk |vk,h|
1
2
b∗

)
for h∈ I∗−I with ι∗h = i and on

B−
i,k

(
e
− 1

ǫk |vk,i|
1
2
b∗

)
if i∈I∗−I, the second claim is proved.

Corollary 4.16. There exists C >0 such that for all k sufficiently large,

‖dfk,i‖gb∗,i,2p ≤ C and ‖ζ ′k,i‖gb∗,i,2p,1 ≤ Cǫ
1
2p

k .

Proof. By the quadratic expansion of ∂̄u∗
i
ζ ′k,i as in Subsection 3.6,

(4.36) Db∗,u∗
i
ζ ′k,i + N∂̄,u∗

i
ζ ′k,i = ∂̄u∗

i
ζ ′k,i,

where

(4.37) ‖∂̄u∗
i
ζ ′k,i‖gb∗,i,2p ≤ Cǫ

1
2p

k

(
‖dfk,i‖gb∗,i,2p + 1

)

by Lemma 4.15 and

(4.38) ‖N∂̄,u∗
i
ζ ′k,i‖gb∗,i,2p ≤ C‖ζ ′k,i‖C0‖ζ ′k,i‖gb∗,i,2p,1 ≤ Cǫk‖ζ ′k,i‖gb∗,i,2p,1,
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by Proposition 2.11 in [Z1] and Lemma 4.15. Thus, by standard elliptic
estimates for ub∗ and (4.36)-(4.38),

‖ζ ′k,i‖gb∗,i,2p,1 ≤ C
(
‖Db∗,uiζ

′
k,i‖gb∗,i,2p + ‖ζ ′k,i‖gb∗,i,2p

)
(4.39)

≤ C ′ǫ
1
2p

k

(
‖ζ ′k,i‖gb∗,i,2p,1 + ‖dfk,i‖gb∗,i,2p + 1

)
.

On the other hand, since fk,i = expb∗,u∗
i
ζ ′k,i,

(4.40) ‖dfk,i‖gb∗,i,2p ≤ C
(
‖du∗

i ‖gb∗,i,2p + ‖ζ ′k,i‖gb∗,i,2p,1

)
.

If ǫk is sufficiently small, the claim follows from equations (4.39) and (4.40).

Corollary 4.17. There exists C > 0 such that for all k sufficiently large,
h∈ Î∗, and δ>0,

‖dubk
‖gυk

,L2p(q−1
υk

(B±
h,k(δ))) ≤ C

(
ǫ

1
2p

k + δ
1
p
)
.

Proof. If h∈ Î, the statement is immediate from Corollary 4.16; so we assume
h∈ I∗−I. The metric gυ on q−1

υk
(B+

h,k(δ)) differs by a bounded factor from

the metric q∗υk,ι∗h
gb∗,i. Thus,

‖dubk
‖gυk

,L2p(q−1
υk

(B+
h,k(δ))) ≤ C

∥∥d(fk ◦ q−1
υk,ι∗h

)
∥∥

gb∗,ι∗
h

,L2p

„

B+
h,k(δ)−B+

h,k(|vk,h|
1
2
b∗

)

«

(4.41)

= C
∥∥dfk,ι∗h

∥∥
gb∗,ι∗

h
,L2p

„

B+
h,k(δ)−B+

h,k(|vk,h|
1
2
b∗

)

«

≤ C
∥∥dfk,ι∗h

∥∥
gb∗,ι∗

h
,L2p(B+

h,k(δ)).

Since fk,ι∗h
=expb∗,uι∗

h

ζ ′k,ι∗h
, by Corollary 4.16,

∥∥dfk,ι∗h

∥∥
gb∗,ι∗

h
,L2p(B+

h,k(δ)) ≤ C
(∥∥du∗

ι∗h

∥∥
gb∗,ι∗

h
,L2p(B+

h,k(δ)) +
∥∥ζ ′k,ι∗h

∥∥
gb∗,ι∗

h
,2p,1

)(4.42)

≤ C ′
(
δ

1
p + ǫ

1
2p

)
.

The claim for B+
h,k(δ) follows from (4.41) and (4.42). The metric gυ on

q−1
υk

(B−
h,k(δ)) differs by a bounded factor from the metric which is the pull-

back of the metric gb∗,h by the map

z −→ qN

(φk,hqυk,ι∗h
(z)

vk,h

)
.

Thus, similarly to the above,

‖dubk
‖gυk

,L2p(q−1
υk

(B−
h,k(δ))) ≤ C ‖dfk,h‖gb∗,h,L2p(B−

h,k(δ)) ;(4.43)

‖dfk,h‖gb∗,h,L2p(B−
h,k(δ)) ≤ C

(
δ

1
p + ǫ

1
2p

)
.(4.44)
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The claim for B−
h,k(δ) follows from (4.43) and (4.44).

4.5. Surjectivity of the Gluing Map. We continue with the notation
of Subsection 4.4. In this subsection, for k sufficiently large, we use Corol-
lary 4.13 to construct

υ̃k =
(
b̃k, (ṽk)Î∗

)
∈ F (0)Tδ

and ζ̃k ∈Γ(uυ̃k
) such that b̃k is very close to b in M(0)

T , ‖ζ̃k‖υ̃k,p,1 is small,

and ubk
=expυ̃k

ζ̃k. We then look at the elements of F (0)Tδ near υ̃k to find

υ̃′
k and ζ̃k∈ Γ̃+(υ̃′

k) such that ubk
=expυ̃′

k
ζ̃ ′k. If T is semiregular, we consider

only the case Î =∅; if T is regular, we assume t=0.
Let H = Î⊂ Î∗. If δ>0 and i∈I∗, put

Σi,δ =
{
(i, z)∈Σb∗,i : rb∗,h(i, z)≤δ ∀h∈ Î∗−H s.t. ιh = i,

|q−1
S (z)|≥δ if i∈ Î∗−H

}
.

In addition to (4.28), we can assume that our sequence satisfies

(4.45) ‖ζk,i‖gb∗,i,C
2(Σi,rk

) ≤ ǫk.

Let b′k =
(
S, M, I∗; x′

k, (j
∗, y∗), u∗

)
. By the second assumption in (4.28),

d(b∗, b′k)≤Cǫk =⇒ b′k∈M(H)
T ∗,Cǫk

,

since b∗ ∈M(0)
T ∗ , where C > 0 depends only on b∗. By the last assumption

of (4.28), |υk|b′k ≤Cǫk. Thus, if ǫk >0 is sufficiently small, by Corollary 4.13,

there exist

b̃k ∈ M(H)
T ∗ and υ̃k =

(
b̃k, (ṽk)Î∗

)
∈ F (H)T ∗

such that

(1) d(b, b̃) ≤ C ′ǫk and |ṽk,h−vk,h| ≤ C ′ǫk|vk,h|b for all h∈ Î∗;

(2) if qυk
(z)∈ΣT ∗,i, rb∗,h

(
qυk

z
)
≥3|vk,h|

1
2 for all h∈ Î∗−H such that ι∗h = i

and
∣∣q−1

S qυk
(z)

∣∣≥3|vk,i|
1
2 if i∈I∗−H, then db

(
qυk

(z), qυ̃k
(z)

)
≤ ǫk.

