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Fernando and Parlett observed that the dqds algorithm for singular values can be made
extremely efficient with Rutishauser’s choice of shift; in particular it enjoys “local” (or
one-step) cubic convergence at the final stage of iteration, where a certain condition is
to be satisfied. Their analysis is, however, rather heuristic and what has been shown is
not sufficient to ensure asymptotic cubic convergence in the strict sense of the word. The
objective of this paper is to specify a concrete procedure for the shift strategy and to
prove with mathematical rigor that the algorithm with this shift strategy always reaches
the “final stage” and enjoys asymptotic cubic convergence.
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1. Introduction

Every n × m real matrix A of rank r can be decomposed into

A = UΣV T

with suitable orthogonal matrices U ∈ Rn×n and V ∈ Rm×m, where

Σ =

(
D Or,m−r

On−r,r On−r,m−r

)
, D = diag(σ1, . . . , σr),

and σ1 ≥ · · · ≥ σr > 0. The notation Ok,l means a k × l zero matrix. The nonzero
diagonal elements σ1, . . . , σr are the singular values of A, which play important
roles in application areas. Accordingly, numerical methods for computing singular
values are of great importance in practice.

The singular values of A are equal to the square roots of the eigenvalues of
ATA and hence an iterative computation is inevitable for singular values. Usually,
the given matrix A is first transformed to a bidiagonal matrix to reduce the overall
computational cost. In the case of n ≥ m, for example, the matrix A can be
transformed, with appropriate orthogonal matrices Ũ ∈ Rn×n and Ṽ ∈ Rm×m, as

ŨTAṼ =
(

B

On−m,m

)
,

where B ∈ Rm×m is an upper bidiagonal matrix. The singular values of B coincide
with those of A.
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Most of the current methods for computing singular values of bidiagonal ma-
trices are based on the QR algorithm [4]. Demmel and Kahan’s improvement [5] on
the QR algorithm, which was awarded the second SIAM prize in numerical linear
algebra, is available as DBDSQR in LAPACK [3, 11].

In the study of this algorithm, the differential quotient difference (dqd) algo-
rithm was proposed by Fernando–Parlett [9], with subsequent introduction of shifts
to accelerate the convergence. This algorithm is now called the differential quotient
difference with shifts (dqds) algorithm. The dqds algorithm has been popular due
to its accuracy, speed and numerical stability, and is implemented as DLASQ in
LAPACK [3, 11, 14]. The dqds is integrated into Multiple Relatively Robust Rep-
resentations (MR3) algorithm [6, 7, 8]. It may also be said that the dqds algorithm
is a numerically stabler version of the pqds algorithm, which in turn is the pqd
algorithm [10] with shifts incorporated to accelerate the convergence.

As for theoretical analysis about the dqds algorithm, locally quadratic or cubic
convergence has been discussed in [9] under certain assumptions. In [9], global
convergence of the dqds has also been discussed using ideas from [15] under several
restrictions. A recent paper of the present authors [1] describes the present status of
the global convergence theorems and gives a general theorem for global convergence.
The paper has also revealed the asymptotic rate of 1.5 for the Johnson shift. It is
pointed out in [2] that superquadratic convergence can be realized with a simple
shift strategy.

The objective of this paper is to give a mathematically rigorous proof for the
asymptotic cubic convergence of the dqds algorithm that employs the shift strategy
proposed by Fernando–Parlett based on Rutishauser’s idea. More specifically, this
paper is organized as follows. In Section 2 the target problem is defined. Section 3
is devoted to summarizing the dqds algorithm. In Section 4 the basic facts on
convergence of the dqds are summarized based on [1]. The existing results for local
cubic convergence are reviewed in Section 5.1 with emphasis on what additional
argument is required in order to conclude asymptotic cubic convergence in the
strict sense of the word. Then in Section 5.2 a concrete procedure for the shift is
proposed, and in Section 6 it is shown that with the shift procedure the dqds always
realizes asymptotic cubic convergence.

2. Problem setting

We assume that the given real matrix A has already been transformed to a
bidiagonal matrix

B =

⎛
⎜⎜⎜⎜⎜⎝

b1 b2

b3
. . .
. . . b2m−2

b2m−1

⎞
⎟⎟⎟⎟⎟⎠, (1)

to which the dqds algorithm is applied.



Cubic Convergence for the dqds Algorithm 67

Following [9], we assume

Assumption (A). The bidiagonal elements of B are positive, i.e., bk > 0 for
k = 1, 2, . . . , 2m − 1.

This assumption guarantees (see [13]) that the singular values of B are all distinct:
σ1 > · · · > σm > 0.

Assumption (A) is not restrictive, in theory or in practice. In fact, if a sub-
diagonal element is zero, i.e., b2k = 0 for some k, then the problem reduces to two
independent problems on matrices of smaller sizes, k × k and (m − k) × (m − k).
If there is a zero element on the diagonal, several iterations of the dqd algo-
rithm (i.e., the dqds algorithm without shifts) suffice to remove the diagonal zero,
and the problem is again separated into a set of smaller problems (see [9] for
details). Finally, it is easy to see that the singular values are invariant if bk is
replaced by |bk|.

