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In this paper, we consider the Tate and Ate pairings for the genus-2 supersingular

hyperelliptic curves y2 = x5 −αx (α = ±2) defined over finite fields of characteristic five.
More precisely, we construct a distortion map explicitly, and show that the map indeed
gives an input for which the value of the Tate pairing is not trivial. We next describe a
computation of the Tate pairing by using the proposed distortion map. We also see that
this type of curve is equipped with a simple quintuple operation on the Jacobian group,
which leads to an improvement for computing the Tate pairing. We further show the Ate
pairing, a variant of the Tate pairing for elliptic curves, can be applied to this curve. The
Ate pairing yields an algorithm which is about 50 % more efficient than the Tate pairing
in this case.
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1. Introduction

The Tate pairing was originally used as a tool for reducing the discrete loga-
rithm problem on algebraic curves over a finite field to that on the multiplicative
group on an extension field of the base field [15]. However, as is well known,
the properties of the pairing (i.e. bilinearity and nondegeneracy) give also various
cryptographic applications, for example one-round tripartite Diffie–Hellman proto-
col [28], ID-based encryption scheme [4] and short signatures [5].

In order to realize these pairing-based protocols, we need a choice of suitable
curves. The main properties we should achieve are as follows:
1. The parameter, called embedding degree, is not too large.
2. Arithmetic in the Jacobian is efficient.
3. The curve is equipped with a distortion map. Such a map can be seen a

method for giving an input for which the value of the pairing is not trivial.
The first topic concerns the computable feasibility of the Tate pairing, and the

second one the efficient computation of the pairing, and the third one the practical
use of pairing-based protocols. We remark, for the third topic, that there exists an

∗This paper is the full version of [21]. In addition to the paper presented at the symposium the
current paper gives a clean mathematical background, provides exact cost evaluations, and gives
implementational evidence of the speed-ups obtained. Preprint versions of this paper appeared in
the ePrint archive as [22, 23].
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alternative method other than the one using distortion maps (e.g. using the trace
map [4, 16]).

The main theme of this paper is about the third topic (i.e. the construction
of a distortion map). A distortion map becomes a useful tool when one constructs
some protocol requiring a bilinear map with symmetry. The paper [17] shows there
exists a distortion map for all supersingular algebraic curves. This is why a class
of supersingular curves gets interest of a lot of cryptologic researchers. Contrarily,
it is known that there exists no distortion map for ordinary elliptic curves [41].

For some supersingular curves, distortion maps have been constructed [2, 11,
17, 18, 19]. Generally, for curves of genus g ≥ 2, it is harder to construct a distor-
tion map in comparison with g = 1 because the subgroup of l-torsion points of the
Jacobian group is isomorphic to (Z/lZ)2g for a prime l different from the charac-
teristic of the base field. In other words, unlike supersingular elliptic curves case,
giving an endomorphism not defined over the base field is not sufficient to obtain
a distortion map.

In this paper, we explicitly construct a distortion map for the genus-2 super-
singular hyperelliptic curves y2 = x5 − αx (α = ±2) over finite fields of character-
istic five, which are Koblitz curves [31], and show that the map indeed gives an
input for which the value of the Tate pairing is not trivial. We next describe the
computation of the Tate pairing by using the proposed distortion map. We note
that the curve above is equipped with a simple formula of quintuple operation (a
variant of [12]). This fact leads to an improvement for computing the Tate pairing.

We remark that for a class of supersingular curves y2 = xp − x + d (d = ±1)
over finite fields of characteristic p with embedding degree being p or 2p [12], the
paper [11] constructs an endomorphism not defined over the base field. The paper
[18] gives a proof that the map indeed becomes a distortion map in the case of
p = 5. For the curve y2 = x5 +a over prime fields Fp, it is proven that this curve is
supersingular and has an embedding degree of four under p ≡ 2, 3 (mod 5) [7]. The
paper [8] constructs an endomorphism not defined over the base field and [17] gives
a proof that the map indeed becomes a distortion map under a certain condition
which seems to hold in almost all cases.

We further show the Ate pairing [25], a variant of the Tate pairing for elliptic
curves, can be applied to the curve y2 = x5 − αx with respect to the proposed
distortion map. The Ate pairing yields an algorithm which is about 50% more effi-
cient than the Tate pairing in this case. The main reason is that the computational
procedure of the Ate pairing has a much shorter loop than the Tate pairing on the
cost of some extra computations. Our distortion map for y2 = x5 − αx does not
satisfy the sufficient conditions for the Eta pairing [1] as it is. We remark that it is
shown that these conditions are not necessary [29]. After acceptance of this paper
we became aware of the recent paper [20] which also gives a generalization of the
Ate pairing to hyperelliptic curves. Their work is clearly independent and focuses
on finite fields of characteristic 2 and 3.

We finally implement the Tate and Ate pairings for our curve in an actual size
of fields, which takes far much runnning time in comparison with pairings for other
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pairing-friendly curves, e.g. the Eta pairing for supersingular (hyper-)elliptic curves
in characteristic two. The main reason is that there exists no efficient arithmetic
on fields in characteristic five. However, the experimental result also shows the
possibility that the pairing computation for our curve will reach at practical level.

The remainder of this paper is organized as follows: In Section 2, we describe
the mathematical background required in this paper. In Section 3, we construct
a distortion map for the curve y2 = x5 − αx. In Section 4, we describe some im-
provements of the computation of the Tate pairing by using the proposed distortion
map. In Section 5, we show the Ate pairing can be applied to the curve with respect
to the distortion map. In Section 6, we estimate the cost for computing the Ate
pairing. In Section 7, we provide the implementation results of the Tate and Ate
pairings for our curve. In Section 8, we give the conclusion.

2. Preliminaries

In this section, we describe the mathematical background required in this pa-
per. For more details, see [6, 15, 30, 39].

2.1. Hyperelliptic curves
Let p > 2 be an odd prime and let Fq and Fq be a finite field with q = pr

elements and its algebraic closure, respectively. Let C/Fq be a genus-g hyper-
elliptic curve defined over Fq whose defining equation is of the form y2 = F (x) with
deg F (x) = 2g +1 and let Fq[C] (resp. Fq(C)) denote the coordinate ring (resp. the
function field) of C/Fq. For each extension field Fq ⊆ K ⊆ Fq, a point (x, y) ∈ K2

on C or the point at infinity O is called a K-point on C. The set of K-points on C

is denoted by C(K).
A divisor D =

∑
nP (P ) is a formal sum of Fq-points on C where nP = 0 for

all but finitely many P , which forms an additive group under an obvious manner.
The degree and the support of a divisor D are defined by deg D =

∑
nP and

suppD = {P ∈ C(Fq) | nP �= 0}, respectively. For P = (α, β) ∈ C(Fq) \ {O}, the
point P̃ := (α,−β) on C is said to be the opposite of P , and we define Õ = O. For
P above and σ ∈ Gal(Fq/Fq), we define P σ = (σ(α), σ(β)) ∈ Fq(C) and Oσ = O,
where Gal(Fq/Fq) denotes the Galois group of Fq over Fq.

Let Div(C) (resp. Div0(C)) denote the group of divisors (resp. the subgroup
of Div(C) consisting of divisors of degree zero). A divisor D =

∑
nP (P ) is de-

fined over Fq if D = Dσ :=
∑

nP (P σ) holds for all σ ∈ Gal(Fq/Fq), and DivFq
(C)

(resp. Div0
Fq

(C)) denotes the set of divisors defined over Fq (resp. the set of
degree-zero divisors defined over Fq). Setting αP = min{mP , nP } for two divi-
sors D1 =

∑
mP (P ) and D2 =

∑
nP (P ), we define the greatest common divisor

by gcd(D1,D2) =
∑

P �=O αP (P )−(∑P �=O αP

)
(O), which is an element of Div0(C).

