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For least squares problems of minimizing ||b — Az||2 where A is a large sparse m X n
(m > n) matrix, the common method is to apply the conjugate gradient method to the
normal equation ATAx = ATb. However, the condition number of AT A is square of
that of A, and convergence becomes problematic for severely ill-conditioned problems
even with preconditioning. In this paper, we propose two methods for applying the
GMRES method to the least squares problem by using an n X m matrix B. We give
the necessary and sufficient condition that B should satisfy in order that the proposed
methods give a least squares solution. Then, for implementations for B, we propose
an incomplete QR decomposition IMGS(l). Numerical experiments showed that the
simplest case [ = 0 gives the best results, and converges faster than previous methods
for severely ill-conditioned problems. The preconditioner IMGS(0) is equivalent to the
case B = (diag(ATA))=1AT, so (diag(ATA))"TAT was the best preconditioner among
IMGS(l) and Jennings’ IMGS(7). On the other hand, CG-IMGS(0) was the fastest for
well-conditioned problems.

Key words: least squares problems, GMRES, preconditioning, incomplete QR decompo-
sition, singular systems
1. Introduction

In this paper, we consider the linear least squares problem

Inin [|b — Aw|l2, (1.1)

where A is an m x n (m > n) large sparse matrix with full column rank.

The popular methods to solve the problem (1.1) are, the direct method [2]
and the iterative method applying the Conjugate Gradient (CG) method [5] to the
normal equation

AT Az = A"b. (1.2)

This iterative method is called the CGLS method [2].

fThe research of this author was supported by the Grant-in-Aid for Scientific Research of the
Ministry of Education, Culture Sports, Science and Technology, Japan.



186 T. ITo and K. HAYAMI

The direct method is reliable, but computation time and storage become pro-
hibitive for large problems. On the other hand, the iterative method generally
requires small storage, and can be fast in execution time. However, this applies
only if the convergence proceeds fast enough.

Here, let AT be the generalized inverse of A € R™*", rank A = r, and let
o1 and o, be the largest and smallest (nonzero) singular value of A, respectively.
Then, the condition number of A is

(o
MA%=WMMMWF=57

T

and that of ATA is

2
Km1@2<m> = K(A)2.
JT

The convergence speed of the CGLS method is known to depend on k(AT A) =
k(A)?, including the case when A is rank deficient [2]. Hence, the convergence of
the CGLS method may be slow for ill-conditioned problems, so that preconditioning
becomes necessary.

Instead of using the normal equation, Zhang and Oyanagi [10], [11], [12] in-
troduced mapping the least squares problem (1.1) to a system of linear equations
with a large m x m square coefficient matrix AB by an n X m matrix B and then
applying the Orthomin(k) method. By selecting the mapping matrix B properly,
the condition number becomes small, and the convergence can be improved.

Following their work, in this paper, we will first consider applying the Gen-
eralized Minimal Residual (GMRES(k)) method to the system of linear equations
with the (large) m x m coefficient matrix AB. Next, we will propose using the
(small) n x n matrix BA, which is equivalent to applying the GMRES(k) method
to the system of linear equations BAx = Bb. Numerical experiments show that
this latter approach requires less computation. We will also derive the necessary
and sufficient condition that the mapping matrix B should satisfy in order that
both methods give a least squares solution. As the mapping matrix B, we propose
using an incomplete QR decomposition. Numerical experiments show that the
proposed method is faster and robust compared to previous methods, for severely
ill-conditioned problems.

2. Previous methods for the linear least squares problems

2.1. Direct methods
The common direct method to solve (1.1) is to use QR decomposition [2].
The QR decomposition of an m x n rectangular matrix A is given by

A=QR,

where @ is an m X n rectangular matrix whose column vectors are orthonormal,
ie. QTQ = I, where I,, is the n x n identity matrix, and R is an n x n upper
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triangular matrix. If this decomposition can be carried out, the normal equation
(1.2) becomes

RTRx = RTQ", (2.1)
and when A is full column rank, R is nonsingular, and (2.1) becomes
Rz = Q"b. (2.2)

Since R is an upper triangular matrix, (2.2) can be solved by backward substitu-
tion. The QR decomposition can be carried out in a finite number of steps. There
are various algorithms for implementing the QR decomposition, among which the
Householder method and the (modified) Gram—Schmidt method is commonly used.
The direct method is reliable, but when the problem is large, the required compu-
tational work and memory become huge.

2.2. Iterative methods using the normal equation

By transforming to the normal equation (1.2), the problem becomes a system
of linear equations whose coefficient matrix is square and symmetric positive defi-
nite. The method of applying the conjugate gradient (CG) method to the normal
equation is called the CGLS method [2]. The algorithm of the CGLS method is
as follows.

Algorithm 2.1. CGLS method

Choose x.