In our problem setting we have assumed real matrices, whereas the singular
value decomposition is also defined for complex matrices. Our restriction to real
matrices is justified by the fact that any complex matrix can be transformed to
a real bidiagonal matrix by, say, (complex) Householder transformations, while
keeping its singular values [9].

3. The dqds algorithm

The dqds algorithm can be described in computer program form as follows.

Algorithm 3.1. The dqds algorithm

Initialization: q
(0)
k = (b2k−1)2 (k = 1, 2, . . . ,m); e

(0)
k = (b2k)2 (k = 1, 2, . . . , m−1)

1: for n := 0, 1, . . . do
2: choose shift s(n) (≥ 0)
3: d

(n+1)
1 := q

(n)
1 − s(n)

4: for k := 1, . . . , m − 1 do
5: q

(n+1)
k := d

(n+1)
k + e

(n)
k

6: e
(n+1)
k := e

(n)
k q

(n)
k+1

/
q
(n+1)
k

7: d
(n+1)
k+1 := d

(n+1)
k q

(n)
k+1

/
q
(n+1)
k − s(n)

8: end for
9: q

(n+1)
m := d

(n+1)
m

10: end for

The outermost loop is terminated when some suitable convergence criterion,
say,

∣∣e(n)
m−1

∣∣ ≤ ε for some prescribed constant ε > 0, is satisfied. At the termination
we have

σ2
m ≈ q(n)

m +
n−1∑
l=0

s(l) (2)
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and hence σm can be approximated by
√

q
(n)
m +

∑n−1
l=0 s(l). Then by the deflation

process the problem is shrunk to an (m − 1) × (m − 1) problem, and the same
procedure is repeated until σm−1, . . . , σ1 are obtained in turn.

It turns out to be convenient to introduce additional notations e
(n)
0 and e

(n)
m

with “boundary conditions”:

e
(n)
0 = 0, e(n)

m = 0 (n = 0, 1, . . . )

to simplify the expression of the algorithm. Let

B(n) =

⎛
⎜⎜⎜⎜⎜⎝

b
(n)
1 b

(n)
2

b
(n)
3

. . .

. . . b
(n)
2m−2

b
(n)
2m−1

⎞
⎟⎟⎟⎟⎟⎠, (3)

b
(0)
k = bk (k = 1, 2, . . . , 2m − 1), and

q
(n)
k =

(
b
(n)
2k−1

)2 (k = 1, 2, . . . ,m; n = 0, 1, . . . ), (4)

e
(n)
k =

(
b
(n)
2k

)2 (k = 1, 2, . . . ,m − 1; n = 0, 1, . . . ). (5)

Then Algorithm 3.1 can be rewritten in terms of the Cholesky decomposition
(with shifts): (

B(n+1)
)T

B(n+1) = B(n)
(
B(n)

)T − s(n)I, (6)

where B(0) = B. In other words, a single step of the dqds algorithm({
q
(n)
k

}
,
{
e
(n)
k

}) �→ ({
q
(n+1)
k

}
,
{
e
(n+1)
k

})
is equivalent to a single step of the shifted

Cholesky LR method B(n)
(
B(n)

)T �→ B(n+1)
(
B(n+1)

)T, where

B(n)
(
B(n)

)T

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q
(n)
1 + e

(n)
1

√
e
(n)
1 q

(n)
2√

e
(n)
1 q

(n)
2 q

(n)
2 + e

(n)
2

√
e
(n)
2 q

(n)
3

. . . . . . . . .√
e
(n)
m−2q

(n)
m−1 q

(n)
m−1 + e

(n)
m−1

√
e
(n)
m−1q

(n)
m√

e
(n)
m−1q

(n)
m q

(n)
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

can be easily seen from (3), (4), and (5). From (6) it follows that

(
B(n)

)T
B(n) = W (n)

((
B(0)

)T
B(0) −

n−1∑
l=0

s(l)I

)(
W (n)

)−1
, (8)
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where W (n) =
(
B(n−1) · · ·B(0)

)−T is a nonsingular matrix. Therefore the eigen-

values of
(
B(n)

)T
B(n) are the same as those of

(
B(0)

)T
B(0) −∑n−1

l=0 s(l)I.

If s(n) <
(
σ

(n)
min

)2 in each iteration n, where σ
(n)
min is the smallest singular value

of B(n), B(n) converges to a diagonal matrix as n → ∞, and then, by (8), the
singular values of B can be obtained from the diagonal elements of B(n) with
sufficiently large n (see Theorem 4.1). Moreover, if s(n) <

(
σ

(n)
min

)2, the variables
in the dqds algorithm are always positive so that the algorithm does not break
down (see Lemma 4.1).

4. Fundamental facts about convergence

Some relevant facts about the dqds algorithm are reviewed in this section. We
begin with the fundamental convergence theorem. Recall that σ1 > σ2 > · · · > σm

are singular values of B and σ
(n)
min denotes the smallest singular value of B(n).

Theorem 4.1 (Convergence of the dqds algorithm [1]). Suppose the matrix
B satisfies Assumption (A), and the shift in the dqds algorithm satisfies

0 ≤ s(n) <
(
σ

(n)
min

)2 (9)

for all n = 0, 1, 2, . . . . Then
∞∑

n=0

s(n) ≤ σ2
m. (10)

Moreover,

lim
n→∞ e

(n)
k = 0 (k = 1, 2, . . . ,m − 1), (11)

lim
n→∞ q

(n)
k = σ2

k −
∞∑

n=0

s(n) (k = 1, 2, . . . ,m). (12)

In matrix form, we have

lim
n→∞

(
B(n)

)T
B(n) = diag

(
σ2

1 −
∞∑

n=0

s(n), . . . , σ2
m −

∞∑
n=0

s(n)

)
.