It then follows from the second and third assumptions of (4.28) that there

exist ζ̃k ∈ Γ(uυ̃k
), w̃k,h∈Txh(υ̃k)Συ̃k,ιh for h ∈ H, and w̃k,l ∈ Tyl(υ̃k)Συ̃k,jl

for
l∈M such that

expυ̃k
ζ̃k = ubk

, expgυ̃k
,xk,h(υ̃k) w̃k,h = xk,h, expgυ̃k

,yk,l(υ̃k) w̃k,l = yk,l;

‖ζ̃k‖b∗,C0 , |w̃k,h|gυ̃k
,xk,h(υ̃k)|w̃k,l|gυ̃k

,yk,l(υ̃k) ≤ C ′ǫk.

Lemma 4.18. There exists C >0 such that for all k,

‖ζ̃k‖υ̃k,p,1 ≤ Cǫ
1
2p

k .
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Proof. By (4.45), (1), and (2), ‖ζ̃k‖gυ ,C1 ≤Cǫk outside of the necks

Ãk,h = q−1
υk

(
B+

k,h(rk) ∪ B−
k,h(rk)

)
.

On the other hand, ‖duυ̃k
‖υ̃k,C0 ≤C by Lemma 3.5 and

‖duυ̃k
‖υ̃k,Lp(Ãk,h) ≤ C(ǫ

1
2p

k + r
1
p

k ) ≤ C ′ǫ
1
2p

k

by Corollary 4.17. The three estimates imply the claim.

Suppose Î =∅ and thus H =∅. If k is sufficiently large and ̟∈Tυ̃k
F ∅T ∗

is such that 2‖̟‖υ̃k
<δ(b∗), where δ is as in Lemmas 3.6 and 4.6, let

b̃k(̟) = b̃tν

(
υ̃k(̟)

)
=

(
S, M, {0̂}; , (0̂, ȳ(̟)), ũ̟,tν

)

be the tuple defined as in Subsections 3.4 and 3.6. Let ζ̃k(̟)∈Γ(ũ̟,tν) and
w̃k,l(̟)∈Tyl(̟)Σ̟,jl

for l∈M be given by

expυ̃k(̟) ζ̃k(̟) = ubk
, and expgυ̃k(̟),yk,l(̟) w̃k,l(̟) = yk,l,

and ‖ζ̃k(̟)‖b∗,C0 , |w̃k,l(̟)|gυ̃k
,yk,l(̟) ≤ 2C ′ǫk.

We need to find ̟ such that π̟̃,−ζ̃k(̟)=0 and yl(̟)=yk,l, or equivalently

(4.46) S̟π̟̃,−ζ̃k(̟) = 0 and S̟w̃k,l(̟) = 0,

where S̟w̃k,l(̟) denotes the parallel transport of w̃k,l(̟) back to yl(υ̃k)
along the gυ-geodesic

s−→expyl(υ̃k) swl(̟).

Lemma 4.19. There exists C > 0 such that for all k sufficiently large and
̟, ̟′∈Tυ̃k

F (∅)T ∗ with 2‖̟‖υ̃k
<δ(b∗),

S̟π̟̃,−ζ̃k(̟) = π̃υ,−ζ̃k + Ñ (0)(ζ̃k, ̟) − π̃υ,−ζ̟ + N (0)(̟),

S̟w̃k,l(̟) = w̃k,l + Ñ (l)(w̃k,l, ̟) − wl(̟) + N (l)(̟) ∀l∈M,

where ζ̟ is as in Subsection 3.4 and Ñ (l) and N (l) satisfy
∥∥Ñ (0)(ζ̃k, ̟) − Ñ (0)(ζ̃k, ̟

′)
∥∥

υ̃k,2
≤ C‖ζ̃k‖υ̃k,2‖̟ − ̟′‖υ̃k

;(4.47)
∣∣Ñ (l)(̟, w̃k,l) − Ñ (l)(̟′, w̃k,l)

∣∣
gυ̃k

,yl(υ̃k)
≤ C‖w̃k,l‖gυk

,yl(υ̃k)‖̟ − ̟′‖υ̃k
;

‖N (0)(̟) − N (0)(̟′)‖υ̃k,2 ≤ C
(
‖̟‖υ̃k

+ ‖̟′‖υ̃k

)
‖̟ − ̟′‖υ̃k

;
∣∣N (l)(̟) − N (l)(̟′)

∣∣
gυ̃k

,yl(υ̃k)
≤ C

(
‖̟‖υ̃k

+ ‖̟′‖υ̃k

)
‖̟ − ̟′‖υ̃k

.

for all l∈M .
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Proof. This lemma follows from a pointwise Riemannian geometry estimate
on S̟ ζ̃k(̟) − (ζ̃k − ζ̟̃) and the fact that all statements in Lemmas 3.6
and 4.6 can be written in a form similar to (4.47), e.g., for all ξ ∈ Γ(υ̃k)∥∥S̟π̟̃,−R̟ξ − S̟′ π̟̃′,−R̟′ξ

∥∥
υ̃k,2

≤ C‖̟ − ̟′‖υ̃k,2‖ξ‖υ̃k,2.

The latter fact can be seen from the two lemmas and the definitions of R̟

and S̟ in Subsection 3.4.

Lemma 4.20. There exist C, δ∈C∞(M(0)
T ∗ , R+) such that for all υ∈F (H)T ∗

δ

and ̟∈TυF (H)T ∗
δ with ‖̟‖υ̃k

≤δ(b),

‖ζ̟‖υ,2 ≤ C(b)‖π̃υ,−ζ̟‖υ,2.

Proof. It can be seen directly from the definitions that

‖ζ̟‖υ,2 ≤
(
1 + C(bυ

)
|υ|

)
‖πυ,−ζ̟‖υ,2.

The claim then follows from the proof of (2b) of Lemma 3.12.

Corollary 4.21. There exist a neighborhood U of b∗ in M(0)
T ∗ and δ, ǫ > 0

such that for all υ∈F (∅)T ∗
δ |U, ξ∈ Γ̃−(υ) with ‖ξ‖υ,2 <δ, and wl∈Tyl(υ)Συ,jl

for l∈M with |wl|gυ,yl(υ) <δ, the system of equations

π̃υ,−ζ̟ − N (0)(̟) = ξ, wl(̟) − N (l)(̟) = wl ∀l∈M,

has a (unique) solution ̟∈TυF (∅)T with ‖̟‖υ <ǫ.

Proof. By Lemmas 3.6 and 4.20,

C−1‖̟‖υ ≤ ‖π̃υ,−ξ‖υ,2 +
∑

l∈M

|wl(̟)|gυ ,yl(υ) ≤ C‖̟‖υ.

whenever bυ lies near b∗. Thus, the claim follows from (4.47) by the usual
contraction-principle argument.