’f‘() = AT(b — A:EQ)

Py = To

for i =0,1,2,... until convergence

L (74,74)

¥ = (p, AT Ap,)

Tit1 = T; + oup;

- -, T

Tip1 =71 — o A" Ap;
o (Pi7)

ﬁ’ T (Pis1,Tio1)

Py = Tit1 + Bip;

end

Tterative methods generally require relatively small memory and may be
computationally efficient. However, this is true only when the convergence is
sufficiently fast. The condition number of AT A is square of the condition number
of A. Hence, the convergence may be slow for ill-conditioned problems so that pre-
conditioning becomes necessary. As preconditioners, diagonal scaling, incomplete
Cholesky decomposition, and incomplete QR decomposition are commonly used [2].
Recently, a robust preconditioner was proposed in [1]. In this paper, we will look at
preconditoning methods based on incomplete QR decomposition, in comparing the
use of the GMRES method to the use of the CG method for least squares problems.
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2.3. Incomplete QR decomposition

The incomplete QR decomposition as a preconditioner was proposed by
Jennings [6], and it can be classified roughly into two ways. One is the IMGS (In-
complete Modified Gram—Schmidt decomposition) method in which the incomplete
decomposition is realized by an incomplete modified Gram—Schmidt method. The
other is the IG (Incomplete Givens) method in which the incomplete decomposition
is realized by Givens rotations [6].

The IMGS method uses a threshold for the elements in R, where the magnitude
of each off-diagonal element r;; is compared against a threshold 7 times the norm of
the corresponding column norm d; = ||a;||2, i.e., elements which satisfy |r;;| < 7d;
are dropped, where A = [a1,...,a,] [2]. In the IMGS method, A is approximated
by QR, where R is an upper triangular matrix with positive diagonal elements, and

(q1,---,q,) ={ai,...,a,),
where (aq,...,a,) denotes the subspace spanned by a1, ..., a,. The algorithm of
the IMGS method is as follows, where a'”) = a; (i=1,...,n).

i

Algorithm 2.2. IMGS method (Jennings’ version)

fori=1,2,....,n
. )
ris = |||, @i = 55
for j=i+1,...,n
If |ri;| < 7d;, then r;; = 0, end.
a§1+1) _ a§z) ~ g
end
end

If A is full column rank, this algorithm never breaks down.

Saad proposed an alternative algorithm in which the pg largest (in absolute
value) elements in a column of () and the pr largest elements in a row of R are kept,
where pg and pr are two chosen parameters [8]. This algorithm is given as follows.

Algorithm 2.3. IMGS method (Saad’s version)

fori=1,2,....,n
. (4)
= o], 00 = %
Determine the pg largest elements of g; and assign 0 to the other elements.
for j=i+1,...,n
Tij = q?aﬁ-”
Determine the pg largest r;;’s for i+1 < j < n, and assign 0 to the others.
o) — g g
7 7 J
end
end
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When these IMGS preconditioners are applied to the normal equation, we have
RTATAR' Rz = R~ A"b,

or

Az = b, (2.3)
where A = R"TATAR™!, & = Rw, b= R"TATb.
Then, the conjugate gradient (CG) method is applied to (2.3).

2.4. CR-LS(k) method

Zhang and Oyanagi [10], [11], [12] proposed a different type of method in which
they applied the Orthomin(k) method to (1.1) by introducing an n X m mapping
matrix B, instead of solving the normal equation, so that the condition number
becomes smaller and improved convergence of the iterative method is expected.
This method is called the CR-LS(k) method. The algorithm of the CR-LS(k)
method is as follows.

Algorithm 2.4.  CR-LS(k) method

Choose xg.
ro =b— Axy, p, = Brg
for : =0,1,2,... until convergence

= (riAp)
v (ApirApi)

Tit1 = T; +oup;

7‘1;_;,_1 =T, — OélApl

for j =0 to min(k — 1,4)
(ABriy1,Ap;_;)

Bii-i =~ p, A, )
end (ke
Piy1 = Bri+ Z;n;%( o Bii=iPi-j
end

3. The GMRES(k)-LS method

The GMRES(k) method [9] is an efficient and robust Krylov subspace method
for solving systems of linear equations

Ax = b,

where A is square, nonsingular and nonsymmetric.

In this section, we propose algorithms which apply the GMRES(k) method to
the linear least squares problem (1.1) by using an n X m mapping matrix B.

If one were to apply the GMRES(k) method directly to the linear least squares
problem in which A is an m X n rectangular matrix, and the initial residual rq is
an m-dimensional vector, one cannot create a Krylov subspace, just by multiplying
9 by A. There are two possible ways of overcoming this problem.
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3.1. GMRES(k)-LS method 1

The first method is to use an n x m mapping matrix B to create a Krylov
subspace (rg, AB7o,...,(AB)""'ry) in the (larger) m-dimensional space, where
AB is an m x m matrix, as in the CR-LS(k) method [10], [11], [12], and to apply
the GMRES(k) method using this Krylov subspace.

First note the following lemma.

LEMMA 3.1.

N I .
min [|b— Az||z < min [|b— ABz|s, (3.1)

holds, where the equality holds if rank B = n.