The variables are guaranteed to remain positive, as follows. This fact is crucial
to the proof of the convergence theorems as well as to numerical stability of the
algorithm.

Lemma 4.1. Suppose the dqds algorithm is applied to the matrix B satisfying
Assumption (A). If s(l) <

(
σ

(l)
min

)2 for l = 0, 1, . . . , n, then
(
B(l+1)

)T
B(l+1) are

positive definite for l = 0, 1, . . . , n, and hence q
(l+1)
k > 0 (k = 1, . . . , m), e

(l+1)
k > 0

(k = 1, . . . , m − 1), and d
(l+1)
k > 0 (k = 1, . . . , m) for l = 0, 1, . . . , n.
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Proof. For completeness we give a proof based on [1]. The proof is by
induction on n. Under Assumption (A), we have q

(0)
k > 0, e

(0)
k > 0 and that(

B(0)
)T

B(0) is positive definite. Suppose that
(
B(n)

)T
B(n) is positive definite and

q
(n)
k > 0, e

(n)
k > 0. By (6), if s(n) <

(
σ

(n)
min

)2, then
(
B(n+1)

)T
B(n+1) is positive

definite because B(n)
(
B(n)

)T − s(n)I is positive definite. Therefore all the diagonal

elements of B(n+1) are nonzero
(
b
(n+1)
2k−1 	= 0

)
and hence q

(n+1)
k > 0 because of (4).

By the 6th line of Algorithm 3.1, we have e
(n+1)
k > 0. The inequality d

(n+1)
k > 0 is

proved by contradiction as follows. If we had d
(n+1)
k ≤ 0 for some k, we would have

d
(n+1)
k+1 ≤ 0 by the 7th line of Algorithm 3.1 and then q

(n+1)
m = d

(n+1)
m ≤ 0. This

contradicts q
(n+1)
m > 0. �

The asymptotic rate of convergence of the dqds algorithm is given by the
following lemma.

Lemma 4.2 ([1]). Under the same assumption as in Theorem 4.1, we have

lim
n→∞

e
(n+1)
k

e
(n)
k

=
σ2

k+1 −
∑∞

n=0 s(n)

σ2
k −∑∞

n=0 s(n)
< 1 (k = 1, . . . , m − 1). (13)

Therefore, e
(n)
k (k = 1, . . . , m−2) are of linear convergence as n → ∞. The bottom-

most element e
(n)
m−1 shows superlinear convergence if σ2

m −∑∞
n=0 s(n) = 0.

The following lemma will be used in the proof of Lemma 6.1 that shows the
validity of our shift strategy to be described in Section 5.2.

Lemma 4.3. For a fixed n, assume e
(n)
k > 0 (k = 1, . . . , m− 1) and q

(n)
k > 0

(k = 1, . . . , m), and apply Algorithm 3.1 with shift s(n) to compute d
(n+1)
k (k =

1, . . . , m). Then s(n) <
(
σ

(n)
min

)2 if and only if d
(n+1)
k > 0 (k = 1, . . . , m).

Proof. First suppose that d
(n+1)
k > 0 (k = 1, . . . , m). From the 5th line of

Algorithm 3.1 we have q
(n+1)
k > 0 (k = 1, . . . , m). Then the diagonal elements of

B(n+1) are positive by (4). Furthermore, by the 6th line of Algorithm 3.1 we see
e
(n+1)
k > 0 (k = 1, . . . , m − 1), and hence B(n+1) is a real matrix by (5). Therefore(
B(n+1)

)T
B(n+1) is positive definite, and hence we have s(n) <

(
σ

(n)
min

)2 from (6).

Conversely suppose that s(n) <
(
σ

(n)
min

)2 is true. Then by (6) we have b
(n+1)
2k−1 	= 0

(k = 1, . . . , m), which are diagonal elements of B(n+1). Therefore we have q
(n+1)
k > 0

(k = 1, . . . , m) from (4). By the 6th line of Algorithm 3.1, we see e
(n+1)
k > 0

(k = 1, . . . , m− 1). The inequality d
(n+1)
k > 0 is proved by contradiction as follows.

If we had d
(n+1)
k ≤ 0 for some k, we would have d

(n+1)
k+1 ≤ 0 by the 7th line of

Algorithm 3.1 and then q
(n+1)
m = d

(n+1)
m ≤ 0 from the 9th line of Algorithm 3.1.

This is a contradiction. �
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Note that the assumption of Lemma 4.3 is satisfied for n = 0 by Assump-
tion (A). By Lemma 4.1 the assumption of Lemma 4.3 will be met for all n if the
condition (9) is satisfied. Theorem 4.1, on the other hand, guarantees the conver-
gence, whereas Lemma 4.2 shows that the convergence rate is at least linear.

5. Shift for cubic convergence

In this section, we first briefly review the existing results for cubic convergence
and discuss what is still missing in those results (Section 5.1). Then in Section 5.2
we propose a concrete procedure for the shift.

