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1. Introduction

One of the remarkable insights of orbifold string theory is an indication
of the existence of a new cohomology theory of orbifolds containing the
so-called twisted sectors as the contribution of singularities. Mathe-
matically, such an orbifold cohomology theory has been constructed by
Chen-Ruan [CR]. The author believes that there is a “stringy” geom-
etry and topology of orbifolds whose core is orbifold cohomology. One
aspect of this new geometry and topology is the twisted orbifold coho-
mology and its relation to discrete torsion. Again, the twisting process
has its roots in physics. Physicists usually work over a global quotient
X = Y/G only, where G is a finite group acting smoothly on Y . A
discrete torsion is a cohomology class α ∈ H2(G, U(1)). Physically, a
discrete torsion counts the freedom to choose a phase factor to weight
the path integral over each twisted sector without destroying the con-
sistency of string theory. For each α, Vafa-Witten [VW] constructed
the twisted orbifold cohomology group H∗

orb,α(X/G,C).
Vafa-Witten suggested that discrete torsion and twisted orbifold co-

homology relate to desingularization. Recall that there are two meth-
ods to remove singularities, resolution and deformation. Both play im-
portant roles in the theory of Calabi-Yau 3-folds. A smooth manifold Y
obtained from an orbifold X via a sequence of resolutions and deforma-
tions is called a desingularization of X. In string theory, we also require
the resolutions to be crepant resolutions. It is known that such a desin-
gularization may not exist in dimensions higher than three. In this case,
we allow our desingularization to be an orbifold. As we mentioned in
[CR], physicists predicted that the ordinary orbifold cohomology group
is the same as the ordinary cohomology group of its crepant resolution.
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Vafa-Witten proposed that discrete torsion is a parameter for deforma-
tion, and that the cohomology of the desingularization is the twisted
orbifold cohomology of discrete torsion plus the possible contributions
of exceptional loci of the small resolution. (A small resolution is a spe-
cial kind of resolution whose exceptional locus is of codimension 2 or
more.) However, this proposal immediately ran into trouble because
the number of desingularizations is much larger than the number of
discrete torsions. For example, D. Joyce [JO] constructed five differ-
ent desingularizations of T 6/Z4, while H2(Z4, U(1)) = 0. To count
these “missing” desingularizations seems to be a serious problem. We
address this problem in the current paper. On the another hand, it
is well-known that most orbifolds (even Calabi-Yau orbifolds) are not
global quotients so it is necessary to develop the theory over general
orbifolds. The theory in this paper addresses this problem as well.

First, we introduce the notion of inner local system L for an arbi-
trary orbifold. An inner local system is defined as an assignment of
a flat (orbifold) line bundle L(g) to each sector X(g) satisfying certain
compatibility conditions (see definition 2.1). Such compatibility condi-
tions are designed in such a way that Poincaré duality and cup product
in ordinary orbifold cohomology survive the process of twisting. The
author believes that the inner local system is a more fundamental no-
tion than discrete torsion. The twisted orbifold cohomology H∗

orb(X,L)
is then defined as orbifold cohomology with values in the inner local
system (see definition 2.2). We will demonstrate that our inner local
systems count all the examples constructed by D. Joyce. We make the
following:

Conjecture. Suppose that X is a Calabi-Yau Gorenstein
orbifold. To every desingularization we can associate an in-
ner local systems such that as additive groups the ordinary
orbifold cohomology of the desingularization is the sum of
twisted orbifold cohomology and contributions from the ex-
ceptional locus of the small resolution.

Our next goal is to determine the appropriate notion of discrete tor-
sion for a general orbifold X. Let X be an arbitrary almost complex
orbifold. Our key observation is that we should use the orbifold funda-
mental group πorb

1 (X) (see definition 2.1) to replace G. Then discrete
torsion of X is defined as a cohomology class α ∈ H2(πorb

1 (X), U(1)).
Note that if X = Y/G is a global quotient, then there is a short exact
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sequence

(1.1) 1 → π1(Y ) → πorb
1 (X) → G → 1.

It induces a homomorphism H2(G, U(1)) → H2(πorb
1 (X), U(1)). Hence

a discrete torsion in the sense of Vafa-Witten induces a discrete torsion
as in this paper. The link between discrete torsion and twisted orbifold
cohomology is the theorem that discrete torsion induces an inner local
system and hence defines twisted orbifold cohomology. However, we
emphasize that not every inner local system comes from discrete torsion
(see example 5.3).

We will introduce inner local systems and the twisted orbifold coho-
mology ring in section 2. Section 3 is devoted to discrete torsion. The
relation between discrete torsion and the inner local system is discussed
in section 4. Finally, some examples are computed in section 5. This
paper can be viewed as a sequel to [CR]. Since many constructions
are similar we follow the notations of [CR] and only sketch the details.

This paper was completed while author was visiting Caltech. He
would like to thank R. Pandharipande and the Caltech mathematics de-
partment for their financial support and hospitality. The author would
like to thank E. Zaslow for bringing his attention to Vafa-Witten’s
paper and E. Witten for explaining to him [VW]. He would like also
thank A. Adem for many valuable discussions about group cohomology
and J. Robbin and A. Greenspoon for editorial assistance.

2. A review of ordinary orbifold cohomology

2.1. Twisted sectors. Suppose that X is an orbifold. (See [CR] for
the formal definition.) Roughly speaking, X is a topological space with
a system of orbifold charts (also called uniformizing systems). Every
point p ∈ X has a system of orbifold charts of the form Up/Gp, where
Up is a smooth manifold and Gp is a finite group acting on Up fixing
the preimage of p. The group Gp is called the local group. Note that
the action of Gp does not have to be effective. If it is (for each p), the
orbifold is called effective. We denote the chart by (Up, Gp). Define the
set

˜Σ1X = {(x, (g)Gx) : x ∈ X, g ∈ Gx}.
Here (g)Gx denotes the conjugacy class of g in the local group Gx. The

set ˜Σ1X has a natural orbifold structure where the orbifold charts are
pairs (Xg, C(g)), where Xg is the fixed point of g ∈ Gx and C(g) is the

centralizer of g. The orbifold ˜Σ1X is called the inertial orbifold of X
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and plays a fundamental role in orbifold cohomology. The connected
components of the inertial orbifold are called sectors.