Proof. If rankB = n, {Bz | z € R™} = R". Hence, the equality holds
in (3.1). O

Therefore, we will assume that rank B = n. Note that if rank B = n, there
exists zg such that Bzy = xg. Thus, consider solving

min ||b — ABz|2 = min ||b — Az||»
zeR™ zeR"

using the GMRES(k) method with initial approximation z = zg, where Bz = xo.
Then, we have the following algorithm.

Algorithm 3.1. GMRES(k)-LS method 1

Choose xg.
* o = b— Aﬂ)o
— ™
V1= ol
for i =1,2,...,k until convergence
hji = (ABv;,v;) (j =1,2,...,%)
V;41 = ABv; — 23‘21 hjiv;

hivii = ||Div1ll2

Vi1 = hv%
Find y, € R® which minimizes ||7;||2 = ||||ro|2e; — Hiy||2-
end
xp = xo + Blvy, ..., vy,
Lo = Tk
Go to *.

Here, H; = (hyy) € RUTDX and e; = (1,0,...,0)T € R+,

The line xy = xy + Blvy,..., vy, in Algorithm 3.1 corresponds to zp =
zo + [v1,...,V;]Yy, where &, = Bz and xy = Bzg.

Now note the following theorem due to Brown and Walker (Theorem 2.4 of [3]).
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THEOREM 3.2. Let A € R™ ™. The GMRES method determines a least
squares solution of

min ||b — Az||
zeR™

for all b€ R™ and for all initial approximation zo € R™, if and only if

N(A) = N(AT).

Here V(- ) denotes the null space.
Then, we have the following theorem.

THEOREM 3.3. Let rank A = rank B = n. Then, the GMRES-LS method 1
determines the least squares solution of (1.1) for arbitary b and xo, if and only if
B can be expressed as

B =CAT, (3.2)

where C' is a nonsingular matriz.

Note that the GMRES-LS method 1 corresponds to the GMRES(k)-LS
method 1 with & = co (no restarts).

Proof. It is sufficient to prove that the GMRES method determines the least
squares solution of

min ||b — ABz||,
zeR™

for arbitary b and zg, where Bzy = xg, if and only if B = CAT where C is

nosingular.
Further, from Theorem 3.3, it is sufficient to prove that N'(AB) = N(BTAT).
Let A = [ai,...,a,] and BT = [by,...,b,]. Then, note that z € N(AB) <+

ABz =0 <= Bz=0 <= z 1 (by,...,b,), where the second equivalence is
due to rank A = n. Note also that, z € N(BTAT) < BTATz=0 < ATz =
0 < 2z 1 {(ai,...,a,), where the second equivalence is due to rank BT =
rank B = n.

Hence, N (AB) = N(BTAT) <= (by,...,b,) = (a1,...,a,) <= BT =
ACT where CT: nonsingular <= B = CAT where C: nonsingular.

Here we note that there is a related method of applying the GMRES method
to overdetermined systems due to Calvetti, Lewis and Reichel [4]. The method
essentially appends m —n zero column vectors to A to obtain an m X m square
singular matrix A = [A,0], and then applies the GMRES method to the least
squares problem

min [|b — Az|| (: min ||b — AmH)
zeR™ zeR"
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This method can be considered as a special case of our GMRES(k)-LS method 1
with B = [I,,0]. However, this special choice of B does not necessarily meet
the condition (3.2) in Theorem 3.3, so that their method may break down before
reaching the least squares solution of (1.1).

3.2. GMRES(k)-LS method 2

The other alternative is to use the n X m mapping matrix B to map r( to
79 = Brg, and then to create a Krylov subspace (7, BA¥,...,(BA)""1#) in the
(smaller) n-dimensional space, where BA is an n X n matrix, and to apply the
GMRES(k) method using this Krylov subspace as follows.

Algorithm 3.2.  GMRES(k)-LS method 2

Choose xg.
* ’;’0 = B(b — A.’Bo)
_#
U1 = ool
for i =1,2,...,k until convergence

hj,i = (BA’UZ‘,’UJ') (] = 17 2, ey 2)
@i+1 = BAv, — ZZ hj’ﬂ]j

j=1
hiv1,i = [|Visall2

Vit1 = hv’%
Find Y, € R’ which minimizes H’;‘ZHQ = ||||’I~:‘0H261 — HLy”Q
end
T =xo + [v1,..., 0]y
rog = Ty
Go to *.

Here, H;, and e; are defined as in Algorithm 3.1.

As will be shown in the numerical experiments, it turns out that the
GMRES(k)-LS method 2, which uses the Krylov space (7o, BATq,...,(BA)"17)
in the (smaller) n-dimensional space requires less computational work compared to
the GMRES(k)-LS method 1.

Note that the GMRES(k)-LS method 2 is equivalent to applying the GMRES(k)
method to

BAz = Bb, (3.3)

where BA is an n X n matrix.

The following theorem gives the necessary and sufficient condition for the map-
ping matrix B, in order that equation (3.3) is equivalent to the original least squares
problem (1.1).
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THEOREM 3.4. Let rank A = n. Then, the solution of (3.3) is a (least
squares) solution of (1.1) if and only if B can be expressed as

B=CAT,

where C' is a nonsingular matriz.