5.1. Review of the existing results
The history of search for a shift yielding cubic convergence dates back to

Rutishauser [15], showing that the Cholesky LR method with a certain shift strat-
egy is expected to converge cubically when applied to positive definite symmetric
matrices. The idea has been generalized later in several different ways [16] (see also
the discussion in [9, §8.3]). In this subsection, we review the idea in the context of
our problem setting, and clarify what additional argument should be made before
we can obtain a rigorous mathematical proof of asymptotic cubic convergence.

Let us introduce some notations. We split B(n)
(
B(n)

)T in (7) into blocks as

B(n)
(
B(n)

)T =

(
U (n) v(n)(
v(n)

)T
q
(n)
m

)
,

where U (n) is an (m − 1) × (m − 1) matrix and v(n) =
(
0, . . . , 0,

√
e
(n)
m−1q

(n)
m

)T

.

The eigenvalues of U (n) are denoted by λ
(n)
i (i = 1, . . . , m− 1). Recall that a single

step of the dqds algorithm is equivalent to a single step of the shifted Cholesky
LR applied to the matrix B(n)

(
B(n)

)T. Also note that under Assumption (A),

the eigenvalues of B(n)
(
B(n)

)T are all distinct, and the subdiagonal elements of

B(n)
(
B(n)

)T are all positive.

Now suppose that n is sufficiently large and the matrix B(n)
(
B(n)

)T is at the
final stage of convergence. More specifically, we assume that the following condition
is satisfied:

λ
(n)
i − q(n)

m > g (i = 1, . . . , m − 1), (14)

where g is a constant independent of n satisfying 0 < g < σ2
m−1 − σ2

m.
Rutishauser suggested the following shift strategy to modify B(n) to B(n+1).

Under the condition (14), the matrix U (n) − q
(n)
m I is positive definite, whereas the

smallest eigenvalue of B(n)
(
B(n)

)T − q
(n)
m I is negative by Assumption (A). This

implies that if we apply the algorithm of Cholesky factorization to B(n)
(
B(n)

)T −
q
(n)
m I, it must fail at the very last stage with a negative number, say q̂

(n+1)
m < 0,

remaining at the lower right diagonal position. Note that q̂
(n+1)
m is nothing but the
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q
(n+1)
m obtained by a single step of the dqds algorithm with the shift q

(n)
m . This

q̂
(n+1)
m can be utilized to modify the “tentative” shift q

(n)
m to an eligible shift as

follows.

Rutishauser’s shift strategy.

1. Try the Cholesky factorization of B(n)
(
B(n)

)T − q
(n)
m I to find the value

q̂
(n+1)
m < 0.

2. Do a shifted Cholesky LR step (or equivalently, a dqds step) with the shift

q
(n)
m + q̂

(n+1)
m to obtain B(n+1)

(
B(n+1)

)T.

The trick in this strategy is that the shift q
(n)
m + q̂

(n+1)
m is always valid so that

the shifted Cholesky LR in the step 2 is feasible.

Lemma 5.1 ([15, Th. 1], [16, §56]). If the condition (14) is satisfied at step n,
then q

(n)
m + q̂

(n+1)
m <

(
σ

(n)
min

)2.
The next theorem shows the “local” cubic convergence. By saying “local” we

intend to emphasize that the inequality (15) is claimed to be true for a particular
n, and not for all sufficiently large n.

Theorem 5.1 (Local cubic convergence [15, Th. 4], [16, §57]). If Rutishauser’s

strategy is used to obtain B(n+1)
(
B(n+1)

)T at step n at which the condition (14) is
satisfied, then we have

e
(n+1)
m−1 q

(n+1)
m

g2
≤
(

e
(n)
m−1q

(n)
m

g2

)3

. (15)

That is, the lowermost subdiagonal element of B(n)
(
B(n)

)T decays cubically in this
single step.

Our aim in this paper is to provide a rigorous proof of asymptotic cubic con-
vergence of the dqds. Theorem 5.1 is not eligible for this purpose in the following
senses. First, for “asymptotic” cubic convergence, the condition (14) must be sat-
isfied continuously (or consecutively) for all sufficiently large n. This is, however,
not guaranteed but assumed in Theorem 5.1. Second, Theorem 5.1 does not say
anything about how the dqds iteration can be led to its “final stage of conver-
gence” for an arbitrary matrix B. This issue is closely related to the problem of
global convergence. A proof of global convergence has been given in [9] in the ab-
sence of shifts. With this result, we see that if the dqds is run without shifts, the
condition (14) is eventually satisfied. The rate of convergence with this strategy,
however, stays only linear in the early phase; even worse, once the shift for cubic
convergence becomes active, the global convergence is no longer guaranteed by the
global convergence theorem given in [9]. Another proof of global convergence has
been given in [15], which covers more general shifts. The theorem, however, applies
to nondegenerate cases only, and in this respect it is not sufficient for our purpose.
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The global convergence theorem (Theorem 4.1), which is valid for any shifts sat-
isfying 0 ≤ s(n) <

(
σ

(n)
min

)2 and for an arbitrary matrix B, allows us to employ
more aggressive shift strategies from the early phase of iteration, while keeping the
theoretical guarantee of global convergence.