Corollary 4.22. Let T ∗ = (S, M, I∗; j∗, λ∗) be a simple bubble type. If T ∗

is regular, the map
γ̃T ∗ : FT ∗

δ −→ M̄〈T ∗〉

contains a neighborhood of MT ∗ in M̄〈T ∗〉. If T ∗ is semiregular, H =∅, and

k is sufficiently large, there exists υ̃k∈F (∅)T ∗
δ such that bk = γ̃T ∗,tkν(υ̃k).

Proof. The second statement is immediate from Lemmas 4.18 and 4.19 and
Corollary 4.21. If T ∗ is regular, what we have shown is that the image
of γ̃T ∗ contains a neighborhood of MT ∗ in M〈T ∗〉 ∪ MT ∗ . Furthermore,

there exists a sequence of neighborhoods U1 ⊃U2 ⊃ . . . of b∗ in M̄〈T ∗〉 such
that

⋂
Uk = {[b∗]}. If [bk] ∈MT is a sequence of bubble maps converging

to [b∗]∈MT ∗ , it can be assumed that [bk] ∈ Uk. By the above statement
applied to T , we can choose sequences

{[bkr]} ⊂ M〈T ∗〉 = M〈T 〉
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such that for each fixed k the sequence {[bkr]} converges to [bk]. Since Uk

is an open neighborhood of [bk], it can be assumed that [bkr]∈Uk for all r.
By the above, the image of γ̃T ∗ |FT ∗

δ/2
contains Uk ∩M〈T ∗〉 if k is sufficiently

large. Thus, for all r there exists υkr∈FT ∗
δ/2 such that γ̃T ∗(υkr)=[bkr]. Let

υ̃k∈FT ∗
δ be the limit of the sequence υkr with k fixed. Then, by continuity

of the map γ̃T ∗ , see Corollary 4.5,

γ̃T ∗(υ̃k) = lim
r−→∞

γ̃T ∗(υ̃kr) = lim
r−→∞

[bkr] = [bk].

Thus, the image of γ̃T ∗ contains a neighborhood of MT ∗ in M̄〈T ∗〉.

Corollary 4.23. If T ∗ = (S, M, I∗; j∗, λ∗) is a simple regular bubble type,
the map

γ̃T ∗ : FT ∗
δ −→ M̄〈T ∗〉

is a homeomorphism onto an open neighborhood of MT ∗ in M̄〈T ∗〉 provided

δ∈C∞(MT ∗ ; R+) is sufficiently small.

Proof. By Corollaries 4.5, 4.10, 4.22, the map γ̃T ∗ : FT ∗
δ −→ M̄〈T ∗〉 is a

continuous bijection onto a neighborhood of MT ∗ in M̄〈T ∗〉. In addition,
the proof of Corollary 4.22 shows that γ̃T ∗ is an open map.

5. Appendix

5.1. Properties of Smooth Families of Metrics on Σ. Let m be a
positive integer and

ℵ =
{
x=x[m] : xh∈Σ, xh 6=xl if h 6= l

}
.

Suppose {gx : x∈ℵ} is a smooth family of metrics on Σ such that for any
x=x[m]∈ℵ the metric gx is flat on a neighborhood of xh in Σ for all h∈ [m].
If x = x[m] ∈ ℵ and v∈TyΣ, let

Txℵ =
⊕

h∈[m]

Txh
Σ, |v|x = |v|gx,y.

If w=w[m]∈Txℵ, let |w| denote
∑

h∈[m]

|wh|x. Define x(w)∈Σm by

x(w) =
(
x1(w), . . . , xm(w)

)
=

(
expgx,x1

w1, . . . , expgx,xm
wm

)
.

We denote by φx,y the map φgx,y and by Bx(y, δ) the set Bgx(y, δ) described
in Subsection 1.3. If δ : ℵ−→R, let

Tℵδ =
{
(x, w) : x∈ℵ; w∈Txℵ, |w|x <δ(x)

}
.

Lemma 5.1. There exist δ∈C∞(ℵ; R+) and a smooth families of holomor-
phic maps

{
p̃h,(x,w) : {z∈Bx(xh, δ(x))} −→ Σ | (x, w)∈Tℵδ

}
,
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such that each map p̃h,(x,w) is a (gx, gx(w))-isometry,

dφx,xh

∣∣
xh(w)

φx(w),xh(w)p̃h,(x,w)(z) = φx,xh
(z),(5.1)

and dgx

(
z, p̃h,(x,w)(z)

)
≤ 2|w|x ∀z∈Bx

(
xh, δ(x)

)
.

In particular, both sides of (5.1) are defined.

Proof. We choose δ such that if w∈Txℵ and |w|≤4δ(x), then x(w)∈ℵ and
the metric gx(w) is flat on Bx

(
xh, 2δ(x)

)
. This choice of δ insures that both

sides of (5.1) are defined. Equation (5.1) is equivalent to

φx(w),xh(w)p̃h,(x,w)(z) = d expgx,xh

∣∣
wh

φx,xh
(z)(5.2)

= φx,xh(w)z + d expgx,xh

∣∣
wh

wh,

since the metric gx is flat on Bx

(
xh, 2δ(x)

)
. This equation defines the re-

quired map p̃h,(x,w). Since the metrics gx and gx(w) are flat on Bx

(
xh, 2δ(x)

)
,

the maps φx,xh(w)z and φx(w),xh(w) are holomorphic, and thus p̃h,(x,w) is holo-
morphic. Taking the differential of (5.2), we obtain

(5.3) dφx(w),xh(w)

∣∣
p̃h,(x,w)(z)

◦ dp̃h,(x,w)

∣∣
z

= dφx,xh(w)

∣∣
z
.

Since φx(w),xh(w) and φx,xh(w) are (gx(w), gx(w))- and (gx, gx)-isometries, re-

spectively, on Bx

(
xh, 2δ(x)

)
, it follows that p̃h,(x,w) is a (gx, gx(w))-isometry

on Bx

(
xh, 2δ(x)

)
. By (5.2),

dgx

(
z, p̃h,(x,w)(z)

)
≤ |wh|x +

∣∣(φx(w),xh(w) − φx,xh(w)

)
p̃h,(x,w)(z)

∣∣
x

(5.4)

≤ |wh|x + C(x)|w|δ(x),

since the family of metrics is smooth. If C(x)δ(x)<1, the remaining claim
of the lemma follows from (5.4).