Proof. « is a least squares solution of (1.1) if and only if x satisfies the
normal equation (1.2) which is equivalent to

ATr =0, (3.4)

where r = b — Ax.
(3.4), in turn, is equivalent to

<a1) Tt a’7L> J— 'I", (35)

where A = [ay,...,a,)].
On the other hand, (3.3) is equivalent to

Br =0,
which, in turn, is equivalent to
(b1, ..., bn) L7, (3.6)

where by, ..., b, are the column vectors of BT.
Now, (3.5) and (3.6) are equivalent, if and only if (a4,...,a,) and (by,...,b,)
are the same subspace, which is true, if and only if

A=lai,...,a,] =[by,...,b,)C" = BTC’,

where €’ is a nonsingular n x n matrix.

Hence, (3.3) and (1.2) are equivalent if and only if A = BTC’, where C’ is a
nonsingular n X n matrix, or, in other words, AC’~' = BT or B = C'~TAT.

Thus, the solution of (3.3) is a least squares solution of (1.1), if and only if
(3.2) where C = C'~7T is nonsingular.

Hence, we have the following.

THEOREM 3.5. Let rank A =n. Then, the GMRES-LS method 2 determines
the least squares solution of (1.1) for arbitary b and xo if and only if B can be
expressed as

B =CAT,

where C' is a nonsingular matric.
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Here, the GMRES-LS method 2 is the GMRES(k)-LS method 2 with k& = oo
(no restarts).

Proof. The necessity comes from Theorem 3.4.

Next, we show the sufficiency. If rank A = n, AT A is nonsingular, and if C' is
nonsingular, BA = CAT A is nonsingular. Hence, the method, which is equivalent
to the GMRES method applied to (3.3), gives the least squares solution of (1.1).

O

From Theorem 3.3 and Theorem 3.5, the necessary and sufficient condition
for B is the same for the GMRES-LS method 1 and the GMRES-LS method 2,
as follows.

COROLLARY 3.6. Let rank A = rank B = n. Then, the GMRES-LS method 1
and the GMRES-LS method 2 determine the least squares solution of (1.1) for
arbitary b and xq if and only if B can be expressed as

B=CAT,
where C' is a nonsingular matriz.

3.3. Incomplete QR decomposition

Besides satisfying the condition (3.2), it is natural to choose a mapping matrix
B which satisfies BA ~ I,,, so that we may expect fast convergence of the iterative
method.

In [12], B = (diag(ATA))~1 AT was proposed for the CR-LS(k) method, where
diag(AT A) is the diagonal matrix obtained by taking the diagonal part of AT A,
and is nonsingular when A is full rank. It is obvious that this choice of B fulfills the
condition (3.2). For this B, (3.3) is equivalent to carrying out the preconditioning
of row diagonal scaling to the normal equation (1.2).

In this paper, we consider using the incomplete QR decomposition of A given by

A=QR+E,

where @ is an m X n matrix, R is an n X n upper triangular matrix, and F is the
error matrix. The column vectors of () may not be perfectly orthonormal. Previous
methods for solving the linear least squares problem (1.1) using the incomplete

QR decomposition used R as the preconditioning matrix for the normal equation
AT Az = ATb [6]. That is, to solve

(R-TATAR M Rx = R~TA"b, (3.7)
or
Az = b,

where A = R-TATAR™', & = Rx, b = R-TATb, using the conjugate gradient
method.
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In our case, we set B = R71QT. In the GMRES(k)-LS method 2, this is
equivalent to solving

R'QTAz = R7'Q"b (3.8)

using the GMRES(k) method. We expect that (3.8) is better conditioned com-
pared to (3.7).

If we take E = 0, the QR decomposition is performed completely, i.e. A = QR,
so that x = R~'QTb, and only one iteration is required, but the computational
work and storage would become prohibitive for large problems. Hence, we set
FE # 0, and do an incomplete QR decomposition. The nearer the incomplete QR
decomposition is to the complete QR decomposition, the required number of it-
erations will decrease, but more time and memory would be required to do the
incomplete QR decomposition. Hence, we need to strike a balance.

Consider the QR decomposition using the modified Gram—Schmidt process. In
this paper, we will realize the incomplete QR decomposition by making the current
column vector of ) to be orthonormal to the previous [ column vectors, where the
incompleteness of the decomposition is adjusted by the parameter [. If | = n — 1,
it is equivalent to the complete QR decomposition. We call this procedure the
IMGS(I) method. The algorithm is as follows, where agl) =a; (i=1,...,n).

