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Strict Quantization of Solvable Symmetric Spaces
PIERRE BIELIAVSKY

To the memory of Moshé Flato

This work is a contribution to the area of Strict Quantization
(in the sense of Rieffel) in the presence of curvature and non-
Abelian group actions. More precisely, we use geometry to obtain
explicit oscillatory integral formulae for strongly invariant strict
deformation quantizations of a class of solvable symplectic sym-
metric spaces. Each of these quantizations gives rise to a field
of (pre)-C*-algebras whose fibers are function algebras which are
closed under the deformed product. The symmetry group of the
symmetric space acts on each fiber by C*-algebra automorphisms.

Introduction.

Weyl’s method for quantizing a free particle in R™ consists in a corre-
spondence between classical observables (i.e., functions on the phase space
R?" = T*(R™)) and linear operators acting on the Hilbert space of square
integrable functions on the configuration space R". By reading the operator
composition product at the level of functions via Weyl’s correspondence,
one gets a non-commutative associative product on the classical observables
called Weyl’s product. This new product appears as a deformation with
one parameter, namely Planck’s “constant” A, of the usual commutative
pointwize multiplication of functions in the direction of the classical Pois-
son bracket. This is the starting point of Formal Deformation Quantization
(FDQ) theory (or star products), as introduced by Bayen, Flato, Fronsdal,
Lichnerowicz and Sternheimer in the late seventies [2]. In FDQ, Quantum
Mechanics is formulated in a classical framework as the space of formal
power series in A with classical observables as coeflicients. No reference to
a particular Hilbert space representation is made.

An important feature of Weyl’s product is that it is “strict”, meaning
that in a suitable functional framework, the product of two functions is again
a function, rather than a formal power series in A, as in star product theory.
For instance, the Schwartz space on R?" is closed under Weyl’s product.
Originally formulated in the framework of C*-algebras, the notion (theory)
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of Strict Deformation Quantization (SDQ) was introduced by M. A. Rieffel
in 1989 [22] (see also [16]), and has been extensively developed in various
directions since then. For example, SDQ provides a very elegant and simple
description of Quantum Tori by generalizing Weyl’s quantization of R*" to
Poisson manifolds whose Poisson structure comes from an action of R? [21].
In the latter, invariance of Weyl’s product under translations plays a crucial
role.

There is a very simple oscillatory integral formula for Weyl’s deformed
product (see formula (1) in the next section). Such an oscillatory integral
formula is not only convenient when studying the functional analysis and
strictness of the quantization, it also indicates a possible approach to the
study of the geometry of the quantization.

On a symplectic manifold M, it is natural to express a given (continuous)
multiplication, x, on functions via a kernel formula of the type:

u*v(x):/ K(z,., . )u®u,
M xM

where u and v are two functions on M, where z is a point in M, and where
K is the three-point kernel defining the multiplication x. The integration is
with respect to the product Liouville measure on M x M.

In the so-called WK B-quantization program (see [25]) initiated indepen-
dently by Karasev, Weinstein and Zakrzewski, one considers kernels of the

form:
S

K =ap ers.
Here S is a real-valued smooth function on M x M x M called the phase and
ay, called the amplitude, is usually a power series in #. It is defined in such a
way that the product x would be, at least formally, associative. It should also
constitute a one-parameter (/) deformation of the usual pointwize product in
the direction of the symplectic Poisson bracket. Briefly, a WKB-quantization
is defined by an oscillatory integral product formula.

When one imposes compatibility with some geometric structure given
on the symplectic manifold, for instance invariance of the quantization un-
der the action of the group of affine transformations of a given symplectic
connection, S and ap become extremely constrained and carry non-trivial
geometric information. In the simplest example of Weyl’s quantization of
M = R?", the amplitude function is identically equal to 1 while the phase
S(z,y, z) is proportional to the symplectic area of the Euclidean triangle
Azyz whose vertices are points z,y and z [12, 25]. In particular, in this
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case the largest group of diffeomorphisms of R?" preserving the quantiza-
tion is Sp(n,R) x R?"™ that is, the group of symplectic displacements with
respect to the flat connection on R?".

In this work, we study WKB-quantizations of a class of curved affine
symplectic manifolds. More precisely, a symplectic symmetric space is
a triple (M, w, V) where (M,w) is a symplectic manifold and where V is a
torsion-free affine connection on M such that Vw = 0 and such that at ev-
ery point € M, the local geodesic symmetry, s;, extends globally to M as
an affine symplectic transformation. In this case the group G(M) of trans-
formations of M generated by the symmetries {s,} completely determines
the connection (see Section 2). By a WKB-quantization of a symplectic

symmetric space, we essentially mean a WKB-quantization of (M,w) with

S

kernel K = ay er” as above such that

(i) the amplitude a; and the phase S are invariant under the group G(M);

(ii) for all value of i € [0, 00), there exists a function algebra £ C Fun(M)
stable under the deformed multiplication and containing the space of
smooth compactly supported functions. (We denote by Fun(M) the
space of complex valued functions on M).

For a precise definition see Definition 1.5.

One interest of such an invariant quantization is that, when well be-
haved, it leads to deformations of quotient spaces I'\M where I' C G(M)
(see Section 8). However, this last question will not be investigated in the
present article.

WKB-quantization of symplectic symmetric spaces has already been in-
vestigated by A. Weinstein. In [25], assuming the existence of a WKB-
quantization of a symmetric symplectic space which is invariant under the
group of automorphisms, Weinstein gives a beautiful geometric description
of the phase S(z,y, z) in terms of the symplectic area of a geodesic triangle
admitting points x,y and z as midpoints of its edges. Even for symmetric
spaces, the problems of finding the amplitude a; as well as that of giving
a suitable functional framework where the WKB-quantization would yield
topological function algebras are still wide open. Nevertheless, a geometri-
cal study combined with techniques coming from Star Representation theory
[1, 10] (representation theory of Lie groups in the framework of deformation
quantization) seem to suggest a way to attend these questions. At least for
solvable symmetric spaces, one can give a quite satisfying answer. This is
what is done in this paper. The symplectic spaces considered here are sym-
plectomorphic to R?" endowed with its standard symplectic structure. From
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the topological point of view the situation is therefore trivial. In contrast,
the geometry is not. Indeed, each of these spaces is endowed with a curved
symplectic affine connection whose symplectic affine transformations are not
linear. In particular, Weyl’s product is not preserved under such canonical
transformations. In our case, the automorphism group G(M) is a solvable
Lie group. Our situation therefore differs from the Kahlerian symmetric
case whose study was initiated by Berezin [3] (see Section 8).

The present paper is organized as follows.

1 Weyl’s Quantization revisited

We introduce a geometric setting in which associativity of Weyl’s prod-
uct is interpreted in elementary geometric terms. We propose a con-
venient framework for WKB-quantization (Definition 1.5) inspired by
Rieffel’s definition of strict deformation quantization.

2 General facts about symplectic symmetric spaces

For the convenience of the reader, we recall some relevant definitions
and results on symplectic symmetric spaces which can be found in [5].

3 Phase functions on symplectic symmetric spaces

We adapt the geometric setting introduced in Section 1 to the case
of symplectic symmetric spaces. We indicate how Weinstein’s phase
function [25] appears in this picture.

4 Elementary solvable symplectic symmetric spaces

We define the class of symplectic symmetric spaces that will be con-
sidered in this work. Those are such that the action of the holonomy
algebra at a point o has an isotropic range in the symplectic tangent
space at 0. The symmetry group of such a symplectic symmetric space
is a solvable Lie group. Among solvable symplectic symmetric spaces,
these spaces are structurally of primary importance (see Section 4 and
[7]). We call them elementary solvable symplectic symmetric spaces.
We end this section by giving explicit formulae for the invariant phase
functions S on these spaces as well as an embedding property (Propo-
sition 4.7) which will be useful when studying the functional analysis

attached to the integral kernel K = apen’.
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5 Obtaining the oscillating kernel via star representation the-
oretical methods

On a symplectic symmetric space as considered in Section 4, one has
a canonical Darboux chart. In this Darboux chart, the formal Moyal
star product turns out to be covariant (in Arnal’s sense) under the
action of some central extension of the transvection algebra. Using
the cocycle defining the associated star representation, we introduce
some kind of integral Fourier operator on the quantum algebra which
intertwines the usual commutative product with an A-dependent com-
mutative product for which the extended transvection algebra acts by
derivations. The “commutative manifold” underlying the latter prod-
uct carries therefore a strongly invariant deformation quantization.
This space turns out to be equivariantly isomorphic to the symmetric
space at hand.

6 WKB-Quantization

We determine explicitly the amplitude functions ap that yield invari-
ant WKB-quantizations of our solvable symplectic symmetric spaces
via their associated kernels K = ape#®. Combined with Section 5,
this yields explicit oscillatory integral formulae for strongly invariant
strict deformation quantizations (Theorem 6.13). We define deformed
function algebras i.e., we exhibit spaces of functions on the symmetric
space which are stable under the oscillatory integral deformed product.

7 Topological algebras

We define symmetry invariant C*-norms on the above mentioned func-
tion algebras.

8 Remarks for further developments

The present work gives us a hope for attending “quantum Anosov
property” on compact solv-manifolds. Also, we believe it could al-
low to attend “quantum surfaces” ([20], [17]) in an explicit and quite
elementary way.
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1. Weyl’s Quantization revisited?l.

Weyl’s quantization consists in a correspondence between classical observ-
ables of a mechanical system, i.e., functions on a phase space and operators
on a suitable Hilbert space. More precisely, when the phase space is the
symplectic vector space (R2", wo), Wey!’s quantization map is given by:

S(E) M B(LA(R™))

Wawf)a) = [ ebtrnn (‘”—”s) £(n) dé dn,
Rn xR™ 2

where R2" is seen as R* x R* = {(¢, p)}, d¢ (respectively dn) is some suitable
normalization of the Haar measure on the Abelian Lie group R", where
S(R*™) denotes the space of Schwartz’s functions on R?*® and B(L?(R"))
is the algebra of bounded operators on LQ(R"). The Weyl product of two
Schwartz’s functions is formally defined as:

Wh(u %3 v) = Wh(u) o Wi(v).
One derives the following integral formula for the Weyl product:

O A= [ e By
R2n x [R2n

where
Sx,y, 2) = w’(z,y) + w(y, 2) + &°(2,2),

and where dy (respectively dz) is some suitable normalization of the Liouville
measure.