It is instructive to write down the connected components of ˜Σ1X
explicitly. By definition, the orbifold charts on X satisfy the following
patching condition: If q ∈ Up/Gp ∩ Ur/Gr, there is an orbifold chart
Uq/Gq ⊂ Up/Gp∩Ur/Gr such that the inclusion map i : Uq/Gq ⊂ Up/Gp

can be lifted to a smooth map

(2.1) ĩpq : Uq → Up

and there is an injective homomorphism

(2.2) i#,pq : Gq → Gp

such that ĩ is i#-equivariant. The map

ipq = (̃i, i#) : (Uq, Gq) → (Up, Gp)

is called an injection. A different lifting differs from ĩ by the ac-
tion of an element of Gp. Moreover, i# differs by conjugation by
the same element; we say that the corresponding injections are equiv-
alent. Therefore, for any g ∈ Gq, the conjugacy class (i#(g))Gp is
well-defined. Intuitively, we “patch” the conjugacy class (g)Gq to the
conjugacy class (i#(g))Gp. Formally, we define an equivalence relation
(g)Gq

∼= (i#(g))Gp. Let T1 be the set of equivalence classes. By abuse
of notation, we use (g) to denote the equivalence class that contains
(g)Gq . For each (g) ∈ T1, we define a sector

(2.3) X(g) = {(x, (g′)Gx)|g′ ∈ Gx, (g
′)Gx ∈ (g)}.

It was shown in [CR] that X(g) is an orbifold. In accordance with the
common convention we call X(g) for g �= 1 a twisted sector, and X(1)

non-twisted sector.

Remark 2.1: In general, a sector is not a subset of the orbifold.
Instead, there is a “morphism” X(g) → X which is finite-to-one.

In the same fashion, we can also define multi-sectors. Define

(2.4) ˜ΣkX = {(x, (g1, . . . , gk)Gx ; gi ∈ Gx}
where (g1, . . . , gk)Gx = {(hg1h

−1, . . . , hgkh
−1 : h ∈ Gx} denotes the

joint conjugacy class. Again, ˜ΣkX has a natural orbifold structure.
Its connected components can be described in the same way. We de-
fine an equivalence relation (g1, . . . , gk)Gq

∼= (i#(g1), . . . , i#(gk))Gp. Let
Tk be the set of equivalence classes. By abusing the notation, we use
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(g1, . . . , gk) to denote the equivalence class which contains (g1, . . . , gk)Gq .
For each (g1, . . . , gk) ∈ Tk, we define the multi-sector
(2.5)
X(g1,...,gk) = {(x, (g′

1, . . . , g
′
k)Gx)|g′

i ∈ Gx, (g
′
1, . . . , g

′
k)Gx ∈ (g1, . . . , gk)}.

2.2. Orbifold vector bundles and orbifold morphisms. We de-
fine the notion of orbifold vector bundle E → X similarly. An orbifold
chart of E over Up/Gp is of the form (Up×Rn, Gp) where (Up, Gp) is an
orbifold chart at p ∈ X and Gp acts on Rn linearly. Thus we assume
that the total space and base space have the same local groups. The
patching condition is as follows. To each injection i on the base, we
assign an injection λ(i) on the total space such that

(2.6) λ(j ◦ i) = λ(j) ◦ λ(i)

for any composition j ◦ i of injections on the base orbifold. Without
this condition, λ(j ◦ i) could differ from λ(j) ◦λ(i) by conjugation with
an element of the local group.

Once we understand condition (2.6), it is not hard to see that the the
orbifold map (as usually defined) fails to pull back an orbifold vector
bundle and a stronger condition has to be imposed. In [CR], Chen-
Ruan formulated a condition and called it a “good map”. Later, it
became clear that a good map is equivalent to an earlier but more ab-
stract concept of “orbifold morphism” from the theory of groupoids and
we now adopt this name. The definition of [CR] was formulated with
the explicit goal to pull back the vector bundle, and has the advantage
that it is concrete and easier to work with in geometry. It follows.

An orbifold morphism is a continuous map f : X → Y on the un-
derlying orbifolds with an isomorphism class of extra structure called
a compatible system. A compatible system is (i) a one-to-one assign-
ment of orbifold charts on Y to charts on X such that f is locally
lifted to an equivariant map with the appropriate diagrams commut-
ing, and (ii) a one-to-one assignment of injections i → µ(i) satisfying
the compatibility condition

(2.7) µ(j ◦ i) = µ(j) ◦ µ(i).

It is obvious that an orbifold morphism pulls back an orbifold vector
bundle constructed by first pulling back the local orbifold bundles and
then gluing them up using condition (2.7).

Recall that the pull-back bundle can be defined by using the fiber
product

E ×Y X = {(v, x); π(v) = f(x)}.
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In the orbifold category, the ordinary fiber product does not yield an
orbifold vector bundle. However, the process of (i) constructing the
ordinary fiber product locally over the uniformizing systems, and (ii)
then gluing them together using the compatibility condition of the
morphism can be viewed as an orbifold version of the fiber product.
Without the risk of confusion, we still denote it by E ×Y X.

Orbifold morphisms exist abundantly. All the natural maps such as
the projections and sections of orbifold vector bundles are orbifold mor-
phisms. A composition of orbifold morphisms is an orbifold morphism,
so orbifolds and orbifold morphisms form a category. An important
class of orbifold morphisms is defined in the following

Lemma 2.2: The evaluation maps

ei1,...,il : ˜ΣkX → Σ̃lX

defined as ei1,...,il(x, (g1, . . . , gk)Gx) = (x, (gi1 , . . . , gil)Gx), and the invo-
lution

I : ˜ΣkX → ˜ΣkX

defined by I(x, (g1, . . . , gk)Gx) = (x, (g−1
1 , . . . , g−1

k )Gx) are orbifold mor-
phisms.

The proof is immediate from the definition since we can construct

the orbifold charts and injections of ˜ΣkX simultaneously.

2.3. The orbifold cohomology group and its Poincaré pairing.
For a sector X(g) as in (2.3) we diagonalize the action of g in Te(x)X for
each x ∈ X(g), where e : X(g) → X is the evaluation map. Suppose that

g = diag(e
2πim1

m , . . . , e
2πimn

m ), where m is the order of g and 0 ≤ mi

m
< 1.

Then we define the degree shifting number

ι(g) =
∑

i

mi

m
.

It can be shown that ι(g) is independent of x ∈ X(g). The ordinary
orbifold cohomology is defined as

(2.8) H∗
orb(X,C) =

⊕
(g)∈T1

H∗−2ι(g)(X(g),C).

Recall the involution I : X(g) → X(g−1) defined by (x, (g)) → (x, (g−1)).
The Poincaré pairing 〈 〉orb of orbifold cohomology is the direct sum
over (g) ∈ T1 of the bilinear maps

(2.9) 〈 〉(g)
orb : Hd−2ι(g)(X(g),C) ⊗ H2n−d−2ι(g−1)(X(g−1),C) → C
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defined by

(2.10) 〈α, β〉(g)
orb =

∫
X(g)

α ∧ I∗β.

Remark 2.3: There is a compactly supported version of the orbifold
cohomology defined in the similar fashion. When X is open, Poincaré
duality should be understood as a pairing between the ordinary orbifold
cohomology and the compactly supported orbifold cohomology.