Algorithm 3.3. IMGS(l) method

fori=1,2,....n
_ a’
20 i T gy

for j=i+1,...,min(i +{,n)
T (%)

= ot

Tij = 4; a;
- .
a§l+ ) = ag-l) —1ijq;
end
end

At each step of the IMGS(l) method, the column vector of @ is computed as
a linear combination of the column vectors of A such that

(q1,---,q,) =(a1,...,ay).
Thus, we have Q = AC’, where C is a nonsingular matrix. Thus, we have
QT =0T AT, (3.9)

where C7T is nonsingular.
Now, consider

B=R1'Q" (3.10)
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obtained by the IMGS(I) decomposition. Since r;; # 0, i = 1,...,n, R = (r;;) is
nonsingular. From (3.10) and (3.9), we have

B=R'Q"=R'CTAT = CA",

where C' = R~'C is nonsingular. Hence, B satisfies the condition (3.2).
Here, we note that IMGS(0) is equivalent to the diagonal scaling proposed
in [12].

LEMMA 3.7. The IMGS(0) method is equivalent to the diagonal scaling given
by B = (diag(ATA))"1AT.

Proof. From Algorithm 3.3, the IMGS(0) method is given by

fori=1,2,...,n
rii = |laill2, g; =
end
which gives R = diag(||a1]|2, - . -, |an||2) and Q = [a1/||la1]l2, - - -, an/|lan]l2], so that
_af
lax |13
B=R1'Q" = :
an
lan 3
On the other hand, diag(AT A) = diag(||a1||3, ..., ||ax|3), so that
at
lax |3
(diag(ATA)tAT = |
a,
lanll3
Hence, B = R7!Q" = (diag(AT 4))~tAT. O

4. Numerical experiments

In this section, we give numerical experiment results solving linear least squares
problems

min||Az — b2, A€ R™", m>n,
x

in order to demonstrate the effectiveness of the proposed method. The following
sparse matrices were used for A.

The sets of matrices are newly made artificial matrices. These matrices were
generated in order to test the methods for problems with varying condition numbers
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and size. They were produced by the MATLAB command “sprandn” which makes
an m xn nonsymmetric matrix of a certain density and condition number. The non-
zero elements of the matrices are random numbers of normal distribution, whose
mean is zero and variance is one, and the pattern of the non-zero elements is also
random. The characteristics of these matrices are shown in Table 1 and 2, where
“Condition” denotes the condition number, and “Density” is the percentage of
non-zero elements.

Table 1. Characteristics of the smaller test matrices

No. Name m n | Density | Condition
1 | RANDS2 | 1000 | 320 | 4.9% 2 x 102
2 | RANDS4 | 1000 | 320 | 4.9% 1 x 10%
3 | RANDS6 | 1000 | 320 | 4.9% 1x 108
4 | RANDSS | 1000 | 320 | 4.9% 1x 108

Table 2. Characteristics of the larger test matrices

No. Name m n Density | Condition
5 | RANDL1 | 10000 | 1000 | 1.5% 6 x 101
6 | RANDL2 | 10000 | 1000 | 1.5% 4 x 102
7 | RANDL3 | 10000 | 1000 | 1.5% 3 x 103
8 | RANDL4 | 10000 | 1000 | 1.5% 3 x 104
9 | RANDL5 | 10000 | 1000 | 1.5% 2 x 10°
10 | RANDL6 | 10000 | 1000 | 1.5% 2 x 106
11 | RANDL7 | 10000 | 1000 | 1.5% 2 x 107

We set the initial approximate solution to £y = 0, and the convergence criterion
was |[[ATr|2/||ATb||2 < 1076, where 7 = b — Az is the residual. For the right hand
vector b, each of its components were generated by a random number generator
following the normal distribution, such that b € R™ but b ¢ R(A), in general.

The following methods were compared.

(1) The CGLS method, which is equivalent to applying the conjugate gradient
(CG) method to the normal equation

AT Az = A"b.

(2) The method of applying the CG method to the normal equation using the
IMGS preconditioning (Jennings’ version) [2], [6]. It is equivalent to applying
the CG method to

R TATAR 'Rx = R~ AT»,
or to
Az = b,

where A= R-TATAR™', & = Rx, and b= R~TATb.
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(3) The method of using the IMGS(!) method of Section 3.3 for the precondition-
ing, in place of the IMGS method in (2).

(4) The proposed GMRES(k)-LS method 1 with the IMGS(l) as the precondi-
tioner for B = R~1QT.

(5) The proposed GMRES(k)-LS method 2 with the IMGS(!) as the precondi-
tioner for B = R~'QT. It is equivalent to solving

R'Q"Az = R7'Q"b

by the GMRES(k) method.

Besides, for comparison, we showed the computation result of the direct
method using the modified Gram—Schmidt orthogonalization considering sparsity.

We coded the algorithm in MATLAB 6 and ran the experiments on an IBM
PC 1.70 GHz, 1.50 GB RAM.

First, we tested the IMGS(l) method in combination with the GMRES-LS
method 2, changing the parameter values for the preconditioners. The results are
shown in Table 3, Table 4, Table 5 and Table 6. The results show the computational
time and the number of iterations required to satisfy || ATr||2/||ATb||2 < 1076, The
fastest case is indicated by .