In the subsequent sections, we propose a concrete shift strategy based on
Rutishauser’s, and show that with the strategy the condition (14) is continuously
satisfied (Lemma 6.2), and the cubic convergence is in fact realized (Theorem 6.1).

Remark 5.1. In the dqds algorithm, the computation in the first step of
Rutishauser’s shift strategy can be simplified as follows [9, §8.3]. If we substitute
the 5th line of Algorithm 3.1 into the 7th line, we obtain

d
(n+1)
k+1 =

d
(n+1)
k q

(n)
k+1

d
(n+1)
k + e

(n)
k

− s(n). (16)

As a special case, with the tentative shift s(n) = q
(n)
m we have

d̂
(n+1)
k+1 =

d̂
(n+1)
k q

(n)
k+1

d̂
(n+1)
k + e

(n)
k

− q(n)
m . (17)

(
The hat “ˆ” indicates that the quantity is obtained with the tentative shift s(n) =

q
(n)
m

)
. Thus we can concentrate on the computation of d̂

(n+1)
k (k = 1, . . . , m) to

obtain q̂
(n+1)
m = d̂

(n+1)
m , while q̂

(n+1)
k and ê

(n+1)
k (accordingly the 5th and the 6th

line of Algorithm 3.1) can be skipped. In this way the cost to determine q̂
(n+1)
m is

“about 2/3 of a dqds step” [9].

5.2. Concrete procedure for the shift
In this section we realize Rutishauser’s idea as a concrete procedure to choose

a shift.
The procedure goes as follows. At each iteration step n we first compute d̂

(n+1)
k

as in Section 5.1. If d̂
(n+1)
k > 0 for k = 1, . . . , m − 1, we set the shift s(n) as

s(n) =
d̂

(n+1)
m−1 q

(n)
m

d̂
(n+1)
m−1 + e

(n)
m−1

; (18)

otherwise we put s(n) = 0. It is easy to verify that the shift given by (18) coincides
with s(n) = q

(n)
m + q̂

(n+1)
m in Rutishauser’s shift strategy (see Remark 5.1 and the

equation (17) therein) for which the “local” cubic convergence is already discussed
in Section 5.1.

A formal description of this procedure is given below under the name of “shift
strategy (C)”.
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Shift strategy (C)

1: e
(n)
0 := 0, d̂

(n)
0 := 1

2: for k := 1, . . . , m − 1 do
3: d̂

(n+1)
k := d̂

(n+1)
k−1 q

(n)
k

/(
d̂

(n+1)
k−1 + e

(n)
k−1

)− q
(n)
m

4: if d̂
(n+1)
k ≤ 0 then

5: set s(n) := 0
6: return
7: end if
8: end for
9: set s(n) := d̂

(n+1)
m−1 q

(n)
m

/(
d̂

(n+1)
m−1 + e

(n)
m−1

)
10: return

In the next section, we show that the shift determined by the above procedure
is a valid choice, satisfying the condition (9) in Theorem 4.1. By Lemma 4.1 this
guarantees positivity of the variables, which in turn implies that the algorithm is
free from breakdown. Furthermore we shall establish a theorem of asymptotic cubic
convergence with mathematical rigor.

6. Theorem of cubic convergence

In this section, we prove that the asymptotic cubic convergence is realized by
the shift strategy (C) described in Section 5.2. The proof consists of showing the
following facts.

(i) The condition 0 ≤ s(n) <
(
σ

(n)
min

)2 of (9) is always satisfied (Lemma 6.1).

(ii) The shift is given by s(n) = d̂
(n+1)
m−1 q

(n)
m

/(
d̂

(n+1)
m−1 + e

(n)
m−1

)
for all sufficiently

large n (Lemma 6.2).
(iii) Asymptotic cubic convergence is realized (Theorem 6.1).

The following fundamental fact is known in the literature [9]; we give here an
alternative proof in a way consistent with our approach.

Lemma 6.1. In the dqds algorithm with shift strategy (C) the condition 0 ≤
s(n) <

(
σ

(n)
min

)2 of (9) is satisfied for all n = 0, 1, 2, . . . .

Proof. To prove the claim by induction on n, assume that

0 ≤ s(l) <
(
σ

(l)
min

)2 (l = 0, 1, . . . , n − 1).

If d̂
(n+1)
k ≤ 0 for some k with 1 ≤ k ≤ m − 1, then s(n) = 0, which obviously

satisfies (9). Therefore we may assume that d̂
(n+1)
k > 0 (k = 1, . . . , m − 1) and

the shift s(n) is given by (18). By Lemma 4.1 we have q
(n)
k > 0 (k = 1, . . . , m)

and e
(n)
k > 0 (k = 1, . . . , m − 1). Then, by Lemma 4.3, the desired inequality

s(n) <
(
σ

(n)
min

)2 holds if we have d
(n+1)
k > 0 (k = 1, . . . , m) for d

(n+1)
k computed by

Algorithm 3.1 with the shift of (18). The latter is in fact true, as shown below.
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From the 3rd line (with k = 1) of the shift strategy (C) and the 3rd line of
Algorithm 3.1 we have

d
(n+1)
1 − d̂

(n+1)
1 = q(n)

m − s(n). (19)