2.4. The orbifold cup product. Recall the homological algebra no-
tion Hp(.)[i] = Hp+i(.). For α ∈ Hp(X(g1)R)[−2ι(g1)] and

β ∈ Hq(X,R)[−2ι(g2)] define α ∪orb β ∈ Hp+q
orb (X,R) by

(2.11) α ∪orb β =
∑

(h1,h2)∈T2,hi∈(gi)

(α ∪orb β)(h1,h2),

where (α ∪orb β)(h1,h2) ∈ H∗(X(h1h2),C) is defined by the relation

(2.12) 〈(α∪orb β)(h1,h2), γ〉orb =

∫
X(h1,h2)

e∗1α∧ e∗2β ∧ e∗3γ ∧ eA(E(h1,h2)).

Each term of formula (2.12) is defined as follows. γ ∈ H∗
c (X((h1h2)−1),C).

e1, e2, e3 are the evaluation maps

e1(x, (h′
1, h

′
2)) = (x, (h′

1)), e2(x, (h′
1, h

′
2)) = (x, (h′

2)),

e3(x, (h′
1, h

′
2)) = (x, (h′

1h
′
2)

−1),

and eA(E(h1,h2)) is the Euler class of the obstruction bundle E(h1,h2)

defined below.

Remark 2.4: In the case of a global quotient X = Y/G, X(h1,h2) =
Yh1 ∩ Yh2/C(h1) ∩ C(h2).

The construction of the obstruction bundle E(h1,h2) is motivated by
the genus zero degree zero orbifold Gromov-Witten invariants (see
[CR]). The construction is very concrete and can be written down
explicitly without referring to GW-theory.

Let G0 = 〈h1, h2〉 be the subgroup of the local group of X(h1,h2)

generated by h1, h2. Suppose that k1 = ord(h1), k2 = ord(h2), k3 =
ord((h1h2)

−1). There is an orbifold Riemann sphere S with three orb-
ifold points with local groups Z/k1,Z/k2,Z/k3. Its orbifold fundamen-
tal group is

πorb
1 (S) = {λ1, λ2, λ3 | λki

i = 1 (i ≤ 3), λ1λ2λ3 = 1}.
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There is an obvious surjective homomorphism πorb
1 (S) → G0 by map-

ping λ1 → h1, λ2 → h2, λ3 → (h1h2)
−1. Using the theory of orbifold

covers, we obtain a smooth compact Riemann surface Σ such that G0

acts on Σ and Σ/G0 = S as orbifolds.
Let e(h1,h2) → X be the evaluation map. It is easy to check that G0

acts on the total space of e∗(h1,h2)
TX linearly. The obstruction bundle

E(h1,h2) is defined as

(2.13) E(h1,h2) = (H0,1(Σ) ⊗ e∗(h1,h2)
TX)G0.

Remark 2.5: There is a Dolbeault version of the orbifold coho-
mology ring (Dolbeault orbifold cohomology ring) with the identical
construction. We refer reader to [CR] for details.

3. Inner local systems and the twisted orbifold cohomology
ring

Recall that for (h1, · · · , hk) ∈ Tk, there are k + 1 evaluation maps

ei : X(h1,··· ,hk) → X(hi), i ≤ k,

and

ek+1 : X(h1,··· ,hk) → X(h1···hk).

Now, we introduce the notion of inner local system for an orbifold.

Definition 3.1: Suppose that X is an orbifold (almost complex or
not). An inner local system L = {L(g)}g∈T1 is an assignment of a flat
complex orbifold line bundle

L(g) → X(g)

to each sector X(g) satisfying the following compatibility conditions
(1-4).

(1): L(1) is a trivial orbifold line bundle with a fixed trivialization.
(2): There is a nondegenerate pairing L(g) ⊗ I∗L(g−1) → C = L(1).
(3): There is a multiplication

e∗1L(h1
) ⊗ e∗2L(h2)

θ→ e∗3L(h1h2)

over X(h1,h2) for (h1, h2) ∈ T2.
(4): θ is associative in the following sense. For (h1, h2, h3) ∈ T3, the

evaluation maps ei : X(h1,h2,h3) → X(hi) factor through

P = (P1, P2) : X(h1,h2,h3) → X(h1,h2) × X(h1h2,h3).
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Let e12 : X(h1,h2,h3) → X(h1h2). We first use P1 to define

θ : e∗1L(h1) ⊗ e∗2L(h2) → e∗12L(h1h2).

Then, we can use P2 to define a product

θ : e∗12L
∗
(h1h2)

⊗ L∗
(h3) → e∗4L

∗
(h1h2h3).

Taking the composition, we define

θ(θ(e∗1L(h1), e
∗
2L(h2)), e

∗
3L(h3)) : e∗1L(h1) ⊗ e∗2L(h2) ⊗ e∗3L(h3) → e∗4L

∗
(h4).

On the other hand, the evaluation maps ei also factor through

P ′ : X(h1,h2,h3) → X(h1,h2h3) × X(h2,h3).

In the same way, we can define another triple product

theta(e∗1L(h1), θ(e
∗
2L(h2), e

∗
3L(h3))) : e∗1L(h1) ⊗ e∗2L(h2) ⊗ e∗3L(h3) → e∗4L

∗
(h4).

Then, we require the associativity

θ(θ(e∗1L(h1), e
∗
2L(h2)), e

∗
3L(h3)) = θ(e∗1L(h1), θ(e

∗
2L(h2), e

∗
3L(h3))).

If X is a complex orbifold, we assume that L(g) is holomorphic.

Definition 3.2: Given an inner local system L, we define the twisted
orbifold cohomology

H∗
orb(X,L) =

⊕
(g)

H∗−2ι(g)(X(g), L(g)).

Definition 3.3: Suppose that X is a closed complex orbifold and L
is an inner local system. We define Dolbeault cohomology groups

(3.1) Hp,q
orb(X,L) =

⊕
(g)

Hp−ι(g),q−ι(g)(X(g); L(g)).

Proposition 3.4: If X is a Kähler orbifold, we have the Hodge
decomposition

(3.2) Hk
orb(X,L) =

⊕
k=p+q

Hp,q
orb(X,L).

Proof: Note that each sector X(g) is a Kähler orbifold. The propo-
sition follows by applying the ordinary Hodge theorem with twisted
coefficients to each sector X(g). �

The property (2) of Definition 3.1 can be used to show that the
Poincaré pairing defined in section 2.3 can be adapted to twisted orb-
ifold cohomology.
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Definition (Poincaré duality) 3.5: Suppose that X is a 2n-
dimensional closed almost complex orbifold. We define a pairing

(3.3) 〈 〉orb,L : Hd
orb(X,L) ⊗ H2n−d

orb (X,L) → C.

as the direct sum of

(3.4) 〈 〉(g)
orb,L : Hd−2ι(g)(X(g), L(g)) ⊗ H2n−d−2ι(g−1)(X(g−1), L(g−1)) → C

defined by

(3.5) 〈α, β〉(g)
orb,L =

∫
X(g)

α ∧ I∗β.