Table 3. Computation time required for different parameter values for the IMGS(l)
method (time in seconds)

) Preconditioning | Iteration | Number of )
Matrix l . . . . Total time
time time iterations
0.01 2.07 131 *2.08
1 0.51 5.06 130 5.57
10 1.97 6.01 128 7.98
50 7.86 5.53 119 13.39
RANDS? 100 15.36 4.06 91 19.42
200 31.66 2.03 48 33.69
300 45.42 0.53 9 45.95
320 45.57 0.26 1 45.83
0 0.01 10.83 316 *10.84
1 0.53 19.17 316 19.70
10 2.02 21.46 316 23.48
50 7.82 20.86 310 28.68
RANDS4 100 15.15 17.77 278 32.92
200 31.27 7.56 148 38.83
300 44.89 0.92 18 45.81
320 45.00 0.28 1 45.28
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Table 4. Computation time required for different parameter values for the IMGS(l)
method (time in seconds)

. Preconditioning | Iteration | Number of .
Matrix l . . . . Total time
time time 1terations
0 0.01 10.94 320 *10.95
1 0.54 19.55 320 20.09
10 1.97 21.84 320 23.81
50 7.88 21.85 320 29.73
RANDSG 100 15.25 22.04 320 37.29
200 32.32 10.65 192 42.97
300 46.00 1.14 24 47.14
320 46.44 0.28 1 46.72
0 0.01 11.11 320 *11.12
1 0.48 19.05 320 19.53
10 1.95 21.89 320 23.84
50 7.85 21.72 320 29.57
RANDSS 100 15.23 21.90 320 37.13
200 31.83 12.10 211 43.93
300 45.26 1.33 29 46.59
320 45.70 0.26 1 45.96

Table 5. Computation time required for different parameter values for the IMGS(l)
method (time in seconds)

. Preconditioning | Iteration | Number of .
Matrix l . . . . Total time
time time 1terations
0 0.23 4.37 57 *4.60
1 28.15 34.79 57 62.94
RANDLI1 10 120.59 80.92 57 201.51
50 490.01 81.06 57 571.07
100 1106.30 73.36 51 1179.66
0 0.24 25.03 221 *25.27
1 26.76 131.76 221 158.52
RANDIL2 10 116.74 309.09 220 425.83
50 481.50 305.67 217 787.17
100 1149.00 265.00 187 1414.00
0 0.24 73.63 438 *73.87
1 23.91 273.65 437 297.56
RANDL3 10 116.82 630.51 435 747.33
50 482.22 636.00 431 1118.22
100 1115.50 614.32 426 1729.82
0 0.22 317.29 980 *317.51
1 26.27 761.67 980 787.94
RANDL4 10 125.29 1540.30 984 1665.59
50 498.30 1554.70 987 2053.00
100 1174.90 1548.90 984 2723.80
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Table 6. Computation time required for different parameter values for the IMGS(l)
method (time in seconds)

. Preconditioning | Iteration | Number of .
Matrix l . . . . Total time
time time 1terations
0.21 311.17 971 *311.38
1 24.01 708.68 971 732.69
RANDL5 10 126.37 1557.10 977 1683.47
50 500.78 1550.20 976 2050.98
100 1180.20 1558.00 981 2738.20
0 0.24 325.47 994 *325.71
1 20.71 697.42 995 718.13
RANDLG6 10 125.48 1584.00 995 1709.48
50 494.23 1591.50 996 2085.73
100 1161.20 1584.20 995 2745.40
0 0.26 320.25 983 *320.51
1 22.50 688.95 984 711.45
RANDL7 10 123.18 1560.50 983 1683.68
50 475.58 1573.30 986 2048.88
100 1139.80 1582.00 992 2721.80

In MATLAB, the matrices and the vectors were handled by a sparse data
structure. In this structure, each non-zero element has three data (row, column,
and the element), and the structure has the data only for all non-zero elements, so
the data of the zero element is not recorded. As a result, the consumption of the
memory can be suppressed, since the zero elements can be omitted. Also, since the
multiplication by zero is not calculated, the computing time can be saved. Hence,
in the IMGS(l) method of Algorithm 3.3, the data is updated so that only the
non-zero elements are maintained and calculated.

The MATLAB implementation of IMGS(1)-GMRES-LS 2 method is as follows.

function iteriter = GMRES-LS2(A,b,restrt,p)
[m n] = size(A);

max_it = 1000;

tol = 0.000001;

[Q,R] = imgram(A,p);
iter = 0;

iteriter = 0;

x = sparse(n,1);

Ri = R™-1;

d = Ri*(Q’*b);

bnrm2 = norm(d);

tolb = tol*norm(A’*b);

r = d-(Ri*((Q*)*(A*x)));
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m = restrt;