Lemma 5.2. There exist δ, Ck ∈C∞(ℵ; R+), where k is a positive integer,
αh∈C∞(Tℵδ; C), and smooth families of maps

{
Θw,h : {v∈Txh

Σ: |v|x <δ(x)} −→ Txh
Σ | (x, w)∈Tℵδ

}

such that every map Θw,h is holomorphic,

Θw,h(0)=0, Θ′
w,h(0)=0, ‖Θ〈k〉

w,h‖C0 ≤Ck(x)|w|, |αh(w)|≤C0(x)|w|

and

dφx,xh

∣∣
xh(w)

dφx(w),xh(w)

∣∣
xh

(
φx(w),xh

z
)

(5.5)

=
(
1 + αh(w)

)
φx,xh

z + Θw,h

(
φx,xh

z
)
.

for all z∈Bx

(
xh, δ(x)

)
In particular, both sides of (5.5) are defined.
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Proof. We choose δ such that if w∈Txℵ and |w|≤4δ(x), then x(w)∈ℵ and
the metric gx(w) is flat on Bx

(
xh, 4δ(x)

)
. This choice of δ insures that both

side of (5.5) are defined. If w and z are as in the statement of the lemma, by
the flatness of the metric gx(w) near xh, C-linearity of the differential of the
exponential map near zero, and the smoothness of the family of the metrics

(5.6) dφx,xh

∣∣
xh(w)

dφx(w),xh(w)

∣∣
xh

(
φx(w),xh

z
)

=
(
1 + ah(w)

)(
φx(w),xh

z
)
,

for some ah ∈ C∞(Tℵδ; C) such that ah(0) = 0. Note that if gx(w) = gx,

ah(w)=0, since the metric gx is flat on Bx

(
xh, |w|

)
. The map

{v∈Txh
Σ: |v|x <2δ(x)} −→ Txh

Σ, v −→ φx(w),xh
φ−1

x,xh
v − v,

is holomorphic since φx(w),xh
and φx,xh

are, and vanishes at 0. Thus,

(5.7) φx(w),xh
φ−1

x,xh
v =

(
1 + bh(w)

)
v + Θw,h(v),

for some bh(w)∈C and holomorphic function Θw,h such that

Θw,h(0), Θ′
w,h(0) = 0.

Equation (5.5) follows from (5.6) and (5.7). Smoothness of bh and Θ·,h in w
follows from the smoothness of the family of the metrics. The bounds on αh

and the derivatives of Θw,h follow from their smoothness and compactness
of the fibers of {

w∈Txℵ : |w|≤δ(x)
}
−→ ℵ.

Lemma 5.3. There exist δ, C∈C∞(ℵ; R+) and smooth families of maps

Nh :
{
(x, w) : x∈ℵ; (x, w)∈Tℵδ

}
−→ Tℵ

such that |Nh(w, wh)|x ≤ C(x)|w||wh| and

(5.8) dφx,xh

∣∣
xh(w)

(
φx(w),xh(w)xh

)
= −wh + Nh(w, wh).

In particular, the left-hand side of (5.8) is defined.

Proof. We take δ as in Lemma 5.2. Then, the left-hand side of (5.8) is
defined and

dφx,xh

∣∣
xh(w)

(
φx(w),xh(w)xh

)
= dφx,xh

∣∣
xh(w)

(
φx,xh(w)xh

)(5.9)

+ dφx,xh

∣∣
xh(w)

{
(φx(w),xh(w)xh) − (φx,xh(w)xh)

}

= −wh + Nh(w, wh),

where N(·, ·) is some smooth function of both variables, that vanishes if
either input is zero. Equation (5.8) is thus proved, while the bound on Nh is
obtained from its smoothness and compactness of the fibers as in the proof
of Lemma 5.2.
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Lemma 5.4. There exists δ∈C∞(ℵ; R+) such that for all

x∈ℵ, v∈Txℵ s.t. |v|<δ(x) and c=c[m]∈C
m s..t|c||v|<δ(x),

there exists w ∈ Tℵ with |wh|x < 2|ch||vh|x such that for all z ∈
Bx

(
xh, 4δ(x)

1
2

)
,

(5.10) dφx,xh

∣∣
xh(w)

(
φx(w),xh(w)z

)
=

(
1+αh(w)

)(
chvh+φx,xh

z
)
+Θw,h(φx,xh

z),

where αh(w) and Θw,h are as in Lemma 5.2. In particular, both sides
of (5.10) are defined.

Proof. We start by choosing δ so that 8δ
1
2 is smaller that the function δ of

Lemmas 5.2 and 5.3. By flatness of the metric gx(w) on B
(
xh, 8δ(x)

1
2

)
for

w∈Txℵ with |w|<δ(x)

(5.11) φx(w),xh(w)z = dφx(w),xh(w)

∣∣
xh

φx(w),xh
z + φx(w),xh(w)xh

for any z ∈B
(
xh, 4δ(x)

1
2

)
. Taking dφx,xh

∣∣
xh(w)

of both sides of (5.11) and

applying Lemmas 5.2 and 5.3, we obtain

dφx,xh

∣∣
xh(w)

(
φx(w),xh(w)z

)
=

(
1 + αh(w)

)
φx,xh

z + Θw,h (φx,xh
z)(5.12)

− wh + Nh(w, wh).

Thus, we need to solve the equations

(5.13) −wh + Nh(w, wh) =
(
1 + αh(w)

)
chvh.

Let Ψh(w) = Nh(w, wh)−
(
1+αh(w)

)
chvh. If |w| ≤ 2|ch||vh|, then by Lem-

mas 5.2 and 5.3,

|Ψ(w)| ≤ C(x)|c||v|
(
2|c||v| + 1

)
≤ 2|c||v|,(5.14)

|Ψ(w) − Ψ(w′)| ≤ C(x)|c||v||w − w′| ≤ 1

2
|w − w′|,

provided 4C(x)δ(x) < 1. In such a case, Ψ is a contracting operator, and
thus (5.13) has a unique solution w ∈ Txℵ with |w|< 2|c||v|. The estimate
|wh|<2|ch||vh| follows directly from (5.13) if δ(x) is sufficiently small.

Corollary 5.5. There exist δ, Ck∈C∞(ℵ; R+), where k is a positive integer,
such that for any x∈ℵ, v∈Txℵ with |v|<δ(x), c=c[m]∈C

m with |c|<δ(x),

and r=r[m]∈R
m with |r|< 1

2 , there exists x̃∈ℵ and ṽ∈Tx̃ℵ such that

(1) x̃h∈Bx

(
xh, 2|ch||vh|

)
,
∣∣gx̃
gx

− 1
∣∣ ≤ C1(x)|c||v|,∣∣|ṽh|x̃ − |vh|x

∣∣ ≤ C1(x)
(
|c||v| + |rh|

)
|vh|;

(2) for any z∈Bx

(
xh, 4δ(x)1/2

)
,

(5.15)
φx̃,x̃h

z

ṽh
= (1 + rh)

{
ch +

φx,xh
z

vh
+ Θv,c,r,h

(φx,xh
z

vh

)}
,



534 A. ZINGER

where Θv,c,r,h is a holomorphic function, varying smoothly with the
parameters, such that

Θv,c,r,h(0) = 0, Θ′
v,c,r,h(0) = 0,

∥∥Θ
〈k〉
v,c,r,h

∥∥
C0 ≤ Ck(x)|c||v||vh|k−1.

Proof. Let δ be as in Lemma 5.4. Given v and c as in the statement of the
lemma, let w∈Txℵ be the element provided by Lemma 5.4. Take

x̃h = xh(w), ṽh = (1 + rh)−1
(
1 + ah(w)

)
dφ−1

x,xh
|wh

vh.

The estimates in (1) are immediate from Lemma 5.4, provided δ is suffi-
ciently small. The inequalities in (2) arise from the smooth dependence of
w on x, v, and c in Lemma 5.4, and the fact that w is zero if either v=0 or
c=0.