'In this section we will not consider the functional analytical problems involved
in existence and well-definedness of our oscillatory integrals, those will be inves-
tigated in the next sections. Only the geometric aspects will be discussed in the
present section.
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Endowed with this product, the Schwartz space (S(R?"),*9) becomes an
associative topological algebra [11]. Its algebra structure extends to L?(R?").

Interpreting formula (1) as an oscillatory integral with parameter —%,
one can use a stationary phase method to obtain the following asymptotic
expansion:

© Kk
0 1% .. ..
(2) u*pv~ wo+v{uv}+ Z o Z QI QURIRG, w05, U
k=2 . .
11 ...
Ji---Jk

with v = L and where QY0; A 9; = {, } is the Poisson tensor associated to
w®. The RHS of (2) extends by C[[A]]-bilinearity as an associative product
to the space of formal power series C*°(R?")[[h]]. This formal product is
called the Moyal star product and will be denoted by u + v.

Dirac’s condition in Quantum Mechanics in this context reads as

% (w *Moy — M u) mod(v) = {u, v}.
The oscillatory integral formula (1) indicates that the triple (R*",dz, S9)
contains all the structure needed to produce an associative non commuta-
tive deformation of the usual pointwize product on functions on R?*. Of
course, compatibility between S° and the (Abelian) group structure of R?"
is certainly crucial. So, a natural question is: given an orientable manifold
M endowed with a volume form p, what are the conditions on a three-point
function S € C*°(M x M x M,R) which would guarantee associativity of
the product

u*v(m):/ Sy Quueu?
MxM

When writing a (continuous) multiplication on functions via a kernel
formula of the type:

u*v(ac)z/ K(z,., )Ju®v ,
MxM

a computation shows that associativity for the multiplication x is (at least
formally) equivalent to the following condition:

(3) /M K(a, b, )K (L, ¢, dyu(t) = /M K(a,7,d)K(r,b, (),
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for every quadruple of points a,b,c,d in M. Equality (3) obviously holds
if one can pass from one integrand to the other using a change a variables
T = ¢(t). This motivates

Definition 1.1. Let (M, 1) be an orientable manifold endowed with a vol-
ume form p. A three-point kernel K € C*°(M x M x M) is geometrically
associative if for every quadruple of points a,b,c,d in M there exists a
volume preserving diffeomorphism

¢ (M, p) = (M, p),
such that for all ¢ in M:
K(a,b,t)K(t,c,d) = K(a,p(t),d)K(p(t),b,c).

We will prove in Proposition 1.3 that the following structure leads to a
geometrically associative kernel.

Definition 1.2. A Weyl triple is a triple (M, u,S) where (M, u) is an
oriented manifold and S : M x M x M — R is a smooth three-point function
on M such that:

(1) S(x7y7z) = S(Z,$,y) = —S(y,x,z);

(ii) for all m € M, one has:

S(z,y,2) = S(z,y,m) + S(y, z,m) + S(z,z,m)  Vz,y,z € M;

(iii) for all x € M, there exists a u-preserving diffeomorphism s, : M — M
such that:

S(z,y,z) = —S(z,s:(y), 2) Yy,z € M.

Property (i) in Definition 1.2 naturally leads us to adopt the following
“oriented graph” type notation for S:

Y

A_ A 52,9, 2).
zZ

A change of orientation in such an “oriented triangle” leads to a change of
sign of its value. However, the value represented by such a “triangle” does
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not depend on the way it “stands”, only the data of the vertices and the
orientation of the edges matters.

Now, consider a Weyl triple (M, u, S), and let A be some (topological)
associative algebra. And, for compactly supported functions u and v €
C° (M, A), consider the following “product”:

wx () = /MxMu(y)v(z)eisw’z)u(y)u(z>.

With the above notation for S, associativity for x now formally reads as
follows:

ux (vxw)(a) = / expiZI\)-t) / expi(t<I) u(b) v(c) w(d)

-/ p&?'(; / expé(Zg) u(B) v(e) w(d)= (uxv) * w(a),

T C

the p-integration being taken over variables b, c,d,t and 7. This leads, for
K = €, to an equality between two “distribution valued functions” on
M x M x M x M (cf. formula (3)): for every quadruple of points a,b,c,d
in M associativity for x reads

(4)

[ et N\ ut = [ e ) u(r).

d ) c d ¢

In the above formula, the diagram in the argument of the exponential in the
LHS (respectively the RHS) stands for S(a,b,t) + S(t,c,d) (respectively
S(a,d, )+ S(7,b,¢)).
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Proposition 1.3. Let (M,u,S) be a Weyl triple. Then, the associated
three-point kernel K = €'S is geometrically associative.

Proof. Fix four points a, b, c,d. Regarding Definition 1.1 and formula (4),
one needs to construct our volume preserving diffeomorphism ¢ : (M, u) —
(M, p) in such a way that for all ¢,

a e -b a pb
| : X
d ~ d

We first observe that the data of four points a, b, c,d determines what we
call an “S-barycenter”, that is a point g = g(a, b, ¢, d) such that

a b a )
g : X
d d

Indeed, since
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any continuous path joining a to ¢ contains such a point g.

Now, we fix once for all such an S-barycenter g for {a,b,c,d} and we
adopt the following notation. For all z and y in M, the value of S(g,z,y)
is denoted by a “thickened arrow”:

Again, a change of orientation in such an arrow changes the sign of its value.
Also, property (iii) of a Weyl triple (Definition 1.2) which reads

Yy T

implies
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for all z and y in M. While, from property (ii) (Definition 1.2 with m = g),

one gets
Y B Y
A . A ~

Moreover, the barycentric property of g reads

ae p b G e > b
| ! =
d® ®c d*® < ®c
Hence
a b a b a b
t - (0 - |
d d < d c
a b a oD
- - sq(t)
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One can therefore choose our diffeomorphism ¢ as

© = sg4.

Remarks 1.4.

(i) Given four points {a,b,c,d} in the Euclidean plane E?, one can define
two smooth functions F' and G € C*°(E? R) as follows. For t € E?,
G(t) is the sum of the signed Euclidean areas of the oriented Euclidean
triangles Aabt and Adtc, i.e.,

G(t) = SA(Aabt) + SA(Adtc)

where, for a closed path v in E?, one sets SA(y) = fvmdy.
Similarly, one defines for the other pair of triangles Adat and Abct,

F(t) = SA(Adat) + SA(Abct)

or equivalently, if SA(abcd) denotes the signed area of the oriented
quadrilateron with vertices a, b, ¢, d,

F(t) = SA(abed) — G(t).

If our four points are the vertices of a square in E?, one obviously has
the equality
F=G.

For arbitrary quadrilaterons, equality between F' and G does not gen-
erally hold. But the proof of Proposition 1.3 leads to a natural gener-
alization:

For every quadruple of points {a,b,c,d} in E*, one has

F =s,G
where g is the center of mass of the quadrilateron abed, and, where
sg: B2 — E? is the Buclidean symmetry sy(z) = 29 — .

Proposition 1.3 tells us that this elementary property of Euclidean
quadrilaterons of E? is the geometric content of associativity of Weyl’s
product. Indeed, associativity for the Weyl product (on R?) reads
(cf. formula (4)):

/ exp ¢ F'(t)dt :/ exp 1G(7)dr.
R2

R2
This equality being realized by the change of variables 7 = s4(t).
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(i)

(iii)
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Proposition 1.3 also leads to a geometric understanding of the asso-
ciativity of Rieffel’s deformed product obtained from an action of R?
on a C*-algebra [21]. This is based on the following observation.

Let G be a Lie group, endowed with a left invariant Haar measure u.
Assume that there exists a geometrically associative three-point kernel
K € C*(G x G x G) (cf. Definition 1.1) on (G, p) which is invariant
under the diagonal action of G on G x G x G by left translations.
Then, the data of an action o : G x A — A of G on some (topologi-
cal) associative algebra A by automorphisms yields a new associative
product on A, provided the situation is sufficiently regular. Indeed,
on just observes that the geometric associativity of K implies, at least
formally, associativity of the product x on A defined by the formula:

(5) axb= K (e, g,h)ag(a)op(b),
GxG

where a,b € A, and where integration is taken over g and h with
respect to the measure u® p on G X G. In the case of an action of the
Abelian group G = R?, endowed with the Euclidean scalar product
(,), every skewsymmetric matrix J € so(R?) yields an invariant three-
point function §7 € C®(R? x R? x R?) via the formula

(6) ST (x,y,2) = (x, Jy) + (y, J2) + (2, Jx).

Defining the Euclidean symmetries of R? as s,(y) = 2z — y, one gets a
Weyl triple (R?, Haar, S7) (Definition 1.2). Hence, by Proposition 1.3,
an invariant geometrically associative kernel

K = eiSJ

When given an action a : R? x A — A, formula (5) with K = s’
yields Rieffel’s product in [21].

In the case of the hyperbolic plane endowed with its natural structure
of symmetric space, it is tempting to ask whether the three-point func-
tion defined by the symplectic area SA(x,y, z) of the geodesic triangle
Azyz would satisfy properties (i)—(iii) in Definition 1.2. The answer
is negative. Indeed, properties (ii) and (iii) would imply unbounded-
ness of SA. This indicates that, when requiring some compatibility
between S and the symmetries, property (iii) is somehow too strong.
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Proposition 1.3 and Remark 1.4 lead us to consider a class of manifolds
which carry a large family of “symmetries”. Symplectic symmetric spaces
are defined in Section 2. They constitute a class of affine symplectic mani-
folds. We will now make precise what we mean by “WKB-quantization” in
the context of affine symplectic manifolds.

Let (M,w,V) be a 2n-dimensional affine symplectic manifold, that
is, (M,w) is a smooth connected symplectic manifold and V is an torsion-
free affine connection on M such that Vw = 0. Its automorphism group
Aut(M,w, V) is defined as

Aut(M,w,V) = Aff(V) N Symp(w)

where Aff(V) is the group of affine transformations of the affine manifold
(M,V) and where Symp(w) denotes the group of symplectomorphisms of
(M,w). Note that, since Aff(V) is a Lie group of transformations of M
(cf. [13]), so is Aut(M,w, V).