V(l:n,1:m+1) = sparse(n,m+1);
H(1:m+1,1:m) = sparse(m+1l,m);
cs(1:m)
sn(l:m) = sparse(m,1);

sparse(m,1);

el = sparse(n,1);
el(1) = 1.0;
for iter = l:max_it,
r = d-Ri*x((Q’)*(A*x)));
V(:,1) = r / norm(xr);
s = norm(r)*el;
for i = 1:m,
w = Ri*x((Q2)*(A*V(:,1)));
for k = 1:1,
H(k,i) = w’*V(:,k);
w = w-H(k,i)*V(:,k);

end
H(i+1,i) = norm(w);
V(:,i+1) = w / H(i+1,1);

for k = 1:i-1,
temp = cs(k)*H(k,i)+sn(k)*H(k+1,1i);
H(k+1,i) = -sn(k)*H(k,i)+cs(k)*H(k+1,1i);
H(k,i) = temp;

end

[cs(i),sn(i)] = rotmat(H(i,i) ,H(i+1,1i));

temp = cs(i)*s(i);

s(i+1) = -sn(i)*s(i);

s(i) = temp;

H(i,i) = cs(i)*H(i,i)+sn(i)*H(i+1,i);

H(i+1,i) = 0.0;

iteriter = iteriter+1;

yl = H(1:i,1:i) \ s(1:1);

x1 = x+V(:,1:1)*y1;

if (norm(A’*(b-A*x1)) <= tolb),

E = abs(s(i+1));
y =yl
x = x1;
break;
end
end

if (norm(A’*(b-A*x)) <= tolb), break, end

y = H(1:m,1:m) \ s(l:m);
x = x+V(:,1:m)*y;
r = d-Ri*x((Q’)*(A*x));

201
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s(i+1) = norm(r);

E = s(i+1);
if (norm(A’*(b-A*x)) <= tolb), break, end;
end

In the IMGS(I) method, as [ is increased, the incompleteness of the incomplete
QR decomposition becomes small, and the number of iterations tends to decrease,
but the computation time for the decomposition increases. It turns out that [ = 0,
which is equivalent to the diagonal scaling B = (diag(ATA))"1 AT is optimal in
terms of total time.

However, we did not consider the choice of the [ column vectors in the compu-
tation of IMGS(1). We just chose the first [ vectors, so the effect of preconditioing
may be limited. If we were to optimize the choice of the column vectors, the pre-
conditioning may become more effective. This is left for future research.

Jennings’ version of the IMGS (Algorithm 2.3) and Saad’s version of the IMGS
(Algorithm 2.3) was also tested with various parameters, but it required more
computational time compared to IMGS(0), so we do not give the results here.

For all the following experiments, [ was fixed at [ = 0 for the IMGS(I) method.

Next, we demonstrate the effect of changing the restarting cycle k of the
GMRES(k)-LS method 2 in Table 7, Table 8 and Table 9. In each cell of the
table, the middle number (iter) is the number of iterations, and the bottom num-
ber (time) is the computation time (in seconds). The 1 indicates that convergence
was not obtained within the number of iterations.

Although restarting is effective for less ill-conditioned problems “RANDS2,”
“RANDL1,” “RANDL2” and “RANDL3,” the full GMRES is faster for more ill-
conditioned problems. Hence, in the following, we used k = oo (the full GMRES).

The computation results for the smaller test matrices of Table 1 are shown in
Table 10. In each cell of the table, the upper number is the number of iterations, and
the lower number is the computation time (in seconds) required for convergence.

In relatively well-conditioned problem, the CG method with IMGS(0) precon-
ditioning (3) was the fastest. For the very ill-conditioned problem “RANDSS,”
the CG method with IMGS(0) preconditioning (3) required many iterations and
computation time. On the other hand, the GMRES 2 method with IMGS(0) (5)
converged quickly and was the fastest. (2) required the least number of iterations,
but was computationally expensive, due to the time for preconditioning and back-
ward and forward substitutions.

Next, experiment results for larger test matrices of Table 2 are given in
Table 11, respectively. Similar results are observed, where the GMRES 2 method
with IMGS(0) preconditioning of (5) was the fastest for the severely ill-conditioned
problems “RANDL6” and “RANDL7.”
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Table 7. Results for changing k of the GMRES(k)-LS method 2

Matrix k Iteration Time
> 131 131 2.07
100 180 2.10
50 221 1.74
RANDS? 20 335 1.92
10 293 *1.37
5 555 3.20
> 316 316 | *10.81
300 734 21.54
250 1196 31.60
RANDS4 200 1390 30.57
150 2241 38.65
100 3192 39.53
50 4244 35.56
> 320 320 | *11.17
300 2697 88.85
RANDS6 250 17989 | 491.16
200 44398 | 982.93
150 | 7100000
> 320 320 | *11.11
RANDSS 300 | 124133 | 4091.02