5.2. Sobolev Inequalities for the Metrics gυ. In this subsection, we
prove (3) of Lemma 3.5. The reason this estimate holds is that (Συ, gυ)
can be written as a union of the surfaces (Σbυ ,i, gυ) with small disks missing

and annuli (Ã±
υ,h, gυ) that are uniformly equivalent to annuli in R

2 with the

smaller radius less than half of the larger.
Suppose T =(S, M, I; j, λ) is a bubble type and

υ =
(
b, vÎ

)
=

(
(S, M, I; x, (j, y), u), vÎ

)
∈ F (0)Tδ.

For any h∈ Î and i∈I, put

Ã−
υ,h = q−1

υ,ih

({
(ιh, z)∈Σbυ ,ιh : (2δT (bυ))−1|vh|b≤rb,h(z)≤|vh|

1
2
b

})
;

Ã+
υ,h = q−1

υ,ih

({
(ιh, z)∈Σbυ,ιh : |vh|

1
2
b ≤rb,h(z)≤2δT (bυ)

})
;

Sυ,i = q−1
υ,i

({
(i, z)∈Sbυ,i : rb,h(z)≥δT (bυ) if ιh = i;

|q−1
S (z)|≥δT (bυ) if i>0

})
.

Let Ãυ,h denote Ã−
υ,h ∪ Ã+

υ,h.

Lemma 5.6. For any p > 2, there exists Cp ∈ C∞(M(0)
T ; R) such that for

any υ∈F (0)Tδ and h∈ Î,

ξ ∈ Γ̃c(Ãυ,h; u∗
υTV ) =⇒ ‖ξ‖C0 ≤ Cp(bυ)‖ξ‖gυ ,p,1.

Proof. By construction of the metric gυ, gυ|Ãυ,h
is the pullback of the met-

ric gυ,ιh on qυ,ιh(Ãυ,h) by the map qυ,ιh . Furthermore, the metric gυ,ιh on

qυ(Ã±
υ,h) differs from the standard metric on the annulus B

2δT (bυ),|vh|
1
2
⊂R

2

by factors bounded by C(bυ). Since ‖duυ‖gυ ,p≤Cp(bυ) by (1) of Lemma 3.5,
the claim follows from Proposition 3.7 in [Z1].
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Proposition 5.7. For any p > 2, there exists Cp ∈C∞(M(0)
T ; R) such that

for all υ∈F (0)Tδ,

‖ξ‖C0 ≤ Cp(bυ)‖ξ‖gυ ,p,1 for all ξ∈Γ(uυ).

Proof. (1) Note that gυ|Sυ,i is the pull-back of the metric gbυ ,i on qυ,i(Sυ,i)
by the map qυ,i. Thus, by Proposition 3.7 in [Z1], if ξ∈Γc(Sυ,i; u

∗
υTV ),

‖ξ‖C0 = ‖ξ ◦ qυ,i‖C0 ≤ Cp(‖duυ ◦ qυ,i‖gbυ,i,p)‖ξ ◦ qυ,i‖gbυ,i,p,1

= Cp(bυ)‖ξ‖gυ ,p,1,

since ξ vanishes outside of Sυ,i.

(2) We now define a partition of unity subordinate to {Sυ,i, Ãυ,h : i∈I, h∈
Î}. Put

η+
υ,h(z) =

{
1 − βδ2

T (bυ)

(
rbυ,h(qυ,ιh(z))

)
, if qυ,ιh(z)∈Σbυ ,ιh ;

1, otherwise;

η−υ,h(z) =

{
1 − βδ2

T (bυ)

(∣∣q−1
S qυ(z)

∣∣), if qυ,h(z)∈Σbυ ,h;

1, otherwise;

η̃υ(z) = 1 −
∏

h∈Î

η−υ,h(z)η+
υ,h(z).

Note that dη±υ,h is supported in Ã±
υ,h. It follows from the definition of gυ

that

‖dη±υ,h‖gυ ,C1 = ‖d(η±υ,h ◦ q−1
υ,ih

)‖gυ,ih
,C1 ≤ C(bυ).

Thus, if ξ∈Γ(uυ) by (1) and Lemma 5.6,

‖ξ‖C0 ≤
∑

i∈I

‖η̃ξ‖C0(Sυ,i) +
∑

h∈Î

‖η−υ,hη+
υ,hξ‖C0

≤ Cp(bυ)



‖η̃ξ‖gυ ,p,1 +
∑

h∈Î

‖η−υ,hη+
υ,hξ‖gυ ,p,1





≤ Cp(bυ)



|I|‖ξ‖gυ ,p,1 + 2
∑

h∈Î

‖η−υ,hη+
υ,h‖gυ ,C1‖ξ‖gυ ,p





≤ C ′
p(bυ)‖ξ‖gυ ,p,1.

5.3. Elliptic Estimates for the Metrics gυ. This subsection contains the
proof of (4) of Lemma 3.5, the main elliptic estimate for the operators Dυ

and the modified Sobolev norms. This estimate does not hold for the stan-
dard Sobolev norms. The argument is essentially the same as in [LT], but
we do include all of the details, based on [Z1], and state a sharper estimate.
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Let T , υ, Ãυ,h =Ã−
υ,h∪Ã+

υ,h, and Sυ,i be as in Subsection 5.2. If ιh =0̂, the

metric gbυ ,0̂ is flat on Bbυ ,h(δT (bυ)
1
2 ). Thus, for any h∈ Î, we can choose con-

formal polar coordinates (r, θ) on Ãυ,h such that r(z)=rb,υ

(
qυ,ιh(z)

)
. Since

gυ|Ãυ,h
is the pullback of the metric gυ,ιh on qυ,ιh(Ãυ,h) by the map qυ,ιh ,

(5.16) gυ =

{(
1 − β|vh|(2r)

) 2C(bυ)

|vh| + |vh|−1r2
+ β|vh|(r)

} (
dr2 + r2dθ2

)

on Ãυ,h. Similarly, since ρυ =ρυ,ιh◦qυ,ιh ,

(5.17) ρυ = r2 +
|vh|2
r2

on Ãυ,h.

Lemma 5.8. For all p>1, there exists Cp∈C∞(M(0)
T ; R) such that for all

υ∈F (0)Tδ, h∈ Î, and ξ∈Γc(Ãυ,h; u∗
υTV )

(∫

Ãυ,h

ρ
− p−2

p
υ |∇bυξ|2

) 1
2

≤ Cp(bυ)
(
‖Dυξ‖υ,p + ‖ξ‖υ,p

)
.