Definition 1.5. Let G be a subgroup of Aut(M,w,V). A G-invariant
WKB-quantization of (M,w, V) is a triple ({(Ex, *r) }r>0, 5, {an}r>0) sat-
isfying the following properties.

(1) {(En,*n)}r>0 is a one-parameter family of associative *-algebras such
that:

(i.1) (€o,%0) is a Poisson subalgebra of C*° (M) endowed with the usual
pointwize multiplication of functions (the Poisson structure {, }
is the one associated to the symplectic form w).

(i.2) For all A > 0, & is a *-linear subspace of C*° (M) such that the
following inclusions hold

D(M) C &y C Ep,

where D(M) denotes the space of smooth compactly supported
functions on M and where on C°°(M) the involution is the com-
plex conjugation.

(ii) S is areal valued smooth three-point function: S € C*°(M x M x M, R)
such that, for all zp € M the partial function S(zo, ., .) € C®°(M x
M,R) has an nondegenerate critical point at (xg,xo9) € M x M. One
furthermore requires the function S to be invariant under the diagonal
action of G on M x M x M.
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(iii) {an}r>o is a smooth (with respect to i) family of positively real valued
three-point functions: ap € C*°(M x M x M,R") which are invariant
under the diagonal action of G on M x M x M.

(iv) At the level of the subspace D(M) C &y, (h > 0), the multiplication *p,
reads

o o)(@) = g [ anlannz) ep (5.0 ) ulw) () ay:

where u,v € D(M) and where dy (and dz) stands for the Liouville
measure ;.

(v) For all z € M and all u,v € D(M) C &, supported in a sufficiently
small neighborhood of x, a stationary phase method yields the follow-
ing asymptotic expansion (cf. [15]):

(u *p v)(x) ~ u(z)v(x) + ?cl (u,v)(x) + 0(h2)

with

% (c1(u,v)(z) — e1(v,u)(z)) = {u, v}().

This definition is very much inspired from Rieffel’s definition of strict
quantization. However, the topological framework is weaker than Rieffel’s
one. For instance, the deformed algebras are function algebras but they do
not a priori carry any topological structure. Also Dirac’s condition does only
hold at the formal level (see item (v) in Definition 1.5). Note moreover that
each function space & is not required to be invariant under the action of G
on C*°(M). However, the space of compactly supported functions D(M) is
G-invariant, and, by invariance of the functions aj and S, one will always
have

g(u*pv) = (gu) *x (gv) Vg e G
as soon as u,v € D(M) C Ep.
2. General facts about symplectic symmetric spaces.
Definition 2.1 ([5, 6]). A symplectic symmetric space is a triple

(M,w,s), where (M,w) is a smooth connected symplectic manifold, and
where s : M x M — M is a smooth map such that
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(i) for all z in M, the partial map s, : M — M : y — s,(y) := s(z,y) is an
involutive symplectic diffeomorphism of (M, w) called the symmetry
at x.

(ii) For all z in M, z is an isolated fixed point of s,.

(iii) For all z and y in M, one has s;5ysz = s, (y)-
Definition 2.2. Two symplectic symmetric spaces (M,w, s) and (M, ', s)
are isomorphic if there exists a symplectic diffeomorphism ¢ : (M,w) —
(M',w'") such that ps, = sfp(w)<p. Such a ¢ is called an isomorphism of
(M,w,s) onto (M',w',s"). When (M,w,s) = (M',u',s"), one talks about
automorphisms. The group of all automorphisms of the symplectic sym-
metric space (M,w, s) is denoted by Aut(M,w, s).

Proposition 2.3. On a symplectic symmetric space (M,w, s), there ezists
one and only one affine connection V which is invariant under the symme-
tries. Moreover, this connection satisfies the following properties.

(i) For all smooth tangent vector fields X,Y,Z on M and all points = in
M, one has

1
we(VxY,Z) = §Xx.w(Y + 3., Y, 72).

(ii) (M,V) is an affine symmetric space. In particular V is torsion free
and its curvature tensor is parallel.

(iii) The symplectic form w is parallel; V is therefore a symplectic connec-
tion.

(iv) One has

Aut(M,w,s) = Aut(M,w, V) = Aff(V) N Symp(w).

The connection V on the symmetric space (M, s) is called the Loos
connection. The following facts are classical (see [14], v. I, [13], v. II,
Chapters X and XI).

Theorem 2.4. Let (M,w,s) be a symplectic symmetric space and V its
Loos connection. Fiz o in M and denote by H the stabilizer of o in
Aut(M,w, s). Denote by G the transvection group of (M, s) (i.e., the sub-
group of Aut(M,w,s) generated by {sz0y; x,y € M}) and set K = GNH.
Then,
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(i)

(iv)
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the transvection group G turns out to be a connected Lie transforma-
tion group of M. It is the smallest subgroup of Aut(M,w,s) which is
transitive on M and stabilized by the conjugation & : Aut (M,w,s) —
Aut (M, w, s) defined by 6(g) = S0gSo-

The homogeneous space M = G/ is reductive. The Loos connection
V coincide with the canonical connection induced by the structure of
reductive homogeneous space.

Denoting by G® the set of 6-fixed points in G and by Gg its neutral
connected component, one has

G Cc K CG°.

Moreover, the Lie algebra IC of K is isomorphic to the holonomy alge-
bra with repect to the canonical connection V.

Denote by o the involutive automorphism of the Lie algebra G of G
induced by the automorphism &. Denote by G = K @& P the decompo-
sition in t1-eigenspaces for o. Then, identifying P with To(M), one
has

exp(X) = Spap,(1x) © So

for all X in a neighborhood of 0 in P. Here exp is the exponential map
exp: G — G and Ezp, is the exponential map at point o with respect
to the connection V.

Definition 2.5. Let (G, o) be an involutive algebra, that is, G is a finite
dimensional real Lie algebra and ¢ is an involutive automorphism of G. Let
2 be a skewsymmetric bilinear form on G. Then the triple (G, o, Q) is called
a symplectic triple if the following properties are satisfied.

(i)

(i)

Let G = K ® P where K (resp. P) is the +1 (resp. —1) eigenspace of
0. Then [P,P] = K and the representation of X on P, given by the
adjoint action, is faithful.

) is a Chevalley 2-cocycle for the trivial representation of G on R such
that for any X in K, i(X)Q = 0. Moreover, the restriction of Q to
P x P is nondegenerate.

The dimension of P defines the dimension of the triple. Two such
triples (G;,04,9;) (i = 1,2) are isomorphic if there exists a Lie algebra
isomorphism 1 : G; — Ga such that 1) o 07 = g3 0 ¢ and ¥*Qs = 5.
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Theorem 2.4 associates to a symplectic symmetric space (M,w,s) an
involutive Lie algebra (G, o). Denoting by 7 : G — M the natural projection,
one checks that the triple (G,0,Q = 7*(w,)) is a symplectic triple. This
implies the next proposition.

Proposition 2.6. There is a bijective correspondence between the isomor-
phism classes of simply connected symplectic symmetric spaces (M,w, s) and
the isomorphism classes of symmetric triples (G, o,(2).

Since a symmetric symplectic manifold (M,w, s) is a symplectic homoge-
neous space of its transvection group G, it seems natural, when possible, to
relate (M,w, s) to a coadjoint orbit of G in G*. Recall first the two following
definitions.

Definition 2.7. Let G be a Lie group of symplectomorphisms acting on a
symplectic manifold (M, w). For every element X in the Lie algebra G of G,
one denotes by X* the fundamental vector field associated to X, i.e., for
xin M,

Xz = %exp(—tX)ﬂt:o-
The action is called weakly Hamiltonian if for all X in G there exists a
smooth function Ax € C*°(M) such that

i(X*)w = d).

In this case, if the correspondence G — C*°(M) : X — Ax is also a ho-
momorphism of Lie algebras, one says that the action of G on (M,w) is
Hamiltonian. (The Lie algebra structure on C*°(M) is defined by the
Poisson bracket.)

Proposition 2.8. Let t = (G,0,9Q) be a symplectic triple and let (M,w,s)
be the associated simply connected symplectic symmetric space. The action
of the transvection group G on M 1is Hamiltonian if and only if Q is a
Chevalley coboundary, that s, there exists an element £ in G* such that
Q= 6. In this case, (M,w,s) is a G-equivariant symplectic covering of O,
the coadjoint orbit of & in G*.

The action of the transvection group G is in general not Hamiltonian. We
therefore need to consider a one-dimensional central extension of G rather
than G itself. At the infinitesimal level, this corresponds to extending the
algebra G by the 2-cocycle 2. This way, one associates to any symplectic
symmetric space an exact triple in the following sense (see [7] for details).
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Definition 2.9. An exact triple is a triple 7 = (G, 0,Q), where

(i) (G,0) is an involutive Lie algebra such that, if G = K @ P is the
decomposition with respect to o, one has [P, P] = K.

(ii)) Q is a Chevalley 2-coboundary (i.e., & = 6§, & € G*) such that
i(K)Q2 = 0 and Q|pxp is symplectic.

Remark 2.10. (i) One can choose £ € G* such that £(P) = 0. One
therefore writes, with a slight abuse of notation, £ € K*.

(ii) Observe that, when associated to a (transvection) symplectic triple,
the center Z(G) of the Lie algebra G occurring in an exact triple is
at most one dimensional. Indeed, on the one hand, exactness implies
Z(G) € K. One the other hand, faithfulness of the holonomy repre-
sentation forces dim(Z(G) N K) < 1 since K is either the holonomy
algebra itself or a one dimensional central extension.

3. Phase functions on symplectic symmetric spaces.
Motivated by the definition of a Weyl triple (Definition 1.2), as well as by the

third part of Remarks 1.4, we now make the following definition, adapting
to symmetric spaces the notion of phase function.