Note that L(g)I
∗L(g−1) = 1. Hence the integral (3.5) makes sense.

Theorem 3.6: The pairing 〈 〉orb,L is nondegenerate.

Proof: This follows from ordinary Poincaré duality on X(g) with
twisted coefficients.

There is also a version of Poincaré duality for twisted Dolbeault
cohomology. Suppose that X is a closed complex orbifold of complex
dimension n. Then X(g) is a closed complex orbifold.

Definition 3.7: We define a pairing

(3.6) 〈 〉orb,L : Hp,q
orb(X,L) ⊗ Hn−p,n−q

orb (X,L) → C.

as the direct sum of
(3.7)

〈 〉(g)
orb,L : Hp−ι(g),q−ι(g)(X(g), L(g))⊗Hn−p−ι(g−1),n−q−ι(g−1)(X(g−1), L(g−1)) → C

defined by

(3.8) 〈α, β〉(g)
orb,L =

∫
X(g)

α ∧ I∗β.

Theorem 3.8: The pairing (3.6) is nondegenerate.

Using property (2), we can identify I∗L(g−1)
∼= L∗

(g). There is a
canonical isomorphism

P : X(h1,h2) → X(h1,h2,(h1h2)−1).

Note that e3 ◦ P = I ◦ e3. Applying the above identifications to θ, we
obtain a triple pairing

θ̄ : e∗1L(h1) ⊗ e∗2L(h2) ⊗ e∗2L(h1h2)−1 → C.
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θ̄ is the property needed to show that the integral (2.12) makes sense
for twisted orbifold cohomology classes. Hence, we can define a twisted
orbifold product ∪orb,L. By checking the proof of associativity in [CR],
one can easily show that the associativity of θ is precisely the property
need to prove associativity of the twisted orbifold product ∪orb,L.

Theorem 3.9: Let X be a closed almost complex orbifold with
almost complex structure J and dimC X = n. There is a cup product
∪orb,L : Hp

orb(X;L) × Hq
orb(X;L) → Hp+q

orb (X;L) for any 0 ≤ p, q ≤ 2n
such that p + q ≤ 2n, which has the following properties:

1) The total twisted orbifold cohomology group

H∗
orb(X;L) =

⊕
0≤d≤2n

Hd
orb(X;L)

is a ring with unit e0
X ∈ H0

orb(X;L) under ∪orb,L, where e0
X is the

Poincaré dual to the fundamental class of the nontwisted sector.
2) Restricted to each Hd

orb(X;L) × H2n−d
orb (X;L) → H2n

orb(X;L) =
H2n(X,C),

(3.9)

∫
X

α ∪orb,L β = 〈α, β〉orb,L.

3) The cup product ∪orb,L is invariant under deformations of J .
4) When X is of integral degree shifting numbers, the total twisted

orbifold cohomology group H∗
orb(X;L) is integrally graded, and

we have supercommutativity

α1 ∪orb,L α2 = (−1)deg α1·deg α2α2 ∪orb,L α1.

5) Restricted to the nontwisted sectors, i.e., the ordinary cohomology
H∗(X;C), the cup product ∪orb,L equals the ordinary cup product
on X.

6) ∪orb,L is associative.

Similarly, we also have a holomorphic version.

Theorem 3.10: Let X be an n-dimensional closed complex orbifold
with complex structure J . The orbifold cup product

∪orb,L : Hp,q
orb(X;L) × Hp′,q′

orb (X;L) → Hp+p′,q+q′
orb (X;L)

has the following properties:

1) The total orbifold Dolbeault cohomology group is a ring with unit
e0

X ∈ H0,0
orb(X;L) under ∪orb,L, where e0

X is the class represented
by the constant 1 function on X.
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2) Restricted to each Hp,q
orb(X;L) × Hn−p,n−q

orb (X;L) → Hn,n
orb (X;L),

the integral
∫

X
α ∪orb,L β equals the Poincaré pairing 〈α, β〉orb,L.

3) The cup product ∪orb,L is invariant under deformation of J .
4) When X is of integral degree shifting numbers, the total twisted

orbifold Dolbeault cohomology group of X is integrally graded,
and we have supercommutativity

α1 ∪orb,L α2 = (−1)deg α1·deg α2α2 ∪orb,L α1.

5) Restricted to the nontwisted sectors, i.e., the ordinary Dolbeault
cohomologies H∗,∗(X;C), the cup product ∪orb,L equals the ordi-
nary wedge product on X.

6) The cup product is associative.
7) When X is Kähler, the cup product ∪orb,L coincides with the

twisted orbifold cup product over the twisted orbifold cohomology
groups H∗

orb(X;L) under the relation

Hr
orb(X;L) ⊗C =

⊕
p+q=r

Hp,q
orb(X;L).

Remark 3.11: If X is open, we can define the usual twisted orbifold
cohomology H∗

orb(X,L) and twisted orbifold cohomology with compact
support H∗

orb,c(X,L) in the same fashion. The Poincaré pairing should

be understood as the pairing between Hd
orb(X,L) and H2n−d

orb,c (X,L).

4. Orbifold fundamental group and discrete torsion

First, we recall the definition of orbifold fundamental group.

Definition 4.1: A smooth map f : Y → X is an orbifold cover iff
(1) each p ∈ Y has a neighborhood Up/Gp such that the restriction of
f to Up/Gp is isomorphic to a map Up/Gp → Up/Γ where Gp ⊂ Γ is a
subgroup. (2) Each q ∈ X has a neighborhood Uq/Gq for which each
component of f−1(Uq/Gq) is isomorphic to Uq/Γ′ such that Γ′ ⊂ Gq is
a subgroup. An orbifold universal cover is an orbifold cover f : Y → X
of X satisfying the properties (i) Y is connected; (ii) if f ′ : Y ′ → X is
an orbifold cover, then there exists an orbifold cover h : Y → Y ′ such
that f = f ′ ◦ h. If Y exists, we call Y the orbifold universal cover of
X and the group of deck translations the orbifold fundamental group
πorb

1 (X) of X.

By Thurston [T], an orbifold universal cover exists. It is clear from
the definition that the orbifold universal cover is unique. Suppose that
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f : Y → X is an orbifold universal cover. Then

(4.1) f : Y − f−1(ΣX) → X − ΣX

is a cover in the usual sense with G = πorb
1 (X) as covering group,

where ΣX is the singular locus of X. Therefore, X = Y/G and there
is a surjective homomorphism

(4.2) pf : π1(X − ΣX) → G.