Table 8. Results for changing k of the GMRES(k)-LS method 2

Matrix k Iteration | Time
> 57 57 4.03

50 59 4.10

40 59 3.94

RANDLI 30 59 *3.87
20 61 4.07

10 70 4.83

> 221 221 25.10

200 223 23.14
150 240 21.40
100 238 *19.11
50 278 19.58

10 402 28.46

> 438 438 75.84
400 474 68.52
300 011 63.58
RANDL3 200 582 61.76
100 714 *58.62
50 983 70.12
10 1759 124.75

RANDL2
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Table 9. Results for changing k of the GMRES(k)-LS method 2
Matrix k Iteration Time
> 980 980 *320.55
RANDL4 900 2445 691.91
800 3951 1050.61
> 971 971 *315.76
RANDLS5 900 2670 799.94
800 3965 1060.35
> 994 994 *330.60
RANDLG 900 16989 5060.63
> 983 983 *322.09
RANDL7 900 8998 2690.57
Table 10. Results for smaller test matrices
. (2) CG [ (3) CG |(4) GMRES 1| (5) GMRES 2| __.
M 1 D
atrix | (1) CG s | MGs(0) | IMGS(0) TMGS(0) rect
434 30 147 128 131
RANDS? 0.69 13.23 *0.34 3.55 1.66 47.84
5456 162 896 315 316
RANDS4 8.74 27.73 *1.99 20.56 8.84 49.05
39523 612 3814 320 320
RANDS6 82.46 89.77 *8.14 21.12 9.14 51.94
100000 1567 14399 324 320
RANDSS 248.73 36.40 20.97 *9.05 47.10
Table 11. Results for larger test matrices
. (2) CG | (3) CG |(4) GMRES 1|(5) GMRES 2| .
M 1 D
atrix | (D GG nias | MGs(0) | MGS(0) | IMGS(0) irect
131 19 58 59 57
RANDLI 3.34| 413.07 *1.75 8.57 2.38 24904
791 43 243 232 221
RANDL2 21.92| 533.92 *6.72 115.75 15.84 24478
5227 109 586 458 438
RANDL3 145.23 | 646.13 *16.54 400.53 49.93 24361
30607 535 3980 977 980
RANDLA 846.38 | 1095.94 | *112.78 1904.73 245.52 24478
11000000 884 7901 981 971
RANDL5 1488.77| *225.60 1977.32 234.86 25675
f1000000  [2340 | 24399 1000 994
RANDLG 3231.45 688.95 *240.29 25383
f1000000 4998 | 51560 1000 983
RANDLT 6789.62 | 1452.47 *223.13 23903
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Fig. 1 shows the relative error vs. iterations, and Fig. 2 shows the relative
residual vs. iterations for the case “RANDL1” in Table 4 and 11. Fig. 3 shows
the relative error vs. iterations, and Fig. 4 shows the relative residual vs. iterations
for the case “RANDL6” in Table 4 and 11. Again, it is shown that the GMRES

converges better than CG with the same IMGS(0) preconditioning for the severely
ill-conditioned problem “RANDLG.”
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Comparing (3) and (5), it is observed that when using the same preconditioning
of IMGS(0), our approach of applying the GMRES method requires less iterations
and computation time compared to the usual approach of applying CG to the
normal equation. This may be explained by the fact that the GMRES performs
the Gram—Schmidt orthogonalization explicitly, where as the CG relies on the three
term recurrence, so that GMRES is more robust against loss of orthogonality due
to rounding error, especially in ill-conditioned problems. (cf. convergence graphs in
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Fig. 3 and Fig. 4.) For less ill conditioned problems “RANDS4” and “RANDS6,”
the same phenomenon is observed in the sense that GMRES requires less iterations
than CG, but CG (3) is faster than GMRES 2 (5) in computation time because the
(modified) Gram-Schimidt process of the GMRES is time consuming.

GMRES 1 and GMRES 2 showed similar convergence behaviours, but
GMRES 2 was faster. This is because GMRES 1 uses Krylov subspaces gener-
ated by BA in the smaller n-dimensional space, where as GMRES 1 uses Krylov
subspaces generated by AB in the larger m-dimensional space.

In all cases, the direct method was too time consuming compared to the it-
erative method. For ill conditioned problems, the number of GMRES iterations
approaches the column dimension n. Even then, the GMRES-LS 2 method was
much faster than the direct method.

From these experiments, we conclude that the proposed GMRES-LS 2 method
with IMGS(0) preconditioning, which is equivalent to applying the GMRES method
to the diagonally scaled normal equation, becomes superior to previous methods
particularly for severely ill-conditioned problems.

5. Conclusions

In this paper, we proposed two methods for applying the GMRES method to
the least squares problem by using a mapping matrix B. The first method applies
GMRES to ABz = b, and the second method applies GMRES to BAx = Bb.
Next, we gave the necessary and sufficient condition which should be satisfied by
B, in order that the methods give a least squares solution. The necessary and
sufficient conditions for B are common for the two methods.

As an example for B, we proposed using IMGS(!), which is a kind of incomplete
QR decomposition. In fact, IMGS(0) and GMRES applied to BAx = Bb, which
is equivalent to applying the GMRES method to the diagonally scaled normal
equation, turned up to be the fastest.

Numerical experiments show that among the proposed method the simplest
case [ = 0 gives best results, and converges faster than previous methods particular-
ly when the coefficient matrix is severely ill-conditioned. On the other hand,
CG-IMGS(0) was the best for well-conditioned problems. The preconditioner
IMGS(0) is equivalent to the case B = (diag(ATA)) "1 AT, so diag(ATA) "1 AT was
the best preconditioner among IMGS(!) and Jennnings’ IMGS(7).
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