Definition 3.1. Let (M, w, s) be a symplectic symmetric space (see Defini-
tion 2.1). A smooth function S : M x M x M — R satisfying the following
properties:

(i) S(z,y,2) =S(z,z,y) = =S(y,z, 2);

(ii) the function S is invariant under the symmetries i.e.,

S(sm(2), sm(y), sm(z)) = S(z,y, ) Vz,y,z,m € M;

(iii) for all x € M, the symmetry s, : M — M is such that

S(z,y,z) = —S(z,s:(y), 2) Vy,z € M,

is called an admissible function.
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In [25], Weinstein proved that, in the case of a Hermitian symmetric
space (M,w,s) of the noncompact type, the phase function Sy, occurring
in the expression of a given invariant WKB-quantization of (M,w) defined
by an oscillatory integral formula of the type

(7) uxv(z) = /u(y)v(z)ah(x,y,z)e%SW(z’y’z)dydz,
must be as follows.

e Let x,y and z be three points in M such that the following equation
admits a solution ¢:
t = 555y5,(t)

(t is unique if it exists).
e Let X be a surface in M bounded by the geodesic triangle AtAB where
A =s,(t) and B = sy(A) = sys(t) (t = s.(B)).
Then, if for some formal amplitude of the form
an(z,y,2) = ap(x,y, 2) + hay (z,y, 2) + Kaz(z,y,2) + ...

the product (7) defines an invariant deformation quantization of (M,w), the
value of the “WKB”-phase function Sy, on (z,y, z) is given by

Swz,y,z) = —/ w.
b

Practically, the function Sy is hard to compute explicitly; however, some
two dimensional examples have been treated in [18]. The problem of finding
the amplitude aj is open.

Proposition 3.2. The function Sy is admissible.

Proof. Let x,y and z be three points in M, and set

Y = s.;545.(Y) (%)
Z 52(Y)
X = sys:(Y) =5y(2)

and

ssz(y)szsz‘(c) ()
5z(C)

= stw(g) = SZ(§)7

[ oy
|
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(provided equations (*) and (**) admit solutions). The only thing we really
need to show is that the function Sy satisfies property (iii) in Definition 3.1;
that is,

SA(X,Y,Z) = SA(&n, (),

where the function SA is defined as follows. For a sequence of points
{zi}o<i<n, the expression SA(zo,...,zn) means SA(y) = f7 «, where 7 is

the piecewise geodesic path whose ith geodesic segment starts from point x;

and ends at point ;i 1mod(N+1)’ and where « is a 1-form such that w = da.

On the first hand, one has: sxssw(y)sz(X) = 535:5ySz5.(X) =
sySz5:(X) = X. Hence X = ¢ and s,,(,)(Z) = (. On the second
hand, the invariance of SA under the symmetries yields: SA(&,7n,() =
SA(5:(€),82(n),8:(¢)) = SA((, Z,€). Moreover, SA(¢,n,¢) + SA((, Z,€) =
SA(,n, ¢, Z), hence

Sw(x, Sm(y)az) = %SA(§7777<7 Z)

Similarly, one gets

SW(maya Z) = _%SA(@?% Ca Z)

sz(y)
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Now, suppose we are given, on a symplectic symmetric space (M,w, s),
an admissible three-point function S. The choice of a base point o in M
then determines a two-point function v on M x M:

u(z,y) = S(o,z,y).

The following proposition tells us, in the case where (M,V) is strictly
geodesically convex, when a given two-point function comes from an ad-
missible three-point function.

Proposition 3.3. Let (M,w,s) be a symplectic symmetric space and let o
be a point in M. Assume the existence of a smooth midpoint map, that
is, a map M — M : x — 5 such that sz(o) = z. Denote by Stab(o) the
stabilizer of o in the automorphism group of (M,w,s). Letu: M x M — R
be a Stab(o)-invariant smooth two-point function such that

w(z,y) = —u(y,v) = —u(, 52 (y)) = —u(z,sz(y))  Va,y € M.

Then, the three-point function S defined by

S(a,y,2) = ulse (y), 52 (2)

18 admaissible.

Proof. The function S is invariant under the symmetries. Indeed, let g be an
element of the group of transformations of M generated by the symmetries.
For all  in M, one has s%(o) = gz that is g_ls%(o) = sz (o); hence
s%gflsﬂ is an element of Stab (o). By invariance under the action of the
stabilizer, one has
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Sé(z)

2

Now, since s§s%s< ) is an element of Stab (0), one has

= —u(s%(z), %(y)) = U(Sg(y),sg(z))

This shows that the function S satisfies the condition (7) in Definition 3.1.
The remaining condition is obviously satisfied. O

Definition 3.4. Let (M,w,s) be a symplectic symmetric space admitting
a midpoint map (cf. Proposition 3.3) with respect to a point o in M. An
o-admissible two-point function on M is a Stab(o)-invariant smooth
function v : M x M — R such that

u(z,y) = —u(y,r) = —u(z,s:(y)) = —u(z,sz(y))  Va,y € M.

It turns out that admissible two-point functions are easy to determine.
Example 3.5. The triple (M,w,s) = (R%,dp A dg, s) with
S(pa) (P d") = (2p — ', 2 cosh(p — p')g — ¢)

defines a (non-metric) symplectic symmetric space [7], [5]. It is strictly
geodesically convex. One checks that the function u : M x M — R defined
by

u((p, ), (', ¢')) = sinh(p')q — sinh(p)q’
is an (0,0)-admissible two-point function whose corresponding admissible
three-point function S is given by:

S((p,q), ®',d), (", q"))
= sinh(p — p')¢” + sinh(p” — p)¢’ + sinh(p’ — p”)g.
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4. Elementary solvable symplectic symmetric spaces.

In Definition 4.1 below, we define a particular type of solvable symmetric
spaces that we call elementary. It has been proven ([7], Proposition 3.2)
that every solvable symmetric space can be expressed as the result of a se-
quence of split extensions by Abelian (flat) factors successively taken over
an elementary solvable symmetric space. We therefore consider elementary
solvable symmetric spaces as the “first induction step” when studying solv-
able symmetric spaces.

Definition 4.1. A symplectic symmetric space (M,w,s) is called an ele-
mentary solvable symplectic symmetric space if its associated exact triple
(G,0,Q = 0¢) (see Definition 2.9) is of the following type.

(i) The Lie algebra G is a split extension of Abelian Lie algebras A and
B:
B— G5 A

(ii) The automorphism o preserves the splitting G = B & A.

Such an exact triple (associated to an elementary solvable symplectic sym-
metric space) is called an elementary solvable exact triple (briefly:
ESET).

Observe that, since ANK C ANI[G,G] =0, one has A C P. Therefore
B =KL, with £L C P. Moreover, since £ and A are Abelian and  is
nondegenerate, the subspaces A and L of P are Lagrangians in duality.

Now, let p : A — End(B) be the splitting homomorphism. The group
law on G identified with G = A x B is given by

(a,b).(a’,b') = (a + d',exp(p(a))b’ +b).

The (simply connected) symplectic symmetric space (M, w, s) associated to
an ESET (G, 0,() is described as follows [5, 7].

Proposition 4.2.
i) The homogeneous space G - M = G 1s realized by the diagram
K
G=AxKxL-SP=AxL

where
m(a,k,l) = (a, —sinh(a)k 4 cosh(a)l)
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with sinh(a) et 1 (exp p(a) — exp p(—a)) and cosh(a) et (exp p(a) +
exp p(—a)). The map v: P — G given by
v(a,l) = (a,sinh(a)l, cosh(a)l)

defines a global section of the principal bundle (M,G,w). The action
of G on M =P reads as follows:

(o, k,A)(a,l) = (a + o, cosh(a + a)\ — sinh(a + a)k + 1).
(ii) The identification M = P defines a global Darbouz chart (M,w) =
(P,Q). In this chart, the symmetries are given by:
Sy (@, l') = (2a — a',2cosh(a — o)l = I').

If o =7(0,0,0) = (0,0), the midpoint map M — M : x — (s%o =
x) is given (locally) by:

(aél) _ % (a, (cosh%a)ll> .

The following map will be important while defining the deformed prod-
uct.

Definition 4.3. Let (G,0,Q = 6£) be an ESET (cf. Definition 4.1). We
denote by ( the “pairing”:

(:AXL—-R

defined by
¢(a,l) = &(sinh(a)l).
The formula
w(¢(a),l) = ((a,1)
defines a “linearization” map ¢ : A — A, called the twisting map.
Proposition 4.4. Let (M,w,s) be an elementary solvable symplectic sym-

metric space. Set w = Q = 6 (£ € K*) (see Proposition 4.2 (ii)). Let
Ax L3R be the symplectic pairing:

w(a,l) = Qa,l) = —¢la,l].

Then, the midpoint map M — M :z — 5 (s%o = z) is globally defined
provided the twisting map ¢ : A — A is a diffeomorphism.
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Proof. One has a linear isomorphism .4 & £* defined by < Q(a),l >=
w(a,l). Also, since ¢ : A x L — R is linear in its L-variable, one has a
map A 5 L£* defined by < z2(a),l >= ((a,1). One has < z,,(4),l >=
&(p(A) cosh(a)l) = —Q(A, cosh(a)l). Proposition 4.4 is now clear regarding
the expression of the midpoint map given in Proposition 4.2. O

Remarks 4.5.

(i) This sufficient condition for existence of a global midpoint map is
necessary as well, as it will be proven in Section 6 (Corollary 6.3).

(ii) It is easy to determine the Jacobian, Jacg(a), of the twisting diffeo-
morphism at point a € A. Indeed, identifying the tangent space T, (.A)
with A, one has for all A€ Aand [ € L,

< 1092(0(a -+ 14),1) = E(p(4) cosh(a))

that is
Q(¢py, (A),1) = Q(A, cosh(a)l).

Therefore, the linear map ¢,, : A — A is “adjoint” to the linear
transformation cosh(a)|z : £ — L. Hence

Jacg(a) = det (cosh(a)|z) .

Note that cosh(a)| is indeed L-valued since p(a)?(£) C [A,K] C L.
Observe also that in the case where G is nilpotent, one has Jacg(a) =
1Va € A.