(It does not follow that (4.1) is a universal cover, and so pf need not
be an isomorphism.)

Remark 4.2: Suppose that X = Z/G for an orbifold Z and Y is
the orbifold universal cover of Z. By the definition, Y is an orbifold
universal cover of X. It is clear that there is a short exact sequence

(4.3) 1 → π1(Z) → πorb(X) → G → 1.

Example 4.3: Consider the Kummer surface T 4/τ where τ is the
involution

(4.4) τ(eit1 , eit2 , eit3 , eit4) = (e−it1 , e−it2 , e−it3 , e−it4).

The universal cover is R4. The group G of deck translations is gener-
ated by translations λi by an integral point and the involution

τ : (t1, t2, t3, t4) → (−t1,−t2,−t3,−t4).

It is easy to check that

(4.5) G = {λi(i = 1, 2, 3, 4), τ |τ 2 = 1, τλi = λ−1
i τ, }

where λi represents translation and τ represents involution.

Example 4.4: Let T 6 = R6/Γ where Γ is the lattice of integral
points. Consider Z2

2 acting on T 6 lifted to an action on R6 as

σ1(t1, t2, t3, t4, t5, t6) = (−t1,−t2,−t3,−t4, t5, t6)

σ2(t1, t2, t3, t4, t5, t6) = (−t1,−t2, t3, t4,−t5,−t6)

σ3(t1, t2, t3, t4, t5, t6) = (t1, t2,−t3,−t4,−t5, t6).

This example was considered by Vafa-Witten [VW]. The orbifold fun-
damental group

(4.6)
πorb

1 (T 6/Z2
2) =

{τi(1 ≤ i ≤ 6), σj(1 ≤ j ≤ 3)|σ2
i = 1, σ1τi = τ−1

i σ1(i �= 5, 6),
σ2τi = τ−1

i σ2(i �= 3, 4), σ3τi = τ−1
i σ3(i �= 1, 2)}.
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Example 4.5: Consider the orbifold Riemann surface Σg of genus g
and n orbifold points z = (x1, . . . , xn) with orders k1, . . . , kn. Then,
(4.7)

πorb
1 (Σg) = {λi(i ≤ 2g), σi(i ≤ n)|σ1 . . . σn

∏
i

[λ2i−1, λ2i] = 1, σki
i = 1},

where λi are the generators of π1(Σg) and σi are the generators of Σg−z
represented by a loop around each orbifold point. Note that πorb

1 (Σg)

is just π1(Σg − z) modulo the relation σki
i = 1. This suggests that one

can first take the cover of Σg − z induced by πorb
1 (Σ). The relation

σki
i = 1 implies that the preimage of the punctured disc around xi is

a punctured disc. Then we can fill in the center point to obtain the
orbifold universal cover. (This example was taken from [SC].)

Definition 4.6: A discrete torsion α is defined as a cohomology class
α ∈ H2(πorb

1 (X), U(1)).

If X = Z/G for a finite group G, by Remark 3.2, there is a surjective
homomorphism

π : πorb
1 (X) → G.

π induces a homomorphism

(4.8) π∗ : H2(G, U(1)) → H2(πorb
1 (X), U(1)).

Hence, an element of H2(G, U(1)) induces a discrete torsion of X.
They are many ways to define H2(G, U(1)). The definition H2(G, U(1)) =

H2(BG, U(1)) is a very useful definition for computation since we can
use algebro-topological machinery. However, we can also use the orig-
inal definition in terms of cocycles. A 2-cocycle is a map α : G × G →
U(1) satisfying

(4.9) αg,1 = α1,g = 1, αg,hkαh,k = αg,hαgh,k,

for any g, h, k ∈ G. We denote the set of 2-cocycles by Z2(G, U(1)).
For any map ρ : G → U(1) with ρ1 = 1, its coboundary is defined by
the formula

(4.10) (δρ)g,h = ρgρhρ
−1
gh .

Let B2(G, U(1)) be the set of coboundaries. Then H2(G, U(1)) =
Z2(G, U(1))/B2(G, U(1)). H2(G, U(1)) naturally appears in many im-
portant places of mathematics. For example, it classifies the group ex-
tensions of G by U(1). If we have a unitary projective representation
of G, it naturally induces a class of H2(G, U(1)). In many instances,
this class completely classifies the projective unitary representation. In



DISCRETE TORSION AND TWISTED... 15

fact, it is in this context that discrete torsion arises in orbifold string
theory.
Definition 4.7: For each 2-cocycle α, we define its phase

(4.11) γ(α)g,h = αg,hα
−1
ghg−1,g.

It is clear that γ(α)g,g = 1.

Lemma 4.8:

(1): γ(α)kh,g = γ(α)k,hgh−1γ(α)h,g

(2): Suppose that gh = hg, gk = kg. Then γ(δρ)g,h = 1, γ(α)g,h =
γ(α)−1

h,g and γ(α)kh,g = γ(α)k,gγ(α)h,g.

Item (2) implies that the map Lα
g = γ·,g : C(g) → U(1) is a group

homomorphism. We call Lα
g an α-twisted character.

Proof: (2) is an obvious consequence of (1).

γ(α)kh,g = αkh,gα
−1
khgh−1k−1,kh.

α−1
khgh−1k−1,kh = α−1

khgh−1k−1,gα
−1
khgh−1,hαk,h.

α−1
khgh−1,h = α−1

k,hgαk,hgh−1α−1
hgh−1,h.

Then, we have

αkh,gα
−1
khgh−1k−1,gα

−1
k,hgαk,hgh−1α−1

hgh−1,hαk,h = αk,hgh−1α−1
khgh−1k−1,gαh,gα

−1
hgh−1,h.

Hence,

γ(α)kh,g = γ(α)k,hgh−1γ(α)h,g.

Next, we calculate discrete torsions for some groups. We first con-
sider the case of a finite abelian group G. In this case H i(G,Q) = 0
for i �= 0. The exact sequence

0 → Z → C → C∗ → 1

implies that H2(G, U(1)) = H2(G,C∗) = H3(G,Z). By the universal
coefficient theorem, H3(G,Z) = H2(G,Z).

Example 4.9 G = Z/n×Z/m: Note that H2(G, U(1)) = H2(G,Z) =
Z/n⊗Z/m = Z/gcd(n, m). In this case, one can write down the phase
of the discrete torsion explicitly as in [VW]. Let ξ (resp. ζ) be an nth
(resp. mth) root of unity. Any element of Z/n × Z/m can be written
as (ξa, ζb). Let p = gcd(n, m) and ωp = e2πi/p. Then

γ(ξa,ζb),(ξa′ ,ζb′) = ωm(ab′−ba′)
p
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is the phase of a discrete torsion for m = 1, . . . , p. (There are p phases,
each corresponding to a different discrete torsion.) It is trivial to gen-
eralize this construction to an arbitrary finite abelian group.