Proof. (1) Let ǫ1 and ǫ2 denote
(
2δT (bυ)

)−1|vh| and 2δT (bυ), respectively.
Note that the integral on the left-hand side in the statement of the lemma
is conformally invariant. With respect to the metric dr2+r2dθ2,

∣∣Dυξ
∣∣
(r,θ)

=

∣∣∣∣
D

dr
ξ + Jr−1 D

dθ
ξ

∣∣∣∣
(r,θ)

,

where D
dr and D

dθ denote covariant differentiation with respect to the con-

nection ∇bυ and the norms are taken with respect to the metric gV,b on V .
Thus,

a2
h ≡

∫

Ãυ,h

ρ
− p−2

p
υ |∇bυξ|2(5.18)

≤ ‖Dυξ‖2
υ,p − 2

∫ 2π

0

∫ ǫ2

ǫ1

ρ
− p−2

p
υ

〈 D

dr
ξ, J

D

dθ
ξ
〉
drdθ.

Since ∇bυJ =0, using integration by parts twice, we obtain
∫ 2π

0

∫ ǫ2

ǫ1

ρ
− p−2

p
υ

〈 D

dr
ξ, J

D

dθ
ξ
〉
drdθ(5.19)

= −
∫ 2π

0

∫ ǫ2

ǫ1

ρ
− p−2

p
υ

〈 D

dθ

D

dr
ξ, Jξ

〉
drdθ

= −
∫ 2π

0

∫ ǫ2

ǫ1

ρ
− p−2

p
υ

(〈 D

dr

D

dθ
ξ, Jξ

〉
−

〈
R(ur, uθ)ξ, Jξ

〉)
drdθ

=

∫ 2π

0

∫ ǫ2

ǫ1

ρ
− p−2

p
υ

(〈 D

dθ
ξ, J

D

dr
ξ
〉
− (p−2)

p

ρ′υ(r)

ρυ(r)

〈 D

dθ
ξ, Jξ

〉
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+
〈
Rbυ(ur, uθ)ξ, Jξ

〉)
drdθ,

where ur and uθ denote d
druυ and d

dθuυ, respectively, and Rbυ is the curvature

tensor of the connection ∇bυ . Since
〈

D

dθ
ξ, J

D

dr
ξ

〉
= −

〈
D

dr
ξ, J

D

dθ
ξ

〉
,

by (5.19) and (1) of Lemma 3.5,

∣∣∣∣
∫ 2π

0

∫ ǫ2

ǫ1

ρ
− p−2

p
υ

〈
D

dr
ξ, J

D

dθ
ξ

〉
dr θ

∣∣∣∣(5.20)

≤ |p − 2|
2p

∣∣∣∣
∫ ǫ2

ǫ1

ρ
− p−2

p
υ

ρ′υ(r)

ρυ(r)

∫ 2π

0

〈
D

dθ
ξ, Jξ

〉
dθdr

∣∣∣∣ + C(bυ)‖ξ‖2
υ,p.

(2) By Poincare Lemma, see Proposition 2.5 in [Z1], for every circle with
r fixed,

∣∣∣
∫ 2π

0

〈 D

dθ
ξ, Jξ

〉
dθ

∣∣∣ ≤
∫ 2π

0

∣∣∣
D

dθ
ξ
∣∣∣
2
dθ + C(gbυ)

{( ∫ 2π

0
|uθ|2dθ

)( ∫ 2π

0
|ξ|2dθ

)

+
(∫ 2π

0
|uθ|dθ

)(∫ 2π

0
|ξ|2dθ

) 1
2
( ∫ 2π

0

∣∣∣
D

dθ
ξ
∣∣∣
2
dθ

) 1
2

}
.(5.21)

Since
∣∣ρ′υ(r)
ρυ(r)

∣∣ ≤ 2r−1 on Ãυ,h, by Holder’s inequality and the first part of

Lemma 3.5,

1

2

∫ ǫ2

ǫ1

ρ
− p−2

p
υ

∣∣∣∣
rρ′υ(r)

ρυ(r)

∣∣∣∣
(∫ 2π

0
r−1|uθ|dθ

) (∫ 2π

0
|ξ|2dθ

) 1
2

(5.22)

·
(∫ 2π

0
r−2

∣∣∣∣
D

dθ
ξ

∣∣∣∣
2

dθ

) 1
2

r dr

≤ C‖ξ‖υ,p

(∫

Ãυ,h

ρ
− p−2

p
υ r−2

∣∣∣∣
D

dθ
ξ

∣∣∣∣
2
) 1

2

.

Similarly,

1

2

∫ ǫ2

ǫ1

ρ
− p−2

p
υ

∣∣∣
rρ′υ(r)

ρυ(r)

∣∣∣
(∫ 2π

0
r−2|uθ|2dθ

)(∫ 2π

0
|ξ|2dθ

)
rdrdθ(5.23)

≤ C(bυ)‖ξ‖2
υ,p.
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Combining equations (5.21)-(5.23), we obtain

1

2

∣∣∣∣
∫ ǫ2

ǫ1

ρ
− p−2

p
υ

ρ′υ(r)

ρυ(r)

∫ 2π

0

〈
D

dθ
ξ, Jξ

〉
dθdr

∣∣∣∣(5.24)

≤
∫ 2π

0

∫ ǫ2

ǫ1

ρ
− p−2

p
υ r−2

∣∣∣∣
D

dθ
ξ

∣∣∣∣
2

rdrdθ + C(bυ)
(
‖ξ‖2

υ,p + ‖ξ‖pah

)
.

Note that
∫ 2π

0

∫ ǫ2

ǫ1

ρ
− p−2

p
υ r−2

∣∣∣
D

dθ
ξ
∣∣∣
2
rdrdθ(5.25)

=
1

2

∫

Ãυ,h

ρ
− p−2

p
υ

(
r−2

∣∣∣
D

dθ
ξ
∣∣∣
2
+

∣∣∣
( D

dr
ξ+Jr−1 D

dθ
ξ
)
− D

dr
ξ
∣∣∣
2)

≤ 1+ǫ

2
a2

h + Cǫ‖Dυξ‖2
υ,p

for any ǫ > 0. Combining equations (5.18), (5.20), (5.24) and (5.25), we
obtain

a2
h ≤ |p−2|

p
(1+ǫ)a2

h +
(
C(bυ) + Cǫ

)(
‖Dυξ‖2

υ,p + ‖ξ‖2
υ,p + ‖ξ‖υ,pah

)
.

Since |p−2|
p <1, the claim follows by choosing ǫ sufficiently small.

Lemma 5.9. For all p≥1, there exists Cp∈C∞(M(0)
T ; R) such that for all

υ∈F (0)Tδ, h∈ Î, and ξ ∈ Γc(Ãυ,h|u∗
υTV )

‖∇bυξ‖gυ ,p ≤ Cp(bυ)



‖Dυξ‖υ,p + ‖ξ‖υ,p +

(∫

Ãυ,h

ρ
− p−2

2p
υ |∇ξ|2

) 1
2



 .

Proof. Choose a sequence

δ0 > . . . > δN+1 > 0 such that δ0 = ǫ2, δN+1 = ǫ1,
1

3
≤ δl+1

δl
≤ 1

2
.

For each l=1, . . . , N−1, let gl denote the metric

gl =

(
δ2
l +

|vh|2
δ2
l

)−1

gυ on Ãl =
{
(r, θ)∈Ãυ,h : δl+2 ≤ r ≤ δl−1

}
.