Definition 4.6. Let (G = B® A,0,Q) be an ESET with splitting homo-
morphism p : A — End(B). For all a € A, write

p(a) = p(a) + ps(a)

for the Jordan-Chevalley decomposition of the (complex linearly extended)
endomorphism p(a) : B¢ — B¢, with B¢ = B® C, and where py(a) (re-
spectively pg(a)) denotes the nilpotent (respectively semisimple) part of the
endomorphism p(a).The ESET is said to be standard if there exists a and

a® in A such that

Ny and

S)_

pn(a) = pla
ps(a) = pla
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Proposition 4.7. Every elementary solvable exact triple is a sub-triple of
a standard one.

Proof. Let (G = B® A,0,Q) denote our starting exact triple. The map
p : A — End(B) being injective (because € is nondegenerate), we may
identify A with its image: A = p(A). Let ¥ : End(B) — End(B) be the
automorphism induced by the conjugaison with respect to the involution
o|lp € GL(B), i.e., ¥ = Ad(c|g). The automorphism ¥ is involutive and
preserves the canonical Levi decomposition End(B) = Z @ sl(B), where Z
denotes the center of End(B). Now, writing the element « = p(a) € A
as @ = az + ag with respect to this decomposition, one has: ¥(a) = az +
Y(ap) = —a = —az—ag because the endomorphisms a and 0|z anticommute.
Hence X(ag) = —2az — ag and therefore az = 0. So, A actually lies in
the semisimple part sl(B). For any x € sl(B), we denote by z = z° +
N, 25 zN € sl(B) its abstract Jordan-Chevalley decomposition. Observe
that, writing sl(B) = sl @®sl_ for the decomposition in (£1)-3- eigenspaces,
one has : A C sl_. Also, N := {a"}4c4 is an Abelian subalgebra in sl
commuting with 4. One therefore may define the Abelian subalgebra in
sl_:

A=A+ N.

Canonically attached to A’, one has the homomorphism: p' : A" — End(B)
which anticommutes with |z, in particular: p'(A)L = K.

Let £ € K* be the element whose coboundary defines the symplectic
structure on P = A @ L and denote by R C A’ & L the radical of the
coboundary §¢ : A*(A’ x, B) — R. Observe that R C A’. Hence, since
A ®L=P®R, one has A' = ADR. At last, let us denote by Z(G) the
center of G.

Case 1: Z(G) =0.

Then G is a transvection algebra (cf. Remark 2.10). We form £’ =
L DR set B = K& L, and extend p’ to a homomorphism p' : A —
End(B') as p/(A)R* = 0. This homomorphism anticommutes with the
involution ¢'|p = idx @ (—id), hence one has an involutive Lie algebra:
(A" xy B',(—idy) ® 0'|p). Now, we define a symplectic structure Q' on
P =A oL by:

Qpxp = Qlpxp
px(raor) =0
Q(r*,r)=(r*,r) VYreR;r* € R*.
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The symplectic structure ' turns out to be K-invariant. Indeed, one has:
K,R*] = [[A, L], R*] = 0 (by Jacobi) and [K,R] C L. Now, considering a
one-dimensional central extension of A’ x » B, one gets the desired standard
exact triple.

Case 2: Z(G) #0.

Define E € Z(G) C Kby ((E) =1. Set L'=LOR*, B =KoL,
and endow the vector space G’ = B’ ® A’ with the skewsymmetric bracket
defined by:

[7 ]g' |g><g = [7 ]g
[r*,r] = (r*,r)E Vr € R;r* € R*
[r,b] = p'(r)b VYreR;beBCB,
the other brackets being zero. Endowed with this structure G’ turns out
to be a Lie algebra. Moreover the coboundary Q' = 6¢ : A*(G') — R
restricts to P’ = A’ @ L' as a symplectic structure. Therefore the triple
(G',idi ® (—idpr), ) is the desired standard exact triple. O

Remark 4.8. Observe that the exact triples constructed in Cases 1 and 2
above are both such that

dim Z(G) = 1.

This ensures they are one-dimensional central extensions of (transvection)
symplectic triples.

Led by the example in the preceding section, one observes

Proposition 4.9. Let (M = A x L,w,s) be an elementary solvable sym-
plectic symmetric space. Then, the function

u:MxM-—K

defined by
@((a,l),(a’,1")) = sinh(a’)l — sinh(a)l’

satisfies (locally)
ﬁ‘(xay) = _a(yvx) = _a(xasm(y)) = —ﬁ(a:,s%(y)) Va,y e M

and is exp(K)-invariant. In particular, for every choice of an element & €
K*, the function
u=£&ou
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is an admissible two-point function on M (Definition 3.4) provided the mid-
point map is globally defined. The associated admissible three-point function
(Proposition 3.3) has the form:

S((a1,11), (ag,l2), (as,l3)) =& <7{ sinh(a; — az)lg)

12,3
where fl 9.5 Stands for the cyclic summation.

One sees here why it is important to deal with an exact triple rather
than the transvection triple. Indeed, one would need, while proceeding a
stationary phase method for the deformed product (cf. Dirac’s condition in
definition 1.5), to obtain the Poisson bracket associated to the the symplectic
structure w as the first order expansion term. The critical point analysis tells
us that the above expression of S yields a first order term equal to 6&.

5. Obtaining the oscillating kernel via star representation
theoretical methods.

In this section, we present a heuristic way to derive oscillatory integral for-
mulae for our strict deformation quantizations (see Theorem 6.13). For the
sake of simplicity, we will only treat the case of the two-dimensional exam-
ple (R?,wY, s), already mentioned in Example 3.5. The general case will be
treated later. The proof of Theorem 6.13 does not depend on the present
section, but we believe that it clarifies the “mysterious” formula (16) of
the deformed product. This section, together with Section 1, suggests that
our construction should generalize to a much wider situation than solvable
symmetric space.

Following a classical result of Kostant, the symplectic homogeneous space
(M = G/ ,w) is an equivariant symplectic covering of a coadjoint orbit in
G*. From Proposition 4.2, one gets a global section v : P = A x L —
G = A x K x L. This yields a global Darboux chart on the coadjoint orbit
O = Ad*(G)¢ C g*:

P—O:z— Ad*(y(x))E.

In particular, the Hamiltonian function Ax € C°(P) associated to the
infinitesimal action of X € G (see Section 2) is given by:

Ax(z) = (Ad(y(z))¢, X)
= (¢ Ad(y(z)™")X)
= (& p(X)l — e P Xp)
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where z = (a,l) and X = X4+ Xp € G = A x B. From this last expression,
one obtains for X € P:
(8) Frx = 0 (622
B x = 0 (ap>1)
Irx(x) = (& p(Xa)0)
O3 x(z) = cosh(a)(€, p(0,)*X) (aodd,a>1),
where 0, (respectively 0;) is an element of A (respectively £) thought of

as a constant vector field on P. In particular, if ¥} denotes the standard
Moyal star product on (P,§2) (cf. formula (2) in Section 1), one gets

[Ax, Ayl def y oM Ay — Ay #M Ay = 2fAx, Ay} VXY €0,

One refers to this last property as the G-covariance of the Moyal star
product ([1]). The covariance property allows us to define a representation
of G on the space C*°(O)[[v]] of formal power series in the parameter v with
coefficients in C*°(O):

pv: G — End(C*(0)[[V]]) :
1
pv(X)u = 5[)‘)@ u]*,’,"f
Formula (2) in Section 1 yields, using (8),

(pv(X)u)(z)
— )\ Lo~ v h 9, )2k+1 x) g2k+1
= (o) =53 Gy o6 OO

cosh(a) e v2k+1

v

= (£, (X 4)0r)Oqu —

<£ p(aa)2k+lX>a2k+1u'

A l

— (2k + 1)!

A partial Fourier transform in the L-variables allows to interpret p, as a

“multiplicative representation”. Indeed, setting

F(u)(a,a) =i(a,a) = /Ee_m(a’l)u(a,l) dl,

one gets:

oo . k
COSf(a) ((’;”f 1+),1 (€ (81 X )il
k=

[e=]
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for all X = X4+ X, € P. That is, setting v = %, for all X € P:

pu(X)d = X 4t — %L;hw) <§,sinh (%‘) X> a
24

or
P (X).d = X A0+ cp(X)a
21

with ¢ : P — C®(R?) defined by

en(X)(a, ) % _%Lzhm) <§,sinh <h§) X> .

The expression of the cocycle ¢y is very similar to the one of the “twisting
map” (¢ associated to the three-point function S (cf. Proposition 4.4). From
this observation, we now derive a commutative multiplicative law on the
functions on R? = {(a,)} for which representation p acts by derivations.
We start by observing that, for all 9, € £, one has 9;((a, 1) = (£, sinh(a)d;).

Hence, setting
def. 2, (D
Ch(avl) - hC (2avl>

ot
icosh(a)’

one gets O;Cx(a,l) = per(0r)(a, o). Therefore, defining formally

and
/J/ =

(Zpu)(a, a) dgf'/eic’i(a’l)u(a,l)dl
L

for (reasonable) u € C*°(P), an integration by parts argument leads us to
Zr(0u) = ipcp(0)) Zn(u) or

(9) 27 (en(@)f) = %alz;(f)

whenever this last formula makes sense for f € C°*°(R?). When well-defined,
the following (commutative) product

def. 1 1
feong =" Zn(Z, f2,9)
is then invariant under the representation p. Indeed, since the integral in the

definition of Zp is only taken on the L-variable, the product ej is invariant
under A (observe that c;(,A) = 0). The algebra G being generated by P, it
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is therefore sufficient to prove c(9;)f on g = (cu(0)f) ®n g+ f or (cu(0;)g).
The RHS is actually izh((a,z,;lf).z,;lg + Z; .02, g) using (9) and
the fact that multiplication by g commutes with the transformation Zj.
One therefore has iZh[?l(Zglf.Zglg) or iZﬁalZgl(f e}, g) which equals
cr(0y) f op g using (9) again.

If one interprets the commutative product ey as the underlying product to
the algebra of functions on a commutative A-dependent manifold, say Mj,
its invariance under p tells us that G is realized via p as a subalgebra of
tangent vector fields over Mpy. It turns out that this action of G on My is
equivalent to the one of G on M. Indeed for all X € G, one has:

(10) Zrlopn(X)o 2y = X"
2%

Again, it is sufficient to prove this last formula only for X = 9; € £. In this
case, formula (9) identifies the LHS action on u € C*°(P) to i@lu which is
precisely 0] u.