By the 9th line of the shift strategy (C) we see

q(n)
m − s(n) =

e
(n)
m−1q

(n)
m

d̂
(n+1)
m−1 + e

(n)
m−1

> 0. (20)

Hence, d
(n+1)
1 > d̂

(n+1)
1 is obtained. We can prove d

(n+1)
k > d̂

(n+1)
k (k = 1, . . . , m−1)

by induction on k as follows. By the 3rd line of the shift strategy (C) and (16)
we have

d
(n+1)
k − d̂

(n+1)
k =

d
(n+1)
k−1 q

(n)
k

d
(n+1)
k−1 + e

(n)
k−1

− s(n) −
(

d̂
(n+1)
k−1 q

(n)
k

d̂
(n+1)
k−1 + e

(n)
k−1

− q(n)
m

)

=
e
(n)
k−1q

(n)
k

(
d

(n+1)
k−1 − d̂

(n+1)
k−1

)
(
d

(n+1)
k−1 + e

(n)
k−1

)(
d̂

(n+1)
k−1 + e

(n)
k−1

) + q(n)
m − s(n). (21)

The induction hypothesis d
(n+1)
k−1 > d̂

(n+1)
k−1 together with (20) implies d

(n+1)
k >

d̂
(n+1)
k . Therefore d

(n+1)
k > d̂

(n+1)
k > 0 (k = 1, . . . , m− 1) is proved. The remaining

case with k = m can be treated as follows. By (16) and (18) we have

d(n+1)
m =

d
(n+1)
m−1 q

(n)
m

d
(n+1)
m−1 + e

(n)
m−1

− d̂
(n+1)
m−1 q

(n)
m

d̂
(n+1)
m−1 + e

(n)
m−1

=
e
(n)
m−1q

(n)
m (d(n+1)

m−1 − d̂
(n+1)
m−1 )(

d
(n+1)
m−1 + e

(n)
m−1

)(
d̂

(n+1)
m−1 + e

(n)
m−1

)
> 0. (22)

Thus we have proven d
(n+1)
k > 0 (k = 1, . . . , m). �

Lemma 6.2. In the dqds algorithm with the shift strategy (C) we have

lim
n→∞ d̂

(n)
k = σ2

k − σ2
m > 0 (k = 1, . . . , m − 1), (23)

and hence s(n) = d̂
(n+1)
m−1 q

(n)
m

/(
d̂

(n+1)
m−1 + e

(n)
m−1

)
for all sufficiently large n.

Proof. By Lemma 6.1 Theorem 4.1 applies to our algorithm. In particular,
q
(n)
k and e

(n)
k converge. We prove (23) by induction on k. From the 3rd line of the

shift strategy (C) with k = 1 we have

lim
n→∞ d̂

(n+1)
1 = lim

n→∞
(
q
(n)
1 − q(n)

m

)
= σ2

1 − σ2
m > 0,



76 K. Aishima, T. Matsuo and K. Murota

which shows the case of k = 1. From the 3rd line of the shift strategy (C) with
general k and the induction hypothesis we see

lim
n→∞ d̂

(n+1)
k+1 = lim

n→∞

(
d̂

(n+1)
k q

(n)
k+1

d̂
(n+1)
k + e

(n)
k

− q(n)
m

)

= lim
n→∞

(
q
(n)
k+1 − q(n)

m

)
= σ2

k+1 − σ2
m.

Thus (23) holds true and therefore d̂
(n+1)
k > 0 (k = 1, . . . , m− 1) for all sufficiently

large n. As a result, the shift is determined as the 9th line of the shift strategy (C).
�

The limits of q
(n)
k (k = 1, . . . , m) as n → ∞ are given as follows.

Lemma 6.3. In the dqds algorithm with the shift strategy (C) we have

∞∑
n=0

s(n) = σ2
m, (24)

lim
n→∞ q

(n)
k = σ2

k − σ2
m (k = 1, . . . , m − 1); lim

n→∞ q(n)
m = 0. (25)

Proof. By Lemma 6.2 we see

lim
n→∞ s(n) = lim

n→∞
d̂

(n+1)
m−1 q

(n)
m

d̂
(n+1)
m−1 + e

(n)
m−1

= lim
n→∞ q(n)

m , (26)

whereas limn→∞ s(n) = 0 by (10) in Theorem 4.1. Hence limn→∞ q
(n)
m = 0. This,

together with (12), proves (24) and (25). �

We can also identify the limits of d
(n)
k (k = 1, . . . , m) as n → ∞.

Lemma 6.4. In the dqds algorithm with the shift strategy (C) we have

lim
n→∞ d

(n)
k = σ2

k − σ2
m (k = 1, . . . , m − 1); lim

n→∞ d(n)
m = 0. (27)

Proof. This follows from Lemma 6.3 and the 5th line of Algorithm 3.1. �

We now state the main theorem of this paper, which shows the cubic conver-
gence of the dqds algorithm with the shift strategy (C). In view of (2) we introduce
the notation

r(n)
m = q(n)

m +
n−1∑
l=0

s(l) − σ2
m (28)

to represent the error in the approximated smallest eigenvalue of BTB.
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Theorem 6.1 (Cubic convergence). In the dqds algorithm with the shift
strategy (C) we have

lim
n→∞

e
(n+1)
m−1(

e
(n)
m−1

)3 =
1

(σ2
m−1 − σ2

m)2
, (29)

lim
n→∞

q
(n+1)
m(
q
(n)
m

)3 =
1

(σ2
m−1 − σ2

m)2
, (30)

lim
n→∞

r
(n+1)
m(
r
(n)
m

)3 =
1

(σ2
m−1 − σ2

m)2
. (31)

Therefore e
(n)
m−1, q

(n)
m and r

(n)
m are of cubic convergence. Moreover, we have

lim
n→∞

r
(n)
m

e
(n)
m−1

= 0. (32)

Proof. By Lemma 6.2 we may assume s(n) = d̂
(n+1)
m−1 q

(n)
m

/(
d̂

(n+1)
m−1 + e

(n)
m−1

)
.