5. Discrete torsions and inner local systems

Suppose that f : Y → X is an orbifold universal cover and G is the
orbifold fundamental group which acts on Y such that X = Y/G. For
any 1 �= g ∈ G, g acts on Y as a morphism. We define the orbifold
version of the fixed point set Yg of g as a fiber product of the morphisms
Id, g : Y → Y . Then Yg is a smooth suborbifold in the sense that there
is an orbifold embedding Yg → Y . However, Yg need not be a subset
of Y . Then X(g) = Yg/C(g) is obviously a twisted sector of X, where
C(g) is the centralizer of g. It is clear that Yh−1gh is diffeomorphic to
Yg by the action of h. Some twisted sectors may not arise in such a
fashion. We call this kind of sector a dormant sector.

Let e : X(g) → X be the evaluation map. We can view Y → X as
an orbifold principal πorb

1 (X) bundle over X. Hence, we can pull back
Z = e∗Y → X(g) to an orbifold principal πorb

1 (X)-bundle over X(g).
X(g) is dormant iff the πorb

1 (X)-action on Z has no kernel. Moreover,
Z is a πorb

1 (X)-invariant suborbifold (possibily disconnected). We call
Z a πorb

1 (X) effective suborbifold. We will treat a dormant sector the
same as the nontwisted sector.

Let α be a discrete torsion. For a dormant sector, we will always
assign a trivial line bundle. We can use Lα

g to define a flat complex
orbifold line bundle

Lg = Yg ×Lα
g
C

over X(g). We can work on the sector X(g) = Yg/C(g) directly as the
older version of this article does. We can also use some of ideas from
[K] to lift everything to the fixed point set Yg.

As an orbifold, the inertia orbifold �(g)∈T1
X(g) is the quotient of

the disjoint union of (�g∈πorb
1 (X)Yg) and πorb

1 (X)-effective suborbifolds

by the action of πorb
1 (X). The inner local system corresponds to the

trivial line bundle Yg ×Cg. For the πorb
1 (X)-effective suborbifold Z, it

is also trivial. We denote its fiber by C1 and treat it the same as the
nontwisted sector.

Now, we describe the action of πorb
1 (X), the pairing and the product.

Let 1h ∈ Ch be the identity. We define g : Ch → Cghg−1 by g(1h) =
γg,h1ghg−1. To show that it defines an action, we need to check that
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g1g2(1h) = g1(g2(1h). It follows from Lemma 4.8 that

γg1g2,h = γg1,g2hg−1
2

γg2,h.

The product Cg ⊗ Ch → C is defined by 1g · 1h = αg,h1gh. The
associativity of the product follows from the cocycle condition

αg,hαgh,k = αg,hkαh,k.

Note that the product gives 1g · 1g−1 = αg,g−111. This is nondegenerate
since αg,g−1 ∈ S1.

We still have to check that the product is invariant under the πorb
1 (X)

action,i.e.

g(1h) · g(1k) = αh,kg(1hk).

Using the definition of action, it is equivalent to the formula

γg,hγg,kαghg−1,gkg−1 = αh,kγg,hk.

The above formula is equivalent to

Lemma 5.1:

αg,hα
−1
ghg−1,gαg,kαgkg−1,gαghg−1,gkg−1 = αh,kαg,hkα

−1
ghkg−1,g.

Proof: Recall the cocycle condition

αg1,g2αg1g2,g3 = αg1,g2g3αg2,g3.

Using g1 = g, g2 = h, g3 = k, we have

αg,hαgh,k = αg,hkαh,k.

Using g1 = ghg−1, g2 = g, g3 = k, we have

α−1
ghg−1,gαg,kαghg−1,gk = αgh,k.

Using g1 = ghg−1, g2 = gkg−1, g3 = g, we have

αghg−1,gkg−1α−1
ghg−1,gkα

−1
gkg−1,g = α−1

ghkg−1,g.

Multiplying all of them together, we obtain Lemma. �.
By dividing the action of πorb

1 (X), we obtain

Theorem 5.2: Lα = {L(g)}(g)∈T1 with θ given by the quotient of
product is an inner local system of X.

Definition 5.3: Suppose that α is a discrete torsion. We define the
twisted orbifold cohomology H∗

orb,α(X,C) = H∗
orb(X,Lα).
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6. Examples

Only a few examples of global quotients have been computed by physi-
cists (see [VW],[D]). It is still a very important problem to develop
a general machinery to compute discrete torsion and twisted orbifold
cohomology. Here we compute five examples.

Examples 6.1,6.3 have nontrivial discrete torsion. Example 6.1 is
a global quotient and the example 6.2 is a non-global quotient. Ex-
ample 6.2 has the phenomenon that most of the twisted sectors are
dormant sectors. The third example is the Joyce example, where there
is no nontrivial discrete torsion. However, there are nontrivial inner
local systems. We will compute the twisted orbifold cohomology given
by nontrivial inner local systems to match Joyce’s desingularizations.
Orbifold cohomology is strongly intertwined with group theory. We
demonstrate this in the last two examples.

Example 6.1 T 4/Z2 × Z2: Here T 4 = C2/Λ, where Λ is the lattice
of integral points. Suppose that g, h are generators of the first and the
second factor of Z2 × Z2. The action of Z2 × Z2 on T 4 is defined as

(6.1) g(z1, z2) = (−z1, z2), h(z1, z2) = (z1,−z2).

The fixed point locus of g consists of four copies of T 2. When we
divide it by the remaining action generated by h, we obtain twisted
sectors consisting of four copies of S2. The degree shifting number for
these twisted sectors is 1

2
. For the same reason, the fixed point locus

of h gives twisted sectors consisting of four copies of S2 with degree
shifting number 1

2
. The fixed point locus of gh consists of sixteen points,

which are fixed by the whole group. The degree shifting number of the
sixteen points is 1. An easy calculation shows that the nontwisted
sector contributes one generator to the degree 0 and degree 4 orbifold
cohomology and two generators to degree 2 orbifold cohomology and
no other. Using this information, we can compute the ordinary orbifold
cohomology group

(6.2) b0
orb = b4

orb = 1, b1
orb = b3

orb = 8, b2
orb = 18.

By example 2.10, H2(Z2×Z2, U(1)) = Z2. By Remark 2.2, the nontriv-
ial generator of H2(Z2 × Z2, U(1)) induces a discrete torsion α. Next,
we compute the twisted orbifold cohomology H∗

orb,α(T 4/Z2 × Z2,C).
Note that γ(α)gh,g = γ(α)gh,h = −1. Hence, the flat orbifold bundles
over the twisted sectors given by 16 fixed points of gh are nontrivial.
Therefore, they contribute nothing to twisted orbifold cohomology. For
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two-dimensional twisted sectors, we consider a component of the fixed
point locus of g. By the previous description, it is T 2. The element h
acts on T 2. Then the twisted sector S2 = T 2/{h}. We observe that
the flat orbifold line bundle over S2 is constructed as L = T 2 ×Lα

g
C.