Formula (10) leads us to consider the transformation T, defined by

T, =F 'oZ,

which intertwines our x-representation p » with the infinitesimal (coadjoint)

24
action of the transvection algebra. In other words, the formal product on

C*(P)][n]] defined by

winv & T (Thu M Tﬁu>
27

is invariant under the coadjoint action of G on O = P.
6. WKB-Quantization.

Proposition 6.1. Let (M,w,s) be an elementary solvable symplectic sym-
metric space. Let ¢ : A — A be the associated twisting map (cf. Defini-
tion 4.3). Assume that (M,w,s) admits a globally defined midpoint map
(cf. Proposition 4.2 (ii)). Let ||,| be a norm on the vector space A. Then

L 9@

a=oo |lal]

> 0.

Before passing to the proof, we observe

Lemma 6.2. Let V be a finite dimensional real vector space. Let A be a
non trivial Abelian subalgebra of End(V') such that
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(i) if the Jordan-Chevalley decomposition (cf. Definition 4.6) of a € A
writes: a = a® + aN then
a®,a € A;
(ii) every non zero (complex) eigenvalue of a® has a non trivial real part.

Consider the function A — End(V') : A — sinh(a). Then,

inh
timine S22 @ln
asoolallop
where ||, ||op denotes the operator norm on End(V') defined with respect to

any norm compatible with the vector space structure on V.

Proof. Let us first extend the action of A on V' C-linearly to a (complex)
action of A on V¢ =V ® C. Denote by V¢ = ®)ce V) the weight space de-
composition with respect to the Abelian subalgebra of semisimple elements:
S = {a%}aca, where ® denotes the set of weights of the action of S. Observe
that, setting N = {a¥ }4c4, one has N'.Vy C Vj for all A in ®. In each V), fix
a basis e), for which the matrix associated to any n € N is upper triangular.
In particular, in the basis e = {e)}rce, the matrix associated to any a € A
is upper triangular with elements )\(aS ) on the principal diagonal. Let Abe
a maximal Abelian subalgebra of End(V°) which contains .A. Maximality
implies that, similarly to .4, one has a decomposition in semisimple and
nilpotent parts: A = S @& N. Note that sinh(A) C sinh(A) C A.
On A, we consider the norm:
-~ - def. ~ ~ B

la =5+ 7l =" max{||5][op, [|7]lop} (5 €S, €N),
where || ||op denotes the operator norm on End(V ) associated to the choice
of a norm on V¢. Now, we observe that for all sequences {si}reny C S, one
has )

|l sinh(si)|

koo [[sgl]

£0.

The proof of the last assertion is divided into the three following steps.
First, for any fixed k € N, one can find a weight A*) € & which realizes
IAE) (s)| = ||sk]|op- In particular,

[[sinh(sp)[|  |sinh(A®)(s1))|
skl = A ()]
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Assume by the absurd that

REREN]

=0.

k—oo  ||skl|
Since @ is a finite set, one can then find a weight A € ® and a partial
sequence {s;} C {si} such that

 |sinh(A(s)))|
(11) Y E)

= 0.

Secondly, observe that every weight A € ® writes A = ) + ¢\ with a)
and 3, in the real vector space S* with the property that if s € ker ), then
A(s) = Ba(s) = 0 (hypothesis (ii)). Hence ker oy C ker ), and there exists
areal ty € R such that A = (1 + it))a,.

Thirdly, for all z = x + iy € C, one has |sinh(z)|? = sinh(x)? + sin(y)?2.
Hence writing A(s;) = x; + iy;, the relation (11) yields

. h 2
(12) lim SEBED _

l—o00 xl2 + yl2

But, by our preceding observation, there exists a real number ¢ such that
y; = tz;. Hence [A(s))|? = (1 + ¢?)z?. This, combined with (12), yields a

. sinh(z? ..
real sequence x; such that lim;_, mg D _ 0, and we reach a contradiction.
l

Suppose, that {ar}ren is a sequence of elements in A for which the
[Isinh(ar)llop _ 5

sequence ||ag|| diverges to infinity and such that limg TanT]
op

Every two norms on A being equivalent, one has: limg_, W = 0.
Consider the following sequences partitioning {ay }:
{n} = {ar=aj +ay suchthat [la]| > [la7][}
{og} = {ar = af + af such that [[a]] < [|a}][[}.
One has limg_, W = 0. And, since
q

|| sinh(cg)|| _ max{]|(sinh(cq))*|l, ||(sinh(q)) ™I}

o] o5
[[(sinh(og))%]| _ |Isinh(o7)]]
o5 ST
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our previous observation implies that {0} = 0, i.e., that {ar} = {vp}. As

: N
above, one gets limy, % =0, that is,
k

(13) lim LN {cosh(ag) sinh(ap ) + sinh(aj )(cosh(ap ) — 1)} = 0.

For all a € A, the endomorphisms sinh(a”) and cosh(a’¥) —1 are linearly
independent in End(V¢). Indeed, those are sums of powers of the upper
triangular nilpotent matrix a”. Hence, none of the terms of cosh(a?) — 1
can cancel the term @ in sinh(a’). Therefore, since cosh(a®) as well as
sinh(a®) act diagonally, the terms occurring in the bracket of expression (13)

are linearly independent. In particular, limy cosh(ay )ﬁ sinh(alY) = 0.
k

Therefore, cosh(a}) being invertible for all &, one gets
lim — s h(al) =0
im sinh(a') = 0.
ko]

Again, since the matrix afcv is upper triangular, one gets limy ﬁag =0,
k

a contradiction. O

Proof of Proposition 6.1. Proposition 4.7 reduces to prove the assertion only
for standard ESET’s. Indeed, the twisting map associated to any ESET can
be realized as the restriction of the twisting map of a standard ESET to a
linear subspace. We therefore assume our ESET (G, 0,(2) to be standard.

Let us define Cy_(.A) to be the intersection of the centralizer algebra
of A = p(A) in End(B) and sl_ (cf. Proof of Proposition 4.7). For X €
Cy_(A), we set

11 sup (X))
|| <1

wherel € £L =BNP and 6§ = Q (£ € K£*). This defines a norm on Cy;_ (A).
Indeed, if X € Cq (A) is such that £(X.L£) = 0, one has £(X.[A,K]) =
E[A XK =Q(A,X.K) =0, hence X.KX =0. Also, 0 = X.KX = X.[A, L] =
[A, X.L], hence X.L C Z(G). By item (ii) of Remark 2.10, one has either
X.L=0or X.L C RE with {(FE) = 1, which implies X.L = 0 too since one
assumed £(X.L) = 0. Now, observe that sinh(A) C Cy_(A), and, that for
all a € A, one has:

|Isinh(a)|| = sup {|¢(sinh(a)])[} = H?hlgl{lﬂ(aﬁ(a), DI} = llg(a)ll.

i<t
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Therefore, the norms ||, ||op and ||, || being equivalent, Lemma 6.2 implies
Proposition 6.1. [l

We now have the following geometric property.

Corollary 6.3. Let (M,w,s) be an elementary solvable symplectic symmet-
ric space. Then (M,w,s) admits a globally defined midpoint map = — 5 (if
and) only if the twisting map ¢ : A — A (cf. Definition 4.3) is a global
diffeomorphism.

Proof. With the same notations as in the proof of Proposition 4.4, one has a
map ¢ : A — A defined by ¢ = Qo0 2. The argument used in the same proof
tells us that ¢ is a local diffeomorphism. Now, Proposition 6.1 implies that
the map ¢ : A — A is proper. Indeed, ¢ being continuous, one just needs
to show that the inverse image of a ball is bounded. So, let {z;} C A be
such that

l¢(z)l] < R.

Since 0 < ¢ < liminf % < ﬁ, one gets ||zg|| < % as soon as k is large
enough.

Therefore, nonetheless the map ¢ is open it is also closed, hence surjective.
The twisting map is therefore a covering map. Since the fundamental group
of A is trivial, it is a diffeomorphism. O

Notations 6.4. Let V be a finite dimensional real vector space. We denote
by S(V') the space of Schwartz (complex-valued) functions on V. Accord-
ingly, 8'(V) stands for the space of tempered distributions on V.

Proposition 6.5. Let (M,w,s) be an elementary solvable symplectic sym-
metric space, with associated ESET (G = A® B,0,Q) (cf. Definition 4.1).
Assume that (M, w, s) admits a globally defined midpoint map. Let ¢ : A —
A be the associated twisting diffeomorphism (cf. Corollary 6.3). Then, one
has

(i) ¢*S(A) C S(A) and
(i) (¢71)*S(A) C S'(A).

We use the following lemmas.
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Lemma 6.6. Within the hypotheses and notations of Lemma 6.2, the func-
tion
A — End(V) : a — (cosh(a))™

is well-defined as a tempered analytic function from A to the (real Banach)
space End(V'). The same holds for a — tanh(a).

Proof. One has cosh(a) = cosh(a® + a?V) = cosh(a®)(cosh(a™)+
tanh(a®) sinh(a’)). In the basis e considered in the proof of Lemma 6.2,
cosh(a®) and tanh(a ) are diagonal matrices whose elements are in
{cosh(A(a®)), tanh(\(a®))}rca. Since each weight is of the form A = (1—|—zt)
(cf. Proof of Lemma 6.2), cosh(a®)~! is a Schwartz function, and tanh(a®)
together with all its derivatives are bounded.

The factor cosh(a’V) + tanh(a®)sinh(a’v) is an upper triangular matrix
whose diagonal elements are equal to 1. Moreover, it is a polynomial in the
variable a®. Therefore its inverse is a tempered function in the variable a.
A similar argument (but simpler) yields the second part of the assertion. [

Lemma 6.7. With the hypotheses of Proposition 6.1, one has:

sinh(¢~(a)) = pla)

foralla € A.