For a point P ∈ C(Fq), let vP ( · ) denote the discrete valuation at P , that is,
if vP (f) = m > 0 (resp. m < 0) for f ∈ Fq(C)∗, then P is a zero (resp. pole) of f
of order |m|. A divisor D ∈ Div(C) is a principal divisor if there exists some f ∈
Fq(C)∗ such that D =

∑
vP (f)(P ), denoted by (f), and Prin(C) (resp. PrinFq

(C))
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denotes the set of principal divisors (resp. the set of principal divisors defined over
Fq), which forms a subgroup of Div0(C) (resp. Div0

Fq
(C)). Two divisors D1,D2

are linearly equivalent, denoted by D1 ∼ D2, if there exists some function f ∈
Fq(C)∗ such that D1 = D2+(f). For f ∈ Fq(C)∗ and D =

∑
nP (P ) with supp(f)∩

suppD = ∅, we define f(D) =
∏

f(P )nP .
We define the Jacobian group of the curve C (resp. the Jacobian group of the

curve C defined over Fq), denoted by Jac(C) (resp. JacFq
(C)), by the quotient

group Div0(C)/Prin(C) (resp. Div0
Fq

(C)/PrinFq
(C)), which is isomorphic to the

ideal class group of the coordinate ring Fq[C] (resp. Fq[C]).
Each class in Jac(C) has a representative of the form D =

∑
P �=O nP (P ) −(∑

P �=O nP

)
(O), where nP > 0 and P̃ �∈ suppD hold whenever P ∈ suppD \ {O}

except for P = P̃ , in which case nP = 1. Such a divisor is said to be a semi-
reduced divisor. Furthermore, for each class in Jac(C), there exists a unique semi-
reduced divisor with

∑
P �=O nP ≤ g. Such a divisor is called a reduced divisor. We

use the notation D for the class in Jac(C) (or Jac(C)/l Jac(C) for an integer l)
to which D belongs. Vice versa, we assume that the class D is represented by
the unique reduced divisor in it which we denote by D. For an integer l, we let
JacFq

(C)[l] = {D ∈ JacFq
(C) | lD = 0}, where we mean by 0 the identity element

of JacFq
(C).

Let D =
∑

Pi �=O nPi
(Pi) −

(∑
Pi �=O nPi

)
(O) be a semi-reduced divisor, Pi =

(αi, βi) and a(x) =
∏

(x − αi)ni . There exists a unique b(x) ∈ Fq[x] satisfying
deg b(x) < deg a(x), βi = b(αi) and a(x) | b(x)2 − F (x). For such D, a(x) and
b(x), it is known that the equation D = gcd((a(x)), (y − b(x))) holds, denoted by
D = div(a(x), b(x)) for short. We remark that a semi-reduced divisor div(a(x), b(x))
corresponds to the integral ideal in Fq[C] whose Fq[x]-basis consists of a(x) and y−
b(x). The form div(a(x), b(x)) is the one used in the case of representing each semi-
reduced divisor of hyperelliptic curves, which is called the Mumford representation.
We mention that D = div(a(x), b(x)) is defined over Fq if and only if so are both
of a(x) and b(x).

Let πq denote the q-th power Frobenius endomorphism of Jac(C). Then its
characteristic polynomial, denoted by φq(t), is of the form

φq(t) =
∑

0≤i≤2g

ait
i (ai ∈ Z).

For the ai’s above, it satisfies that a2g = 1, a0 = qg, and for 1 ≤ i ≤ g, ia2g−i −∑
1≤k≤i(#C(Fqk)− qk − 1)a2g−i+k = 0, ai = a2g−iq

g−i.

2.2. Tate pairing
Let C/Fq be an algebraic curve and l an odd prime with l � q and l | #JacFq

(C).
The embedding degree is defined by the smallest positive integer k such that l | qk−1.
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Then there exists a nondegenerate bilinear map, called the (modified) Tate pairing,

tl : JacF
qk

(C)[l]× JacF
qk

(C)/l JacF
qk

(C)→ μl

defined by

tl(D,E) = fD(E′)
qk−1

l ,

where μl ⊂ Fqk is the set of l-th roots of unity, fD ∈ Fqk(C) a function such that
(fD) = lD, and E′ a divisor such that E′ ∼ E and suppD ∩ suppE′ = ∅.

For D ∈ JacFq
(C)[l], an endomorphism φ of Jac(C) is said to be a distortion

map if tl(D,φ(D)) �= 1 holds. A distortion map becomes a helpful tool to realize
a lot of cryptographic protocols using pairings. We mention that our definition
of a distortion map differs from that in [17, 18]. Their definition is more general
than ours.

In general, we use Miller’s algorithm [33, 34] for computing the Tate pairing.

Remark 1 (Embedding degree). Let q = pr and let s be the smallest integer
such that l | ps − 1. Namely, Fps is the smallest field satisfying μl ⊆ Fps . Then
we have s = dk with d = gcd(r, s) and k the embedding degree [26]. This implies
s ≤ rk. The equality holds if and only if r divides s. For cryptographic applications
using pairings, it is recommended that the parameter l (resp. s) satisfies l ≥ 2160

(resp. ps ≥ 21024) in order to achieve security (e.g. [14, 32]). The condition qk ≥
21024 claimed in many papers on pairings is not strict [26]. We mention that one
must pay attention not to obtain a security parameter which is much smaller than
expected.

On the other hand, in view of cost performance, it is preferable that the sizes
of the fields Fq, Fqk are small satisfying the security conditions above.

3. Distortion map for y2 = x5 − αx

3.1. Properties of y2 = x5 − αx

Unless explicitly stated otherwise, we set p = 5 and q = pr, and consider the
genus-2 hyperelliptic curves defined by

C/Fq : y2 = x5 − αx (α = ±2).

They are Koblitz curves [31], i.e. curves defined over small fields.
We start from the following result, which is a variant of [12]:

Theorem 1. Let p be an odd prime, C/Fp a hyperelliptic curve defined by
y2 = xp +αx+β with α �= 0. For P = (a, b) ∈ C(Fp)\{O}, we set Q = (xQ, yQ) =(
α−(p+1)

(
ap2

+βp−αpβ
)
, α−p(p+1)/2bp2)

and h(x, y) = bpy− (αx+ ap +β)(p+1)/2.
Then we have

p((P )− (O)) = (Q̃)− (O) + (h(x, y)/(x− xQ)).

Proof. First, we see from the direct computation that y2
Q = xp

Q + αxQ + β,
that is, Q is a point on C.
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In the case b = 0, we have p((P )− (O)) = (P )− (O)+ ((x−a)(p−1)/2) because
of 2((P )− (O)) = (x− a). Therefore we obtain the desired result.

In the case b �= 0, we consider the support of h(x, y). To do this, we compute
h(x, y)h(x,−y) as follows:

h(x, y)h(x,−y) = (ap + αx + β)p+1 − b2py2

= (b2 + α(x− a))p+1 − b2py2

= b2p(b2 − y2 + αx− αa) + αp+1(x− a)p+1 + αpb2(x− a)p

= b2p(−xp + ap) + (x− a)p(αp+1(x− a) + αpb2)

= αp+1(x− a)p(x− xQ),

and obtain y = b (resp. yQ) by solving h(a, y) = 0 (resp. h(xQ, y) = 0). Therefore,
it turns out that (h(x, y)) = p(P )+(Q)−(p+1)(O). From this result and (x−xQ) =
(Q) + (Q̃)− 2(O), we complete the proof. �

Applying the theorem above to our curve C, we get a simple quintuple opera-
tion on Jac(C) as follows:

Corollary 1. For P = (a, b) ∈ C(Fq) \ {O}, we have

p((P )− (O)) =
((−ap2

, αbp2))− (O) + (hP (x, y)/kP (x)),

where we define hP (x, y) = bpy + (αx− ap)
p+1
2 and kP (x) = x + ap2

.