From Algorithm 3.1 we see

e
(n+2)
m−1(

e
(n+1)
m−1

)3 =
q
(n+1)
m(

e
(n+1)
m−1

)2
q
(n+2)
m−1

=
d

(n+1)
m(

e
(n+1)
m−1

)2
q
(n+2)
m−1

=

(
q
(n+1)
m−1

)2
q
(n+2)
m−1

· d
(n+1)
m(

e
(n)
m−1q

(n)
m

)2
=

(
q
(n+1)
m−1

)2
q
(n+2)
m−1

(
d

(n+1)
m−1 + e

(n)
m−1

)(
d̂

(n+1)
m−1 + e

(n)
m−1

) · d
(n+1)
m−1 − d̂

(n+1)
m−1

e
(n)
m−1q

(n)
m

=
q
(n+1)
m−1

q
(n+2)
m−1

(
d̂

(n+1)
m−1 + e

(n)
m−1

) · d
(n+1)
m−1 − d̂

(n+1)
m−1

e
(n)
m−1q

(n)
m

, (33)

where the first equality is due to the 6th line (with k = m − 1 and n replaced
by n + 1), the second is due to the 9th line, the third is due to 6th line (with
k = m − 1), the fourth is due to the second equality in (22), and the last is due to
the 5th line (with k = m − 1) of Algorithm 3.1.

In (33) we have

lim
n→∞

q
(n+1)
m−1

q
(n+2)
m−1

(
d̂

(n+1)
m−1 + e

(n)
m−1

) =
1

σ2
m−1 − σ2

m
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by Lemmas 6.2 and 6.3. As for the other factor, we have, by (19) and (20),

d
(n+1)
m−1 − d̂

(n+1)
m−1

e
(n)
m−1q

(n)
m

=
d

(n+1)
1 − d̂

(n+1)
1

e
(n)
m−1q

(n)
m

· d
(n+1)
m−1 − d̂

(n+1)
m−1

d
(n+1)
1 − d̂

(n+1)
1

=
1

d̂
(n+1)
m−1 + e

(n)
m−1

· d
(n+1)
m−1 − d̂

(n+1)
m−1

d
(n+1)
1 − d̂

(n+1)
1

.

Here we have

lim
n→∞

(
d̂

(n+1)
m−1 + e

(n)
m−1

)
= σ2

m−1 − σ2
m

from (23) and also

lim
n→∞

d
(n+1)
m−1 − d̂

(n+1)
m−1

d
(n+1)
1 − d̂

(n+1)
1

= 1, (34)

as is shown below. Then we obtain (29).
To prove (34) we show

lim
n→∞

d
(n+1)
k − d̂

(n+1)
k

d
(n+1)
1 − d̂

(n+1)
1

= 1 (k = 1, . . . , m − 1) (35)

by induction on k. The case of k = 1 is obviously true. To treat the general case
with k we observe

d
(n+1)
k − d̂

(n+1)
k

d
(n+1)
1 − d̂

(n+1)
1

=
e
(n)
k−1q

(n)
k(

d
(n+1)
k−1 + e

(n)
k−1

)(
d̂

(n+1)
k−1 + e

(n)
k−1

) · d
(n+1)
k−1 − d̂

(n+1)
k−1

d
(n+1)
1 − d̂

(n+1)
1

+ 1

from (19) and (21). Here we have limn→∞ e
(n)
k−1 = 0 by Lemma 6.1 and Theo-

rem 4.1, limn→∞ q
(n)
k = σ2

k−σ2
m by Lemma 6.3, limn→∞ d

(n+1)
k−1 = limn→∞ d̂

(n+1)
k−1 =

σ2
k−1 − σ2

m by Lemmas 6.2 and 6.4, and limn→∞
d
(n+1)
k−1 −d̂

(n+1)
k−1

d
(n+1)
1 −d̂

(n+1)
1

= 1 by the induction

hypothesis. Thus we have proven (35).
Next we prove (30). From the 6th line (with k = m − 1) of Algorithm 3.1,

(29) and Lemma 6.3 we have

lim
n→∞

q
(n)
m(

e
(n)
m−1

)2 = lim
n→∞

q
(n+1)
m−1 e

(n+1)
m−1(

e
(n)
m−1

)3 =
1

σ2
m−1 − σ2

m

and hence we obtain

lim
n→∞

q
(n+1)
m(
q
(n)
m

)3 = lim
n→∞

(
e
(n+1)
m−1(

e
(n)
m−1

)3
)2

q
(n+1)
m

/(
e
(n+1)
m−1

)2(
q
(n)
m

/(
e
(n)
m−1

)2)3 =
1

(σ2
m−1 − σ2

m)2
.
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Finally, we prove (31) and (32). From Algorithm 3.1 we have

q(n+1)
m =

d
(n+1)
m−1 q

(n)
m

q
(n+1)
m−1

− s(n)