Proof. One has, for all k € K and a, A € A:

Q(Smh(¢ H(a))k, A) = [Smh( H(a))k, A] = &(sinh(¢(a)) [, A]) =

(¢~ (a), [k,A]) Q(¢(¢ Ha)), [k, A]) = Qa, [k, A]) = Q([a, k], A).
Hence sinh(¢ (a))k = [a,k]. Moreover, sinh(¢ 1(a))[k, 4] =
[sinh($~" (@), A] = [[a, k], 4] = [a, [k, A]]. .

Lemma 6.8. Let B(E) be the space of bounded linear operators on the Ba-
nach space E. Let a € B(E) be invertible and such that ||a=t|| < 1. Then,
la?] > |lal|-

Proof. One has sup,cp . <1{lle’a " 2l|} < supyep yy<ia—ry{lle®yll} <
SUP,e |2 <1 {1072} O
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Proof of Proposition 6.5. As in Proposition 6.1, we can assume our ESET to
be standard. A function u € C*°(A) is Schwartz if and only if, for all multi-
index «, and all positive integer N, one has sup,. 4{||al|¥|(D%u)(a)|} < oco.
Consider u € S(A). Then, one has

sup{||a|||(¢*u) (@)} = sup{ll¢~ ! (a)||¥u(a)[}.
acA acA
By Proposition 6.1, one can find r > 0 such that
sup{[l¢” " (a)|[Mu(a)[} < rsup{|la|¥[u(a)[}.
acA acA
Now, consider A € A and let
d
D4(¢*u)(a) = £|0¢*u(a +tA).

In order to bound sup,c 4{||a||¥|(Da(¢*u))(a)|}, the preceding argument
leads us to look at

<¢*¢—1(a) (A)’ du|a>a
that is, at [|$.g-1(4)(A)[]. Since

10206 (@) +£4), 1) = €(cosh(s™ (@)p(A))

(using the definition of ¢), one only needs to analyze the asymptotic behavior
of cosh(¢1(a)). For this, observe that for some m > 0 and for all a € A,
one has:

llall "™ [I(cosh(¢~" (@) ~H1] = ll¢(a) ||~ [I(cosh(a"))) ]|
< [la/]|7™||(cosh(a’))) I,

as soon as |la’ = ¢ !(a)|| is large enough. Therefore, using Lemma 6.6,
there exists m > 0 such that

[[llall ™™ (cosh(¢ " (a))) M| < 1
for ||a|| large enough. Hence, Lemma 6.8 implies:
[lal[™[[(cosh(¢™" (a)))?[] > llal[™ || cosh(¢™" ()]
that is, by Lemma 6.7:

I cosh(¢™ ()| < [lal|™ (11 + (p(a))?]]
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which has a polynomial growth.

Now, we indicate how to prove (i) by induction over the order of deriva-
tion. Let V be the flat Euclidean connection on the vector space A. For
u € C°(A), let V(My be the symmetrization of the tensor field V"u. For
the two first orders of derivation, one then has

Da(¢™u) = (Vuo ¢, (¢(A4)) 0 ¢) = ¢"(Vu, . A)
and

DpDa(¢*u) = ¢*((VOu, ¢, B), . A) + (Vu, (V($.A), $:.B))).

The functions (sections) Vu and V(?)u are Schwartz and we have seen that
¢« A has polynomial growth. So, in order to bound the second derivative
DpD 4(¢*u), one needs to control the asymptotic behavior of V(¢.A), that
is Q((V(¢.A), B),l) for all A, B € A,l € L. One has

(VD2 A), Bllar 1) = 02bx, 0z (A)1)
= &(sinh(¢ ™ (a))(cosh(¢™"(a))) " p(A)p(B)!)
= &(p(a)(cosh(¢™"(a))) "' p(A)p(B))).
We have seen previously that (cosh(¢~!(a)))~! has polynomial growth.
Therefore, V(¢,A) has polynomial growth too. Now, by using the Leib-

niz identity and an induction argument, one gets (i).
For (ii), we first look for a positive number N such that

(14) / lall (61 u(a) da < 0o (u € S(A)),

where A, is the complement of some compact neighborhood of the origin in
A. A change of variables following a + ¢(a) leads us to

(15) /. @I~ gacy(@) ute) o

where Jacg(a) denotes the determinant of the differential of ¢ at point a, and
where A! is of the same type as A, (note that the origin is fixed by the dif-
feomorphism ¢). With the notations adopted in the proof of Lemma 6.2, one
observes that Jac,(a) is proportional to ITycg| cosh(A(a))|4™(V2). Therefore,
for some constant ¢ > 0, one has

. 2
|Jacg(a)] < ¢ max {1, (HAE<1>| COSh()\(a))|dlm(V)\)> }

= ¢ max {1, M)co|sinh?(A(a)) + 1|dim(Vx)} )
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Thus
Jacy(a)] < ¢ max {1, Iycg (|sinb?(A(@)] + 1)}
< ¢(1 4+ ||sinh(a)]|>)® = ¢(1 + ||¢(a)||P)*

for some K > 0 (cf. proof of Proposition 6.1). This last expression being
lower than ||¢(a)||V for some N > 0 and ||a|| large enough, this provides
the desired N in order to bound (15) hence (14).

For derivatives of (¢ !)*u, an argument as in (i) leads us to consider
(p:(;(a)(A) (a,A € A) that is to consider the inverse matrix [p.q] ' i.e.,

cosh(a) L. Hence, by use of Lemma 6.6, one now gets

/A W|(DA(¢_1)*U)(CL)| da < 0o VA€ Aue S(A).

Similarly to (i), an induction yields (ii). O

Set P = A x A. Identifying £* with A via the symplectic structure €,
one can consider the partial Fourier transform:

s'(P) 5 8'(P)
formally given by

Fu(a,a) = 4(a,a) = / e~ My (a, 1) dl.
L

One denotes its inverse by S’(P) s (P).
Now, led by Section 5, we make the following definition.

Definition 6.9. Forall i > 0, we denote by ¢p, : P — P the diffeomorphism

defined by
2 h
ona, ) = (a, ﬁgﬁ <§a>> .

We denote by S(P) & S'(P) the map
h=F1 ogogl*oF.

‘We set

& & n(sP)) c (P,

and define a map & Ty S(P) by
Th=F loyioF.
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Remark 6.10. In the nilpotent case (i.e., G nilpotent), one has & = S(P).

Proposition 6.11.
(i) S(P) C &
(il

) ThOTh - ’Lds('p)
(ill) Th © Th|S(’P) = lds(p) .
)

(iv) Let x2 be the Weyl product on S(P) (see formula (1) in Section 1).
Then, the expression

def.
axpb if Th (Tha *g Thb) a,be En

defines an associative algebra structure on Ey.

Proof. By Proposition 6.5, for all u € S(P), one has (F~' oy} o F)u € S(P).
Hence 74(F topfoF)u = u € 7,(S(P)) = &x. Items (i), (ii) and (iii) follow.
Associativity of the Weyl product on S(P) yields (iv). O

Notations 6.12. Since Q(%(p(%a),l) = %{(sinh(%a)l), by setting o = id»
and Ty = idgs(p), one gets a (separately continuous) map [0,00) x S(P) —
S(P) : (h,u) — Tx(u). Furthermore, a computation shows that dy o F' =
A%F o dy, where d) is defined as follows:

dy : C®°(P) = C™(P) : (dau)(a,l) = u(a, ) for X € Ry.

Therefore, one has
Th:d%OTQOdﬁ (h>0)
2

In particular, &, = d% (€), with & = 72(S(P)). This leads to set & = S(P)
and uxov =uv Vu,v € S(P).

Theorem 6.13. Let (M,w,s) be an elementary solvable symplectic sym-
metric space admitting a globally defined midpoint map. Let G be its
transvection group. Let ¢ : A — A be the twisting diffeomorphism defined
in Proposition 4.4. Then, the family {Er}r>0 (cf. Definition 6.9), defines a
G-invariant WKB-quantization of (M,w,s) (cf. Definition 1.5). More pre-
cisely, let S € C°(M x M x M,R) be defined by

S((a1,11), (ag,l2), (as,l3)) =& <7{ sinh(a; — az)lg)

12,3
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(¢f. Proposition 4.9). Then, for all u and v in D(M) C &y, the product
reads:

(16) wu*pv(x)

1 i
= T/ e (1) | det (cosh(ag — a1)|z) | u(z1)v(z2)dx) do
Rt Jvxm

with x; = (ai,l;) € M =P (i = 1,2), and where dx stands for the sym-

plectic measure on M = P. The phase function S as well as the amplitude
| det (cosh(ag — a1)|z) | are invariant under the symmetries {sg }zenr-

Proof. For the sake of simplicity, we establish the product formula (16) for
h=2. We set x* = % (Weyl’s product) T = Tz, 7 = 72 and ¢ = p3. Also,
in the formulae that follow, integration is taken over every variable a;,l;, o;
with ¢ = 1,2. Let u,v € D(M) be compactly supported. Then, formally,
one has:

(Tu *O TU)(ao, lo)

— /67:50((0'0’[0)’(0'1’ll)’(a2’l2))eiﬂ(a1’l1)((p*’ll)(al,al) eiQ(az,lz)((’D*ﬁ)(a2,a2)
— /ei[Q(az—a1,l0)+Q(a0—a2+a1,ll)-‘rQ(al—ao-l—az,lQ)}(w*a)(al,al) ((10*/{])(0/2,@2)

(using the definition of the Weyl product)
= [ einteaento [ [ etenmeteni gty ar,an)
‘/eiQ(ala0+az,l2)(¢*,&)(a27a2)
— / e/ Me2=al0) (5°0) (ax, a3 — ap)(¢"0) (a2, ag — an).
Moreover,
Tu(a,l) = /em(a’l)(‘ﬂl*ﬁ)(aaa)da

— [ ¢ Difa,¢7 (@) da

_ / (D267 @)N) y (g, 1) dad.
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Hence
7(Tu+° Tv)(ag, l)
_ /ei(ﬂ(a,lo)Q(q&_l(a),)\))eiﬂ(agal,)\)

(@*u) (a1, a2 — ap)(¢*0)(az,ap — a1) dA da
— /ei[ﬂ(avlo)9(¢_1(a)7>\)+9(a2ah)\)ﬂ(¢(a2a0)711)9(¢(a001)712)]

~u(ag, 1) v(ag,l2) dX da
:/ei[Q(d)(a),lo)—ﬂ(a,/\)—kﬂ(ag—a1,/\)—Q(¢(a2—ao),ll)—Q(¢(a0—a1),l2)]

|Jacy(o)|u(ar, ) v(ag, l2) dX da
(after changing the variables following « < ¢(a))
— /ei[9(¢(a)710)—9(¢(02—a0)Jl)—ﬂ(¢(ao—al)ylz)—ﬂ(a—aﬁal,/\)}

- |Jacy(a)| u(ar, 1) v(az,l2) dA do
_ / il 2(az—a1) lo)~(az—a0) 1)~ (an—az). )]

|Jacg(az — ar)|u(ar, 1) v(az, l2)

= /eiS(”O’xl’x2)|Jac¢(a2 —a1)|u(zy) v(z2)

(using the definition of ¢). We now get the announced formula using item (ii)
of Remark 4.5. Dirac’s condition is implied by Fedoriuk’s formula (formula
(1.5) p. 30 in [15]) up to order one in the parameter £, provided (u *p v)(x)

is interpreted as the oscillatory integral:

/ o(X) exp <%E(X)> X

with
X = (x1,22) € M x M,
©(X) = |det(cosh(az —a1)|z)|u® v(X) and,
X(X) = 25(z,X).