This corollary gives the following formulae:

p div(x + a0, b0) = div
(
x− ap2

0 , αbp2

0

)
+
((

bp
0y + (αx + ap

0)
p+1
2
)/(

x− ap2

0

))
,

p div(x2 + a1x + a0, b1x + b0) = div
(
x2 − ap2

1 x + ap2

0 ,−αbp2

1 x + αbp2

0

)
+
(
(γy2 + f1(x)y + f0(x))

/(
x2 − ap2

1 x + ap2

0

))
,

where

γ := ((a0b1 − a1b0)b1 + b2
0)

p,

f1(x) := α(a1b1 − 2b0)px3 − 2(2a0b1 − a1b0)px2

+ 2α(a0a1b1 − (a2
1 − 2a0)b0)px

− ((a2
1 − 2a0)a0b1 − (a2

1 + 2a0)a1b0)p,

f0(x) := (−x2 + αap
1x + ap

0)
3.

Hence we need ten multiplications (i.e. a0b1, a1b0, (a0b1 − a1b0)b1, b2
0, a1b1,

a0(a1b1), a2
1, (a2

1− 2a0)b0, (a2
1− 2a0)(a0b1), (a2

1 +2a0)(a1b0)) and seven p-th power
operations to compute γ, f1(x) and f0(x).
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From Corollary 1, we further obtain the following result, which plays an im-
portant role for an efficient computation of the Tate pairing for y2 = x5 − αx.

Proposition 1. Let D=div(f(x),g(x)) be a reduced divisor with degf(x)=
2, and Di the reduced divisor such that Di∼ piD (especially D0 =D). For i ≥ 1,
we set pDi−1 = Di +(�i(x, y)/hi(x)), where �i(x, y) can be represented as �i(x, y) =
γiy

2 + (six
3 + tix

2 + uix + vi)y + (−x2 + cix + di)3 (see Corollary 1). Then, for
each coefficient of �i(x, y), we have

γi+1 = −γp2

i , si+1 = αsp2

i , ti+1 = −αtp
2

i , ui+1 = αup2

i ,

vi+1 = −αvp2

i , ci+1 = −cp2

i , di+1 = dp2

i .

We next consider the characteristic polynomial φq(t) of the q-th power
Frobenius endomorphism of Jac(C). Since the map x → xp − αx turns out to be
an automorphism of both Fp and Fp2 as additive groups, we have #C(Fp) = p + 1,
#C(Fp2) = p2 + 1, which implies

φq(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(t−√q)4 (r ≡ 0 (mod 8)),

(t +
√

q)4 (r ≡ 4 (mod 8)),

(t2 + q)2 (r ≡ 2, 6 (mod 8)),

t4 + q2 (r: odd).

(1)

Therefore, if r is odd and l �= p an odd prime with l | #JacFq
(C) = q2 + 1, then

the embedding degree is equal to four.
For the remainder of this paper, we set r and l as above because the other

cases have the embedding degrees smaller than four, which are less interesting for
cryptographic purposes. In our case, we can choose Fqk sufficiently large in view of
security while we can choose small Fq in view of cost performance (see Remark 1).

3.2. Construction of a distortion map
In this subsection, we construct a distortion map for C/Fq : y2 = x5 − αx

(α = ±2) in characteristic five.
Firstly, it is easy to see that there exist morphisms πp, ζ8, ζ5 from the curve

above to itself defined by

πp : (x, y) → (xp, yp) (p-th power Frobenius),

ζ8 : (x, y) → (αx, α
1
2 y),

ζ5 : (x, y) → (x + α
1
4 , y),

where α
1
4 is a fixed fourth root of α and α

1
2 = (α

1
4 )2. We shall use the same

symbols for the endomorphisms of Jac(C) induced from these morphisms above.
Since r is odd and α = ±2, we have (α

1
4 )q2

= (αrα
1
4 )q = −α

1
4 , which implies that

α
1
4 is an element of Fq4 \ Fq2 .
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By definition, we see that ζ8 (resp. ζ5) is regarded as a primitive eighth
(resp. fifth) root of unity in the endomorphism ring of Jac(C), and that the following
relations are satisfied: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

πi
p ◦ ζj

8 = (−1)ijζj
8 ◦ πi

p,

πp ◦ ζ5 = ζα
5 ◦ πp,

ζ8 ◦ ζ5 = ζα
5 ◦ ζ8,

π2
p = −ζ2

8 ◦ p.

(2)

Here, we consider F5 = Z/5Z and α = a + 5Z for some integer a so that ζα
5 = ζa

5 .
In order to construct a distortion map, it is crucial to find a basis of

JacFq4 (C)/l JacFq4 (C) over Z/lZ. To achieve this, we begin with considering the
eigenvalues of the q-th power Frobenius πq on Jac(C)[l].

For our curve y2 = x5 − αx, the characteristic polynomial of πq is t4 + q2. In
this case, the following fact is known:

Lemma 1 ([17]). Let C/Fq be a genus-2 hyperelliptic curve for which the
characteristic polynomial of πq is t4 + q2, and l an odd prime with l | q2 +1. Then
the eigenvalues of πq on Jac(C)[l] are ±1, ±q.

Proof. Since q2 ≡ −1 (mod l), we have

t4 + q2 ≡ (t2 − 1)(t2 + 1)

≡ (t + 1)(t− 1)(t + q)(t− q) (mod l). �

Next, for each eigenvalue obtained from Lemma 1, we find its correspond-
ing eigenspace. When we define η = (ζ5 − ζ−1

5 ) + q ◦ (ζαr

5 − ζ−αr

5

)
, the following

lemma holds:

Lemma 2. For D ∈ JacFq
(C), we have

πq ◦ η(D) = −q ◦ η(D).

Proof. Let m be the order of D. Then m divides #JacFq
(C) = q2 +1. Hence,

from (2), we have

πq ◦ η(D) =
{(

ζαr

5 − ζ−αr

5

)
+ q ◦ (ζα2r

5 − ζ−α2r

5

)}
(πq(D))

=
{(

ζαr

5 − ζ−αr

5

)
+ q ◦ (ζ−1

5 − ζ5)
}
(D) (by α2 ≡ −1 (mod 5))

=
{−q2 ◦ (ζαr

5 − ζ−αr

5

)− q ◦ (ζ5 − ζ−1
5 )
}
(D) (by 1 ≡ −q2 (mod m))

= −q ◦ η(D). �

From (2) and Lemma 2, we can obtain a basis of JacFq4 (C)/l JacFq4 (C) over
Z/lZ as follows:

Theorem 2. If l ‖ q2 + 1 and D ∈ JacFq
(C)[l] \ {0}, then {D, ζ8(D), η(D),

ζ8 ◦ η(D)} forms a basis over Z/lZ of both Jac(C)[l] and JacFq4 (C)/l JacFq4 (C).
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Proof. If η(D) �= 0, then we see from (2) and Lemma 2 that 〈D〉, 〈ζ8(D)〉,
〈η(D)〉, 〈ζ8 ◦η(D)〉 are the eigenspaces corresponding to the distinct πq-eigenvalues
1, −1, −q, q, respectively. Therefore, they are linearly independent over Z/lZ,
which implies that they form a basis of Jac(C)[l] because Jac(C)[l] is isomorphic to
(Z/lZ)4. Furthermore, the characteristic polynomial of the q4-th power Frobenius is
(t+q2)4 from (1), which implies JacFq4 (C) ∼= (Z/(q2+1)Z)4 [40]. From this fact and
the assumption l ‖ q2 + 1, we obtain the desired result for JacFq4 (C)/l JacFq4 (C).

So, we only need to show η(D) �= 0.
Let D ∈ JacFq

(C)[l] ∩ Ker η, and λ = 2(ζ5 + ζ−1
5 ) + 1. Using the relation

−ζ2
5 − ζ−2

5 = ζ5 + ζ−1
5 + 1, we see that

N :=
∏

σ∈Gal(Q(ζ5)/Q)

ησ

=
∏

i=1,2

{(ζi
5 − ζ−i

5 ) + q(ζiαr

5 − ζ−iαr

5 )}2

=

{
λ2(q2 + q − 1)2 (αr ≡ 2 (mod 5)),

λ2(q2 − q − 1)2 (αr ≡ −2 (mod 5)),

=

{
5{q2 + 1 + (q − 2)}2 (αr ≡ 2 (mod 5)),

5{q2 + 1− (q + 2)}2 (αr ≡ −2 (mod 5)).