Let ρl =δ2
l +|vh|2δ−2

l and denote by Al the annulus
{
(r, θ)∈Ãυ,h : δl+1≤r≤δl

}
.

The pullback of the metric gl on Ãl to the annulus
(

δl+2

δl
,
δl−1

δl

)
× S1 ⊂ R

2
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by the map (r, θ)−→(δlr, θ) differs from the Eucledian metric by a conformal
factor bounded by C(bυ), since

1

100
≤

{(
1 − β|vh|(δlr)

) 2

|vh| + |vh|−1δ2
l r

2
+ β|vh|(δlr)

} (
δ2
l +

|vh|2
δ2
l

)− 1
2
δl

≤ 200,

whenever r∈(1
9 , 3) and δl∈(|vh|, 1). Thus, by Proposition 3.10 in [Z1],

‖∇bυξ‖gl,Lp(Al) ≤ C
(
‖Dυξ‖gl,Lp(Ãl)

+ ‖∇bυξ‖gl,Lp(Ãl)
(5.26)

+‖ξdu‖gl,Lp(Ãl)

)
,

or equivalently

‖∇bυξ‖gυ ,Lp(Al) ≤ C
(
‖Dυξ‖gυ ,Lp(Ãl)

+ ‖ρ−
p−2
2p

l ∇bυξ‖L2(Ãl)
(5.27)

+‖ξdu‖gυ,Lp(Ãl)

)
.

Since ρυ(r)
ρl

∈ [ 1
81 , 81] when r∈ [δl+2, δl−1], (5.27) is equivalent to

(∫

Al

|∇bυξ|p
) 1

p

≤ Cp(bυ)

( (∫

Ãl

|Dυξ|p
) 1

p

+

(∫

Ãl

ρ
− p−2

p
υ |∇bυξ|2

) 1
2

+‖ξduυ‖gυ ,Lp(Ãl)

)
.

The claim follows by summing up the last inequality over all l and using (1)
of Lemma 3.5.

Remark. The above proof does not quite apply to the two outermost an-
nuli A1 and AN . However, since ξ is compactly supported in Ãυ,h, the proof

of Proposition 3.10 in [Z1] can be applied to A1 with A1∪A2 replacing Ã1

to (5.26), and similarly for AN . Alternatively, for the purposes of proving
Proposition 5.11 below, it is sufficient to prove Lemma 5.9 and Corollary 5.10
for ξ that vanish on A1 and AN .

Corollary 5.10. For all p>1, there exists Cp∈C∞(M(0)
T ; R) such that for

all υ∈F (0)Tδ, h∈ Î, and ξ∈Γc(Ãυ,h; u∗TV )

‖ξ‖υ,p,1 ≤ Cp(bυ)
(
‖Dυξ‖υ,p + ‖ξ‖υ,p

)
.

Proof. This corollary follows immediately from Lemmas 5.10 and 5.10.

Proposition 5.11. For all p> 1, there exists Cp ∈C∞(M(0)
T ; R) such that

for all υ∈F (0)Tδ,

‖ξ‖υ,p,1 ≤ Cp(bυ)
(
‖Dυξ‖υ,p + ‖ξ‖υ,p

)
∀ξ∈Γ(uυ).
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Proof. This proposition follows from Corollary 5.10 and Proposition 3.12
in [Z1] by taking a partition of unity as in the proof of Proposition 5.7.

5.4. Fiber-Uniform Inverse for the Operator Dυ.

Lemma 5.12. Let {υk} be a sequence in F (0)Tδ that converges to b∗∈M(0)
T .

Suppose ξk ∈ Γ(uυk
) is such that ‖ξk‖υk,p,1 ≤ 1 for all k, while ‖Dυk

ξk‖υk,p

tends to 0 as k −→ ∞ for some p > 2. Then a subsequence of {ξk} C0-
converges ξ∗∈Γ−(b∗). Furthermore, ‖ξk‖υk,C0 converges to ‖ξ∗‖b∗,C0.

Proof. (1) Write b∗=
(
S, M, I; x∗, (j, y∗), u

)
and

υk = (bk, vk) =
(
(S, M, I; xk, (j, yk), uk), (vk)Î

)
.

For each i∈I and δ>0, put

S∗
i,δ =

{
z∈Σb,i : rb∗,h(z)≥δ ∀h∈ Î; |q−1

S (z)|≥δ if i>0
}
.

For i ∈ I and all k sufficiently large (depending on δ), define ζk,i, ξ
′
k,i in

Γ(u∗
i |S∗

i,δ
) by

expb∗,u∗
i (z) ζk,i(z) = uυk

(q−1
υk

(z)), ‖ζk,i‖b∗,C0 < inj gV,b∗ ;

Πb∗,ζk,i(z)ξ
′
k,i(z) = ξk(q

−1
υk

(z)).

Since ‖∇b∗ζk,i‖b∗,C0 ≤ C for k sufficiently large, (1) of Lemma 3.5 and by
Corollary 2.3 in [Z1],

‖ξ′k,i‖b∗,p,1 ≤ (1 + ǫk)‖ξk‖υk,p,1 + ǫk‖ξk‖υk,C0 ,(5.28)

‖Db,uiξ
′
k,i‖b∗,p ≤ (1 + ǫk)‖Dυk

ξk‖υk,p + ǫk‖ξk‖υk,C0 ,

where ǫk −→ 0 as k −→∞. Since ‖ξk‖υk,p,1 ≤ 1, (2) of Lemma 3.5 applied
to (5.28),

‖ξ′k,i‖b∗,p,1 ≤ (1 + ǫ̃k)‖ξk‖υk,p,1 + ǫ̃k,(5.29)

‖Db,uiξ
′
k,i‖b∗,p ≤ (1 + ǫ̃k)‖Dυk

ξk‖υk,p + ǫ̃k,

where ǫ̃k −→0 as k−→∞. Sobolev’s embedding theorem then implies that
ξ′k,i converges to a vector field ξ∗i ∈Γ(ui|Σ∗

b∗,i
) in the C0-norm on the compact

subsets of Σ∗
b∗,i. Furthermore, ‖ξ∗i ‖b∗,C0 <∞, since

‖ξ′k,i‖b∗,C0 ≤ (1 + ǫk)‖ξk‖υk,C0 ≤ C.

(2) We will now show that Db∗,u∗
i
ξ∗i = 0 weakly, i.e., 〈〈ξ∗i , D∗

b∗,u∗
i
η〉〉b∗ = 0

for any η∈Γ0,1(u∗
i ). We have

〈〈ξ∗i , D∗
b∗,u∗

i
η〉〉b∗ = lim

δ−→0

∫

S∗
i,δ

〈ξ∗i , D∗
b∗,u∗

i
η〉b∗(5.30)

= lim
δ−→0

lim
k−→∞

∫

S∗
i,δ

〈ξ′k,i, D
∗
b∗,u∗

i
η〉b∗ ,
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since ξ′k,i −→ ξ∗i in the C0-norm on Si,δ. By integration by parts,
∣∣∣∣∣

∫

S∗
i,δ

〈ξ′k,i, D
∗
b∗,u∗

i
η〉b∗ −

∫

S∗
i,δ

〈Db∗,u∗
i
ξ′k,i, η〉b∗

∣∣∣∣∣ ≤ C

∫

∂S∗
i,δ

|ξ′k,i||η|(5.31)

≤ C ′‖ξ′k,i‖b∗,C0‖η‖b∗,C0δ.