Hence H∗(S2, L) is isomorphic to the space of invariant cohomology of
T 2 under the action of h twisted by γ(α)g as h(β) = γ(α)g,hh

∗β. By
example 2.10, γ(α)g,h = −1. The invariant cohomology is H1(T 2,C).
Using the degree shifting number to shift up its degree, we obtain the
twisted orbifold cohomology

(6.3) b0
orb,α = b4

orb,α = 1, b1
orb,α = b3

orb,α = 0, b2
orb,α = 18.

Example 6.2 WP (2, 2d1) × WP (2, 2d2) (d1, d2 > 1, (d1, d2) = 1):
Here WP (2, 2d) is the weighted projective space of weighted (2, 2d).
WP (2, 2d1) × WP (2, 2d2) is not a global quotient unless d1 = d2 = 1.
In fact, its orbifold universal cover is WP (1, d1) × WP (1, d2) and
WP (2, 2d1) × WP (2, 2d2) = WP (1, d1) × WP (1, d2)/Z2 × Z2. Hence,
the orbifold fundamental group is Z2 × Z2. Therefore, there is a non-
trivial discrete torsion α ∈ H2(Z2 × Z2, U(1)).

Next, we describe the twisted sectors. Suppose that p = [0, 1], q =
[1, 0] ∈ WP (1, d1). We also use p, q to denote its image in WP (2, 2d1).
We use p′, q′ to denote the corresponding points in WP (1, d2), WP (2, 2d2).
The spaces {p}×WP (2, 2d2), {p′}×WP (2, 2d1) give rise to two twisted
sectors with degree shifting number 1

2
. The spaces {q}×WP (2, 2d2), {q′}×

WP (2, 2d1) give rise to 2d1−1, 2d2−1 twisted sectors with degree shift-
ing numbers i

2d1
, j

2d2
for 1 ≤ i ≤ 2d1 − 1, 1 ≤ j ≤ 2d2 − 1. The spaces

{p} × {p′} give rise to a twisted sector with degree shifting number 1.
The spaces {p} × {q′} give rise to 2d2 − 1 twisted sectors with degree
shifting numbers 1

2
+ i

2d2
for 1 ≤ i ≤ 2d2−1. The spaces {q}×{p′} give

rise to 2d1 − 1 twisted sectors with degree shifting numbers 1
2
+ i

2d1
for

1 ≤ i ≤ 2d1 − 1. {q} × {q′} give rise to 4d1d2 − 1 twisted sectors with
degree shifting numbers i

2d1
+ j

2d2
for all i, j except (i, j) = (0, 0). Using

this information, we can write down ordinary orbifold cohomology
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b0
orb = b4

orb = 1, b1
orb = b3

orb = 6, b2
orb = 6

b
i

d1
orb = b

i
d2
orb = 1, b

1+ i
d1

orb = b
1+ i

d2
orb = 3, b

2+ i
d1

orb = b
2+ i

d2
orb = 2,

1 ≤ i ≤ d1 − 1, 1 ≤ j ≤ d2 − 1

b
i

d1
+ j

d2
orb = 1, 0 ≤ i ≤ 2d1 − 1, 0 ≤ j ≤ 2d2, (i, j) �= (0, 0), (d1, d2).

(6.4)

Next, we compute H∗
orb,α. In this example, most of twisted sectors

are dormant sectors. To find the nondormant sectors, recall that
WP (2, 2d1) × WP (2, 2d2) = WP (1, d1) × WP (1, d2)/Z2 × Z2. Let
g be the generator of the first factor and h be the generator of the
second factor. The fixed points of g are {p, q} × WP (1, d2). We have
two non-dormant sectors obtained by dividing by the remaining action
generated by h. However, γ(α)g,h = −1. There is no invariant co-
homology of WP (1, d2) under the action of h twisted by Lα

g . Hence,
these two nondormant twisted sectors give no contribution to twisted
orbifold cohomology. Their degree shifting numbers are 1. For the
same reason, WP (1, d1) × {p′, q′}/(g) gives no contribution to twisted
orbifold cohomology. The fixed point locus of gh consists of four points
which give four nondormant sectors. Again, their degree shifting num-
bers are 1. As we saw in the last example, their flat orbifold bundles
are nontrivial. Hence, they give no contribution to twisted orbifold
cohomology. Therefore, the twisted orbifold cohomology is

b0
orb,α = b4

orb,α = 1, b1
orb,α = b3

orb,α = 2, b2
orb,α = 2

b
i

d1
orb,α = b

i
d2
orb,α = 1, b

1+ i
d1

orb,α = b
1+ i

d2
orb,α = 3, b

2+ i
d1

orb = b
2+ i

d2
orb,α = 2,

1 ≤ i ≤ d1 − 1, 1 ≤ j ≤ d2 − 1

b
i

d1
+ j

d2
orb,α = 1, 0 ≤ i ≤ 2d1 − 1, 0 ≤ j ≤ 2d2, (i, j) �= (0, 0), (d1, d2).

(6.5)

Example 6.3 T 6/Z4: Here, T 6 = C3/Λ, where Λ is the lattice of
integral points. The generator of Z4 acts on T 6 as

(6.6) κ : (z1, z2, z3) → (−z1, iz2, iz3).

This example has been studied by D. Joyce [JO], where he constructed
five different desingularizations. However, in this case there is no dis-
crete torsion that induces nontrivial orbifold cohomology.
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First of all, the nontwisted sector contributes one generator to H0,0
orb, H

3,3
orb,

five generators to H1,1
orb, H

2,2
orb and two generators to H2,1

orb, H1,2
orb. The fixed

point locus of κ, κ3 consists of the 16 points

{(z1, z2, z3) + Λ : z1 ∈ {0, 1

2
,

i

2
,
1

2
+

i

2
}, z2, z3 ∈ {0, 1

2
+

i

2
}.

These points are fixed by Z4. Therefore, they generate 32 twisted
sectors of which 16 correspond to the conjugacy class (κ) and 16 cor-
respond to the conjugacy class (κ3). The sector with conjugacy class
(κ) has degree shifting number 1. The sector with conjugacy class (κ3)
has degree shifting number 2.

The fixed point locus of κ2 consists of 16 copies of T 2, given by

{(z1, z2, z3) + Λ : z1 ∈ C, z2, z3 ∈ {0, 1

2
,
i

2
,
1

2
+

i

2
}}

Twelve of the 16 copies of T 2 fixed by κ2 are identified in pairs by the
action of κ, and these contribute 6 copies of T 2 to the singular set of
T 6/Z4. On the remaining 4 copies κ acts as −1, so these contribute
4 copies of S2 = T 2/{±1} to the singular set. The degree shifting
number of these 2-dimensional twisted sectors is 1.