Then, since gcd(l, N) = gcd(l, q∓ 2) = 1, we obtain D ∈ JacFq
(C)[l]∩ Jac(C)[N ] =

{0}, which completes the proof of the theorem. Indeed, if l | q ∓ 2, then l | (q +
2)(q − 2) = (q2 + 1)− 5. This implies l | 5, which contradicts l | q2 + 1. �

Remark 2. According to the Cohen–Lenstra heuristic [10], it is highly un-
likely that l2 divides #JacFq

(C) for a sufficiently large l.

From Theorem 2 above and [17, Lemma 3.3], we can obtain the following result:

Theorem 3. With the notation above, if l is an odd prime with l ‖ q2 + 1,
then the map

t̃l : JacFq
(C)[l]× JacFq

(C)[l]→ μl

defined by

t̃l(D,E) = tl(D, ζ8 ◦ η(E))

is bilinear and has the property that t̃l(D,E) �= 1 holds for all D,E �= 0.

Proof. The proof is the same as in Lemma 3.3 of [17]. We describe only
the outline (see [17, Lemma 3.3] for more details). The bilinearity follows from
the definition of t̃l. For the second assertion, since it turns out tl(D′, E′)q =
tl(πq(D′), πq(E′)) for D′ ∈ JacF

qk
(C)[l] and E′ ∈ JacF

qk
(C)/l JacF

qk
(C), we see



260 R. Harasawa, Y. Sueyoshi and A. Kudo

tl(D,E) = tl(D, ζ8(E)) = tl(D, η(E)) = 1. Indeed, since

tl(D, ζ8(E))q = tl(πq(D), πq ◦ ζ8(E))

= tl(D,−ζ8(E))

= tl(D, ζ8(E))−1,

we obtain tl(D, ζ8(E))q+1 = 1. So we have tl(D, ζ8(E)) ∈ μl ∩ μq+1 = {1} from
gcd(l, q + 1) = 1. Similarly, we can show the other equalities.

Hence the desired result follows from Theorem 2 and the non-degeneracy of
the Tate pairing. �

As a result, from Theorem 3, the endmorphism ζ8◦η becomes a distortion map
for each element of JacFq

(C)[l] \ {0}.
3.3. Image of the distortion map ζ8 ◦ η

In this subsection, we explicitly describe the image of JacFq
(C) under the

distortion map ζ8 ◦ η constructed in the previous subsection.
Representing each reduced divisor defined over Fq as div(a(x), b(x)) =∑

1≤i≤deg a(x)((αi, βi)) − deg a(x)(O) (deg a(x) ≤ 2), we see that each (αi, βi) be-
comes an Fq2-point on C. Therefore, in order to describe the image of ζ8 ◦ η, it is
sufficient to consider only ζ8 ◦ η((P )− (O)) for P ∈ C(Fq2) \ {O}.

Theorem 4. For P = (a, b) ∈ C(Fq2) \ {O}, we have

ζ8 ◦ η((P )− (O)) ∼
{

((0, 0))− (O) (a = 0),

(φ(P )) + ((0, 0))− 2 (O) (a �= 0),

where φ(P ) := (−a−5α
1
2 ,−2a−15b5αα

3
4 ) for a �= 0.

Proof. Since P = (a, b) satisfies b2 = a5 − αa, the following four points are
on the curve as can be checked easily.

P1(a, b) = (αa + αα
1
4 , α

1
2 b),

P2(a, b) = (αa− αα
1
4 ,−α

1
2 b),

P3(a, b) = (−αa + αr+1α
1
4 , αrα

1
2 b),

P4(a, b) = (−αa− αr+1α
1
4 ,−αrα

1
2 b).

Then, from q = (ζ2
8 ◦ π2

p)r = π2
q ◦ ζ2r

8 (see (2)), α2r = −1, (α
1
4 )q2

= −α
1
4 and the

definition of ζ8 ◦ η, we see

ζ8 ◦ η((P )− (O)) =
∑

1≤i≤4

(Pi(a, b))− 4(O).

Here we should notice that x-coordinates of the Pi(a, b)’s are distinct because αr �=
±1 and a ∈ Fq2 .
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In the case a=0, we can obtain the desired result from (y)=
∑

1≤i≤4(Pi(a,b))−
4(O)+((0,0))−(O).

In the case a �= 0, there exists a unique function of the form h(x, y) = y −
(c3x

3 + c2x
2 + c1x + c0) such that h(Pi(a, b)) = 0 for 1 ≤ i ≤ 4. Let A be the

determinant of the coefficient matrix for the simultaneous equations with unknown
ci’s. We have A = (a4 − α)αrα

1
2 , which is a nonzero element because the assump-

tion a ∈ Fq2 implies a4 − α �= 0. It then turns out Ac3 = −2a2bαr+1α
3
4 , Ac2 =

−abαr+1α
1
4 , Ac1 = −2a4bαr+1α

3
4 − bαrα

3
4 , and Ac0 = 0.

Since we have

A2h(x, y)h(x,−y) = −(a9αα
1
2 + a5α

1
2 )x6 + (a4 − α)x5

− (2a11αα
1
2 + 2a7α

1
2 )x4 − (a10α− a6 + 2a2α)x3

− (a13αα
1
2 + 2a9α

1
2 + aα

1
2 )x2 + (a8 − 2a4α− 1)x

= −(a4 − α)(x2 − 2aαx− a2 + α
1
2 )

· (x2 + 2aαx− a2 − α
1
2 )(a5αα

1
2 x− 1)x,

we obtain (h(x, y)) =
∑

1≤i≤4(Pi(a, b)) − 4(O) + (φ̃(P )) + ((0, 0)) − 2(O), which
completes the proof. �

By definition, we have

ζ8 ◦ η((P ) + (Q)− 2(O)) = ζ8 ◦ η((P )− (O)) + ζ8 ◦ η((Q)− (O)).

We mention that 2((0, 0)− (O)) = (x), which is equal to 0 as an element of Jac(C).

4. Computation of the Tate pairing

In this section, for the actual computation of the Tate pairing for y2 = x5−αx,
we remark there exist some improvements in the same way as those proposed so far.

We first introduce the following method for an efficient computation of the
Tate pairing for genus-2 hyperelliptic curves with embedding degree k ≥ 2.

Theorem 5 ([8]). Let C/Fq be a genus-2 hyperelliptic curve, l an odd prime
with l dividing #JacFq

(C) but not q. We assume that the embedding degree k ≥ 2.
Let D (resp. E) be an element of JacFq

(C)[l] (resp. JacF
qk

(C)/l JacF
qk

(C)). Repre-
senting E = div(a(x), b(x)), we assume that deg a(x) = 2 and suppD ∩ supp E′′ =

∅, where E′′ = E + 2(O). Then tl(D,E) = fD(E′′)
qk−1

l holds, where fD ∈ Fq(C)
is a function such that (fD) = lD. In other words, we do not need the process of
finding a divisor E′ such that E′ ∼ E and supp D ∩ suppE′ = ∅. Furthermore,
we can decrease the number of points substituted into functions required in Miller’s
algorithm.

In order to make the notation simple, for a divisor D =
∑

nP (P ), we define
D̂ as D̂ =

∑
P∈C(Fq)\{(0,0),O} nP (P ), the divisor obtained by eliminating (0, 0) and

O from D.
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From Theorem 5, we can simplify the Tate pairing t̃l(D,E) using the distortion
map ζ8 ◦ η as follows:

Theorem 6. Let D,E ∈ JacFq
(C)[l] \ {0}, and fD ∈ Fq(C) a function such

that (fD) = lD. Then we have

t̃l(D,E) =

⎧⎨⎩ fD(φ(Ê))
q4−1

l (deg Ê = 2 or (0, 0) �∈ suppD),

±fD(φ(Ê))
q4−1

l (otherwise),

where φ is the same map as in Theorem 4 and the signature ± is determined so
that t̃l(D,E) ∈ μl holds. We note that z ∈ μl implies −z �∈ μl because l is odd.