Since ‖Db∗,ui∗ξ
′
k,i‖b∗,p−→0 as k−→∞ on S∗

i,δ and ‖ξ′k,i‖b∗,C0 ≤C, by (5.30)

and (5.31),

〈〈ξ∗i , D∗
b∗,u∗

i
η〉〉b∗ = 0 ∀η∈Γ0,1(u∗

i ).

(3) Since Db∗,u∗
i
ξ∗i = 0 weakly on Si and Db∗,u∗

i
is an elliptic operator,

it follows that ξ∗i is smooth and Db∗,u∗
i
ξ∗i = 0. It will now be shown that

ξ∗ιh(x∗
h)=ξ∗h(∞) for all h∈ Î, i.e., ξ∗≡ξ∗I ∈Γ(b∗). For each h∈ Î, let Ah,δ,k⊂S

denote the small cylinder connecting q−1
υk

(S∗
h,δ) and q−1

υk
(S∗

ιh,δ). Let ǫ>0 be

any small number. Choose small δ > 0 such that uh(Bb∗,h(∞, 2δ)) and
u∗

ιh
(Bb∗,ι∗h

(x∗
h, 2δ)) lie in Bb∗(u

∗
h(∞), ǫ). Then we can write

u∗
b∗(z) = expb∗,u∗

b∗
(x∗

h) ūb∗(z), |ūb∗(z)| < inj gV,b∗ ; ξ̄′k(z) ≡ Π−1
b∗,ūb(z)ξ

′
k(z)

for z∈Bb∗,h(∞, δ) ∪ Bb∗,ι∗h
(x∗

h, δ). Similarly, put

ξ̄∗h(z) = Π−1
b∗,ūb∗ (z)ξ

∗
h(z) and ξ̄∗ιh(z) = Π−1

b∗,ūb∗(z)ξ
∗
ιh

(z)

for z in Bb∗,h(∞, δ) and in Bb∗,ih(x∗
h, δ), respectively. We can also assume

that δ is so small that
∣∣ξ̄∗h − ξ∗h(∞)

∣∣
b∗

and
∣∣ξ̄∗ιh − ξ∗ih(x∗

h)
∣∣
b∗

do not exceed ǫ
on Bb∗,h(∞, δ) and on Bb∗,ιh(x∗

h, δ), respectively. Choose large k∗ such that
all k>k∗

‖ξ∗ − ξ′k‖C0(S∗
h,δ∪S∗

ιh,δ) ≤ ǫ.

It can be assumed that uk(Ah,2δ,k) lies in Bb∗(u
∗(x∗

h); 2ǫ) for k >k∗. Thus,
we can write

uk(z) = expb∗,u(x∗
h) ūk(z), |ūk(z)|b∗ < inj gV,b∗ ; ξ̄k(z) ≡ Π−1

b∗,ūk(z)ξk(z)

if z∈Ah,δ,k. Pick points z1 and z2, one on each component of the boundary
of Ah,δ,k. Then

∣∣ξ∗h(∞) − ξ∗ιh(x∗
h)

∣∣
b∗

≤ 2
(
ǫ +

∣∣ξ̄∗h(qυk
(z1)) − ξ̄∗ιh(qυk

(z2))
∣∣
b∗

)
(5.32)

≤ 4
(
ǫ +

∣∣ξ̄′k,h(qυk
(z1)) − ξ̄′k,ih

(qυk
(z2))

∣∣
b∗

)

≤ C
(
ǫ +

∣∣ξ̄k(z1) − ξ̄k(z2)
∣∣
b∗

+ ‖ζk‖b∗,C0(S∗
h,δ∪S∗

ih,δ)‖ξ̄k‖b∗,C0(Ah,δ,k)

)
.

Since Ah,δ,k is uniformly equivalent to the union of two annuli with the larger
radius bounded above by δ and the smaller radius less than half of the larger,
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by Lemma 3.1 in [Z1] and Holder’s inequality,
∣∣ξ̄k(z1) − ξ̄k(z2)

∣∣
b∗

≤ C
∣∣ξ̄k(z1) − ξ̄k(z2)

∣∣
bk

(5.33)

≤ C ′δ
2(p−2)

p ‖dξ̄k‖υk,Lp(Ah,δ,k).

By Corollary 2.3 in [Z1] and Proposition 5.11,

(5.34) ‖dξ̄k‖υk,Lp(Ah,δ,k) ≤ ‖ξk‖υk,p,1 + ‖duυk
‖υk,p‖ξk‖υk,C0 ≤ C.

Combining equations (5.32)-(5.34), we obtain

(5.35)
∣∣ξ∗h(∞) − ξ∗ιh(x∗

h)
∣∣
b∗

≤ C
(
ǫ + δ

2(p−2)
p + ‖ζk‖b∗,C0(S∗

h,δ∪S∗
ιh,δ)

)
.

Since the last term in (5.35) tends to zero as k −→∞ and ǫ and δ can be
chosen to be arbitrarily small, it follows ξ∗h(∞)=ξ∗ιh(x∗

h).

Proposition 5.13. For any simple bubble type T , there exist R
+-valued

smooth functions C, δ on M(0)
T such that for all υ ∈ F (0)Tδ if T is regular

and υ∈F (∅)Tδ if T is semiregular,

‖ξ‖υ,p,1 ≤ Cp(bυ)‖Dυξ‖υ,p ∀ξ∈Γ+(υ) and ∀ξ∈ Γ̃+(υ).

Proof. If not, we can choose a sequence υk ∈ F (0)Tδ, converging to some

b∈M(0)
T and vector fields ξk∈Γ+(υk) (or ξk∈ Γ̃+(υk)) such that

‖ξk‖υk,p,1 = 1 and lim
k−→∞

‖Dυk
ξ‖υk,p = 0.

If ξk∈Γ+(υk), note that {Γ−(υk)} C0-converges to V ≡Γ−(b). If ξk∈ Γ̃+(υk),

by Definition 3.11, a subsequence of {Γ̃−(υk)} C0-converges to a subspace
V ⊂Lp

1(b) such that πb,− : V −→Γ−(b) is an isomorphism. In either case, by
the first statement of Lemma 5.12, a subsequence of {ξk} C0-converges to
a vector field ξ∗∈Γ−(b). By the second statement of Lemma 5.12, ξ∗ must

be orthogonal V , since ξk ∈Γ+(υk) (or ξk ∈ Γ̃+(υk)). Thus, ξ∗ = 0. On the
other hand, by Proposition 5.11, there exists ǫ>0 such that ‖ξk‖υk,p≥ǫ for
all k sufficiently large. However, by Lemma 5.12, ‖ξk‖υk,C0 −→0, which is a
contradiction.
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