Next, we construct inner local systems. We start with two-dimensional
twisted sectors. Since κ−2 = κ2, condition (2) of Definition 3.1 tells
us that the flat orbifold line bundle L over two-dimensional sectors
has the property L2 = 1. Now, we assign trivial line bundles to all
T 2-sectors and k (k = 0, 1, 2, 3, 4) S2 = T 2/{±1}-sectors. For the re-
maining S2 = T 2/{±1}-sectors, we assign a flat orbifold line bundle
T 2 × C/{±1}. For the zero-dimensional sectors, they are all points
of two-dimensional sectors. If we assign a trivial bundle on a two-
dimensional sector, we just assign the trivial bundle to its point sectors.
For these two- dimensional sectors with nontrivial flat line bundle, we
need to be careful to choose the flat orbifold line bundle on its point sec-
tors to ensure the condition (3) of Definition 3.1. Suppose that Σ is one
of the 2-dimensional sectors supporting nontrivial flat orbifold line bun-
dle. It contains four singular points which generate the point sectors.
Let x be one of these four points. The point x generates two sectors
given by the conjugacy classes (κ), (κ3). For condition (3), we have to
consider the conjugacy class of the triple (g1, g2, g3) with g1g2g3 = 1.
The only nontrivial choices are (g) = (κ, κ, κ2), (κ2, κ3, κ3). The corre-
sponding components of X(g) are exactly these singular points. Clearly,
x is fixed by the whole group Z4. The orbifold line bundle is given
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by the action of Z4 on C. Consider the component of X(g) gener-
ated by x. The pull-back of the flat orbifold line bundle from the
2-dimensional sector ((κ2)-sector) is given by the action κv = −v.
A moment’s thought tells us that for the sectors (κ), (κ3), we should
assign a flat orbifold line bundle given by the action of Z4 on C as
κv = iv. It is easy to check that for the above choices the condition
(3) is satisfied for X(g). It is easy to check condition (4) for our choice.
Therefore, the twisted sectors given by (x, (κ)), (x, (κ3)) give no con-
tribution to twisted orbifold cohomology. Suppose that the resulting
local system is Lk. For the sectors with trivial line bundle, they con-
tribute 6 + k generators to H1,1

orb, H
2,2
orb and 6 generators to H2,1

orb, H
1,2
orb.

Its point sectors contribute 4k generators to H1,1
orb, H

2,2
orb. The remaining

sectors contribute 4− k generators to H2,1
orb, H

1,2
orb. Its point sectors give

no contribution. Moreover, the nontwisted sector contributes

h0,0 = h3,3 = 2, h1,1 = 5.

In summary, we obtain

dim H0,0
orb(T

6/Z4,Lk) = dim H3,3
orb(T

6/Z4,Lk) = 1,

dim H1,1
orb(T

6/Z4,Lk) = dim H2,2
orb(T

6/Z4,Lk) = 11 + 5k,

(6.7) dim H1,2
orb(T

6/Z4,Lk) = dim H2,1
orb(T

6/Z4,Lk) = 12 − k

Our calculation matches the Betti numbers of Joyce’s desingulariza-
tions.

The orbifold cohomology rings of the following examples have been
computed in [CR]. Here, we compute their twisted version.

Example 6.4: Let’s consider the case that X is a point with a
trivial group action of G. Suppose that α ∈ H2(G, U(1)) is a discrete
torsion. We want to compute H∗

orb,α(X,C). The twisted sector X(g) is

a point with group C(g). It is obvious that H0(X(g), L
α
g ) = 0 unless

Lα
g = 1. Recall that a conjugacy class (g) is α-regular iff Lα

g = 1.
Hence, only the α-regular classes will contribute. Therefore, orbifold
cohomology is generated by α-regular conjugacy classes of elements of
G, which is also the case for the center of the twisted group algebra
Cα[G]. From Theorem 5.3, it is clear that the product is precisely
the multiplication of the twisted group algebra. Therefore, as a ring
H∗

orb,α(X,C) is isomorphic to the center of the twisted group algeba
Cα[G].
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Example 6.5: Suppose that G ⊂ SL(n,C) is a finite subgroup.
Then, Cn/G is an orbifold. Suppose that α ∈ H2(G, U(1)) is a discrete
torsion. For any g ∈ G, the fixed point set Xg is a vector subspace
and X(g) = Xg/C(g). By definition, L(g) = Xg × γ(α)gC. Therefore,
H∗(X(g), L(g)) is the subspace of H∗(Xg,C) invariant under the twisted
action of C(g),

(6.8) h ◦ β = γ(α)g(h)h∗β

for any h ∈ C(g), β ∈ H∗(Xg,C). However, H i(Xg,C) = 0 for i ≥ 1.
Moreover, if γ(α)g is nontrivial, H0(Xg, L(g)) = 0. Therefore, Hp,q

orb = 0
for p �= q and Hp,p

orb is a vector space generated by the conjugacy classes
of α-regular elements g with ι(g) = p. Therefore, we have a natural
decomposition

(6.9) H∗
orb,α(X,C) = Z[Cα[G]) =

∑
p

Hp,

where Hp is generated by the conjugacy classes of α-regular elements
g with ι(g) = p. The ring structure is also easy to describe. Let
x(g) be the generator corresponding to the zero cohomology class of
the twisted sector X(g) such that g is α-regular. The cup product is
exactly same as in the nontwisted case except we replace conjugacy
class by α-conjugacy class, and multiplication of the group algebra by
the multiplication of the twisted group algebra.

References

[CR] W. Chen and Y. Ruan, A new cohomology theory for orbifold,
math.AG/0004129

[CR1] W. Chen and Y. Ruan Orbifold quantum cohomology, math.AG/0005198
[D] R. Dijkgraaf, Discrete torsion and symmetric product, hep-th 9912101
[JO] D. Joyce, On the topology of desingularizations of Calabi-Yau orbifolds,

math.AG/9806146
[K] R. Kaufmann, Orbifolding Frobenius algebras, math.AG/0107163
[SC] P. Scott, The geometries of 3-manifolds, Bull. London. Math. Soc., 15

(1983), 401-487.
[T] W. Thurston, Three-dimensional geometry and topology, Princeton Lecture

Notes
[VW] C. Vafa and E. Witten, On orbifolds with discrete torsion, J.Geom.Phys.

15 (1995) 189



24 YONGBIN RUAN

Department of Mathematics, University of Wisconsin-Madison
Madison, WI 53706

Partially supported by the National Science Foundation .