Proof. We represent E as E =
∑

1≤i≤w((αi, βi))−w(O) (w = 1 or 2), and set
Pi = (αi, βi). Since l is odd, we may assume α1 �= 0 without loss of generality. Then
we have Ê = (P1)+(P2) (i.e. deg Ê = 2) if and only if w = 2 and α2 �= 0 (otherwise
Ê = (P1)). We further see suppφ(Ê) ∩ suppD = ∅ because of supp D ⊂ C(Fq2)
and suppφ(Ê) ∩ C(Fq2) = ∅.
(i) The case deg Ê = 2: From Theorem 4, we have ζ8 ◦ η(E) ∼ φ(Ê) − 2(O).

Therefore, the desired result follows from Theorem 5.
(ii) The case (0, 0) �∈ suppD and w = 1: We have t̃l(D,E) = fD(φ(Ê) +

((0, 0)))
q4−1

l from Theorem 4. Hence we obtain the desired result by using
fD((0, 0)) ∈ F∗

q and q − 1
∣∣ q4−1

l .
(iii) The case (0, 0) �∈ suppD and α2 = 0: It is obvious that t̃l(D,E) =

t̃l

(
D, Ê − (O)

)
t̃l
(
D, ((0, 0))− (O)

)
by the linearity of the map t̃l. From

(ii) above and ((0, 0))− (O) ∈ JacFq
(C)[2], it follows that t̃l

(
D,Ê− (O)

)
=

fD(φ(Ê))
q4−1

l and t̃l
(
D, ((0, 0))− (O)

) ∈ μl ∩ μ2 = {1}, which implies the
first assertion of the theorem.

(iv) The case (0, 0) ∈ suppD and “w = 1 or α2 = 0”: From Theorem 4, it
is easy to see that ζ8 ◦ η(E) = φ(Ê) + ((0, 0))− 2(O) for w = 1, and that
ζ8 ◦ η(E) ∼ φ(Ê)− (O) for α2 = 0. Then, for both cases, ζ8 ◦ η(2E) ∼
2φ(Ê)− 2(O) holds. Hence we obtain t̃l(D,E)2 =

{
fD(φ(Ê))

q4−1
l

}2

from

Theorem 5, which implies the second assertion of the theorem. �

Remark 3. Applying the so-called squared Tate pairing [13], we obtain the

equality t̃l(D,E)2 = fD(φ(Ê))
2(q4−1)

l for all D,E ∈ JacFq
(C)[l] \ {0}. The pairing

t̃ 2
l keeps the same properties as those of t̃l described in Theorem 3.

Remark 4 ([2, 11]). Let the notation be as in Theorem 6. We define the
function fq2 ∈ Fq(C) by q2D = Dq2 + (fq2) with reduced divisor Dq2 . Then we
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have (a(x) · fq2) = q2+1
l (fD) for D = div(a(x), b(x)), which implies

t̃l(D,E) = ±(a(x) · fq2)(φ(Ê))q2−1.

Here the signature ± is assigned in the same way as in Theorem 6.
Moreover, applying Corollary 1 repeatedly, we can represent fq2 as the form∏

i
�i(x,y)
hi(x) . Then, as in [2] we can omit hi(x)’s and a(x) for the computation of

t̃l(D,E), because the values hi(φ(Ê)) and a(φ(Ê)) belong to F∗
q2 . Indeed, the

x-coordinate of each point of suppφ(Ê) is an element of Fq2 , and (suppφ(Ê) ∩(⋃
i supp(hi(x))∪ supp(a(x))

) ⊂ (suppφ(Ê)∩C(Fq2)) = ∅ holds from Corollary 1.
As a result, we obtain

t̃l(D,E) = ±
(∏

i

�i(φ(Ê))

)q2−1

.

This gives an efficient Tate pairing computation because we use the p-th power
operations on fields of characteristic p and the quintuple operation on JacFq

(C) as
main procedures [11].

Remark 5. The final raising of a nonzero element z to the (q2− 1)-st power
requires only one inversion and five multiplications on Fq2 because zq2−1 = zq2

/z =
(a0 − a1α

1
4 )/(a0 + a1α

1
4 ) = (a0 − a1α

1
4 )2/(a2

0 − a2
1α

1
2 ) for z = a0 + a1α

1
4 (ai ∈

Fq2 = Fq(α
1
2 )), which is more efficient than the original method (i.e. the repeated

square-and-multiply algorithm). There exists another method [27] for performing
the computation of zq2−1 on Fq4 : zq2−1 = (z ·zq)q2+q/(z ·zq)q2+1. We note that the
denominater is equal to NFq4/Fq

(z), which is an element of Fq. So, it needs three
q-th power operations on Fq4 and two (resp. eight) multiplications on Fq4 (resp. Fq)
and one inversion on Fq. Compairing the costs of the two methods above, we see
later (Subsection 6.1) that the former method is more efficient than the latter one.
Therefore, we apply the former one for the final raising to the (q2 − 1)-st power
when we evaluate the cost of pairings and implement them.

5. Ate pairing for y2 = x5 − αx

In this section, we describe the Ate pairing [25] for y2 = x5 − αx.
Since gcd(q2+1, q) = 1, there exists an integer ρ such that ρq ≡ 1 (mod q2+1).

Then we obtain the following result:

Theorem 7 (Ate pairing for y2 = x5 − αx). The map

t̂l : JacFq
(C)[l]× JacFq

(C)[l]→ μl

defined by

t̂l(D,E) = t̃l(D,E)ρ
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is bilinear and has the property that t̂l(D,E) �= 1 for all D,E �= 0. Furthermore,
we have

t̂l(D,E) = ±fq(φ(Ê))2(q
2−1),

where fq ∈ Fq(C) is a function such that qD = Dq + (fq) with reduced divisor Dq

and the signature ± is assigned in the same way as in Theorem 6 (recall that ρ is
odd by definition).

Remark 6. For the Tate pairing based on Remark 4, we need a function fq2

such that q2D = Dq2 + (fq2). Finding the function fm using Miller’s algorithm
requires running time depending on log m. This shows that the cost of the Ate
pairing is about a half of that of the Tate pairing based on Remark 4 (see Table 5).

The proof of Theorem 7 is similar to that for the supersingular elliptic
curves [25, Section III.B]. We describe the outline.

Setting π̂q = πq ◦ ζ2r
8 , we have π̂q ◦ πq = πq ◦ π̂q = q from (2), namely π̂q is the

dual of πq.
For the proof of Theorem 7, we need two lemmas.

Lemma 3. With the notation above, we have

π̂q ◦ φ(Ê) = φ(Ê).

Proof. The equality follows from the direct computation. We note that the
form of Ê is either Ê =

∑
1≤i≤w(Pi) (w = 1 or 2) with Pi ∈ Fq(C) or Ê = (P ) +

(πq(P )) with P ∈ Fq2(C) \ Fq(C) because our curve has genus 2. �

Lemma 4. With the notation above, we have

(h ◦ π̂q) = q(fq),

where h is a function such that qDq = Dq2 + (h).