=

(
q
(n+1)
m−1 − e

(n)
m−1

)
q
(n)
m

q
(n+1)
m−1

− s(n)

= q(n)
m − e

(n+1)
m−1 − s(n),

where the first equality is due to the 9th line and the 7th line (with k = m − 1),
the second is due to the 5th line, and the last is due to the 6th line. Adding both
sides of the equation above over n with k = m, we have

q(n)
m = q(0)

m −
n−1∑
l=0

e
(l+1)
m−1 −

n−1∑
l=0

s(l).

Letting n → ∞ and noting that
∑∞

l=0 e
(l+1)
m−1 is convergent (see [1] for the detail),

we also have

q(∞)
m = q(0)

m −
∞∑

l=0

e
(l+1)
m−1 −

∞∑
l=0

s(l),

and hence, from (12) in Theorem 4.1,

σ2
m = q(∞)

m +
∞∑

l=0

s(l) = q(0)
m −

∞∑
l=0

e
(l+1)
m−1 .

Therefore, we see

r(n)
m = q(n)

m +
n−1∑
l=0

s(l) − σ2
m =

∞∑
l=n+1

e
(l)
m−1.

It then follows from (29) that

lim
n→∞

r
(n)
m

e
(n+1)
m−1

= lim
n→∞

1

e
(n+1)
m−1

∞∑
l=1

e
(n+l)
m−1 = 1.

Hence we obtain

lim
n→∞

r
(n+1)
m(
r
(n)
m

)3 = lim
n→∞

e
(n+2)
m−1(

e
(n+1)
m−1

)3 =
1

(σ2
m−1 − σ2

m)2
,

lim
n→∞

r
(n)
m

e
(n)
m−1

= lim
n→∞

e
(n+1)
m−1

e
(n)
m−1

= 0

from (29). �
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Note that the critical variables for convergence are e
(n)
m−1 and r

(n)
m ; the former

is used for the convergence criterion and the latter represents the error in the
approximation of σ2

m. Furthermore, when the iteration is stopped at the n-th loop,
the equation (32) indicates that r

(n)
m is small enough compared to e

(n)
m−1. This

property is useful in practice. Theorem 6.1 does not say anything about other
variables, but this is already sufficient from the algorithmic point of view, since
whenever the lower right elements, e

(n)
m−1 and q

(n)
m , converge to zero, the deflation

is applied to reduce the matrix size.

Remark 6.1. In the above, we intended to provide a streamlined rigorous
proof of Theorem 6.1 by working directly with the recurrence relations in the dqds
algorithm. Instead, we could have used a known identity for a shorter proof. In [15],
the identity

q(n+1)
m =

(
e
(n)
m−1q

(n)
m

)2(
v(n)

)T(
U (n) − q(n)

m I
)−1

v(n)

× (v(n)
)T(

U (n) − q(n)
m I

)−1(
U (n) − (q(n)

m + d̂(n+1)
m

)
I
)−1

v(n)

is shown. By the 6th line of Algorithm 3.1 with k = m − 1, we then see

e
(n+1)
m−1 q

(n+1)
m(

e
(n)
m−1q

(n)
m

)3 =
1

q
(n+1)
m−1

(
v(n)

)T(
U (n) − q(n)

m I
)−1

v(n)

× (v(n)
)T(

U (n) − q(n)
m I

)−1(
U (n) − (q(n)

m + d̂(n+1)
m

)
I
)−1

v(n).

With this expression at hand, it is indeed immediate from Lemma 6.1 and
Lemma 6.2 that

lim
n→∞

e
(n+1)
m−1 q

(n+1)
m(

e
(n)
m−1q

(n)
m

)3 =
1

(σ2
m−1 − σ2

m)4
, (36)

which shows the cubic convergence.

Remark 6.2. The asymptotic cubic convergence claimed in this paper is
surely the best rate ever known if the rate is defined against “steps” (n). From
the practical point of view, however, it is also natural to measure the convergence
rate based on computational costs, and from this perspective the situation can be
viewed in a slightly different manner. The shift strategy (C) requires the compu-
tation of d̂

(n+1)
k , generally for all of k = 1, . . . , m − 1, whose computational cost

is roughly 2/3 of that of a dqds step, as noted in Remark 5.1. Thus, a full single
step of the dqds with the shift strategy (C) requires costs 5/3 times as much as
the standard dqds, from which we may say that the actual rate of the “cubic” dqds
is 33/5 
 1.93. In this respect, the cubic dqds may fall behind, for example, the
superquadratic one [2].



Cubic Convergence for the dqds Algorithm 81

7. Conclusion

In this paper a concrete procedure for choosing the shifts in the dqds algo-
rithm was proposed based on the shift strategy suggested by Rutishauser [15] and
Fernando–Parlett [9]. Then it was proved with mathematical rigor that if the shift
choosing procedure is employed the dqds always attains asymptotic cubic conver-
gence for any initial bidiagonal matrix B.
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