The critical point analysis of the function % then tells us that X has an iso-
lated critical point at X° = (z, ). Moreover, the Hessian matrix 0% (X°)

is proportional to

(a7)
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on T'xo(M x M) =P x P. Hence (u*pv)(x) admits the desired asymptotic
expansion. O

7. Topological algebras.

In this section, we analyze some topological properties of the algebras
& (h > 0) defined in Section 6. Each of these algebras being isomor-
phic, via a “dilation”, to the algebra & = m2(S(P)) (cf. Notations 6.12), we
will, in this section, drop the symbol “A” in our discussion. As previously, we
set 7 =719, T = T and x = x3. Moreover, we set S = S(P) and D = D(M).

Definition 7.1. On &, let us denote by (, )s the canonical L?-inner product

(1, 0)s = / .

Via the linear bijection T' : £ — S, one define on £ the following inner

product

(a,b)e 9 (Ta, Tb)s.

The space £ then becomes a pre-Hilbert space whose Hilbert completion is

denoted by H.

Proposition 7.2.

(i) The inclusions
DCcSCéCH

are dense.
ii) For allx € M and u,v € D, one has
(i)
(szua S;U)g = (ua U)c‘,'-

In particular, the action of the transvection group G on D ezxtends as
an (unitary) action of G on H.

(iii) The algebra structure x on £ extends to H. Endowed with the ex-
tended product again denoted by x, the space H becomes an associative
topological algebra.

(iv) The group G acts on (H,*) by algebra automorphisms.
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Proof. Observe that the space F~1D is stable by both transformations T
and 7. Moreover, the inclusion F~'D C & is dense with respect to the L?-
topology. Hence 7F~'D = F~D is dense in £ and so is S. Moreover, the
map T'|s : S — S is continuous with respect to the L?-topology. Indeed,
this follows from the fact that

_ 1

= [det(ge, )]

_ 1

~ [det(cosh(¢~(a))])
1

" |det(cosh(¢~(a))]c)?]
1

" det(L+ (p@)?)o)fF

|Jacy-1(a)|

N

Hence the inclusion S % &£ , i =710T|s, is continuous when § is endowed
with the L2-topology. This yields (i).
One has, with z = (ao, lp):

(sXu, s*v)g = (F ' p*Fs*u, F_lgo*Fs;v)S(p)

= (9" Fsu, <P*F5;U)s(ﬁ)

= / | Jacy-1|FszuF'siv
= / [|Jac¢_1(oz)| / @y (24 — a,2 cosh(ag — a)lg — 1) dl
—iQ(al")
/ v(2a9 — a,2cosh(ag — a)lg — ') dl' | da da

=/ [|Jac¢1(a)|/em(a”\2005h(a°“)lo)u(2a0—a, A) dA

-/eiQ(a’X_QCOSh(aO_a)lO)ﬁ(Zao —a, )\l) d/\,:| da dov.

Since the terms Q(a, 2 cosh(ap — a)lp) in the exponentials cancel each other,
the latter expression equals

/da dalJacy-1 ()| Fu(2a0 — a, ) Fo(2a9 — a, ) = (u,v)¢.
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This proves (ii) while item (iii) follows from [11]. Now, observe that for
a =lima, € H with a, € D, u € D and g € G, one has
ga* gu = (lim ga,) x gu (by (ii))

= lim(ga, * gu) (by (iii))

=limg(a, xu) (by formula (16))

= glim(a, xu) (by (ii))

=g(axu) (by (iii)).
This implies (iv). a

We now follow a standard procedure ([11], [21]). For all a € #, the left
multiplication L, : H — H : b — a b is a bounded operator. This yields an
algebra homomorphism

H—BH):a— L,

into the C*-algebra B(H) of bounded operators on H. This homomorphism
is continuous. It is also injective. Indeed, denoting Weyl’s product by +°,
our Hilbert algebra (7, *) is isomorphic to (L?(P),+). Denoting by tr° the
canonical trace for Weyl’s quantization (i.e tr(u) = [ u), one has
tr%a+"b) = (a,b);2 Va,be L*(P).
Hence, for a € H such that L, = 0, one gets (a, ) = 0, that is a = 0. One
therefore gets a new norm on H:
def.
llallz "="[|LallB3)-

Proposition 7.3.

(i) The complex conjugation on D extends continuously to the Hilbert al-
gebra H as an involution for the product x. We denote this involution
by a — a*.

(ii) The quadruple (H,x,||||2,*) is then a (pre)-C*-algebra on which the
transvection group acts by C*-algebra automorphisms.

Proof. Let u € D and note that, from ¢*F o F(u) = F o F(¢*u), one gets
T'(u) = T'(u). Therefore, one obtains the pre-C*-algebra structure on (#,*)
by transporting the one on (L?(P),+’) [11] via the isomorphism

T:H — (L*(P).
The rest follows from Proposition 7.2. O
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8. Remarks for further developments.

A possible extension of this work is to define curved “quantum symmetric
solv-manifolds” analogue to flat quantum tori. That is, strict quantiza-
tions (in Rieffel’s sense) of compact quotients of solvable symmetric spaces.
The presence of curvature should yield interesting continuous fields of C*-
algebras. Indeed, already at the level of the universal covering, which is
considered in this present work, one can observe the non closeness of the
Schwartz space S under our deformed products: the one parameter “equiva-
lence” T, really “turns” S inside Coo (M) (cf. Section 6). It is not even clear
if there actually exists any reasonable Poisson subspace stable, through the
deformation, under both classical and deformed products. In order to attend
these questions, one would need to focuse the following points.

1. Establish continuous fields. That is, firstly, describe the strong defor-
mation of S (h = 0) with generic fiber H (cf. Proposition 7.3) arising
from our construction. Secondly, extend this to (smooth) bounded
functions—this is necessary in order to consider quotients later on.
Observe that, regarding this last point, the proofs of Proposition 6.1
and Proposition 6.5 indicate that our setting should extend to bounded
functions without difficulty just as in the flat case (cf. [21]).

2. Extend the present work to the whole class of solvable symplectic sym-
metric spaces which admit globally defined midpoint maps. Proposi-
tion 3.2 in [7] indicates that this question should follow from an in-
duction on the successive split extensions by Abelian algebras which
eventually yields any solvable symmetric space from the data of an
elementary one.

3. Study cocompact actions of discrete subgroups of automorphism
groups of solvable symmetric spaces.

In this context of solv-manifolds, one can then hope to investigate the prob-
lem of defining a quantum analogue to the Anosov property for classical
flows.

The approach to quantization of symmetric spaces is also aiming at at-
tending quantum Riemann surfaces in a “universal” setting, that is without
referring to particular Hilbert space representations. This problem lies in
the semisimple world which, from the geometric point of view as well as
from the point of view of star representation theory, is more complicated
than the solvable situation considered here. This problem has actually
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been investigated by Berezin in [3]. Since then, numerous of important
works have emerged concerning this question (see e.g., [19], [20] and [24])
in the framework of Berezin-Toeplitz quantization. Comparisons between
the WKB-quantization approach and Berezin’s quantization of the hyper-
bolic plane have first been investigated by Weinstein and Qian (see [25] and
[18]). Explicit computations of invariant admissible phase functions on the
hyperbolic plane have been performed by Weinstein, Qian and the author.
Also, some of the steps of the present construction pass to the case of the
hyperbolic plane. For instance explicit Darboux charts in which the Moyal
star product is SLy(R)-covariant have been found by the author. But, it
is unclear how to define an intertwiner analogous to operator Z; (cf. Sec-
tion 5) from the data of the star representation cocycle and the twisting
map (cf. Definition 4.3) in the case of the hyperbolic plane.

It seems also interesting to compare our framework with Fedosov’s in-
variant quantization. At the formal level, Fedosov’s quantization gives us
a way to construct invariant star products on affine symplectic manifolds
(“invariant” means that the star product is preserved under the affine sym-
plectic transformations) [9]. In the case of a symplectic symmetric space,
such an invariant x-product is essentially unique (see [4]). The present work
therefore deals with the problem of finding, in our framework of solvable
symmetric spaces, “oscillatory integral formulae” whose expansions are Fe-
dosov’s series.

At last, in [24], Unterberger and Upmeier study a pseudo-differential
calculus (called Fuchs calculus) on symmetric cones. On a given symmetric
cone C, Fuchs calculus is equivariant under the action of a solvable Lie group
G which is the contraction of the automorphism group of the complex tube
domain IT over C. Explicit integral formulae for the composition products
of Fuchs symbols have been obtained in [23]. In some cases, our framework
overlaps Unterberger’s one and, in such cases, the formulae we obtain for
the WKB-quantizations coincide, up to some diffeomorphism which can be
interpreted in geometric terms, with Unterberger’s composition formulae.
Despite the fact that, in our case, no symbol-operator correspondence is
used, our work therefore appears to be closely related to Fuchs calculus. A
deeper study of the relation with Fuchs calculus will be investigated in a
forthcoming paper [8].
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