Proof. By definition, π̂q is a bijection of degree q. Hence, by [38, Proposi-
tion 2.6 (Chapter II)], the equality π̂∗

q

(∑
nP (P )

)
= q

(∑
nP (π̂−1

q (P ))
)

holds for
every divisor

∑
nP (P ) (for the definition of π̂∗

q , see [38, p. 24 and p. 33]).
Therefore we have

(h ◦ π̂q) = π̂∗
q (h) (by [38, Proposition 3.6 (Chapter II)])

= π̂∗
q (qDq −Dq2)

= π̂∗
q (q(π̂q ◦ πq(D))− (π̂q ◦ πq(Dq))) (by π̂q ◦ πq = q)

= q(q(πq(D))− πq(Dq))

= q(qD −Dq) (by D,Dq ∈ JacFq
(C))

= q(fq) (by qD = Dq + (fq)). �

Proof of Theorem 7. The bilinearity of t̂l and the property that t̂l(D,E) �=
1 follow from Theorem 3 and gcd(l, ρ) = 1. For the latter assertion, from the
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definition of the functions fq, h, fD and Remark 4 and the fact that ρ is odd,
we have

t̂l(D,E) = ±{(fq
q h) ◦ φ(Ê)}(q2−1)ρ

= ±{fq
q ◦ φ(Ê) · (h ◦ π̂q ◦ φ)(Ê)}(q2−1)ρ (by Lemma 3)

= ±{f2q
q ◦ φ(Ê)}(q2−1)ρ (by Lemma 4)

= ±fq(φ(Ê))2(q
2−1) (by ρq ≡ 1 (mod q2 + 1) and fq(φ(Ê)) ∈ F∗

q4). �

6. Cost of the Ate pairing

In this section, we evaluate the cost for computing the Ate pairing t̂l(D,E)
described in the previous section. The procedure of the Ate pairing is described in
Table 1.

Table 1. Ate pairing t̂l(D, E)

Input: D,E ∈ JacFq
(C)[l] \ {0}.

Output: Ate pairing t̂l(D,E).

Step 1: Decompose Ê =
∑

1≤i≤w(Pi) (w = 1 or 2).

Step 2: Compute φ(Pi) = (αi, βi)
and α2

i , β
2
i , αiβi, α

2
i βi, α

3
i βi (1 ≤ i ≤ w).

Step 3: Compute the function �(x, y) ∈ Fq[x, y] s.t.
pD = D′ + (�(x, y)/h(x))
with reduced divisor D′ and h(x) ∈ Fq[x].

Step 4: v ← 1, D′ ← D.
Step 5: for i = 1 to r (Recall q = pr.)

Compute the function �(x, y) ∈ Fq[x, y] s.t.
pD′ = D′′ + (�(x, y)/h(x))
with the reduced divisor D′′ and h(x) ∈ Fq[x].
v ← vp · �(φ(Ê)), D′ ← D′′.

end for

Step 6: v ← (vq2
/v)2, output v.

Before estimating the cost we specify the case handled here. Consult the
appendix of other cases.
1. We represent the input values D,E as the Mumford representation, and as-

sume deg Ê = 2 and deg f(x) = 2 for D = div(f(x), g(x)). Otherwise, the
computation of the Ate pairing is more simple. According to [14] we see that a
divisor E with deg Ê = 1 (i.e. a degenerate-like divisor) satisfies t̂l(D,E) �= 1
for a random element D ∈ JacFq

(C)[l] \ {0}, which leads to a more efficient
pairing computation (see Table 5).

2. For the computations of φ(Ê) and fq(φ(Ê)), we regard E and φ(Ê) − 2(O)
as divisors (i.e. formal sums of Fq-points on C) not as the Mumford
representation.
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3. We assume that supp Ê has no Fq-point on C, that is, Ê = (P ) + (πq(P ))
with P ∈ C(Fq2) \ C(Fq).

In the appendix we treat the case that supp Ê has an Fq rational point and study
the formulas for the case that E is kept in Mumford representation.

By Mk (resp. Ik or Fk) we denote the cost of one multiplication on Fqk (resp. the
cost of one inversion on Fqk or the cost of one p-th power operation on Fqk), and
omit the index in the case of k = 1. Applying the Karatsuba method, except
for some special cases, we can estimate 1M2 = 3M , 1M4 = 9M , 1I2 = 4M + 1I

and 1I4 = 16M + 1I (see Subsection 6.1, or [25] for the more general cases). We
further can obtain 1Fk = kF , for k = 2 and 4, when we represent Fqk = Fq(α1/k).
We mention that for the evaluation in this paper, we do not count the cost of
addition/subtraction (including doubling and the multiplication by α (= ±2)) and
the shift operation on Fq, Fq2 and Fq4 . Therefore, we do not count the cost of the
multiplications of the form αi/4 · αj/4 for 0 ≤ i, j ≤ 3.

Hereafter we use the notation “distortion map” not only for ζ8 ◦ η but also for
the map φ.

6.1. Field operation
We estimate the costs of the multiplication and the inversion operations on

Fq2 and Fq4 with Fq2 = Fq(α
1
2 ) and Fq4 = Fq(α

1
4 ).

We first consider the operations on Fq2 . Let a = a0 + a1α
1
2 and b = b0 + b1α

1
2

(ai, bi ∈ Fq) be two elements of Fq2 with a �= 0. Then we have ab = (a0b0+αa1b1)+
{(a0 + a1)(b0 + b1)− (a0b0 + a1b1)}α 1

2 and a−1 = (a2
0 − αa2

1)
−1(a0 − a1α

1
2 ), which

implies 1M2 = 3M and 1I2 = 2M + 1I + 2M = 4M + 1I.
For the operations on Fq4 , it is easy to see that 1M4 = 3M2 = 9M and 1I4 =

2M2 + 1I2 + 2M2 = 16M + 1I in the same way.

6.2. Cost of the distortion map
We estimate the cost of the computation of φ(P ) for P ∈ C(Fq2)\C(Fq) (Step 2

in Table 1).
Before doing this, we should estimate the cost for decomposing E (of the form

div(f(x), g(x))) into E = (P )+(πq(P ))−2(O). This task needs to solve a quadratic
equation f(x) = 0 over Fq, whose cost is dominated by the computation of square
root(s) of the discriminant. The assumption q ≡ 5 (mod 8) (recall q = 5r with r

odd) gives an efficient method for computing the square root(s) of a given element
of Fq (Table 2), which is a special case of the method in [9]. From this, the cost for
computing the x-coordinate of the point P is regarded as the sum of those of one
q+3
8 -th power operation and one square operation on Fq. The computation of the

y-coordinate of P needs one multiplication of an element of Fq and that of Fq2 .
Given a point P = (a, b) ∈ C(Fq2) \ {O} with a �= 0, the procedure for com-

puting φ(P ) is described in Table 3, which takes 1I + 2 · 1M + 3M2 + 2F2 =
11M + 1I + 4F . Here we use the fact a−1 = −f−1

0 · (a+f1) for E = div(f(x), g(x))
with f(x) = x2 + f1x+ f0 from the relation between solutions and coefficients with
respect to equations. Since the resulting point φ(P ) is of the form (ε1, ε2α

1
4 ) with
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Table 2. Square root(s) for Fq

Input: An element A ∈ Fq with q = 5r and r odd.
Output: Square root(s) of A.
Step 1: If A = 0, then output 0.

Step 2: Represent q+3
8 as q+3

8 =
∑

0≤i≤k rip
i

with 0 ≤ ri < p and rk > 0.
B ← A

q+3
8 , C ← B2

(Then we have C = A
q+3
4 and A−1C ∈ F∗

5.)
Step 3: If C = A, then output ±B.

If C = −A, then output ±2B.
If C = αA, then output ±2Bα

1
2 .

If C = −αA, then output ±Bα
1
2 .

εi ∈ F∗
q2 (i = 1, 2), the computations of ε2

1, (ε2α
1
4 )2 and εm

1 (ε2α
1
4 ) for 1 ≤ m ≤ 3

take 5M2 = 15M (the latter part of Step 2 in Table 1). Furthermore, if we compute
φ(P ) and the associated values, then we need not compute the values associated
with φ(πq(P )) in the case of Ê = (P ) + (πq(P )) with P ∈ C(Fq2) \ C(Fq) (see
Subsection 6.3 for the detail).

Table 3. Distortion map φ

Input: A point P = (a, b) ∈ C(Fq2) \ {O} with a �= 0.
Output: The image φ(P ).
Step 1: A← a−1, B ← −Ap.

X ← Bα
1
2 .

Step 2: C ← 2αB3bpα
1
2 .

Y ← Cα
1
4 .

Step 3: Output (X,Y ).

6.3. Cost of substitution
In this subsection, we consider the cost of Step 5 in Table 1.
Given a function �(x, y) ∈ Fq[x, y] with the form �(x, y) = γy2 + (sx3 + tx2 +

ux + v)y + (−x2 + cx + d)3 (see Corollary 1) and φ(P ) = (ε1, ε2α
1
4 ) with εi ∈ F∗

q2

(i = 1, 2), we estimate the cost of the computation of �(φ(Ê)) = �(φ(P )+φ(πq(P ))).
We note that �(x, y) can be computed in 7 · 2F = 14F if we have done Step 3 (by
Proposition 1), and that we perform Step 5 using the values obtained in Step 2. By
this reason, it costs 6·2M+2M2 = 18M to compute �(φ(P )). After the computation
of �(φ(P )), it costs only 2M2 = 6M for computing �(φ(πq(P ))) because we have
�(φ(πq(P ))) = −(γn2)q + αr(−sm3n + tm2n − umn + vn)q + (−m2 − cm + d)3q

if φ(P ) = (m,n). Here we use the fact φ ◦ πq = ζ2r
8 ◦ πq ◦ φ, namely φ(πq(P )) =

(−mq, αrnq), and mention that we do not count the cost of the q-th power operation
on Fq2 and Fq4 because the computation is performed by only shift operations and
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addition/subtraction operations on Fq. So it takes (18 + 6)M + 1M4 = 33M to
compute �(φ(Ê)).

We emphasize that for each E ∈ JacFq
(C)[l] \ {0}, we have suppφ(Ê) ∩

C(Fq2) = ∅ and supp(�(x, y)) ⊂ C(Fq2) by the definitions of φ and �(x, y). This
gives supp(�(x, y)) ∩ suppφ(Ê) = ∅, which means �(φ(Ê)) �= 0,∞.

6.4. Total cost
In this subsection, we evaluate the total cost of the computation of the Ate

pairing by applying the procedure in Table 1. For a real number x, we denote by
�x� the smallest integer greater than or equal to x.

For Step 1, we estimate the cost for computing ri’s (in Step 2 of Table 2)
as 1M because it costs about �log2

q+3
8 �2 bit operations, and the cost for the de-

composition of the reduced divisor E as 3 · 1M + (� 45r�M + r · 1F ) + 2M . The
first term 3 · 1M corresponds to the cost for the precomputation of the repeated
p-th-power-and-multiply algorithm, and the second one for the algorithm and the
last one for the computation of the y-coordinate. Here we assume, in Step 2 of
Table 2, that k = r and ri’s are uniformly distributed on the set {0, 1, . . . , p − 1}
(recall that q = pr). Thus, Step 1 takes (� 45r�+ 6)M + rF .

For Step 2, it costs (11M +1I +4F )+15M = 26M +1I +4F by the argument
of Subsection 6.2.

For Step 3, it costs 10M + 7F from Corollary 1.
For Step 5, it costs 1F4 + (14F + 33M) + 1M4 = 42M + 18F for rewriting

the value v, that is, the computation of vp · �(φ(Ê)). Therefore, Step 5 takes
33M +(r− 1) · (42M +18F ) = (42r− 9)M +18(r− 1)F , where the first term 33M
corresponds to the cost for the first routine (i.e. the case of i = 1) in Step 5.

For Step 6, it costs (5M2 + 1I2) + 1M4 = 28M + 1I (see Remark 5).
Consequently, we estimate the cost for computing the Ate pairing t̂l(D,E) as

(42r + � 45r�+ 61)M + 2I + (19r − 7)F .
As is well known, the inversion is the most heavy operation on Fq (see Table 4).

We need only two inversions to compute the Ate pairing with the procedure in
Table 1. The reason is that we need no inversion to obtain the functions �(x, y)’s
into which the divisor Ê is substituted, which is a common property among the
class of curves y2 = xp − x + d (d = ±1) [12].

Table 4. Running time for operations on Fq with q = 5113

multiplication (M) inversion (I) p-th power raising (F ) ratio (I/M)
62μs 617μs 21μs 9.95

7. Experimental results

In this section, we implement the Tate and Ate pairings for our curve. We
set r = 113 for q = pr and let Fq = Fp[t]/(t113 + t24 − 1). The reason why we
choose r = 113 is as follows (see Remark 1): (i) the value q2 + 1 has a 173-bit and
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a 348-bit prime factors (if l is one of these two primes, then we have l ‖ q2 + 1);
(ii) the embedding degree is equal to four and q4 ≥ 21024 holds (recall that r is an
odd prime and that l � p4 − 1 and that �log5 2256� = 111).

All computations are performed on a 2.5 GHz Pentium IV with 256 Mb RAM.
The language is C with Borland C++ compiler 5.5.1 and with no mathematical
library.

Table 5 shows that the Ate pairing is about 50% more efficient than the Tate
pairing, and that the pairing computation for deg Ê = 1 is about 50% more efficient
than that for deg Ê = 2. This implies that the length of the loop (the number of the
iteration in Step 5 of Table 1) and the number of points substituted into functions
lead directly to the cost performance of these pairings. We further see that the
method which represents the divisor Ê − 2(O) as the sum of points is about 50%
more efficient than the one which represents the divisor above as the Mumford
representation (see Section 6 and Appendix). The reason is that for the former
method, we have a nice relation among three objects, the q-th power Frobenius
map, the proposed ditortion map and the functions �(x, y)’s into which the divisor
Ê is substituted. So, if we have a similar one for the Mumford representation, then
we might improve the computation of the pairings for our curve. This is one of our
future works. We note that the experimental results in the papers [8, 24] show that
the difference of the running time of both methods is not so much for the curves
y2 = x5 + a over Fp with p ≡ 2, 3 (mod 5) using Miller’s Algorithm. However, for
our curve, we must deal with more complicated functions (i.e. functions with higher
degrees) than those which appear in Miller’s algorithm based on the addition chain.

Table 5. Running time for pairings for y2 = x5 − αx over Fq with q = 5113

pairing representation of divisors theoretical cost time

Tate pairing
formal sum of points

deg Ê = 1 [14] 4773M + 2I + 4059F 420 ms
deg Ê = 2 9668M + 2I + 4174F 764 ms

Mumford representation 16312M + 2I + 4061F 1390 ms

Ate pairing
formal sum of points

deg Ê = 1 [14] 2409M + 2I + 2025F 212 ms
deg Ê = 2 4898M + 2I + 2140F 395 ms

Mumford representation 8185M + 2I + 2027F 698 ms

On the other hand, Tables 4 and 5 also show that pairing calculation for
our curve is less efficient than that for other pairing-friendly curves, e.g. the Eta
pairing for supersingular (hyper-)elliptic curves in characteristic two and three [1]
(or [3, 35, 36, 37] from the view of hardware), and the Tate pairing for y2 = x5 + a

over prime fields Fp with p ≡ 2, 3 (mod 5) [24]. The main reason is that there exists
no fast arithmetic on fields in characteristic five, and that the class of the curves with
embedding degree more than four, which contains supersingular (hyper-)elliptic
curves above for the Eta pairing, enables one to set the size of definition fields
smaller than that for our curve under the same level of security.
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8. Conclusions and future works

In this paper, we constructed a distortion map explicitly and described a com-
putation of the Tate pairing by using the proposed map for genus-2 supersingular
hyperelliptic curves defined by y2 = x5 − αx (α = ±2) in characteristic five. Next
we showed that the Ate pairing can be applied to the curve for the linearly in-
dependent groups obtained via the distortion map. Moreover, we described the
detailed computational procedure of the Tate and Ate pairings for our curve, and
evaluated these two pairings. As a result, we showed the Ate pairing is about 50%
more efficient than the Tate pairing. The experimetnal results also show that our
curve is not the most suitable one in comparison with other pairing-friendly curves
for now. But, we expect that the pairing computation for our curve will reach at
practical level in the future.

There exists also a problem of the construction of pairing-friendly curves of
genus more than one, particularly non-supersingular curves. These problems are
our future works.

Appendix

We consider t̂l(D,E) in the two cases: (i) Ê has an Fq-point on C; (ii) we
represent Ê − 2(O) using the Mumford representation. For simplicity, the case
which we dealed with in Section 6 will be called “general case” in the following. We
estimate the cost of the distortion map (Step 2 in Table 1, Table 3) and the cost
of �(φ(Ê)) (Step 5 in Table 1). In fact, the computation of �(φ(Ê)) becomes the
main part of the procedure of the Ate pairing (as well as the Tate pairing).

1. Cost of t̂l(D, E) with supp Ê having an Fq-point on C

We consider the case Ê = (P1) + (P2) with Pi ∈ C(Fq) for i = 1, 2.
Given Pi’s, we can estimate the cost of φ(Ê) as 1I + 2M + 2(3M + 2F ) =

8M + 1I + 4F by the same way as in Subsection 6.2. After that, it takes 2 · 5M =
10M to obtain the values associated with φ(Pi)’s (i.e. the latter part of Step 2 in
Table 1). We note that each value associated with φ(Pi)’s is represented as εαj/4

for some ε ∈ Fq and 0 ≤ j ≤ 3.
We next consider the computation of �(φ(Ê)) (Step 5 in Table 1), given

�(x, y) = γy2 + (sx3 + tx2 + ux + v)y + (−x2 + cx + d)3. By the same way as
in Subsection 6.3, it takes 2(6M + 2M2) + 1M4 = 33M , which is the same as that
in the general case.

2. Cost of t̂l(D, E) using the Mumford representation
We consider the case where we represent Ê − 2(O) using the Mumford repre-

sentation throughout the whole procedure of the Ate pairing.
Let E = div(a(x), b(x)) with a(x) = x2 + a1x + a0 and b(x) = b1x + b0. Recall

that, representing formally E = (P1) + (P2) − 2(O) with Pi = (αi, βi), we have
a(x) = (x − α1)(x − α2) and βi = b(αi) for i = 1, 2. In addition, the assumption
deg Ê = 2 implies a0 �= 0.
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Applying Theorem 4 and the relations above, we can represent the image of
the distortion map as follows:

Corollary 2. With the notation above, let

φ(Ê)− 2(O) = div(f(x), g(x)).

Then we have

f(x) =

{
x2 + a−5

1 α
1
2 x− αa−10

1 (P1 = P2),

x2 − (a−1
0 a1)5α

1
2 x + αa−5

0 (P1 �= P2),

g(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2{a0a1(2a1b1 + b0)−1}5αα

1
4 x

− 2{a0a1(2a1b1 + b0)−1}5{a−5
1 − 2αa−1

1 }5α
3
4 (P1 = P2),

2a−10
0 {b0(a2

1 − a0)− a1a0b1}5αα
1
4 x

+ 2a−10
0 (a0b1 − a1b0)5αα

3
4 (P1 �= P2).

We note that P1 = P2 holds if and only if a2
1 + a0 = 0.

From the result above, we evaluate the cost of the distortion map as 5M +
2I + 3F in the case of P1 = P2 and as 9M + 1I + 4F in the case of P1 �= P2.

We next consider the computation of �(φ(Ê)) (Step 5 in Table 1), given
�(x, y) = γy2 + (sx3 + tx2 + ux + v)y + (−x2 + cx + d)3. Let φ(Ê) − 2(O) =
div(f(x), g(x)) with f(x) = x2 + f1x + f0 and g(x) = g1x + g0.

For the computation of �(φ(Ê)), it is possible to deal with operations modulo
f(x) because the x-coordinate of each φ(Pi) is a root of f(x). From the defining
equation and the direct computation, we have

y2 mod f(x) = x5 − αx mod f(x)

= {(f2
1 + f0)2 − α}x + f1f0(f2

1 − 2f0).

So, it takes 4M to compute y2 mod f(x), which can be computed in advance. We
note that each coefficient of the final expression is of the form εαj/2 with ε ∈ Fq

and j = 0 or 1.
We set σ1x+σ0 = sx3 + tx2 +ux+v mod f(x) and τ1x+ τ0 = (−x2 + cx+d)3

mod f(x), and let c′ = (c + f1) ∈ Fq2 and d′ = (d + f0) ∈ Fq. Then we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ1 = σ1(s, t, u) = (f2

1 − f0)s− f1t + u,

σ0 = σ0(s, t, v) = f1f0s− f0t + v,

τ1 = τ1(c′, d′) = [{(f2
1 − f0)c′ + 2f1d

′}c′ − 2d′2)]c′,

τ0 = τ0(c′, d′) = f0(f1c
′ + 2d′)c′2 + d′3.

So, we obtain the values above in 2M + 2M + (4M + 2M2) + (5M + 2M2) = 25M
after the computation y2 mod f(x). Hence, we estimate the cost of the computation
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�(x, y) mod f(x) as 2M + 25M = 27M , where the first term 2M is the cost of
γy2 mod f(x).

Next, given �′(x, y) := �(x, y) mod f(x), we estimate the computation of
�′(φ(Ê)). We see that �′(x, y) is of the form (ε1x+ε0)y+(λ1x+λ0) with εi, λi ∈ Fq2

for i = 1, 2 because the polynomial f(x) is defined over Fq2 (or because of the con-
sideration above).

Representing formally φ(Pi) = (mi, ni) for i = 1, 2, we have the following re-
lations using proper elements κi’s of Fq:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ1 := m1 + m2 = −f1 = κ1α
1
2 ,

δ2 := m1 ·m2 = f0 = κ2,

δ3 := n1 + n2 = 2g0 − f1g1 = κ3α
3
4 ,

δ4 := n1 · n2 = (f0g1 − f1g0)g1 + g2
0 = κ4α

1
2 ,

δ5 := m1 · n1 + m2 · n2 = (f2
1 − 2f0)g1 − f1g0 = κ5α

1
4 ,

δ6 := m1 · n2 + m2 · n1 = 2f0g1 − f1g0 = κ6α
1
4 ,

δ7 := δ2 · δ3 = κ7α
3
4 .

We mention that for 1 ≤ i ≤ 4, there exist elements ρi’s of Fq such that f1 = ρ1α
1
2 ,

f0 = ρ2, g1 = ρ3α
1
4 and g0 = ρ4α

3
4 from Corollary 2. We can compute δi’s above

in advance, whose cost is 7M after the computation y2 mod f(x).
From the direct computation, we obtain

�′(φ(Ê)) = δ4{(δ2ε1 + δ1ε0)ε1 + ε2
0}

+ (δ7λ1 + δ5λ0)ε1 + (δ6λ1 + δ3λ0)ε0

+ (δ2λ1 + δ1λ0)λ1 + λ2
0,

which takes (6M + 2M2) + 3(4M + 1M2) + 1M2 = 36M . We note that the multi-
plication of the form μ1(μ2α

1
4 ) with μi ∈ Fq2 takes 1M2.

Finally, we estimate the total cost of the computation of �(φ(Ê)) (Step 5 in
Table 1) as 27M + 36M = 63M (cf. 33M in the general case).

Following the consideration above, in case Ê has no multiple point, we can
estimate the cost of the Ate pairing t̂l(D,E) using the Mumford representation as
(72r + 49)M + 2I + (18r − 7)F with q = pr, which is about twice as much as that
in the general case. We note that, in case Ê has a multiple point, the computation
of the Ate pairing (as well as the Tate pairing) is more simple because the divisor
E is of the form E = 2((P )− (O)) for some P ∈ C(Fq).
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